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Abstract

We generalize Gekeler's mass formula for supersingular Drinfeld modules from rational function fields to arbitrary global
function fields. The proof is based on a calculation of Tamagawa numikmecge thisarticle: C.-F. Yu, J. Yu, C. R. Acad. Sci.
Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé
Uneformule demasse pour lesmodulesde Drinfeld supersinguliers. Nous démontrons une « formule de masse » pour les
modules de Drinfeld supersinguliers. Cette formule généralise celle obtenue par Gekeler danslig (& da démonstration

repose sur un calcul de nombres de Tamag®&ear. citer cet article: C.-F. Yu, J. Yu, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The classical mass formula of Deuring—Eichler comes from a 1-1 correspondence between isomorphism classe
of supersingular elliptic curves in characterigti@nd left ideal classes in a maxifmader of a definite quaternion
algebra ovef) ramified atp. This correspondence allows us to gain deeper understanding on both the supersingular
elliptic curves and the definite quaternion algebras d¥eamified at a single prime. It is not surprising that an
analogous situation exists for global function fields. Here Drinfeld modules of arbitraryrratdy the role of
elliptic curves, and on the algebraic side one considers central division algebras of dimeénsiar a ground
function field K which ramify at precise two places co with invariants ¥r, —1/r, respectively.

Gekeler in [3,2,5] obtained the mass formula, for the ckseeing the rational function field andarbitrary,
as well as for the general quaternion case: thatis2, andK arbitrary. The aim of this paper is to complete the
picture, generalizing Gekeler's mass formula to both arbitraaynd arbitraryK . Instead of working on moduli
schemes of Drinfeld modules, we reduce the genegiak to the rational function field case by computing and
comparing Tamagawa measures for the multiplicative group scheme arising from the central division algebra in
question.
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2. Statement of results

Let K be a global function field with constant fieR} . Letoo be a place oK, referred to as the place at infinity.
Let A be the subring of functions regular everywhere outsidé/Ne fix a finite placayg of K and are interested in
Drinfeld A-modules over-fields of finite characteristigg.

Let T denote the endomorphism— x? of G,. Leti: A — L be anA-field of characteristiag and¢: A —
L{t} be a Drinfeld module ovet., whereL{z} is the non-commutative polynomial ring generatedrbysiven a
non-zero ideah C A, the a-torsion of the module consists ofp[a](L) = {« € L | ¢ (a)(«) =0, Va € a}. There
are positive integers andx such that as finitet-modules,

olal(L) ~ (A/a)", if po does not divider; (1)
plpol(L) ~ (A/po) ", 2

wherepg is the prime ideal ofA corresponding to the plaag. The integerg andh are called the rank and height
of the Drinfeld modulep, respectively. The heiglitmay range from 1 te. Whenk = r, ¢ is calledsupersingular
Let A(r, vo)(L) denote the set of isomorphism classes of raskipersingular Drinfeld modules over an alge-
braically closed field. of A-characteristiag. It is known thatA(r, vo) (L) is finite and all the members are defined
over a certain finite field. We writet (r, vg) for A(r, vo)(k(vo)), wherek(vg) = A/po is the residue field at the
placevg. Define masgA(r, vo)) := ZMAWO) Wlw to be the mass ol (r, vp). The main result in this paper is

Theorem 2.1. Let notations be as above. One has

. r—1
#PidA om0 .
masi/l(”v UO)) = % 1_[ Cg 0 (=0).
i=1

Here ¢ >"(s) is the -function of the schen®peca \ po:
K

) =[] (1= Nw™) =tk () (1= N(©0) ™) (1= N(vo) ).

V#£00, V0

3. Supersingular Drinfeld modules

In this section, we recall some properties of supgyslar Drinfeld modules, due to Drinfeld [1] and mainly
to Gekeler [4]. We keep the notations in the previous section, andbeta fixed algebraic closure éfpo). If
¢ € A(r, vo), then there is a canonical formay},,-module structure on[pg°], viewed asA,-divisible group.

Theorem 3.1 (Drinfeld). Up to isomorphism, there is a unig@edimensional formakli , ,-module of height overk.
The endomorphism ring @f[pg°] is the maximal order of the central division algebra ov&y, with invariant1/r.

Theorem 3.2 (Gekeler)Let¢, ¢’ € A(r, vo).

(1) [End¢) ®a K: K]1=r2.

(2) ¢ and¢’ are isogenous.

(3) The relative Frobenius morphisay for ¢ over a sufficiently large finite field is iA.

(4) The natural mapHom (¢, ¢") ® Ay — Homy, (T (#), Ty (¢")) is bijective forp # po, where T, (¢) is the
p-adic Tate module ap.

(5) The natural magHony (¢, ¢") ® Ay, — Homem(o[pg°1. ¢'[pg°]) is bijective, where the right-hand side is the
set of homomorphisms of formal,,-modules ovek.
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(1)—(3) are proved in [4]. (4) and (5) are immediate consequences of (1) and (2).

PutOp :=End¢) andD := End¢) ®4 K. It follows from Theorems 3.1 and 3.2 thatis the central division
algebra oveX of degree-? ramified exactly abo, vo, with invariants—1/r, 1/r, respectively, and thadp is a
maximal order ofD.

Let G’ be the group scheme of the multiplicative groupd$ over A. For each commutativa-algebrar, the
group of R-points of G is G'(R) = (Op ® R)*.

Corollary 3.3. There is a natural bijection betweef(r, vg) and the double coset spaaé(K)\G/(A‘;f)/G/(A),

whereA% is the ring of finite adeles ot with respect taxo and A is the completion oft with respect to the ideal
topology.

This is a formulation of [4], Theorem 4.3 in adelic language. We briefly indicate the bijectiog leon (r, vo),
consider the mam’ — Hom(¢’, ¢). Then as a formal consequence of Theorem 3.1, 3.2 and the fact that
Ty (¢") ~ Ty (¢), this map induces a bijection betweeiir, vo) and the set of isomorphism classes of l6fp-
ideals inD.

We recall the definition of the mass 6§ (A). Let {c1,c2,...,cn} be a (complete) set of representatives of
the double coset spad@ (K)\G'(A%)/G'(A), and letl, := G'(K) N ¢;G'(A)c; . The discrete subgroup,
is contained in the maximal open compact subgrougz&fK ), hence is finite. Then the mass 6f(A) is
mass$G’(A)) := Y (1/4T).

Let ¢. be the Drinfeld module corresponding to the double cosei"(ﬂ()\G’(A‘;(o)/G’(A) represented by,
then Aut¢.) ~ I, loc. cit. (also cf. [7], Lemma 2.8).

Corollary 3.4. mass$A(r, vo)) = massG’'(A)).

4. Massformula

PutG = GL,, G1 = SL,, andG the norm one subgroup 6, viewed as group schemes overFirst we have
Vol(G'(K)\G'(AY))
vol(G’(A))

for any Haar measuregtion G’'(A%). The reduced norm gives an exact sequenee & (Ax) — G'(Ag) —
Choose a Haar measure ah Ga(Ak), so it determines a Haar measurg ®n G’ (Ag) with dg’ = dg; - dr.
We have

masgG'(A)) = 3

voI(G/(K)\G/(A‘}(O)) = voI( &(K)\GQ(A%O)) -VOI(KX\(A%O)X), 4)

vol(G'(A)) = vol(Gy(A)) - vol(A¥). (5)
From the exact sequence-1 ]F; — A% > KX\(A¥)* — Pic(A) — 1, one gets

VOI(K*\(AR)*)  #PidA)

vol(Ax) g1

As G (K ) is compactG’ (K«) = G1(0x). SO
#PioA) vol(G1(K)\Gy(Ak))

-1 [, vol(G(0y))
wherev runs through all the places &f.

(6)

mas§G’(A)) =

’
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If ), is the Tamagawa measure 61y, we have
#PigA)
-1

mas$G'(A)) = wy(H)™t, H' =]]G1(00). (7)
v
because the Tamagawa numbég) is equal to 1, cf. [6], Theorem 3.3.1.
Letw be an invariant differential form of top degree 6a ande’ be the pull back of via an inner isomorphism
o :G7 — G1. They give rise to the Tamagawa measusgsandw; on G1 andG’, respectively. Then
G (0, w. (G, (0
wA(H’)— 16 (G1(Owg)) - 0 (G1(O0)) o (D). ®)
Wy (G1(Op)) - W0 (G1(O0))
HereH =[], G1(0,). Itis well known that
r—1
wp(H) =g VIO [ Teg (1 41), 9)
i=1

whereg is the genus of the function field. The latter equalﬂf;l1 Cx (—i) by the functional equation. It follows
from (7)—(9) that (3) is expressed as

#P|0(A) wy(G1(0y))

@, (G1(0y))

mas$G’(A)) = ]‘[;K( i) Apghoos Ay = (10)

Note that wherk varies,\, depends oIk, but not onk. Whenk =F,(T), Gekeler's mass formula states

mas$G’(A)) = ]_[ Cx(—i) - ]_[ ~ N(vo)')(1— N(o0)'). (11)
Comparing (10) with (11) by varyingp, we get
r—1
w=]](N@) -1). (12)
i=1

Hence we have proved

Theorem 4.1.

#PioA
mas$G'(A)) = q'o( ) ]_[§°O“° 0.
By Corollary 3.4, Theorem 2.1 is proved.
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