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Abstract

We establish that every nonconstant bounded radial solutimfn—Au = f(«) in all of R” is unstable if: < 10. The result
applies to ever)Cl nonlinearity f satisfying a generic nondegeneracy conditionpamticular, it appliesd every analytic and
every power-like nonlinearity. We also give an example of a nonconstant bounded radial selutivch is stable for every
n > 11, and wheref is a polynomial.To cite thisarticle: X. Cabré, A. Capella, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
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Résumé

Sur la stabilité des solutions radiales des équations elliptiques semi-linéaires dans t@it. On montre que toute solution
u non constante, bornée et radiale de I'équatiaku = f (1) dans toulR” estinstable si < 10. Ce résultat s’applique a toute
nonlinéarité f de classecl qui satisfait une condition générique de non dégénérescence. Il s’applique, en particulier, & toute
nonlinéarité analytique et a toute nonlinéarité de type puissance. On donne aussi un exemple de santimmstante, bornée
et radiale qui est stable pour tout> 11, et ouf est un polyndmePour citer cet article: X. Cabré, A. Capella, C. R. Acad.
Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abrégée

On étudie les propriétés de stabilité des solutions bornées de I'’équation elliptique
—Au= f(u) dansR”, 1)

ol f € CY(R). La forme quadratique associée au probléme linéarisé de (1) est donnée paQ(é) =
Jrn{IVEI? = f/(w)E%} dx 0UE € C°(R™), cest-a-direg estC> avec support compact daRs.

On dit qu’une solution bornéede (1) est stable gP(¢) > 0 pour toute& € C° (R"). Dans le cas contraire, on
dit queu estinstable.
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Dans un premier résultat de cette Note, on utiliserdéthodes récemment dével@ms dans [2,1] pour établir
que toute solution de (1) non constante, bornée et #i(&") est nécessairement instable, pour tofite

Les méthodes de [2,1] montrent aussi que, podr2, une solutiom non constante et bornée de (1) est stable si
et seulement si ne dépend que d’'une seule variable et croissante ou décroissante. En particulier, les solutions
non constantes, bornées et radiales sont toujours instables gofr On rappelle qu’on dit que est radiale si
estde laforme: = u(r), our = |x| etx € R".

Dans cette Note, on étudie les propriétés de stabilité des solutions radiales en dimessipéseures et pour
toute nonlinéarité’. Le théoréme suivant est notre résultat principal.

Théoréme 0.1.(a) Soientn < 10, f € CY(R) et u une solution non constante, bornée et radiale(dg Si
9 < n < 10, on suppose que pour tosg € R il existe des nombres réefs> 0 eta > 0 (qui peuvent dépendre
deso) tels queim;_.g, | /' (s)|ls — so| =9 = a € (0, o). Alors, u est instable.

(b) Pourn > 11, il existe un polyndme¢ qui admet une solution stable, non constante, bornée et radialg)de

Toute nonlinearitéf analytique et toutef de la formef(s) = |s|? ou f(s) = |s|?~Ls avecp > 1, satisfait
I'hypothése du Théoréme 0.1(a) quand 2 < 10. L'hypothése est aussi satisfaite par tofite C*°(R) telle que
pour chaquep € R il existe un nombre entigr = k(sg) > 1 avecf® (sp) # 0.

Exemple 1.Pour établir la partie (b) du Théoréme 0.1, on considé&re = (1 + r2)~1/8, qui est une solution
bornée etlC>® de —Au = ((4n — Qu® + wul")/16=: f(u). Pourn > 11 on peut vérifier quef’ (u) = (9(4n —
9)r2 4+ 36(n + 2))/(16(1 + r?)?) < (n — 2)2/(4r?) pour toutr > 0. En conséquencae, est stable pour > 11,
grace a l'inegalité de Hardy [y, {(n — 2)2/(4r?)}6% < [, IVE|? pour toutet € C2°(R™).

1. Introduction

We study the stability propges of bounded solutions of the elliptic equation
—Au= f(u) inR", (2

where f € C1(R). The energy functional associated to (2) in a bounded dom®ainR” is defined byE o (1) =
f_Q{|Vu|2/2 — F(u)}dx, whereF’ = f. The second variation of energy is given by

0) = [ (Iel - £ we?) an 3)
Rn
for & e C°(R™), that is,& is C* with compact support iiR".

Definition 1.1. We say that a bounded solutianof (2) is stable if the second variation of ener@ysatisfies
Q(&) > 0forall &€ € C*(R"). Otherwise we say thatis unstable.

The following is our first result. It originated from ethods recently developed in [2,1] in connection with a
conjecture of De Giorgi.

Proposition 1.2.Let f € C1(R) andu be a nonconstant bounded solution(@.
(a) Assume that € H1(R") (for n > 2 it suffices to assume thgfu| € L2(R")). Then.u is unstable.

(b) Assume that < 2. Then,u is stable if and only if: is of the formu = u((e, x)) and satisfied.u # 0 in all of
R”" for somee € R" \ {0}. In particular, if u is radial then it is unstable.
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Proposition 1.2 is proven below. Note that it applieswerg bounded solution, not nexsarily radial. We recall
thatu is said to be radial if it is of the form = u(r), wherer = |x| andx € R".

Proposition 1.2(b) charactess all stable solutions when< 2, a difficult open task in higher dimensions. Its
last statement, that stable nonconstant bounded solutions are never radigdlZors a very particular consequence
of it, that we study here in higher dimensions and still for evéryrhe following theorem is the main result of this
Note.

2. Main result

Theorem 2.1.

(@) Letn < 10, f € CX(R), and u be a nonconstant bounded radial solution (). If 9 < n < 10, assume
also that for everyp € R there exist real numberg > 0 anda > 0 (which may depend osp) such that
liMs— s | f'($)Ils — so| ™7 = a € (0, 00). Thenu is unstable.

(b) Forn > 11, there exists a polynomigl which admits a stable nonconstant bounded radial solutiaf (2).

Note that every analytic nonlinearity, and everyf of the form f(s) = |s|? or f(s) = |s|P~Ls with p > 1,
satisfies the hypothesis of Theorem 2.1(a) fat ® < 10. The same holds for eveyye C*°(R) such that for each
s0 € R there exists an integér= k(so) > 1 with f®(sg) # 0.

Example 1. To establish Theorem 2.1(b), considet) = (1 + r2)~1/8, a boundedC™ solution of —Au =
((4n — 9u® +9ul") /16 =: f(u). Forn > 11 it can be shown that

_9(4n —9r?+36(n+2) _ (- 2)2

< for all 0.
16(1+ r2)2 472 i

[l

Henceu is stable fom > 11, by Hardy inequalityp. {(n — 2)?/(4r?)}6% < [ IVE|?, & € CO(RM).

Some geometric criteria to determine the stability or unstability of radial solutioms*at1 will be givenin [5].
They are related to recent developrtgefrom [1] that establish relaths between minimality and monotonicity
properties of solutions.

Berestycki et al. [3,4] proved the existence and thaalrikty (also under the flow of the parabolic equation) of
a radial solution: € HX(R") of (2) under the assumptions> 3, f(0) =0, f'(0) <0, F(¢) > 0 for somez > 0,
and f subcritical at infinity. Proposition 1.2(a) extends parthié result by establishing the unstability of every
HY(R") solution for genera.

The cutting dimension = 10 appears in the 1992 paper by Gui et al. [8], which studies positive solutions of
u; = Au+u? for p > 1. Among other things, they prove that foK 10 every stationary radial solution is unstable,
while for n > 11 there exists an exponept € (0, co) such that forp > p. there exists a stable stationary radial
solution. Theorem 2.1(a) above extends the first of these results to the case of general

Existence of solutions for equations of mean curvature gihéplacian type are studied by Franchi et al. [6].
Corresponding stability results will be given in [5].

In a forthcoming paper, we use methods developed in the present Note to study the boundedness of weak stabl
solutions, and in particular of extremal solutions, for semilinear problems in a ball.

To prove Theorem 2.1(a) we need two preliminary hessurhe first one, Lemma 2.2 below, was inspired by
the proof of Simons theorem on the nonexistence of singular minimal corig®% for n < 7 (see the proof of
Theorem 10.10 of [7]).
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Lemma 2.2.Letu be a bounded radial solution ¢2). Then, for every; € (H N L>°)(R") with compact support
in R™ \ {0}, we have that, n € H1(R") has compact support iR" \ {0} and

Q(urm:/uf{wmz— "—_zlnz}dx,
r
Rl‘l
whereQ(¢) is defined by3) for & € HL(R").

Proof. Letn e (H1 N L*)(R") have compact support iR” \ {0}, andc € (ngc N L) (R" \ {0}). Take& = cn
in (3). We obtain tha(cn) = [p. 2| Vyl? + Vn? - cVe +n?|Ve|2 — f/(u)c®n? = [g, 2|V — n?V - (cVe) +
n?IVel? = f/)e?n? = [gu IVNIZ = n?(cAc+ f')e?).

Differentiating (2) with respect te, we have

-1
—Au, + n—zur = f'(w)u, forr>0. 4)
r

By local W27 estimates for (2) and (4), we have that= u, € (Hlf,C N L*®)(R"™ \ {0}). Using (4) in the last
expression foiQ (¢n), we conclude Lemma 2.2.0

Lemma 2.3.Let f € C1(R), andu be a stable nonconstant bounded radial solutiof)f Then

(a) u, has constant sign it0, co). In particular, [;° u2dr < C 57 [u,| dr < oo.
(b) f(uoo) =0and f/(ueo) <0, Whereus, = lim, oo u(r).
(c) If f satisfies the hypothesis of Theor2r(a)for so = u, then

lu,(r)| < C/r forallr >0, (5)
for some constant. In particular,

o0

/ufr dr < oo. (6)

0

Open problem. Does (6) hold for everyf € C* and every stable bounded radial solutiohIf the answer were
yes, then Theorem 2.1(a) would hold for everg C* even when X n < 10.

Proof of Proposition 1.2. Assume that: is a stable nonconstant boundedwian. By Proposition 4.2 of [1],
there exists a continuous functigne ngc(R") such thatp > 0 and—A¢ = f/(u)¢ in R". Assume either that
|Vu| € L?(R"), thatn = 1, or thatz = 2. In the three cases we have thfat |[Vu|? < CR? for R > 1. Hence, the
Liouville property of Theorem 3.1 in [1] can be applied to the equation satisfig€d,hy)/¢. One concludes that,
for everyi € {1, ..., n}, d9y,u = cip for some constant;. This easily implies (see [2] or [1]) thatis of the form
u =u({e, x)) and satisfies eitheél,u > 0 inR", or d.u < 0 in R", for somee € R" \ {0}.

(a) To prove part (a), we argue by contradiction and assume: tisagtable. The previous argument gives that
must be of the form above, that is, a 1D solution either increasing or decreasing. But¢ghet(R”), and hence
u ¢ HY(R"). Moreover,Vu is constant in parallel hyperplanes, and herfige|Vu|? > cR"* for all R > 1. In
particular,|Vu| ¢ L2(R") if n > 2, a contradiction.

(b) One implication is already proven in the argument above. The other (i.e., that 1D monotone solutions are
stable) is trivial (see the proof of Corollary 4.3 of [1]). The last statement of part (b) ftleannot be radial)
follows from d.u # 0 in R" and the fact thaVu(0) =0 if u is radial. O

Using Lemma 2.3, that we prove later, we can give the
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Proof of Theorem 2.1. Part (b) is established by the Example 1 above. To prove part (a), we may assume
3 < n <10, since the cases= 1 andn = 2 are already covered by Proposition 1.2(b).

We argue by contradiction and assume thista stable nonconstant bounded radial solution. By approximation,
the stability ofu implies thatQ (&) > 0 for all ¢ € H1(R") with compact support. Hence, Lemma 2.2 leads to

u2n2
-1 [ ar< [utiniar )
R7 R7

for everyn e (HN L>)(R") with compact supportii®” \ {0}. Let nown € (H1NL>)(R") with compact support

in R"” (now not necessarily vanishing around 0), and takeC* such that =0in By and¢ =1inR"\ By. By lo-

cal W2 P estimates for (2)yu (and hence alse,) are bounded ifR” . Applying (7) ton(-)¢(-/¢), lettinge — 0, and

usingu, € L>°(R") andn > 3, we see that (7) also holds for everg (H'N L>)(R") with compact support ii”.
Fora > 0, choose

) = 1 if r <1,
M= e if r >1,

and apply (7) to; — R~ extended by zero outsidgg (0). Letting R — oo and using monotone convergence, we
see that (7) also holds fgrgiven by (8). Now, we take > 0 such that the right-hand side of (7) is finite, i.e.,

(8)

oo
/ufr”_z"‘_3 dr < cc. 9
1

If (9) holds, then (7) applied tg given by (8) leads to

o0
0< {Ol2 —(n— 1)} / ufr"_z‘x_3 dr < oo, (10)
1

where the first strict inequality is a consequence ofaf® of having dropped the contribution from 0 to 1 in the
integral of the left-hand side of (7) (together with- 1 > 0).
By Lemma 2.3(a), (9) will hold if we can choose> 0 such thai — 2o — 3 < 0. For 3< n < 8, we can take
a > 0 such thatn — 3)/2 < a < +/n — 1. Now the last inequalityy? < n — 1, gives a contradiction with (10).
Finally, for 9< n < 10 we use (6) of Lemma 2.3(c) to ensure (9) whenaver?a — 3 < 1. Now, sincen < 10,
we can takex > 0 such that(n — 4)/2 < « < +/n — 1. The last inequalitye? < n — 1, gives a contradiction
with (10). O

Proof of Lemma 2.3. We can assume that> 3 since, by Proposition 1.2(b), there are no stable nonconstant
bounded radial solutions far= 1 andn = 2.

(a) Arguing by contradiction, assume (R) = 0 for someR > 0. By W27 estimates for (2)Vu € (H' N
L*°)(Bg(0)). Henceu, = (Vu,x/r) € (HO1 N L*°)(Br(0)), sincen > 3. Multiply (4) by ¢(-/e)u, (with ¢
vanishing around 0 as in the proof of Theorem 2.1), integrate by parts,4et0 and usen > 3, to obtain
Qur XBr(0) = fBR(O){|V”r|2 — flwu?ydx = —(n — 1) J520 ;‘—; dx < 0, a contradiction with the stability of.

Now, sinceVu is boundeduf < Cluy|. Moreover,fooo lu,| dr < 0o sinceu, has constant sign. Indeed, say that
u, <0 forr > 0. This implies that the limit of: at infinity, us, exists. In addition (5 |u,| dr = — [¢~ u,dr =
u(0) — un < 00.

(b) From (a) we have that,, exists. Choose a functions:8¢ € C2°(B1(0)). Fory e R", let¢Y(-) :=¢(- — y).
Multiply —A(u — uso) = f(u) by ¢¥ and integrate by parts twice oBy(y). Letting |y| — oo, we conclude
fus) =0.
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For the second statement, we argue by contradiction. Asstitms,) > 0. Then, for large:, f/(u(r)) > & > 0.
Taking & supported on a ring centered at the origin and of large inner ragljfsom (3) we gets fézdx <
[ IVE[2dx. Choosingt (x) = £(r/R), where =0in (0, 1) U (4, 00) andé = 1in (2, 3), we obtaineR" < CR" 2,
a contradiction forR large enough.

(c) By adding a constant to, and perhaps changingby —u, we may assume,, = 0, u > 0, andu, < 0. Our
hypothesis ory implies that the limit

|ing+ f'(s)s79=beR\ {0} (11)

also exists and it is nonzero, for sojé: 0.

Case 1b < 0. In this case (11) leads t6/(s) < 0 for smalls > 0. Note also that since has a limit at infinity,
there existry — +oo such thatu,(r;) — 0. We havef’(u)u, > 0 for larger, and hence equation (4) leads
to r179,(r"~18,u,) < O for larger. That is,r"~15,u, is a nonincreasing function for large and therefore
d.ur < Cri=" for large r, where throughout the proaf denotes positive constants that may differ in each
occurrence. Integrating on from ¢ to r; (here and in similar situations later in the proof, we use 3) and
letting k — oo, we get (5).

Case 2b > 0. From (b) we know thaf (0) = 0 and f'(0) < 0. Henceg = 0 is impossible by (11), sinde> 0.
Thereforeg > 0, and we deduc¢ (s) > Cs?t1 for smalls > 0. This implies that-9, (r"~1u,) > Cud+1r"~1 for
larger. Integrating o froms to 7, we get—u, ()"~ > C [T ud* ()" L dr —u, ()s" 1 > C [T ud )y~ dr
for larges < 1. Sinceudt1(r) > u?t1(t) for r < t, we deduce-u, (H)u= 9tV (1) > C(t —s" /1"~ 1) for larges < 1.
Integrating orv from s to r, usingg > 0, and choosing a value eflarge enough, we get 4 (r) > Cr2 — D for
larger, whereD > 0 is a constant. Considering both large and small valueswé conclude

ul(ry<cr=2 forr>0. (12)

By (11), we also have that(s) < Cs?t! for all s € [0, max{u}]. Using Eq. (2), we deduced, (" u,) <
Cudtl=1 < cur"=3 for r > 0, where we have used estimate (12) in the last inequality. Now, we integrate on
from 0 tor and obtain—r""1u, (t) < C|lu||L~1"~2, which gives estimate (5).

Finally, (6) follows from (5) and](;>o lu,|dr <oco. O
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