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Abstract

We proved recently (C. R. Acad. Sci. Paris, Ser. | 336 (2003) 475-478) that the anti-analytic part of a trigonometric series,
converging to zero almost everywhere, may belong.foon the circle. Here we prove that it can even ®&, and we
characterize precisely the possible degree of smoothness in terms of the rate of decrease of the Fourier coefficients. This shat
condition might be viewed as a ‘new quasi-analyticifjo.citethisarticle: G. Kozma, A. Olevskil, C. R. Acad. Sci. Paris, Ser. |
338 (2004).
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Résumé

Régularité maximale de la partie anti-analytique d’une série trigopnométrique nulle presque partout. Nous avons
montré récemment (C. R. Acad. Sci. Paris, Ser. | 336 (2003) 475-478) que la partie anti-analytique d’une série trigonométrique
qui converge vers zéro presque partout peut appartebfr sur le cercle. Nous montrons ici qu’elle peut méme appartenir &

C®, et nous donnons le meilleur degré de régularité possible en termes de rapidité de décroissance des coefficients de Fourie
Il s’agit d'une nouvelle sorte de quasi-analyticiBaur citer cet article: G. Kozma, A. Olevskil, C. R. Acad. Sci. Paris, Ser. |

338 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

Les résultats principaux sont les suivants (Théorémes 1.2 et 1.3).
Soitw:RT — R, w(t)/t concave e} L — . Il existe alors une série trigonométrique

w(n)
Zc(n) gt Q)
qui converge vers zéro presque partout, av@g # 0 et
c(n) = O(exp(—w(log |n|))), n <0. 4)
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Inversement, si la série (1) converge vers zéro presque partout et vérifie (4) @ygéccroissant ed ﬁ < 00,
tous lesc(n) sont nuls.

Si I'on remplace « presque partout» par « sur un ensemble de mesure positive », (4) est changé en la conditio
classique de quasi-analyticité.

La Note esquisse la preuve du premier énonceé. La clé est la constitution d’'un ensemble de Cantor aléatoire (no
symétrique, de mesure de Lebesgue nulle), et d'une fonction harmonique aléatoire dans le disque, dont les valeul
frontiéres sur le Cantor sontoo et hors du Cantox co. Cette construction et son utilisation exigent quelque soin.

1. Results

The classical Menshov example shows that a (nontrivial) trigonometric series

Zc(n) g (1)

may converge to zero almost everywhere (a.e.). Such a series is called a null series. This result was the origin o
modern uniqueness theory in Fourier Analysis, see [1,4,5]. A null series can not be analytic, that is involve positive
frequencies only. This follows from Abel and Privalov theorems. On the other hand, we proved recently [6] that
the anti-analytic part can be small in the sense that

> lem)]? < oo )

n<0
It turns out that a much stronger property is possible: the anti-analytic part can be infinitely smooth.

Theorem 1.1. There exists a trigonometric series (1) convergent to zero a.e., such that

1
c(n):o<|7> (n<0) foreveryk=1,2,....
n

Moreover the following result is true:

Theorem 1.2. Let w beafunction R — RT, w(¢)/t concave and

1
2 o) (3)
Then there exists a null-series such that the amplitudesin the negative spectrum satisfy the condition:
c(n) = O(exp(—a)(log |n|))), n<0. (4)

It is remarkable that the condition is sharp. The following uniqueness theorem is true.

Theorem 1.3. If a series (1) converges to zero a.e., and the coefficients satisfy the condition (4), where w(¢)/¢
increase and

1
> pyeialad (5)

then ¢(n) = 0for all n € Z.

So for series (1) converging a.e. on the circle, (4) and (5) appears as a sharp quasi-analyticity condition for the
amplitudes of the negative spectrum, which ensures the uniqueness property. Those amplitudes of a null series ma
for example, decrease as'°9'°9" put not ag;~(09'09m?
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With respect to Theorem 1.3, it should be mentioned that if one replaces convergence a.e. with convergence or
a setE of positive measure, then a sharp uniqueness condition is the usual quasi-analyticity:

(6)

This follows from Beurling theorem [2] extended by Borichev [3], which implies that a series (1), (6) converging
on E to zero is trivial. The sharpness follows from classical results, see [7]. In fact, in [3], the sum of the analytic
part of (1) is understood (like in Privalov theorem) as a non-tangential boundary limit, which is assumed to exist
on E. In this setting uniqueness holds under doubly exponentional growth condition of this part in the disc. Our
Theorem 1.3 also admits such a version, but the growth conditions necessary are much stronger.

Below we give a sketch of the ideas involved in the proof of Theorem 1.1. Theorem 1.2 can be obtained basically
by the same approach. We do not discuss here the proof of Theorem 1.3.

In the proof below we construct a probabilistically-skewed ‘thick’ Cantorksetf measure zero and a random
harmonic functionf on the disk with singularities ok . Taking F = exp(f + i f) and denoting byF* the
boundary value of' on the circle, we shall show that* is smooth and that the Taylor coefficierﬁsn) — 0 with
probability 1. Hence the coefficientgn) := f(n) — ﬁ(n) are the Fourier coefficients of a singular compactly
supported distribution off andc(n) — 0, which gives, by [4, p. 54], that (1) converges to zero almost everywhere,
as required.

It is interesting to compare the proof to the one used in [6]. Themeas the Poisson integral of a singular
(non-stochastic) measure éh This approach, however, cannot work here, evefi i§ taken to be the sum of a
singular measure and drf function.

c(n) = O(exp(—p())) (n <0), Zp’:;l)zoo

2. Construction

Let
1 >1 1 )
J :: 77 n = Y J == b
" 2nlog(n + 2) 0
1 1
= —(0p_1—20) " ———, 8
Ty 12(<7n 1 — 20p) 2mlogin (8)

where X ~ Y stands, as usual, farX < Y < CX, and wherec and C stand, here and everywhere, for some
absolute constants. Le€ C*]0, 1] be a function satisfying(x) = — log®x for x < 1/3, I(x) = —1 for x > 2/3
andl/ < —1 everywhere.

Givens € [0, 1] define functions oiR

[(x), O<x <1,
IF(x;s):=1{ -1, 1<x<2+s,
IBxs—x), 2+5s<x<3%s

and 0 otherwise.

Assume at theith step of induction that we have ntervals/ (n, k) of lengtho, (intervals of ranks:), and
let K, := U,f”z_oll(n, k); assume also we have a functigp: [0, 1] — R such thatf,|; ;. x» = M (n), i.e., some
constant independent &f f,,.1 would differ from f,, only insideK,,. Examine therefore one= I (n, k). Divide
I into two equal parts] = I’ U I”. f,.1 will now be defined on the sides &f using some = s(n + 1, 2k)

ny/logn - It (x/t,41;s) left side ofl’,

el = 9
Jn+y {n«/logn-l—(x/rnﬂ;s) right side ofI’ ®)
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which leaves a space (%b,, — 67,41 = 0,41 in I’ undefined — this will bel (n + 1, 2k) and on it f;,11 will be
equal toM,, 11, which will be fixed from the condition

/fn+l_fn:0 (10)

and it is clear thad,, .1 does not depend an Repeat the construction insidé with s = s(n + 1, 2k + 1). We
remark that the factor./logn in (9), or to be more precise, the fact that it is superlinear, is the one that guarantees
that the final functiorF is C*°.

For now the choice of the(n, k) is arbitrary. It is only for the last step, that we will take the, k) to be random
(independent and uniformly distributed g& 1]). Then we will prove that a null series with smooth anti-analytic
part is generated for almost any choice efs.

3. Estimates
3.1. The maximumof f,
The magnitude of the, (8) together with (9) gives that the negative parfpbf ranki has integrak log—%/?i,

and hence a sum and (7) gives

n

R ) 11
J9ogn (11)
Similarly, for any intervall of rankn — 1
@, _ 1 —n
/|fn(x) - fn—l(x)| /(fn Jn-1) W <Cc2™. (12)
1

We remark that the fact that,, is sublinear is the one that guarantees that our finadll have f(m) — 0. Hence
the proof hinges around the following observation: even thakigilas measure zero, it is sufficiently thick so that
it would be possible to balance superlinear growth out#déhe n./logn factor in (9)) with sublinear growth
insideK . The proof of Theorem 1.2 explores this effect to its maximum.

3.2. Thelimit of the f,

We identify [0, 1] with the circle{|z| = 1}, extendf, as harmonic functions into the didk and denote the
extensions byf,, as well. We need to estimaig and their derivative$ (D) (we mean tangential derivative, i.e., if

f = f(re®?) then f = ‘éf) Using (10), (12), integration by parts and standard estimates for the derivatives of
the Poisson kernel one can prove:

C(D)

W VZG@\K,,, VDE{O,l,...}, (13)

£ 2@ - P @) <
whered(z, K) denotes the distance of the poinfrom the setk. Denote by, the harmonic conjugate of,.
Using the conjugate Poisson kernel we get the same estlmatﬁf,\fqé )(z) ﬁ, (z)I
These two inequalities show thg and f,, converge uniformly on compact subsetslbf, K. Denote their
limits by 7 and f respectively — Ilmfn is clearly the conjugate of lirsi,, which justifies the notatiorf .
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The boundary values gf are simple to estimate, &j0,1\x, = fxl[0,1)\k, - Hence, directly from the definitions
of f, andl we get thatf has singularities ok and on a countable set of poinfls— the boundaries and middles
of all the intervaldl (n, k). DenoteK’ := K U Q. From (13) and properties gf, one can deduce that dh

C(D)

(D) __
FASIEIES 16 KD

(14)

This also holds forf (), though it is necessary to first prove an analog of (14)}7tpuniformly in n and take the
limit asn — oo. The estimate forf, follows in turn from the estimate fof,, and estimates on the derivatives of
the Hilbert kernel.

3.3. Smoothness

Define nowF = exp(f +if). We use the notatiof™ for the boundary value, considered as a functiorion
in order to distinguish it from the “true” limit value af on the boundary of the circle which is a distribution with
a singular part supported d. We note that is not in H> and therefore the coefficientsn) = F(n) — F*(n)
are non-trivial.

A rather straightforward calculation starting from (11) shows that

1 1
< - S — Vv ‘.
fx) clogd(x’ ) log Iogd(x’ ) xeT\K (15)

Combining the fact thalf goes to—oo faster than log 1d(z, K’) with the rough estimates of (14) (and the
corresponding inequality fof) one can prove that* € C*° ([0, 1]).

4. Probability

DenoteF, = exp(f, + ifn) for n =n(m) = | Clogm]. Then another relatively simple conclusion from (13) is
that for someC sufficiently large, the following inequality for Taylor coefficients holds

|F(m) = F(m)] =‘ / "N Fu(2) - F(2)) dz| < % (16)
|z|=1-1/m
We shall not give many details for the probabilistic argument. In general it uses a fourth moment calculation.
Define therefore, for every € k < 2",
T = / F,(x) €™ dx,
1(n,k)

for which we have an absolute bound (from (11))

Tl < / |F ()] < 0 €7VI00T =y . (17)
[0,k

Lemmad.l. Let 0 < k1, ko, k3, k4 < 2" andlet 1 < r < n, and assumethat I (n, k;) belong to at least three different
intervals of rank r. Then

E(Zi iy Tiy Tiy) < v
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Had we needed to estimafeexp( f;, (x)) g™ the lemma would have been standard, sifideas a local structure
and by conditioning on the location of the intervals of rank- 1 we would achieve independence between
the variousZ;-s. However,F contains also thef component which is non-local. Still, it turns out that after
the conditioning step we are left with a function of two variables which can be estimated by two (rather long)
integrations by parts. We skip this calculation entirely.

Proceeding with the proof of the theorem, define

-1
X=X, = Z / F,(x) €™ dx.
k=01 1)

The differenceF, (m) — X is the integral over the subset Bfwhere f,, = f, and thereF;, is C* uniformly in n,
and in particular this integral is C/m. Therefore we need only bourl, and we shall estimatgX*. Let

E(k1,k2,k3,ka) :=E[ [T,

letr(ky, ..., ks) be the minimal such that/ (n, k;) are contained in at least 3 different intervals of rank simple
calculation shows

#{(k, ... ka) 17 (ka, ... ka) =1}~ 2%77

The estimate of the lemma is useless ifs too large. LetR be some number. Faor > R use the simple
|E(k1, ..., ka)| < y*andy = 27"m°D to get

Exi= Y E(ki....ks) < Cy*2¥ 2R <moM272k, (18)
r(ky,....,kg) >R

For smallerr, we use the lemma to géi(ks, . . ., k) < y*m=27°D 73 and then, using, = 27"+°0),

R
Ey:= Z E(ky, ..., ks) < y*2%1m—2ro® Z 2_2rrr_3
r(ka,....,kg)<R r=1
R
_ m—2+o(1) Z 2r+0(r) — m—2+o(l)2R+o(R)_ (19)
r=1

Picking R = [£logm| we get from (18) and (19) thakX;, < m~%3+°(D and henceE(}" X4) < co and in
g\articularX,‘,‘l — 0 with probability 1. As remarked above, this shows thatm) — 0 and hence using (16) that
F(m)— 0.
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