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Abstract

Let1—-> N - G — G/N — 1 be a short exact sequence of profinite groups, ang ket a prime number. We prove that
if G is of finite cohomologicalp-dimensionn := cd, (G) < oo and if the order ofHk(N, [Fp) is finite for k := cd,(N), the
virtual cohomologicalp-dimension ofG/N equalsn — k. To cite this article: T. Weigel, P. Zalesskii, C. R. Acad. Sci. Paris,
Ser. | 338 (2004).
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Résumé

Des groupes profinis de dimension cohomologique fini&oit 1—- N —- G — G/N — 1 une suite exacte courte de
groupes profinis, et sojt un nombre premier. Nous montrons quéssa p-dimension cohomologique finie:= cd, (G) et si
I'ordre du groupeH* (N, IFp) est fini pourk := cd, (N), la p-dimension cohomologique virtuelle de/N est égale & — k.
Pour citer cet article: T. Weigel, P. Zalesskii, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
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Version frangaise abrégée
Soit 1—- N —- G — G/N — 1 une suite exacte courte de groupes profinis. Pour un nombre prgnider
p-dimension cohomologique vérifie I'inégalité
cd,(G) < cd,(N) + cd,(G/N). (1)
Chaque groupe profini a cependant une résolution par des groupes projectifs profinis de longueur 1. Alors
I'inégalité (3) est trés loin d’étre une égalité. Nous montrons malgré tout le théoréme suivant :

Théoréme 0.1. SoientG un groupe profini dgp-dimension cohomologique finie= cd, (G), N un sous-groupe
de G normal fermé de-dimension cohomologiquetel que I'ordre deH* (N, IF,,) soit fini. Alors lap-dimension
cohomologique virtuelle d&/N est égale a — k, autrement dit, ved(G/N) =n — k.
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Le Théoréme 0.1 est une généralisation d’'un travail de Engler et al. [4]. La démonstration est basée sur I'analyse
des suites spectrales de Hochschild—Lyndon—Serre padurmodule trivialF , associé a une extension de groupes
profinis1—- N —- U - U/N — 1.

1. Introduction

For a prime numbep the cohomologicap-dimension has some properties similar to a geometric dimension
theory, i.e.,if - N - G — G/N — 1is a short exact sequence of profinite groups one has the inequality

cd,(G) < cd,(N) +cd,(G/N) (@)

(cf. [7], 81.3.3, Proposition 15). Every profinite group has a resolution by projective profinite groups of length 1.
Thus the inequality (2) is failing being an equality very strongly. Nevertheless, we will prove the following theorem.

Theorem 1.1.Let G be a profinite group of finite cohomologicaddimensiom := cd,(G) and letN be a closed
normal subgroup o6 of cohomologicap-dimensiork such that the order off¥(N, F,) is finite. ThenG/N is of
virtual cohomologicalp-dimensiom — k, i.e., vcd,(G/N) =n — k.

At first sight one might think that Theorem 1.1 is a variant of a result of Serre (cf. [7], 81.4.1, Proposition 22(i)).
However, in our theorem the finiteness of the virtual cohomologiedimension ofG/N is a conclusion and not
a hypothesis.

Theorem 1.1 can be considered as a generalization of the work of Engler et al. [4]. The proof of Theorem 1.1 is
based on the analysis of the Hochschild—Lyndon-Serre spectral sequence for th& trivialulelF, associated
to an extension of profinite groups2 N - U — U/N — 1.

2. The proof of Theorem 1.1

Let p be a prime number and l&k be a profinite group. By;com, we denote the Abelian category the
objects of which are (left) prgr G-modules. This is an Abelian category with enough projectives, and the right-
derived functors oHomg(Z,, —) evaluated on finite discret6é-modules ofp-power order coincide with the
Galois cohomology groupd * (G, —) on these modules. For further details see [3,8].

For the proof of the Theorem 1.1 we need two elementary facts about profinite groups. The first one is an
elementary fact in Galois cohomology:

Proposition 2.1.Let G be a profinite group and let be a finite discretgleft) G-module. Lek > 0 and assume that
the order of HX(G, A) is finite. Then there exists an open normal subgrbugf G acting trivially on A such that

inf&, . H(G/U, A) — H*(G, A) (3)

is surjective.
Proof. This follows from of the finiteness dfd|, the finiteness of H*(G, A)|, and [7], §1.2.2, Corollary 1. O
The second fact concerns almost direct complementability of finite normal subgroups.

Proposition 2.2.Let G be a profinite group and le¥ be a finite normal subgroup @ . Then there exists an open
subgroupU of G, such thaty € Cg(N) andU NN = 1. In particular, UN is openinG andUN ~U x N.
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Proof. Let ¢: G — Aut(N) be the canonical morphism induced by conjugation. Tken= ker(¢) is open and
normalinG, andK NN = Z(N). For every elememnte Z(N) \ {1} let U, be an open normal subgroup &fsuch
thatz ¢ U;. ThenU := () c 7y (1 U- satisfies the claim. O

Using basically the same argument as presented in [4], §2, we can now prove Theorem 1.1.

Theorem 2.3.Let p be a prime number and let be a profinite group of finite cohomologicatdimension
n :=cd,(G). Let N be a closed normal subgroup &f of cohomologicalp-dimensionk such that the order of
H*(N, IF,,) is finite. ThenG/N is of virtual cohomologicap-dimensiom — k.

Proof. By substitutingG by the preimage of a Sylow prp-subgroup ofG/N under the canonical projection, we
may assume thdk /N is a prop group (cf. [7], 81.3.3, Proposition 14(i)).
By Proposition 2.1, there exists an open normal subgiupf N such that

infy p n i H (N/M,F ) — H*(N.F)) 4)

is surjective. Sincé/ is open inN, there exists an open normal subgrdupf G such thatVy " N € M. Thus we
may assume that/ is normal inG.

Applying Proposition 2.2 to the finite normal subgradpM of G/M yields the existence of an open subgroup
Up of G suchthal/oN N = M andUoN /M ~ N/M x Up/M. SinceH*(N /M, IF,,) is a finite discret&;-module,
we may also assume théb is acting trivially on HX(N /M, F,,), and thus by construction also g (N, Fp).
Hence forU := UgN, H*(N, IFp,) is a finite trivial U-module, and thus isomorphicEg’ for somem > 1.

We consider the Hochschild—Lyndon-Serre spectral sequeBgesd, ) for the trivial U -modulelF , associated
to the extension & N — U — U/N — 1, and(EJ*, d,) for the trivial U/ M-moduleF, associated to the ex-
tension1- N/M — U/M — U/N — 1. Note that by construction, the second extension is a direct product, and
thus the spectral sequenggs-*, d,) collapses at th&,-term, i.e..d; = 0 for all > 2 (cf. [6], p. 96, Example 7).

Let P, — Z, be a projective resolution ¢, in ,ycom,, let Q. — Z, be a projective resolution &, in
v/mcom,, and letQ, — Z, be a projective resolution &, in ycom,. By the comparison theorem, there exists
a mapping of chain complexes

e : Qo — éo (5)
in ycom,. This mapping induces a mapping of double complexes
7** :Homyy (P, Homy, a1 (Qa, Fpp)) —> Homy,y (Pe, Homy (Q., Fp)), (6)

and thus induces a mapping of spectral sequences

we: (Be®, da) — (E2*.d.) ™
(cf. [1], Lemma 3.5.1). By hypothesi#'* has onlyk + 1 non-trivial rows, hencéy > = 0. As in [4] we will
show:

Claim 2.4. For t > 2, the mapr/ Tt kk. Eril-kk _ prtl-kk ig surjective, andd"ti*k: prei-kk _,
ErHiHi=kk=t+1 g the zero map.
Proof. From the commutative diagrams
_ _ 0 — L
Ezn+l k,k Etn+l+t k,k—t+1 (8)
n;1+l—k,k iﬂrn-%—l-%—t—k,k—t-%—l

+1—k Jrh +1+ k 1
_ t _ it
Ezn k4 Etn t—k,k—t
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one concludes that it suffices to prove tlmft“_k’k is surjective for allz > 2. Fort = 2 this is obvious: by
construction of¥/,

infy yn o HY(N/M.F,) — H"(N.F)) ©)
is a split epimorphism of discreté¢/ N-modules, and thus
ay TR gtk (U N, HY(N ML F ) — H'™ % (U/N, HK(N, F ) (10)

is surjective.
Fort > 2 we proceed by induction and assume we have proved the assertiogfox2 — 1. In particular,
nt"_“Lll_k’k is surjective, and as,”® is the mapping induced by %, one concludes that" 1 7** is surjective. This

yields the claim. O

From the claim we deduce thm:;:l—k’k = H""1=kW/N, HK(N, F,)), and ascd, (U) = n, this group must
be trivial. By construction,Hk(N,IFp) is a finite trivial U-module isomorphic ta”) for somem > 1. Thus
H"1=%(U/N,F,) = 0, and this yieldscd,(U/N) < n — k (cf. [7], §1.3.1, Proposition 11). The inequality
cd,(U/N) = n — k is a direct consequence of (2)0

3. Implications for pro- p groups
In this section we collect some consequences of Theorem 2.3 fg# groups.

Corollary 3.1. Let G be a prop group, ¢d,(G) =n < oo, and letN be a closed normal subgroup 6f such that
cd,(N) =cd,(G) and that| H" (N, F )| is finite. ThenV is open inG. In particular,

(@) If N is of typep-F P, G is also of typep-F P.

(b) If N is of typep-F P of (additive) Euler—Poincaré characteristigy # 0, G has also non-trivial Euler—
Poincaré characteristigyg # 0. In this case one has

IG/N| < |xnl (11)

Proof. By Theorem 2.3G /N is a prop group of virtual conomologicgh-dimension 0 and thus is finite. For (a)
see [8], Proposition 4.2.1.

(b) As xy =|G/N]| - x¢ (cf. [7], 81.4.1, Example (b)) the first part is obvious. The inequality (11) follows from
the fact thatys is a non-trivial integer. O

The groupG := Z, has finitely generated normal subgroups of arbitrary large index. Hence for normal
subgroupsV of type p-FP with x5 = 0, there is no bound for the index 8f in G.

Every Abelian profinite groupt with cd,(A) < oo is p-torsion free withp-rank equal tacd, (A). Therefore
any Abelian normal subgroup of a profinite groGpof finite cohomologicap-dimension satisfies the hypothesis
of Theorem 2.3. Thus it is an Abelian normal subgroug we have the following equality

cd, (A) +ved, (G/A) = cd, (G). (12)
Moreover, for central subgroups & one has even stronger implications.

Corollary 3.2. Let G be a profinite group with cg(G) = 2 and letA, denote the prgp Sylow subgroup of the
center ofG. Then one of the following holds

(i) A, is trivial;

(i) A, ~Z, and cd,(G) < 1, whereG’ = cI([G, G]) denotes the closure of the derived groufGof

(i) A, ~Z, x Z, and the prop Sylow subgroups af/A, are finite.
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Proof. Ascd,(A,) <2, A, isisomorphicto either of the groups Z,, Z, x Z,.1f A, ~7Z, x Z,, Theorem 2.3
implies thatved, (G/A ) = 0. Moreover, a profinite group has virtual cohomologigadimension 0, if and only
if its pro-p Sylow subgroups are finite.

If A, ~Z,, Theorem 2.3 implies thatcd,(G/A,) = 1. Hence the Hochschild-Lyndon-Serre spectral
sequence implies thaVZ(G/Ap, Qp/Z,) is a finite Abelianp-group. Moreover,Hl(Ap,@p/Zp) is a trivial
G-module isomorphic toQ,/Z, and in particularp-divisible. Thus from the 5-term exact sequence one
concludes that the restriction mappireg: H(G, Qp/Zp) — Hl(Ap, Qp/Z,) is surjective. The Pontryagin dual
res‘: A, — G/G’, which coincides with the canonical map, is therefore injective. Hengce G’ = 1. This yields
thatcd,(G) <1. O

Recall that the deficiency of a finitely presented prgroupG is given by
df(G):=d¢ —r¢ =1- xa, (13)

wheredg denotes the minimal number of generator&;adndrg the minimal number of prgs relators ofG. The
following proposition is a prge version of a result of Bieri (cf. [2], Corollary 4).

Corollary 3.3. Let G be a finitely presented prp-group with cd(G) = 2 and let N be a non-trivial finitely
presented normal subgroup such ti@tN is infinite. Suppose that the deficientf(G) of G is positive. Then
df(G)=1and eitherN >~ Z, or N is a non-Abelian free prg> group andG/N is virtually procyclic.

Proof. Note that the hypothesis on the deficiency readg@s 0. Therefore the hypothesis of the proposition
is valid for any open subgroup @ containingN. If N ~ Z,, the claim follows. Suppos®& # Z,. Then by
Theorem 2.3N is a non-Abelian free prg- group and there exists an open normal subgmSupf G containing

N such thatvi/N is a free prop group. The multiplicity of the Euler—Poincaré characterigtigields

xvy = (L= rk(N))(L—rk(N1/N)), (14)
which by hypothesis is a non-positive number. However, the right-hand side of (14) shows that it is also non-
negative. Thugy, =0, and as-k(N) > 1, this impliesN1/N ~ Z,. This completes the proof.0

Combining the main result in [5] with Theorem 2.3 one obtains:

Corollary 3.4. Let G be a finitely generated prp-group with ¢d,(G) =n < oo and letN be a closed normal
subgroup ofG with cd,(N) = cd,(G) — 1. Assume further thatd" (N, F,)| < oo. ThenG splits non-trivially
as either a free amalgamated ppoproduct or prop HNN-extension.
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