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Abstract

Let 1→ N → G → G/N → 1 be a short exact sequence of profinite groups, and letp be a prime number. We prove th
if G is of finite cohomologicalp-dimensionn := cdp(G) < ∞ and if the order ofHk(N,Fp) is finite for k := cdp(N), the
virtual cohomologicalp-dimension ofG/N equalsn− k. To cite this article: T. Weigel, P. Zalesskii, C. R. Acad. Sci. Paris,
Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Des groupes profinis de dimension cohomologique finie.Soit 1→ N → G → G/N → 1 une suite exacte courte d
groupes profinis, et soitp un nombre premier. Nous montrons que siG ap-dimension cohomologique finien := cdp(G) et si
l’ordre du groupeHk(N,Fp) est fini pourk := cdp(N), la p-dimension cohomologique virtuelle deG/N est égale àn− k.
Pour citer cet article : T. Weigel, P. Zalesskii, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Soit 1→ N → G → G/N → 1 une suite exacte courte de groupes profinis. Pour un nombre premiep la
p-dimension cohomologique vérifie l’inégalité

cdp(G)� cdp(N)+ cdp(G/N). (1)

Chaque groupe profini a cependant une résolution par des groupes projectifs profinis de longueur
l’inégalité (3) est très loin d’être une égalité. Nous montrons malgré tout le théorème suivant :

Théorème 0.1.SoientG un groupe profini dep-dimension cohomologique finien := cdp(G), N un sous-groupe
deG normal fermé dep-dimension cohomologiquek tel que l’ordre deHk(N,Fp) soit fini. Alors lap-dimension
cohomologique virtuelle deG/N est égale àn− k, autrement dit, vcdp(G/N)= n− k.

E-mail addresses:weigel@matapp.unimib.it (T. Weigel), pz@mx1.mat.unb.br (P. Zalesskii).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2003.12.022
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Le Théorème 0.1 est une généralisation d’un travail de Engler et al. [4]. La démonstration est basée sur
des suites spectrales de Hochschild–Lyndon–Serre pour unU -module trivialFp associé à une extension de group
profinis 1→N → U →U/N → 1.

1. Introduction

For a prime numberp the cohomologicalp-dimension has some properties similar to a geometric dimen
theory, i.e., if 1→N →G→G/N → 1 is a short exact sequence of profinite groups one has the inequality

cdp(G)� cdp(N)+ cdp(G/N) (2)

(cf. [7], §I.3.3, Proposition 15). Every profinite group has a resolution by projective profinite groups of len
Thus the inequality (2) is failing being an equality very strongly. Nevertheless, we will prove the following the

Theorem 1.1.LetG be a profinite group of finite cohomologicalp-dimensionn := cdp(G) and letN be a closed
normal subgroup ofG of cohomologicalp-dimensionk such that the order ofHk(N,Fp) is finite. ThenG/N is of
virtual cohomologicalp-dimensionn− k, i.e., vcdp(G/N)= n− k.

At first sight one might think that Theorem 1.1 is a variant of a result of Serre (cf. [7], §I.4.1, Proposition
However, in our theorem the finiteness of the virtual cohomologicalp-dimension ofG/N is a conclusion and no
a hypothesis.

Theorem 1.1 can be considered as a generalization of the work of Engler et al. [4]. The proof of Theore
based on the analysis of the Hochschild–Lyndon–Serre spectral sequence for the trivialU -moduleFp associated
to an extension of profinite groups 1→N →U → U/N → 1.

2. The proof of Theorem 1.1

Let p be a prime number and letG be a profinite group. ByGcomp we denote the Abelian category th
objects of which are (left) pro-p G-modules. This is an Abelian category with enough projectives, and the r
derived functors ofHomG(Zp,−) evaluated on finite discreteG-modules ofp-power order coincide with th
Galois cohomology groupsH •(G,−) on these modules. For further details see [3,8].

For the proof of the Theorem 1.1 we need two elementary facts about profinite groups. The first on
elementary fact in Galois cohomology:

Proposition 2.1.LetG be a profinite group and letA be a finite discrete(left) G-module. Letk � 0 and assume tha
the order ofHk(G,A) is finite. Then there exists an open normal subgroupU ofG acting trivially onA such that

inf kG/U,G :Hk(G/U,A)−→Hk(G,A) (3)

is surjective.

Proof. This follows from of the finiteness of|A|, the finiteness of|Hk(G,A)|, and [7], §I.2.2, Corollary 1. ✷
The second fact concerns almost direct complementability of finite normal subgroups.

Proposition 2.2.LetG be a profinite group and letN be a finite normal subgroup ofG. Then there exists an ope
subgroupU ofG, such thatU ⊆ CG(N) andU ∩N = 1. In particular,UN is open inG andUN �U ×N .
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Proof. Let φ :G → Aut(N) be the canonical morphism induced by conjugation. ThenK := ker(φ) is open and
normal inG, andK ∩N =Z(N). For every elementz ∈ Z(N) \ {1} letUz be an open normal subgroup ofK such
thatz /∈Uz. ThenU := ⋂

z∈Z(N)\{1}Uz satisfies the claim. ✷
Using basically the same argument as presented in [4], §2, we can now prove Theorem 1.1.

Theorem 2.3.Let p be a prime number and letG be a profinite group of finite cohomologicalp-dimension
n := cdp(G). LetN be a closed normal subgroup ofG of cohomologicalp-dimensionk such that the order o
Hk(N,Fp) is finite. ThenG/N is of virtual cohomologicalp-dimensionn− k.

Proof. By substitutingG by the preimage of a Sylow pro-p subgroup ofG/N under the canonical projection, w
may assume thatG/N is a pro-p group (cf. [7], §I.3.3, Proposition 14(i)).

By Proposition 2.1, there exists an open normal subgroupM of N such that

inf kN/M,N :Hk(N/M,Fp)−→Hk(N,Fp) (4)

is surjective. SinceM is open inN , there exists an open normal subgroupV of G such thatV ∩N ⊆M. Thus we
may assume thatM is normal inG.

Applying Proposition 2.2 to the finite normal subgroupN/M of G/M yields the existence of an open subgro
U0 of G such thatU0 ∩N =M andU0N/M �N/M×U0/M. SinceHk(N/M,Fp) is a finite discreteG-module,
we may also assume thatU0 is acting trivially onHk(N/M,Fp), and thus by construction also onHk(N,Fp).
Hence forU :=U0N , Hk(N,Fp) is a finite trivialU -module, and thus isomorphic toFmp for somem� 1.

We consider the Hochschild–Lyndon–Serrespectral sequences(E•,•• , d•) for the trivialU -moduleFp associated
to the extension 1→ N → U → U/N → 1, and(�E•,•• , d̄•) for the trivialU/M-moduleFp associated to the ex
tension 1→N/M → U/M →U/N → 1. Note that by construction, the second extension is a direct produc
thus the spectral sequence(�E•,•• , d̄•) collapses at the�E2-term, i.e.,d̄t = 0 for all t � 2 (cf. [6], p. 96, Example 7).

Let P• → Zp be a projective resolution ofZp in U/Ncomp , let �Q• → Zp be a projective resolution ofZp in
U/Mcomp , and letQ• → Zp be a projective resolution ofZp in Ucomp . By the comparison theorem, there exi
a mapping of chain complexes

π• :Q• −→ �Q• (5)

in Ucomp . This mapping induces a mapping of double complexes

π•,• : HomU/N

(
P•,HomN/M(�Q•,Fp)

) −→ HomU/N

(
P•,HomN(Q•,Fp)

)
, (6)

and thus induces a mapping of spectral sequences

π•,•• :
(�E•,•• , d̄•

) −→ (
E•,•• , d•

)
(7)

(cf. [1], Lemma 3.5.1). By hypothesis,E•,•
2 has onlyk + 1 non-trivial rows, hencedk+2 = 0. As in [4] we will

show:

Claim 2.4. For t � 2, the mapπn+1−k,k
t : �En+1−k,k

t → E
n+1−k,k
t is surjective, anddn+1−k,k

t :En+1−k,k
t →

E
n+1+t−k,k−t+1
t is the zero map.

Proof. From the commutative diagrams

�En+1−k,k
t

0

π
n+1−k,k
t

�En+1+t−k,k−t+1
t

π
n+1+t−k,k−t+1
t

E
n+1−k,k
t

d
n+1−k,k
t

E
n+1+t−k,k−t−1
t

(8)
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one concludes that it suffices to prove thatπ
n+1−k,k
t is surjective for allt � 2. For t = 2 this is obvious: by

construction ofM,

inf kN/M,N : Hk(N/M,Fp)−→Hk(N,Fp) (9)

is a split epimorphism of discreteU/N -modules, and thus

π
n+1−k,k
2 :Hn+1−k(U/N,Hk(N/M,Fp)

) −→Hn+1−k(U/N,Hk(N,Fp)
)

(10)

is surjective.
For t > 2 we proceed by induction and assume we have proved the assertion for 2� i < t − 1. In particular,

π
n+1−k,k
t−1 is surjective, and asπ•,•

t is the mapping induced byπ•,•
t−1, one concludes thatπn+1−k,k

t is surjective. This
yields the claim. ✷

From the claim we deduce thatEn+1−k,k∞ = Hn+1−k(U/N,Hk(N,Fp)), and ascdp(U)= n, this group must
be trivial. By construction,Hk(N,Fp) is a finite trivial U -module isomorphic toFmp for somem � 1. Thus

Hn+1−k(U/N,Fp) = 0, and this yieldscdp(U/N) � n − k (cf. [7], §I.3.1, Proposition 11). The inequali
cdp(U/N)� n− k is a direct consequence of (2).✷

3. Implications for pro-p groups

In this section we collect some consequences of Theorem 2.3 for pro-p groups.

Corollary 3.1. LetG be a pro-p group, cdp(G)= n <∞, and letN be a closed normal subgroup ofG such that
cdp(N)= cdp(G) and that|Hn(N,Fp)| is finite. ThenN is open inG. In particular,

(a) If N is of typep-FP, G is also of typep-FP .
(b) If N is of typep-FP of (additive) Euler–Poincaré characteristicχN �= 0, G has also non-trivial Euler–

Poincaré characteristicχG �= 0. In this case one has

|G/N | � |χN |. (11)

Proof. By Theorem 2.3,G/N is a pro-p group of virtual cohomologicalp-dimension 0 and thus is finite. For (
see [8], Proposition 4.2.1.

(b) AsχN = |G/N | · χG (cf. [7], §I.4.1, Example (b)) the first part is obvious. The inequality (11) follows fr
the fact thatχG is a non-trivial integer. ✷

The groupG := Zp has finitely generated normal subgroups of arbitrary large index. Hence for n
subgroupsN of typep-FP with χN = 0, there is no bound for the index ofN in G.

Every Abelian profinite groupA with cdp(A) < ∞ is p-torsion free withp-rank equal tocdp(A). Therefore
any Abelian normal subgroup of a profinite groupG of finite cohomologicalp-dimension satisfies the hypothes
of Theorem 2.3. Thus ifA is an Abelian normal subgroupG we have the following equality

cdp(A)+ vcdp(G/A)= cdp(G). (12)

Moreover, for central subgroups inG one has even stronger implications.

Corollary 3.2. LetG be a profinite group with cdp(G) = 2 and letAp denote the pro-p Sylow subgroup of th
center ofG. Then one of the following holds:

(i) Ap is trivial;
(ii) Ap � Zp and cdp(G′)� 1, whereG′ = cl([G,G]) denotes the closure of the derived group ofG;
(iii) Ap � Zp × Zp and the pro-p Sylow subgroups ofG/Ap are finite.
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Proof. As cdp(Ap)� 2, Ap is isomorphic to either of the groups 1, Zp, Zp ×Zp . If Ap � Zp×Zp , Theorem 2.3
implies thatvcdp(G/Ap)= 0. Moreover, a profinite group has virtual cohomologicalp-dimension 0, if and only
if its pro-p Sylow subgroups are finite.

If Ap � Zp , Theorem 2.3 implies thatvcdp(G/Ap) = 1. Hence the Hochschild–Lyndon–Serre spec
sequence implies thatH 2(G/Ap,Qp/Zp) is a finite Abelianp-group. Moreover,H 1(Ap,Qp/Zp) is a trivial
G-module isomorphic toQp/Zp and in particularp-divisible. Thus from the 5-term exact sequence o
concludes that the restriction mappingres:H 1(G,Qp/Zp)→H 1(Ap,Qp/Zp) is surjective. The Pontryagin du
res∗ :Ap →G/G′, which coincides with the canonical map, is therefore injective. HenceAp ∩G′ = 1. This yields
thatcdp(G′)� 1. ✷

Recall that the deficiency of a finitely presented pro-p groupG is given by

df (G) := dG − rG = 1− χG, (13)

wheredG denotes the minimal number of generators ofG andrG the minimal number of pro-p relators ofG. The
following proposition is a pro-p version of a result of Bieri (cf. [2], Corollary 4).

Corollary 3.3. Let G be a finitely presented pro-p group with cd(G) = 2 and letN be a non-trivial finitely
presented normal subgroup such thatG/N is infinite. Suppose that the deficiencydf (G) of G is positive. Then
df (G)= 1 and eitherN � Zp or N is a non-Abelian free pro-p group andG/N is virtually procyclic.

Proof. Note that the hypothesis on the deficiency reads asχG � 0. Therefore the hypothesis of the proposit
is valid for any open subgroup ofG containingN . If N � Zp , the claim follows. SupposeN �� Zp . Then by
Theorem 2.3,N is a non-Abelian free pro-p group and there exists an open normal subgroupN1 of G containing
N such thatN1/N is a free pro-p group. The multiplicity of the Euler–Poincaré characteristicχ yields

χN1 = (
1− rk(N)

)(
1− rk(N1/N)

)
, (14)

which by hypothesis is a non-positive number. However, the right-hand side of (14) shows that it is als
negative. ThusχN1 = 0, and asrk(N) > 1, this impliesN1/N � Zp . This completes the proof.✷

Combining the main result in [5] with Theorem 2.3 one obtains:

Corollary 3.4. Let G be a finitely generated pro-p group with cdp(G) = n < ∞ and letN be a closed norma
subgroup ofG with cdp(N)= cdp(G)− 1. Assume further that|Hn−1(N,Fp)|<∞. ThenG splits non-trivially
as either a free amalgamated pro-p product or pro-p HNN-extension.
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