Available online at www.sciencedirect.com S COMPTES RENDUS

SCIENCE<dDIRECT® F
=4

ELSEVIER C.R. Acad. Sci. Paris, Ser. | 337 (2003) 625-628

Mathematical Physics/Probability Theory
On the meaning of Parisi’s functional order parameter

Michel Talagrand

Equipe d analyse de I’institut mathématique, 4, place Jussieu, 75230 Paris cedex 05, France
Received 14 September 2003; accepted 15 September 2003
Presented by Yves Meyer

Abstract

The author has recently proved that a famous formula discovered by G. Parisi gives at any temperature the correct value
for the limiting free energy of a large class of mean field models for spin glasses (a class which contains in particular the
Sherrington—Kirkpatrick model). Here we prove rigorously that (generically) the “functional order parameter” occuring in
this formula can be interpreted as predicted by Parisi, namely as representing the limiting distribution of the overlap of two
independent configuration$o citethisarticle: M. Talagrand, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
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Résumé

La signification du parameétre fonctionnel d’ordre de Parisi. L'auteur a récemment démontré qu’une célebre formule de
G. Parisi donne effectivement a toute température la valeur correcte de I'énergie libre limite d'une large classe de modéles de
verre de spin a champ moyen, classe contenant en particulier le modéle de Sherrington—Kirkpatrick. Cette formule fait intervenir
un «parametre d'ordre fonctionnel» dont on démontre ici que (génériqguement) la signification est celle prévue par la théorie
de Parisi, a savoir qu'il représente la distribution limite du recouvrement de deux configurations indépeRdanteter cet
article: M. Talagrand, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

We consider independent standard normalg;.yv. . ;, for each integerg, i1, ...,i,. Foro € Xy = {-1, 1V,
we consider the Hamiltonian of thespin interaction model,

p!
—Hy.p0) =5 > GigeniyOiy 0. 1)
1<ir<...<ip<N

Consider a sequenge= (8,)>1 With [|B[|5=3" >, 85 < oo and the Hamiltonian

—Hypg(0)=Y 27PB,Hy2,(0)+h ) oi. (2

p2>1 i<N
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Here,h represents the strength of an external field, and is fixed once and for all. It is understodg $at= 0 if
2p > N. Theterm 27 is to ensure convergence and has no special meaning. We define the function

Eg(x) =) 272 pox?P.

p=>1

A simple computation shows that (if denotes expectation in the rg, . ;,) we have, for two configurations®
ando? that

1
‘N]E(HN#(GI)HN,B(GZ)) —£8(R12)| <c(N, B),

where c¢(N, B) — 0 as N — oo uniformly over every se{g; ||8]2 < C} and whereRy 2 = Ry 2(c%,02) =
N~y <y oite? is the overlap of the configurations: ande?.
We observe that is infinitely differentiable, thatg(x) = £g(—x), that&g is convex and thagg(x) > 0 for

x > 0. Thus, as is proved in [4] we can use Parisi’s formula to compute_iga N~ 1Elog Y o EXP(—Hy g(0)).
This formula, that will be explained below, involves a “functional order parameter”, and the purpose of this Note is
to provide a rigorous interpretation of this parameter. Background on spin glass models can be found in [2] and [3].

2. Statement of results

Consider an integer > 1 and the set\M;. of all probability measures o, 1] that are of the type

p=r Y s 3)

1<e<k

We assume without loss of generality that< --- < g and we defingjg = 0 andgx+1 = 1. Given a convex
function& onR, we consider the functiof1(x) = log ch(x) and for 1< £ < k we define recursively

1
Fi(x) = e logEE expmy Fey1(x + gv/E (qe1) — £'(q0) ).
wherem, = £/k and whereg is standard normal. We define

Fo(x) =EFi(x + gv&'(q1)) (4)
andd (x) = x&'(x) — &(x). Itis simple to check that the quantity

1 1
P&, 1) =log2+ Fo(h) — 500+ E/G(X)dM(X)

depends only o and not on the representation (3). We provide the set of probability measti@s[0, 1] with
the weak* topology. The following extends an important result of Guerra [1], Theorem 1.

Proposition 2.1. The map u — P(&, u) is uniformly continuous on Uk>1Mk and consequently it has a
continuous extension to M.

Of course we use the same notatiB(t, 1) to denote this extension.

Corollary 2.2. There exists iz € M suchthat P(&, ug) =inf, P&, w).
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The result of [4] can then be formulated as follows
Theorem 2.3.For each g thereis g € M such that

lim —EIogZexp( Hy (o)) = P(gﬂ,uﬁ)zi/rlfp(g,,,u). (5)

N—oco N

We will call a measurg.g that satisfies the last equality in (5)Parisi measure. The physicists think to this
object as a parameter which, when fixed at the appropriate value, allows the computation of the left-hand side
of (5). The name “functional order parameter” arises from the identification of a probability megasvite the
functionx — w((0, x]).

The following two conjectures seem closely related to each other.

Conjecture 2.4.Thereisonly one Parisi measure.
In words, we conjecture that the functipn— P (¢, ) attains its minimum at a unique point.
Conjecture 2.5.Themap B — P (&g, upg) is Gateaux differentiable at every point.

Since the left-hand side of (5) is a convex functiorBofve also have
The functiong — P (&g, 1) is convex. (6)
We do not know how to show this directly.
Definition 2.6. We say that a poing is regular if the mapg — P (&g, ug) is Gateaux differentiable at this point.
Conjecture 2.5 means that we expect that eyig regular. It follows classically from (6) that the “generic”
point g is regular. We now fix an integer> 1 andg. Fort € R we consider the point(¢) obtained by replacing

the coordinatgs, by B, +¢. We write&; instead ofg;).

Proposition 2.7.For every measure u € M the map ¢ — P(&, n) is differentiable. Moreover, if i is a Paris
measure 11, the value of the derivative at r = 0is 272 B, (1 — [ x% du(x)).

Theorem 2.8.1f the point B isregular, then
Vs, By #0= lim E(RZ,)) = / x% dug(x), (7)
—00 ’
where (-) denotes an average on 21%, for the Gibbs measure with Hamiltonian (2).

As a consequence of (7) we can state that, providedﬁh’m regular andg, £ 0 for eachs, the limiting
distribution of sz is the image ofug under the mapx — x2. We observe that wheh = 0 there is global
symmetry around 0 so that the law Bf > is symmetric around 0, so thatcannot be the limiting distribution of
R1 2 unless it is concentrated at O (the high-temperature case). However we have the following.

Proposition 2.9.1f 2 > 0 then lim y—, oo E(1(z, ,<0}) = 0.
As a consequence of this result and of Theorem 2.8, we see thatvkeb, and provided thag, # 0 for

eachs, the measurg.g is the limiting distribution ofRy ». This provides the desired interpretation of the Parisi
measureug.
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Proof of Theorem 2.8. Consider the functionf (r) = P&, ug)). Since we assume thg is regular, this
function is differentiable at = 0. Sinceug ) is a Parisi measure fa; we havef(r) < g(t) :=P(&, ug). By
Proposition 2.7, the functiog is differentiable at = 0, so that

f1(0)=g'(0)=2"%p, (1 — / x% duﬂ<x)). (8)
Consider now the functiongy (r) = N~ 1Elog Y €Xp(—Hy p()(0)). By a standard computation, we have

fh@® =272B(1-E(RT,),) +en, 9)

whereey goes to zero whelW — oo, uniformly at: bounded, and wherg), denotes an average (m,%, for the
Gibbs measure with HamiltoniaHy g(;. Since the functions — fy (¢) are convex, and since their limjt(z)

is differentiable at = 0, we have thatf’(0) = limy_. f (0), and combining with (7) and (8) concludes the
proof. O

One can hope that a simple underlying structure exists, that will obviate Conjectures 2.4 and 2.5. In the meantime
however, the key point of the proofs of Propositions 2.1 and 2.7 is that, even though the definitin o (4)
involves a very large number of steps wheis large, the quantities of importance (such/d9 can be controlled
independently of this number of steps, a fact that is already crystal clear in the formulation of Theorem 1 of [1],
and that played a key role in the proofs of [4]. Proposition 2.9 is a consequence of the methods of [4].

One might wonder whether (as suggested by physical intuition) the meagus®mpletely describes the
asymptotic properties of the system. If this is the case, one should be able to compute all the relevant physica
quantities of the system in function of it, and in particular quantities of the following type

lim E(R12R13),

N—o0
lim E(Ri2R34) = lim E(Ry2)?,
N—oo N—o0
where we have introduced two more replieaisando#, and where of cours®p 3 = N1 dien o203, The author
feels this is a very interesting research program.
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