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BOUNDS FOR MODULAR L-FUNCTIONS
IN THE LEVEL ASPECT ✩
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ABSTRACT. – Let f be a primitive (holomorphic or Maaß) cusp form of level q and non-trivial
nebentypus. Then for Res = 1

2
the associated L-function satisfies L(f, s) � q

1
4− 1

1889 , where the implied
constant depends polynomially on s and the Archimedean parameters of f (weight or Laplacian eigenvalue).
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RÉSUMÉ. – Soit f une forme modulaire cuspidale primitive (holomorphe ou de Maaß) de niveau q et de
caractère central non-trivial. Alors, pour Re s = 1

2
, la fonction L associée vérifie L(f, s) � q

1
4− 1

1889 , où la
constante implicite dépend polynomialement de s et du paramètre archimédien de f (le poids ou la valeur
propre du laplacien).

© 2007 Elsevier Masson SAS

1. Introduction

1.1. Statement of results

It is one of the magic features of analytic continuation that L-functions reveal the most
relevant information of the coefficients they encode, in a region where the Dirichlet series does
not converge. For many obvious (e.g. bounding contour integrals) and not so obvious (e.g.
equidistribution problems) applications it turns out to be crucial to have estimates for the size
of L-functions inside the critical strip, and without much loss of generality on the critical line
Res = 1

2 . Typical L-functions come equipped with a functional equation which, by the standard
Phragmén–Lindelöf convexity principle, implies an upper bound in the critical strip, the so-called
convexity bound. It turns out, however, that for many of the deeper questions that are attacked
by an analytic machinery, one needs to improve on this convexity bound. Interestingly, even
(seemingly) marginal improvements often result in quite strong applications (the reader may
consult the surveys [13,21,27]). In an impressive series of papers, Duke–Friedlander–Iwaniec
developed powerful methods to obtain bounds that could break the convexity barrier for various
families of L-functions, culminating in a subconvexity bound for general automorphic forms on
GL2 [11]:
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698 V. BLOMER, G. HARCOS AND P. MICHEL
THEOREM 1 (Duke–Friedlander–Iwaniec). – Let f be a primitive holomorphic or Maaß cusp
form of level q, with primitive nebentypus χ, and Archimedean parameter tf . Then for Res = 1

2
the associated L-function satisfies

L(f, s)�
(
|s|+ |tf |

) 19
2 q

1
4− 1

23041 .

The convexity bound in this context is L(f, s)�s,tf ,ε q
1
4+ε. Here and below the Archimedean

parameter tf of f is defined as

tf :=

⎧⎨⎩
√

λf − 1
4 when f is a Maaß form of Laplacian eigenvalue λf ,

(1−k)i
2 when f is a holomorphic form of weight k.

(1.1)

Theorem 1 is a major breakthrough, and the proof is long and very elaborate. In this paper
we want to present a different method that avoids a number of technical difficulties and gives a
better exponent in a more general setting. The main result of the present paper is

THEOREM 2. – Let f be a primitive 1 (holomorphic or Maaß) cusp form of level q. Suppose
that the nebentypus χ of f is not trivial. Then for Res = 1

2 the associated L-function satisfies

L(f, s)�
(
|s|+ |tf |

)A
q

1
4− 1

1889 ,

where A > 0 is an absolute constant.

Remark 1.1. – Note that besides the improved subconvex exponent, we do not require, as in
[11], that the nebentypus χ is primitive 2 : this is a feature that is easily allowed by our method.
There is no doubt that the method of [11] could—in principle—also be adapted to cover the
case of non-primitive nebentypus, but—we believe—at the expense of extremely cumbersome
and technical computations. Including non-primitive characters is not only a cosmetical device.
Corollaries 1 and 2 below give nice applications that rest crucially on this more general setting.

Remark 1.2. – With some major effort we could probably obtain A = 2, but here we do not
focus on the exact dependence on the other parameters except that we keep it polynomial.

We shall describe our method and the new ideas briefly in the next section, but we state already
at this place the most fundamental difference to the approach in [11]: one of the great technical
difficulties in [11] was to match the contribution of the Eisenstein spectrum, added to the sum in
order to make it spectrally complete, by a suitable term on the other side of the trace formula. We
will be able to avoid this matching problem completely so that throughout the paper upper bounds
suffice. This gives more flexibility and makes it feasible to include non-primitive characters for
which explicit computations with Eisenstein series seem to be hard.

As in [26,17] a crucial ingredient for Theorem 2 is a subconvex estimate on the critical line
for a smaller family of L-functions, namely automorphic L-functions twisted by a character of
large conductor. More precisely, we use the fact that for any primitive (holomorphic or Maaß)
cusp form f of level N and trivial nebentypus and for any primitive character χ of modulus q,
the twisted L-function L(f ⊗ χ, s) satisfies on the critical line

L(f ⊗ χ, s) �ε

(
|s|
(
1 + |tf |

)
Nq
)ε|s|α(1 + |tf |

)β
Nγq

1
2−δ(1.2)

1 I.e., eigenform of all Hecke operators.
2 In fact, with slightly more work we could also have covered the trivial nebentypus case (see Remark 4.1).
4e SÉRIE – TOME 40 – 2007 – N◦ 5



BOUNDS FOR MODULAR L-FUNCTIONS IN THE LEVEL ASPECT 699
for some absolute positive constants α, β, γ, δ and any ε > 0. In [2] the authors obtained (1.2)
with

α =
503
256

, β =
1221
256

, γ =
9
16

, δ =
25
256

,

in the somewhat more general setting where f was allowed to have any nebentypus. While any
bound of type (1.2) suffices for our purposes, in order to obtain a good exponent, we cite the
following result from [1]:

THEOREM 3. – Let f be a primitive Maaß cusp form of weight zero, Archimedean parameter
tf , level N and trivial nebentypus, and let χ be a primitive character modulo q. Then for
Res = 1

2 the twisted L-function satisfies

L(f ⊗ χ, s) �ε

(
|s| 14

(
1 + |tf |

)3
N

1
4 q

3
8 + |s| 12

(
1 + |tf |

) 7
2 N

3
4 q

1
4
)(
|s|
(
1 + |tf |

)
Nq
)ε

.

In particular,

L(f ⊗ χ, s) �ε

(
|s|
(
1 + |tf |

)
Nq
)ε|s| 12 (1 + |tf |

)3
N

1
4 q

3
8 ,(1.3)

provided q � (N(1 + |tf |))4.

The proof of this theorem uses and generalizes a method of Bykovskiı̆ [4]. Since exponents
get improved and the numerical values of α, β, γ, δ in (1.2) might be lowered in some future,
it seemed convenient to calculate the subconvex exponent in Theorem 2 as a function of these
constants, see (7.5).

As in [11] we derive the following corollary from Theorem 2:

COROLLARY 1. – Let K be a quadratic field and O ⊂ K an order in K of discriminant d.
Let χ denote a (primitive) character of Pic(O). Then for Res = 1

2 the associated L-function
satisfies

L(χ, s) �s d
1
4− 1

1889 .

Indeed, by theorems of Hecke and Maaß, L(χ, s) is the L-function of a Maaß form of weight
κ ∈ {0,1} (depending on whether K is real or imaginary), level d and nebentypus χK (the
quadratic character associated with K). One difference with Theorem 2.7 of [11] is that we do not
require the character χ to be associated with the maximal order OK . Of course a similar bound
holds for any Hecke character of a quadratic field. An immediate consequence of Corollary 1 is
the following:

COROLLARY 2. – Let K be a cubic field of discriminant dK . Then for Res = 1
2 its associated

Dedekind L-function satisfies

ζK(s) �s |dK | 14− 1
1889 .(1.4)

Proof. – If K is abelian, then dK = d2 is a square and ζK(s) = ζ(s)L(χ, s)L(χ, s), where χ
is a Dirichlet character of order 3 and conductor d. In that case the bound (1.4) follows from
Burgess’s subconvex bound [3]. If K is not abelian, let L denote the Galois closure of K (which
is of degree 6 with Galois group isomorphic to S3) and let F/Q denote the unique quadratic field
contained in L, then ζK(s) = ζ(s)L(χ, s), where χ is a ring-class character of F of order 3 and
conductor d satisfying NF/Q(d) = dK . The bound (1.4) now follows from Corollary 1. �

This latter bound turns out to be an important ingredient in the work of Einsiedler,
Lindenstrauss, Venkatesh and the third author [12] where a higher rank generalization of Duke’s
equidistribution theorem for closed geodesics on the modular surface ([6, Theorem 1]) is
established.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



700 V. BLOMER, G. HARCOS AND P. MICHEL
1.2. Outline of the proof

Let us give an overview of the new ideas involved and of the various steps that we perform in
order to prove Theorem 2. Basically we work out the strategy outlined in [26, Section 1.3.1] but
with various innovations which were not anticipated at that time. As the reader will notice, the
methods of [24,11,17] are the ancestors of our proof (rather than the method followed in [26]).
The ultimate goal is to estimate an amplified fourth moment

1
q

∑
f

∣∣M(f)
∣∣2∣∣L(f, s)

∣∣4, Res =
1
2

(1.5)

over the spectrum of the Laplacian acting on automorphic functions f of level q, nebentypus χ,
and some weight κ ∈ {0,1}. Here M is a suitable amplifier, and f runs through Maaß cusp forms
and Eisenstein series (in the latter case, of course, the sum becomes an integral). As usual, the
amplifier M(f) =

∑
� x(�)λf (�) is a short Dirichlet polynomial; opening the square and using

multiplicativity of Hecke eigenvalues, we are left with bounding a normalized average

Q(�) :=
1
q

∑
f

λf (�)
∣∣L(f, s)

∣∣4
for � less than a small power of q (see Section 3). We win once we can show Q(�) � �−δ

for some δ > 0 (cf. (3.20)). Using an approximate functional equation for L(f, s)2, |L(f, s)|4
can be written as a double sum, each of length about q, involving divisor functions and Hecke
eigenvalues. Thus |L(f, s)|4 can be viewed as the square of a Rankin–Selberg L-function of f
times an Eisenstein series. We can therefore use ideas from [26,17], but we are faced with various
difficulties coming from the fact that Eisenstein series are not square-integrable; we shall discuss
this below.

By Kuznetsov’s trace formula, the spectral sum is transformed into sums of Kloosterman sums,
twisted by χ. For one of the remaining divisor functions, we apply Voronoi summation so that the
twisted Kloosterman sums become Gauß sums (cf. (4.6)). Opening the Gauß sum (as in (5.5)),
we are now left with sums roughly of the type

1
q3/2

∑
g

1
g

∑
h

χ(h)
∑

�n±m=gh

τ(n)τ(m)g�(n,m).(1.6)

Here the length of n, m, h is about q and the function g� is essentially bounded (precisely, see
(4.7) and (4.9)). Hence we need not only square-root cancellation in the character sum, but also
some additional saving in the �-variable. There are several ways to evaluate the inner sum. The
δ-symbol method as in [7] would be one alternative; however, we shall use a related method that
originally goes back to Heath-Brown and was used by Meurman [25] in a very nice but somewhat
neglected paper. The idea is to start with a smooth variant of τ(n) ≈ 2#{d | n: d � √

n} and
to transform the other divisor function τ(m) = τ(±(gh − �n)) by Voronoi summation. This
method is quicker and simpler than the δ-symbol method, and there are fewer error terms to
take care of. This simplifies the already cumbersome estimations in Section 6 considerably. The
error terms of the additive divisor problem (1.6) involve Kloosterman sums. Meurman’s method
has the additional advantage that the multiplicative inverse �̄ does not enter the variables of the
Kloosterman sum; its removal by switching to another cusp would be cumbersome for � not
square-free. We transform the Kloosterman sums into Fourier coefficients of automorphic forms
4e SÉRIE – TOME 40 – 2007 – N◦ 5



BOUNDS FOR MODULAR L-FUNCTIONS IN THE LEVEL ASPECT 701
f (say) of level at most � by using Kuznetsov’s formula in the other direction. Now we have
smooth sums of the type ∑

h

∑
f

χ(h)ρf (h),(1.7)

where the h-sum has about length q. Cancellation in the h-sum is therefore equivalent to
subconvexity of twisted automorphic L-functions for which we need Theorem 3. We will carry
this out in Section 6.3. Some difficulties arise from the fact that (1.6) may be “ill-posed”: if the
support of g� is such that m is much smaller than n, we have to solve an unbalanced shifted
convolution problem which is reflected by the fact that the f -sum in (1.7) is long, cf. (6.16). In
this case the saving comes from the spectral large sieve inequalities of Deshouillers–Iwaniec, see
Section 6.2.

The preceding discussion shows that we have presented here a fairly general method for
calculating accurately twisted sums of additive divisor sums. This may have applications in
different contexts.

Comparing with the approach in [11], two things are different: we interpret |L(f, s)|4 as
|L(f, s)2|2 rather than (|L(f, s)|2)2, cf. [26, Section 1.3.1]. This subtle difference is mainly
responsible for a better exponent in the final result. It turns out that the shifted convolution
problem we are facing in the course of the proof has a nice arithmetic interpretation, and we
can dispense with a general (and therefore weaker) result on fairly arbitrary determinant-type
equations [9]. In fact, we have removed the appearance of the character χ inside the shifted
convolution problem, but the price we have to pay is that the shifted convolution sums are now
twisted by χ; our approach is only successful because we can exploit some cancellation coming
from the character sum.

Secondly, we tailor the approximate functional equation according to our needs. The main
term in (1.6) can be calculated directly (see Section 5), and it turns out that for each fixed g, the
sum is � �−1/2, but the length of the g-sum is about �1/2. Precisely, using Mellin transforms, the
g-sum translates into a zeta-function (cf. (5.7)) whose residue gives a main term. The remaining
integral is indeed � �−1/2, but the polar contribution is in general � 1. We are facing exactly the
same problem as in [11]: the spectral sum (1.5) is too large; by adding the Eisenstein spectrum
in order to make the sum spectrally complete, we have added a term whose contribution is larger
than what we want to estimate. If we work in the setting of holomorphic cusp forms and use
Petersson’s trace formula instead of Kuznetsov’s, a certain orthogonality relation between the
Bessel functions Jn, n≡ κ (mod 2), and the functions Y0, K0 coming from the additive divisor
problem, creates a zero that like a deus ex machina kills the pole from the zeta-function. In
various variants, this has been the key to success in many related papers, cf. [8, (55)], [10,
Lemma 7.1], [24, Sections 3 and 4]. Since we have quite some flexibility with the weight
functions of the approximate functional equation on the one hand and of the trace formula on
the other hand, we were able to create such a zero artificially. The choice of the approximate
functional equation below ((3.9)–(3.11)) is motivated by forcing the Eisenstein contribution to
be small, see Remark 3.1. This device might also be useful in different applications.

There are other ways to avoid a large contribution of the Eisenstein spectrum. For example,
when f is odd, i.e., has sign εf = −1, we can insert a factor 1− εf into the trace formula which
amounts to subtracting the trace formula (2.12) for mn < 0 from the trace formula (2.11) for
mn > 0. Since Eisenstein series are even, their contribution vanishes—as everything else that is
even—which is mirrored in the fact that the polar term in Section 5 will vanish automatically.
Another approach might be to work with the finite places and encode the arithmetic information
of the (Hecke) coefficients of the Eisenstein series into the amplifier.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



702 V. BLOMER, G. HARCOS AND P. MICHEL
We believe that a line of attack that totally dispenses with approximate functional equations
(as in [4]) would give a cleaner and simpler proof, but we have not yet succeeded in completing
this project. The main reason is that it seems hard to translate shifted convolution problems into
a language without finite sums.

2. Preliminaries

2.1. Automorphic forms

In this section we briefly compile some results from the theory of automorphic forms which we
shall need later. An exhaustive account of the theory can be found in [11] from which we borrow
much of the notation. One of the most difficult issues in this subject is the normalization. We
normalize the Fourier coefficients as in [11] and write the trace formulae as in [19, Chapter 9],
i.e., using the normalization [19, (8.5)–(8.6)].

2.1.1. Hecke eigenbases
Let q � 1 be an integer, χ be a character to modulus q; let κ = 1−χ(−1)

2 ∈ {0,1} and k � 2 be
an integer satisfying (−1)k = χ(−1). We denote by Sk(q,χ), L2(q,χ) and L2

0(q,χ)⊂L2(q,χ),
respectively, the Hilbert spaces (with respect to the Petersson inner product) of holomorphic
cusp forms of weight k, of Maaß forms of weight κ, and of Maaß cusp forms of weight κ, with
respect to the congruence subgroup Γ0(q) and with nebentypus χ. These spaces are endowed
with the action of the (commutative) algebra T generated by the Hecke operators {Tn | n � 1}.
Moreover, the subalgebra T(q) generated by {Tn | (n, q) = 1} is made of normal operators. As
an immediate consequence, the spaces Sk(q,χ) and L2

0(q,χ) have an orthonormal basis made of
eigenforms of T(q) and such a basis can be chosen to contain all L2-normalized Hecke eigen-
newforms (in the sense of Atkin–Lehner theory). We denote these bases by Bk(q,χ) and B(q,χ),
respectively. For the rest of this paper we assume that any such basis satisfies these properties.

The orthogonal complement to L2
0(q,χ) in L2(q,χ) is the Eisenstein spectrum E(q,χ) (plus

possibly the space of constant functions if χ is trivial). The space E(q,χ) is continuously spanned
by a “basis” of Eisenstein series indexed by some finite set. In the classical setting, that set is
usually taken to be the set {a} of cusps of Γ0(q) which are singular with respect to χ. In that
case the spectral decomposition of any ψ ∈ E(q,χ) reads

ψ(z) =
∑

a

∫
R

〈
ψ,Ea(·, 1

2 + it)
〉
Ea(z, 1

2 + it)
dt

4π
.

Such a basis has the advantage of being explicit and indeed it will turn out to be useful at the end
of our argument. On the other hand, it will be equally useful for us to employ another basis of
Eisenstein series formed of Hecke eigenforms: the adelic reformulation of the theory of modular
forms provides a natural spectral expansion of the Eisenstein spectrum in which the basis of
Eisenstein series is indexed by a set of parameters of the form 3

{
(χ1, χ2, f) | χ1χ2 = χ, f ∈ B(χ1, χ2)

}
,(2.1)

where (χ1, χ2) ranges over the pairs of characters of modulus q such that χ1χ2 = χ and
B(χ1, χ2) is some finite set depending on (χ1, χ2) (specifically, B(χ1, χ2) corresponds to an

3 We suppress here the independent spectral parameters 1
2

+ it with t ∈ R.
4e SÉRIE – TOME 40 – 2007 – N◦ 5



BOUNDS FOR MODULAR L-FUNCTIONS IN THE LEVEL ASPECT 703
orthonormal basis in the space of an induced representation constructed out of the pair (χ1, χ2),
but we need not be more precise). We refer to [14] for the definition of these parameters as well
as for the proof of the spectral expansion of this form. With this choice, the spectral expansion
for ψ ∈ E(q,χ) reads

ψ(z) =
∑∑
χ1χ2=χ

f∈B(χ1,χ2)

∫
R

〈
ψ,Eχ1,χ2,f (·, 1

2 + it)
〉
Eχ1,χ2,f (z, 1

2 + it)
dt

4π
.

The main advantage is that these Eisenstein series are Hecke eigenforms for T(q): for (n, q) = 1,
one has

TnEχ1,χ2,f (z, 1
2 + it) = λχ1,χ2(n, t)Eχ1,χ2,f (z, 1

2 + it)

with

λχ1,χ2(n, t) =
∑
ab=n

χ1(a)aitχ2(b)b−it.

2.1.2. Multiplicative and boundedness properties of Hecke eigenvalues
Let f be any such Hecke eigenform and let λf (n) denote the corresponding eigenvalue for Tn;

then for (mn,q) = 1 one has

λf (m)λf (n) =
∑

d|(m,n)

χ(d)λf (mn/d2),

(2.2)
λf (n) = χ(n)λf (n).

In particular, for (mn,q) = 1 it follows that

λf (m)λf (n) = χ(n)
∑

d|(m,n)

χ(d)λf (mn/d2).(2.3)

Note also that the formula (2.2) is valid for all m, n if f is an eigenform for all T. In particular,
this is the case when λf (n) is replaced by the divisor function and χ is the trivial character.

We recall the bounds satisfied by the Hecke eigenvalues: if f belongs to Bk(q,χ) (i.e., is
holomorphic) or is an Eisenstein series Eχ1,χ2,f (z, 1

2 + it), then one has∣∣λf (n)
∣∣� τ(n) �ε nε

for any ε > 0. For f ∈ B(q,χ) the currently best approximation due to Kim–Sarnak [23] is∣∣λf (n)
∣∣� τ(n)nθ with θ :=

7
64

.(2.4)

There is an analogous bound for the spectral parameter (1.1):

|Im tf |� θ.(2.5)

Moreover, tf ∈ R when κ = 1. [11, Proposition 19.6] shows that the above bound is valid with
θ = 0 on average over n: ∑

n�x

∣∣λf (n)
∣∣2 �ε

((
1 + |tf |

)
qx
)ε

x(2.6)

for any x � 1, ε > 0.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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2.1.3. Hecke eigenvalues and Fourier coefficients
We write the Fourier expansion of a modular form f as follows (z = x + iy):

f(z) =
∑
n�1

ρf (n)nk/2e(nz) for f ∈ Bk(q,χ),

f(z) =
∑
n �=0

ρf (n)W n
|n|

κ
2 ,itf

(
4π|n|y

)
e(nx) for f ∈ B(q,χ)

(here tf denotes the spectral parameter (1.1)) and for either type of Eisenstein series

Ea(z, 1
2 + it) = c1,a(t)y1/2+it + c2,a(t)y1/2−it +

∑
n �=0

ρa(n, t)W n
|n|

κ
2 ,it

(
4π|n|y

)
e(nx),

Eχ1,χ2,f (z, 1
2 + it) = c1,f (t)y1/2+it + c2,f (t)y1/2−it +

∑
n �=0

ρf (n, t)W n
|n|

κ
2 ,it

(
4π|n|y

)
e(nx).

When f is a Hecke eigenform, there is a close relationship between the Fourier coefficients
of f and its Hecke eigenvalues λf (n): one has, for (m,q) = 1 and any n � 1,

λf (m)
√

nρf (n) =
∑

d|(m,n)

χ(d)
√

mn

d2
ρf

(
mn

d2

)
;(2.7)

in particular, for (m,q) = 1,

λf (m)ρf (1) =
√

mρf (m).(2.8)

Moreover, these relations hold for all m, n if f is a newform.
We will also need the following lower bounds for any L2-normalized newform f in either

Bk(q,χ) or B(q,χ):

∣∣ρf (1)
∣∣2 �ε

{
(4π)k−1((k − 1)!q)−1(kq)−ε, for f ∈ Bk(q,χ),
cosh(πtf )q−1(1 + |tf |)−κ(q + |tf |)−ε, for f ∈ B(q,χ),

(2.9)

cf. [11, (6.22)–(6.23), (7.15)–(7.16)] and [17, (31)].

2.1.4. The Kuznetsov formula
Let φ : [0,∞)→ C be a smooth function satisfying φ(0) = φ′(0) = 0, φ(j)(x) �ε (1+x)−2−ε

for 0 � j � 3. For κ ∈ {0,1} let 4

φ̇(k) := ik
∞∫
0

Jk−1(x)φ(x)
dx

x
,

φ̃(t) :=
itκ

2 sinh(πt)

∞∫
0

(
J2it(x)− (−1)κJ−2it(x)

)
φ(x)

dx

x
,(2.10)

φ̌(t) :=
2
π

cosh(πt)

∞∫
0

K2it(x)φ(x)
dx

x

4 For κ � 2 the definition of φ̃ is different, and tκ has to be replaced by a certain polynomial of degree κ; see [28,
(84)] for the general formula.
4e SÉRIE – TOME 40 – 2007 – N◦ 5
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be Bessel transforms. Then for positive integers m, n we have the following versions of the trace
formula:∑

q|c

1
c
Sχ(m,n, c)φ

(
4π

√
mn

c

)
=

∑∑
k≡κ(2), k>κ
f∈Bk(q,χ)

φ̇(k)
(k − 1)!

√
mn

π(4π)k−1
ρf (m)ρf (n)

+
∑

f∈B(q,χ)

φ̃(tf )
4π

√
mn

cosh(πtf )
ρf (m)ρf (n)(2.11)

+
∑∑
χ1χ2=χ

f∈B(χ1,χ2)

∞∫
−∞

φ̃(t)
√

mn

cosh(πt)
ρf (m,t)ρf (n, t)dt,

and∑
q|c

1
c
Sχ(m,−n, c)φ

(
4π

√
mn

c

)
=

∑
f∈B(q,χ)

φ̌(tf )
4π

√
mn

cosh(πtf )
ρf (m)ρf (−n)

+
∑∑
χ1χ2=χ

f∈B(χ1,χ2)

∞∫
−∞

φ̌(t)
√

mn

cosh(πt)
ρf (m,t)ρf (−n, t)dt,(2.12)

where the right-hand side runs over the spectrum of the Laplacian of weight κ ∈ {0,1} in (2.11)
and of weight κ = 0 in (2.12), acting on forms of level q and character χ; alternatively, the
Eisenstein contribution

∑∑
χ1χ2=χ

f∈B(χ1,χ2)

∞∫
−∞

φ̌(t)
√

mn

cosh(πt)
ρf (m,t)ρf (n, t)dt

can be replaced by the more usual sum

∑
a

∞∫
−∞

φ̌(t)
√

mn

cosh(πt)
ρa(m,t)ρa(n, t)dt,

where {a} denotes the set of cusps for Γ0(q) which are singular with respect to χ; for a proof
of the latter, see [19, Theorems 9.4 and 9.8] 5 and [28]; the proof of these formulae with the
Eisenstein parameters (2.1) is identical.

The holomorphic counterpart of (2.11)–(2.12) is Petersson’s trace formula (cf. [19, Theo-
rem 9.6] and [20, Proposition 14.5])

δmn + 2πi−k
∑
q|c

1
c
Sχ(m,n, c)Jk−1

(
4π

√
mn

c

)
(2.13)

=
(k − 2)!

√
mn

(4π)k−1

∑
f∈Bk(q,χ)

ρf (m)ρf (n).

5 Note that in [19] a few misprints occur: Equation (9.15) should have the normalization factor 2
π

instead of 4
π

, and in
Equation (B.49) a factor 4 is missing.
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Using the same notation 6 as above, the large sieve inequalities [5, Theorem 2] state, for forms
of level q and trivial nebentypus χ0, that∑

k≡0(2)
2�k�T

(k − 1)!
(4π)k−1

∑
f∈Bk(q,χ0)

∣∣∣∣ ∑
M�m<2M

bm

√
mρf (m)

∣∣∣∣2
∑

f∈B(q,χ0)
|tf |�T

1
cosh(πtf )

∣∣∣∣ ∑
M�m<2M

bm

√
mρf (m)

∣∣∣∣2

∑
a

T∫
−T

1
cosh(πt)

∣∣∣∣ ∑
M�m<2M

bm

√
mρa(m,t)

∣∣∣∣2 dt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

�ε

(
T 2 +

M1+ε

q

) ∑
M�m<2M

|bm|2,

where M,T � 1 and (bm) is an arbitrary sequence of complex numbers (notice that here we have
considered the classical family of Eisenstein series indexed by the cusps of Γ0(q)). For individual
m, we have the estimates∑

k≡0(2)
2�k�T

(k − 1)!
(4π)k−1

∑
f∈Bk(q,χ)

m
∣∣ρf (m)

∣∣2 �ε (qTm)εT 2,

(2.15) ∑
f∈B(q,χ)
|tf |�T

m|ρf (m)|2
cosh(πtf )

�ε (qTm)εT 2m2θ,

see [17, (35) and (37)].

2.2. Special functions

Special functions, in particular Bessel functions, will make an appearance at several places in
this paper. If Bν denotes any of the Bessel functions Jν , Yν , Kν , then(

tνBν(t)
)′ = ±tνBν−1(t),

so that successive integration by parts yields

∞∫
0

F (x)B0(α
√

x )dx =
(
± 2

α

)j
∞∫
0

xj/2F (j)(x)Bj(α
√

x )dx(2.16)

for α > 0, j ∈ N0, and F ∈ C∞
0 ((0,∞)).

LEMMA 1. – (a) Let φ(x) be a smooth function supported on x�X such that φ(j)(x)�j X−j

for all j ∈ N0. For t ∈ R we have

φ̇(t), φ̃(t), φ̌(t)�C
1 + |logX|

1 + X

(
1 + X

1 + |t|

)C

6 Note the different normalization of the Fourier coefficients of Eisenstein series in [5].
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for any constant C � 0. Here the Bessel transform φ̃ is taken with respect to κ = 0.
(b) Let φ(x) be a smooth function supported on x � X such that φ(j)(x) �j (X/Z)−j for all

j ∈ N0. For t ∈ (−i/4, i/4) we have

φ̃(t), φ̌(t) � 1 + (X/Z)−2|Im t|

1 + X/Z
.

Here the Bessel transform φ̃ is taken with respect to κ = 0.
(c) Assume that φ(x) = eiaxψ(x) for some constant a and some smooth function ψ(x)

supported on x � X such that ψ(j)(x) � X−j for all j ∈ N0. Assume aX � 1, t ∈ R, and
assume t ∈ N in the case of φ̇. Then

φ̇(t), φ̃(t), φ̌(t) �C,ε
1

F 1−ε

(
F

1 + |t|

)C

for any C � 0, ε > 0 and some F = F (X,a) < (a + 1)X .

Proof. – Part (a) is [5, (7.1)–(7.2)] and [2, (2.14)]. Part (b) is [2, (2.11)]. Part (c) is [22,
pp. 43–45]. �

For future reference we recast φ̃, defined in (2.10), as follows: by [15, 6.561.14] the Mellin
transform of the Bessel kernel kt(x) := J2it(x)− (−1)κJ−2it(x) equals

k̂t(s) =

∞∫
0

kt(x)xs−1 dx

=
2s−1

π
Γ
(

s

2
+ it

)
Γ
(

s

2
− it

){
sin
(

π

(
s

2
− it

))
− (−1)κ sin

(
π

(
s

2
+ it

))}
.

Let

φ∗(u) := φ̂(−1− 2u)21+2u.(2.17)

Then by Plancherel’s formula

φ̃(t) =
itκ

2 sinh(πt)
1

2πi

∫
(σ)

φ∗(u)k̂t(1 + 2u)2−2u du

=
1
π

{
1

it coth(πt)

}
1

2πi

∫
(σ)

φ∗(u)Γ
(

1
2

+ u + it

)
Γ
(

1
2

+ u− it

){
− sin(πu)
+cos(πu)

}
du,(2.18)

where −1
2 + |Im t|< σ < 0, and the upper (resp. lower) line refers to κ = 0 (resp. κ = 1).

For the proof of Theorem 2, the exact shape of the test function φ is in principle irrelevant.
However, it will be convenient to construct it as a linear combination of the following explicit
functions. For integers 0 � b < a with a− b ≡ κ (mod 2) we take

φa,b(x) := ib−aJa(x)x−b.(2.19)

In order to satisfy the decay conditions for Kuznetsov’s trace formula, we assume b � 2. Then
by [15, 6.561.14] we obtain
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φ∗
a,b(u) = ib−a2−b−1 Γ((a− b− 1− 2u)/2)

Γ((3 + a + b + 2u)/2)
�a,b

(
1 + |Imu|

)−b−2−2Reu
,

(2.20)
|Reu|� a− b− 2

2
,

while using [15, 6.574.2] it is straightforward to verify that

φ̇a,b(k) =
b!

2b+1π

b∏
j=0

{(
(1− k)i

2

)2

+
(

a + b

2
− j

)2}−1

�a,b ±k−2b−2,

(2.21)

φ̃a,b(t) =
b!

2b+1π

{
1

t coth(πt)

} b∏
j=0

{
t2 +

(
a + b

2
− j

)2}−1

�a,b

(
1 + |t|

)κ−2b−2
.

In particular,

φ̇a,b(k) > 0 for 2 � k � a− b,
(2.22)

φ̃a,b(t) > 0 for all possible spectral parameters t,

since |Im t| < 1
2 when κ = 0, and t ∈ R when κ = 1. Moreover, we see that for any fixed a, b as

above and any even polynomial α ∈ C[T ] of degree 2d � 2b− 4 there is a linear combination

φ(x) =
d∑

ν=0

βνφa−ν,b−ν(x)(2.23)

with βν depending on a, b and the coefficients of α such that

φ̇(k) = φ̇a,b(k)α
(

(1− k)i
2

)
and φ̃(t) = φ̃a,b(t)α(t).(2.24)

2.3. Divisor sums

Let τ be the divisor function. Exponential sums involving the divisor function can be handled
by Voronoi summation. Let

Lw(x) := logx + 2γ − 2 logw,(2.25)

where γ is Euler’s constant, and let

J−(x) :=−2πY0(4πx), J+(x) := 4K0(4πx)

with the usual Bessel functions. For later purposes we write J± as inverse Mellin transforms
using [15, 17.43.17, 17.43.18] or [24, (36)]:

J +(
√

x ) =
2

2πi

∫
(1)

(2π)−2uΓ(u)2x−u du,

(2.26)
J−(

√
x ) =

2
2πi

∫
(∗)

(2π)−2uΓ(u)2x−u cos(πu)du,

where (∗) is the path Reu = −1 except when |Imu| < 1 where it curves to hit the real axis at
u > 0. Let (d, c) = 1 and let F ∈ C∞

0 ((0,∞)); then
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∞∑
m=1

τ(m)e
(

dm

c

)
F (m) =

1
c

∞∫
0

Lc(y)F (y)dy

+
1
c

∑
±

∞∑
m=1

τ(m)e
(
±d̄m

c

) ∞∫
0

J±
(√

my

c

)
F (y)dy.(2.27)

In order to evaluate additive divisor sums, we use the following method, cf. [25, (2.1) and
(2.4)]. Here and later in the proof, we will need smooth cut-off functions. Let henceforth ω
denote a smooth function such that ω(x) = 1 on [0,1] and ω(x) = 0 on [2,∞). Then we have(

1− ω

(
x√
Q

))(
1− ω

(
y

x
√

Q

))
= 0

for all x, y,Q � 0 such that y � Q. Therefore

τ(n) =
∑
δ|n

ω

(
δ√
Q

)(
2− ω

(
n

δ
√

Q

))

whenever n � Q. Let g: [12 ,Q]× [ 12 ,M ]→ C be a smooth function. Then

∑
an±m=h

τ(n)τ(m)g(n,m) =
∞∑

n=1

τ(n)τ
(
±(h− an)

)
g
(
n,±(h− an)

)
=

∞∑
δ=1

ω

(
δ√
Q

)∑
δ|n

τ
(
±(h− an)

)
g
(
n,±(h− an)

)(
2− ω

(
n

δ
√

Q

))

=
∞∑

δ=1

ω

(
δ√
Q

) ∑
m≡±h (aδ)

τ(m)g
(

h∓m

a
,m

)(
2− ω

(
h∓m

aδ
√

Q

))
.

Using additive characters and Voronoi summation (2.27), we get

∑
m≡μ(c)

τ(m)F (m) =
1
c

∑
w|c

rw(μ)
w

∞∫
0

Lw(y)F (y)dy

+
∑
±

1
c

∑
w|c

1
w

∞∑
m=1

τ(m)S(−μ,±m;w)

∞∫
0

J±
(√

my

w

)
F (y)dy

for any compactly supported smooth function F , so that∑
an±m=h

τ(n)τ(m)g(n,m)(2.28)

=
∞∑

w=1

(a,w)rw(h)
w2

∞∫
0

Lw

(
±(h− ax)

)
K(a,w),w(x)g

(
x,±(h− ax)

)
dx

+
∞∑

w=1

(a,w)
w2

∞∑
n=1

τ(n)S(∓h,n;w)

∞∫
J +

(√
n(±(h− ax))

w

)

0
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×K(a,w),w(x)g
(
x,±(h− ax)

)
dx

+
∞∑

w=1

(a,w)
w2

∞∑
n=1

τ(n)S(∓h,−n;w)

∞∫
0

J−
(√

n(±(h− ax))
w

)
×K(a,w),w(x)g

(
x,±(h− ax)

)
dx,

where

rw(h) := S(h,0;w) =
∑

d|(h,w)

dμ(w/d)(2.29)

is the Ramanujan sum and

Kr,w(x) :=
∞∑

δ=1

1
δ
ω

(
wδ

r
√

Q

)(
2− ω

(
rx

δw
√

Q

))
.

For future reference we state some properties of Kr,w(x). A straightforward calculation shows

xiwj ∂i

∂xi

∂j

∂wj
Kr,w(x) �i,j logQ(2.30)

for any i, j � 0, and clearly

Kr,w(x) = 0 if w � 2r
√

Q.(2.31)

3. Approximate functional equation and amplification

Let f = f0 be a primitive (holomorphic or Maaß) cusp form having L2-norm 1, for which we
want to prove Theorem 2. Let t0 denote its spectral parameter as defined in (1.1). For Res > 1
the L-function of f0 is defined as a Dirichlet series in the Hecke eigenvalues of f0

L(f0, s) :=
∞∑

n=1

λf0(n)n−s.

The completed L-function is given by

Λ(f0, s) := qs/2L∞(f0, s)L(f0, s), L∞(f0, s) := π−sΓ
(

s + μ1

2

)
Γ
(

s + μ2

2

)
,

where

μ1, μ2 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

it0, −it0 when f0 is an even Maaß form of even weight;

it0, −it0 + 1 when f0 is an even Maaß form of odd weight;

it0 + 1, −it0 + 1 when f0 is an odd Maaß form of even weight;

it0 + 1, −it0 when f0 is an odd Maaß form of odd weight;

it0, it0 + 1 when f0 is a holomorphic form.

Observe that (2.5) implies

Reμ1,Reμ2 � − 7
.(3.1)
64
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The completed L-function is entire and satisfies the functional equation [11, (8.11)–(8.13),
(8.17)–(8.19)]

Λ(f0, s) = ωΛ(f0,1− s)(3.2)

for some constant ω = ω(f0) of modulus 1. Relation (2.2) shows that

L(f0, s)2 = L(2s,χ)
∞∑

n=1

τ(n)λf0(n)n−s, Res > 1.(3.3)

Let us fix a point s on the critical line Res = 1
2 for which we want to prove Theorem 2.

The above Dirichlet series no longer converges (absolutely) for s but a similar formula holds
which is traditionally called an approximate functional equation. In order to achieve polynomial
dependence in the spectral parameter t0 we will closely follow the argument in [16] specified
for the shifted L-function u �→ L(f0, s− 1

2 + u). We define the analytic conductor [16, (2.4) and
Remark 2.7]

C = C(f0, s) :=
q

(2π)2
|s + μ1||s + μ2|(3.4)

and the auxiliary function [16, (1) in Erratum]

F (f0, s;u) :=
1
2
C−u/2qu L∞(f0, s + u)L∞(f0, s)

L∞(f0, s− u)L∞(f0, s)
+

1
2
Cu/2.

By (3.1) this function is holomorphic in Reu > −1
4 (say) and satisfies the bound [16, (2) in

Erratum]

C−u/2F (f0, s;u)− 1
2
�σ

(
1 + |u|

)2Reu
, −1

4
< Reu � σ(3.5)

with an implied constant independent of s and f0. In addition, we have F (f0, s; 0) = 1, and from
the functional equation (3.2) we can deduce [16, (3.3)]

F (f0, s;u)L(f0, s + u) = ωλF (f0, s;−u)L(f0, s− u), λ :=
L∞(f0, s)
L∞(f0, s)

.

In particular,

η = η(f0, s) := (ωλ)2

is of modulus 1 and with the notation

G+(u) := F (f0, s; 1
2 − s + u)2, G−(u) := F (f0, s; 1

2 − s + u)2

we obtain the functional equation

G+(u)L(f0,
1
2 + u)2 = ηG−(−u)L(f0,

1
2 − u)2.(3.6)

Observe that (3.5) implies, for 0 < ε � Reu � σ,

G±(u) �ε,σ CReu
(
1 + |Imu∓ Ims|

)4Reu
.(3.7)
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We fix an arbitrary entire function P (u) which decays fast in vertical strips and satisfies P (0) = 1
as well as P (u) = P (−u) = P (ū). The role of this factor is to make the dependence on s in
Theorem 2 polynomial. We introduce another even function in order to create zeros that avoid
the matching, as discussed in Section 1.2:

Q(u, t) :=
(
u2 − (1

2 − it)2
)2(

u2 − (1
2 + it)2

)2 =:
4∑

ν=0

αν(t)u2ν(3.8)

for suitable real even polynomials αν ∈ R[T ]. Note that

Q
(
u, i(1

2 − u)
)

= Q(1,0)
(
u, i(1

2 − u)
)

= 0.(3.9)

Now we apply the usual contour shift technique to the integral

1
2πi

∫
(1)

L(f0,
1
2 + u)2G+(u)P (u + 1

2 − s)
Q(u, t0)

Q(s− 1
2 , t0)

· du

u + 1
2 − s

.

In combination with (3.3) and (3.6) we obtain

L(f0, s)2 =
∞∑

n=1

τ(n)λf0(n)V +
t0 (n/q)

n1/2
+ η

∞∑
n=1

τ(n)λf0(n)V −
t0 (n/q)

n1/2
,(3.10)

where we define V ±
t for any spectral parameter t through its Mellin transform

V̂ +
t (u) := Ŵ+(u)Q(u, t) := q−uG+(u)L(1 + 2u,χ)

P (u + 1
2 − s)

u + 1
2 − s

· Q(u, t)
Q(s− 1

2 , t0)
,

(3.11)

V̂ −
t (u) := Ŵ−(u)Q(u, t) := q−uG−(u)L(1 + 2u,χ)

P (u + s− 1
2 )

u + s− 1
2

· Q(u, t)
Q(s− 1

2 , t0)
.

Here we have suppressed the notational dependence of V̂ ±
t and Ŵ± on s and t0 as these

parameters are kept fixed in the rest of the paper. Since Q(s − 1
2 , t0) is real for Res = 1

2 and
the spectral parameter t0, we have

Ŵ−(u) = Ŵ+(u)

W−(x) = W+(x)
and

V̂ −
t (u) = V̂ +

t (u)

V −
t (x) = V +

t (x).
(3.12)

We can therefore drop the superscripts and write

W := W+ and Vt := V +
t .

Note that by (3.11) and (3.8),

Vt(x) =
4∑

ν=0

αν(t)
(

x
∂

∂x

)2ν

W (x).(3.13)

By (3.7), (3.4), (3.8), (1.1), (2.5), it follows, for 0 < ε � Reu � σ and for any A > 0,

Ŵ (u) �ε,σ,A

(
|s|+ |t0|

)2Reu(1 + |Imu∓ Ims|
)−A

.
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Therefore Ŵ is rapidly decaying on vertical lines and inverse Mellin transformation shows

xi ∂i

∂xi
W (x) �ε,B,i |s|i+1

(
|s|+ |t0|

)2ε
x−ε

(
1 +

x

(|s|+ |t0|)2
)−B

, B, i ∈ N0.(3.14)

With these auxiliary functions we introduce the following family of “fake” L-functions for any
cusp form f either in Bk(q,χ) or in B(q,χ) and for any Eisenstein series Eχ1,χ2 :

Σ(f ⊗E,s) :=
∞∑

n=1

τ(n)
√

nρf (n)Vtf
(n/q)

n1/2
,

(3.15)

Σ
(
Eχ1,χ2,f (·, 1

2 + it)⊗E,s
)
:=

∞∑
n=1

τ(n)
√

nρf (n, t)Vt(n/q)
n1/2

.

With this notation (3.10) reads for f = f0 (cf. (2.8) and (3.12))

ρf0(1)L(f0, s)2 = Σ(f0 ⊗E,s) + η(f0, s)Σ(f0 ⊗E,s).(3.16)

In order to apply the trace formula, we wanted an approximate functional equation that is “as
independent of t0 as possible”; now the information on the spectral parameter is all encoded in
the polynomial Q(u, t). In [11], however, the weight function was the same for all the f ’s which
made the rest of the proof more complicated.

For every given � ∈ N satisfying (�, q) = 1 and � � q let us define with the notation of
Section 2.1

Qholo
k (�) :=

ik(k − 2)!
2π(4π)k−1

∑
f∈Bk(q,χ)

λf (�)
∣∣Σ(f ⊗E,s)

∣∣2,
Q(�) :=

∑
k≡κ(2)

k>κ

φ̇0(k)2(k − 1)i−kQholo
k (�) +

∑
f∈B(q,χ)

φ̃0(tf )
4π

cosh(πtf )
λf (�)

∣∣Σ(f ⊗E,s)
∣∣2

+
∑∑
χ1χ2=χ

f∈B(χ1,χ2)

∞∫
−∞

φ̃0(t)
1

cosh(πt)
λχ1,χ2(�, t)

∣∣Σ(Eχ1,χ2,f (·, 1
2 + it)⊗E,s

)∣∣2 dt,(3.17)

where (cf. (2.19))

φ0(x) := φA,10(x) = i10−AJA(x)x−10,(3.18)

for some very large A of parity κ.

Remark 3.1. – Let us explain the reason of our choice for the construction of V ±
t . Suppose

for simplicity that q is prime (hence χ being non-trivial is primitive). In that case there are
two Eisenstein series Eχ,1(z, f, 1

2 + it) and E1,χ(z, f, 1
2 + it) (which are the Eisenstein series

associated to the cusps a = 0,∞). Their contribution to the above sum equals

∞∫
−∞

φ̃0(t)
|ρ(1, t)|2
cosh(πt)

λχ,1(�, t)
∣∣∣∣ 1
2πi

∫
(1)

L2(u + 1
2 − it,χ)ζ2(u + 1

2 + it)
L(2u + 1, χ)

V̂t(u)qu du

∣∣∣∣2 dt.(3.19)

The main contribution comes from the double pole of the inner integrand, and we designed Vt

such that it kills this pole. This is reflected by the vanishing of (5.10) below.
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We shall show

k−18
∣∣Qholo

k (�)
∣∣+ ∣∣Q(�)

∣∣�s,t0,ε qε(�c1q−c2 + �−1/2)(3.20)

for certain positive absolute constants c1 and c2, uniformly in k � A− 10, and with polynomial
dependence on s and t0. This implies Theorem 2: Let us choose the standard amplifier

x(�) :=

⎧⎪⎨⎪⎩
λ(p)χ(p) if � = p, p � q, 1

2

√
L < p �

√
L;

−χ(p) if � = p2, p � q, 1
2

√
L < p �

√
L;

0 else;

for some parameter logL� log q to be chosen in a minute. Using (2.2) with n = m = p, we see∑
�

x(�)λ(�) =
∑
p�q

1
2

√
L<p�

√
L

1 � L1/2−ε.

Therefore, by (3.16), (2.9), (3.18), (2.21)–(2.22), we obtain

L

q1+ε

∣∣L(f0, s)
∣∣4 �t0,ε

∑∑
k≡κ(2), k>κ
f∈Bk(q,χ)

∣∣φ̇0(k)
∣∣ (k − 1)!
π(4π)k−1

∣∣∣∣∑
�

x(�)λf (�)
∣∣∣∣2∣∣Σ(f ⊗E,s)

∣∣2

+
∑

f∈B(q,χ)

φ̃0(tf )
4π

cosh(πtf )

∣∣∣∣∑
�

x(�)λf (�)
∣∣∣∣2∣∣Σ(f ⊗E,s)

∣∣2
+

∑∑
χ1χ2=χ

f∈B(χ1,χ2)

∞∫
−∞

φ̃0(t)
1

π cosh(πt)

∣∣∣∣∑
�

x(�)λχ1,χ2(�, t)
∣∣∣∣2

×
∣∣Σ(Eχ1,χ2,f (·, 1

2 + it)⊗E,s
)∣∣2 dt,

so that by (2.3), (2.22) and (3.17) we obtain

L

q1+ε

∣∣L(f0, s)
∣∣4(3.21)

�t0,ε

∑
�1,�2

∣∣x(�1)x(�2)
∣∣ ∑

d|(l1,l2)

{∣∣∣∣Q(�1�2
d2

)∣∣∣∣+ ∑
k≡κ (2)
k�A−10

4k
∣∣φ̇0(k)

∣∣∣∣∣∣Qholo
k

(
�1�2
d2

)∣∣∣∣}.

Substituting (3.20) (note that the k-sum converges by (2.21)) and changing the order of
summation, this is

�s,t0,ε qε

{
q−c2

∑
d

∑
�1,�2

(�1�2)c1
∣∣x(d�1)x(d�2)

∣∣+∑
d

∑
�1,�2

(�1�2)−1/2
∣∣x(d�1)x(d�2)

∣∣}
�s,t0,ε qε(L2c1+1/2q−c2 + 1)

∑
�

τ(�)
∣∣x(�)

∣∣2,
where we used Cauchy–Schwarz twice. By (2.6), we obtain from the last two displays∣∣L(f0, s)

∣∣4 �s,t0,ε q1+ε(L2c1q−c2 + L−1/2).
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Choosing

L := qc2/(2c1+1/2),(3.22)

this gives Theorem 2 with

L(f0, s) �s,t0,ε q
1
4−

c2
4(4c1+1)+ε

.(3.23)

It remains to show (3.20) and calculate the constants c1 and c2. This will be done in the next
three sections.

4. Applying Kuznetsov and Voronoi summation formulae

As a first step we substitute (3.15) into the definition (3.17) of Qholo
k (�) and Q(�). Then we

apply (2.2) and the corresponding formula for the divisor function in order to remove the factors
λf (�) and λχ1,χ2(t, �). Applying (2.7), this gives

k−18Qholo
k (�)

=
∑
de=�

χ(d)√
d

∑
ab=d

μ(a)τ(b)√
a

∑
m,n

τ(m)τ(n)
(mn)1/2

× k−9V (1−k)i
2

(
m

q

)
k−9V (1−k)i

2

(
adn

q

)
ik(k − 2)!

√
maen

2π(4π)k−1

∑
f∈Bk(q,χ)

ρf (m)ρf (aen)

and

Q(�) =
∑
de=�

χ(d)√
d

∑
ab=d

μ(a)τ(b)√
a

∑
m,n

τ(m)τ(n)
(mn)1/2

×
{ ∑

f∈B(q,χ)

φ̃0(tf )Vtf

(
m

q

)
Vtf

(
adn

q

)
4π

√
maen

cosh(πtf )
ρf (m)ρf (aen)

+
∑∑
χ1χ2=χ

f∈B(χ1,χ2)

∞∫
−∞

φ̃0(t)Vt

(
m

q

)
Vt

(
adn

q

) √
maen

cosh(πt)
ρf (m,t)ρf (aen, t)dt

+
∑∑

k≡κ(2), k>κ
f∈Bk(q,χ)

φ̇0(k)V (1−k)i
2

(
m

q

)
V (1−k)i

2

(
adn

q

)
(k − 1)!

√
maen

π(4π)k−1
ρf (m)ρf (aen)

}
.

Substituting (3.13), we get something of the form

Q(�) =
4∑

ν,ξ=0

. . .

{∑
j

φ̃0(tf )αν(tf )αξ(tf )
(

x
∂

∂x

)2ν

W

(
m

q

)(
x

∂

∂x

)2ξ

W

(
adn

q

)
. . .

+ Eisenstein contribution + holomorphic contribution

}
.(4.1)

Now we apply Kuznetsov’s trace formula (2.11) for each term separately. Similarly, we apply
Petersson’s formula (2.13) for Qholo

k (�). In the latter case we obtain a diagonal term which can
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be estimated trivially using (3.13) and (3.14):

ik

2π

∑
de=�

χ(d)√
d

∑
ab=d

μ(a)τ(b)
a
√

e

∑
n

τ(aen)τ(n)
n

k−9V (1−k)i
2

(
aen

q

)
k−9V (1−k)i

2

(
adn

q

)
�ε qε�−1/2.(4.2)

Here and henceforth we suppress the dependence on s and t0 and merely make sure that it is
polynomial at most. In either case the off-diagonal term is a linear combination of terms of the
form ∑

abe=�

χ(ab)μ(a)τ(b)
a
√

b

∑
q|c

1
c

∑
m,n

τ(m)τ(n)
(mn)1/2

W1

(
m

q

)
W2

(
a2bn

q

)
(4.3)

× Sχ(m,aen; c)φ
(

4π
√

aemn

c

)
,

where φ is Jk−1 or a suitable φ as in (2.23)–(2.24) (with a := A, b := 10, α := αναξ and d := 8),
cf. (3.18). In particular, by (3.14), (2.23), (2.19)–(2.20),

W
(i)
1,2(x) �ε,B,i x−i−ε(1 + x)−B , φ(i)(x) �A,i

(
x

1 + x

)A−10−i

,

(4.4)
φ∗(u)�

(
1 + |Imu|

)−2−2Reu

for all i with some very large A, B and for all u in a wide vertical strip symmetric about the
origin.

Let us now open the Kloosterman sum and apply Voronoi summation (2.27) to the m-variable.
It is one of the main features of the Voronoi summation here that the twisted Kloosterman sum
becomes a Gauß sum. Let

Gχ(h; c) :=
∑

d (mod c)
(d,c)=1

χ(d)e
(

hd

c

)

denote the Gauß sum, then the term (4.3) decomposes into the sum of a “diagonal” first term∑
abe=�

χ(ab)μ(a)τ(b)
a
√

b

∑
q|c

1
c2

∑
n

τ(n)Gχ(aen; c)
n1/2

W2

(
a2bn

q

)
(4.5)

×
∞∫
0

Lc(y)W1

(
y

q

)
φ

(
4π

√
aeny

c

)
dy

y1/2
,

and of an “off-diagonal” second term given by∑
±

∑
abe=�

χ(ab)μ(a)τ(b)
a
√

b

∑
q|c

1
c2

∑
h

Gχ(h; c)
∑

aen±m=h

τ(m)τ(n)g±(n,m; c),(4.6)

where

g±(n,m; c) :=
1

n1/2
W2

(
a2bn

q

) ∞∫
0

J±
(√

my

c

)
W1

(
y

q

)
φ

(
4π

√
aeny

c

)
dy

y1/2
(4.7)

for c � q.
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Using the weak bound (cf. (5.5))∣∣Gχ(h; c)
∣∣� c1/2(c,h)1/2,

the fact that (�, q) = 1 and also the inequalities (4.4) (cf. (4.9)), we obtain that (4.5) is bounded
by

�ε qε
∑
q|c

c��1/2q1+ε

1
c2

∑
n�q1+ε

c1/2(c, �n)1/2

n1/2−ε
q1/2+ε �ε q3ε−1/2.(4.8)

As for the term (4.6), let us attach a smooth factor ψ(m) to g± that is zero for m � 1/2 and 1
for m � 3/4. This does not affect the sum (4.6). We need this little technicality in order to apply
(2.28) later. It is easy to see that g±(n,m; c) is negligible (i.e., � q−C for any constant C > 0)
unless

q1−ε

ae
=: N− � n � N+ :=

q1+ε

a2b
, c �

√
eq1+ε

√
ab

, m � aenqε.(4.9)

The upper bound on n follows directly from (4.4) by choosing A and B large enough. By (4.4)
we can also assume that cq−ε � √

aeny and y � q1+ε. Combining these inequalities, we obtain
c2q−3ε � qaen which implies the lower bound on n and, in combination with the upper bound
on n, it implies the upper bound on c as well. Finally, the upper bound on m follows from (2.16)
by choosing a large j there. As a by-product, we can see that the integral in (4.7) is essentially
supported on [q1−εe−1, q1+ε], hence by applying a crude bound for the Bessel functions in that
integral (e.g. [17, Appendix]) we obtain

g±(n,m; c)�ε q1/2+εn−1/2 for n � q1+ε and c � q.(4.10)

Let S(a, b, e, c; q) denote the weighted sum of shifted convolution sums

S(a, b, e, c; q) :=
∑

h

Gχ(h; c)
∑
±

∑
aen±m=h

τ(m)τ(n)g±(n,m; c)ψ(m).

Thus (4.6) equals ∑
abe=�

χ(ab)μ(a)τ(b)
a
√

b

∑
q|c

1
c2

S(a, b, e, c; q).(4.11)

Remark 4.1. – Since we have assumed that χ is not trivial, Gχ(0; c) = 0, hence in
S(a, b, e, c; q) the h-sum varies over the h �= 0. When χ is trivial, the degenerate contribution
corresponding to h = 0,

S0(a, b, e, c; q) := ϕ(c)
∑

aen=m

τ(m)τ(n)g−(n,m; c),

yields a main term which can be bounded by �ε qε�−1/2. We do not carry out this computation
in this paper and rather refer to [24, Section 3.6].

Applying (2.28) with

Q := N+ =
q1+ε

2
(4.12)
a b
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to the innermost sum, S(a, b, e, c; q) splits into a main term

SM (a, b, e, c; q) :=
∑
h�=0

Gχ(h; c)
∑
±

∞∑
w=1

(ae,w)rw(h)
w2

(4.13)

×
∞∫
0

Lw

(
±(h− aex)

)
K(ae,w),w(x)g±

(
x,±(h− aex); c

)
ψ
(
±(h− aex)

)
dx

and two error terms of the shape

SE,±(a, b, e, c; q) :=
∑
h�=0

Gχ(h; c)
∑
±

∞∑
w=1

(ae,w)
w2

∞∑
n=1

τ(n)S(∓h,±n;w)

(4.14)

×
∞∫
0

J±
(√

n(±(h− aex))
w

)
K(ae,w),w(x)g±

(
x,±(h− aex); c

)
ψ
(
±(h− aex)

)
dx

for various combinations of ±. We postpone the estimation of (4.14) to Section 6, and start with
the contribution of (4.13) to S(a, b, e, c; q). At this point, we need to remove the catalyst function
ψ(m) in (4.13) and define

S̃M (a, b, e, c; q) :=
∑
h�=0

Gχ(h; c)
∑
±

∞∑
w=1

(ae,w)rw(h)
w2

(4.15)

×
∞∫
0

Lw

(
±(h− aex)

)
K(ae,w),w(x)g±

(
x,±(h− aex); c

)
dx.

The integrands in the two terms S̃M and SM differ only for x = h/(ae) + O(1/(ae)). Since
by (4.9) (cf. (6.2) below) the h-sum in both terms is essentially over 1 � |h| � eq1+ε/(ab), the
contribution of their difference to (4.11) is at most (cf. (2.25), (2.30), (4.9), (4.10))

�ε qε
∑
ae|�

∑
q|c

1
c2

∑
1�h�eq1+ε

c1/2(h, c)1/2
∞∑

w=1

(ae,w)(h,w)
w2

(
q

aeh

)1/2

�ε q3ε−1/2.(4.16)

5. The main term

In this section, we will evaluate the contribution of the term (4.15) to (4.11):∑
abe=�

χ(ab)μ(a)τ(b)
a
√

b

∑
w�1

(ae,w)
w2

∑
q|c

1
c2

∑
h�=0

rw(h)Gχ(h; c)(5.1)

×
∑
±

∞∫
0

Lw

(
±(h− aex)

)
K(ae,w),w(x)g±

(
x,±(h− aex); c

)
dx.

More precisely, we shall first evaluate the c- and h-sums above then average trivially over a, b,
e, w.

To do so we proceed essentially as in [24, pp. 117–122]. We substitute the definition (4.7) of
g± and make a change of variables

ξ :=
|h|
c2

y, η :=
ae

|h|x
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in order to remove all parameters from the oscillating functions. Secondly, we replace the
negative values of h in (5.1) (which only contribute to the “−” case in

∑
±) by their absolute

values. To simplify the notation, let us write (cf. (2.25))

L(η) := Lw(hη) = log η + 2γ + log
(

h

w2

)
=: log η + Λ,

say. Then the c,h-sum in (5.1) equals

1√
ae

∑
q|c

1
c

∑
h�1

rw(h)Gχ(h; c)

∞∫
0

∞∫
0

φ(4π
√

ξη )

×
{
δη<1L(1− η)J+

(√
(1− η)ξ

)
+ δη>1L(η − 1)J−(√(η − 1)ξ

)
(5.2)

+ χ(−1)L(η + 1)J−(√(η + 1)ξ
)}

×K(ae,w),w

(
hη

ae

)
W1

(
c2ξ

hq

)
W2

(
abhη

eq

)
dξ dη

(ξη)1/2
.

Let us also write

Xw(η) := K(ae,w),w

(
qη

a2b

)
W2(η).

Its Mellin transform X̂w satisfies essentially the same properties as Ŵ2. To see this, observe
first that by (4.4), W2 is up to a negligible error supported on [0, qε], so we can replace
K(ae,w),w(qη/(a2b)) by

K∗
w(η) := K(ae,w),w

(
qη

a2b

)
ω

(
η

qε

)
,

where, as usual, ω is a smooth cut-off function. Then, by (2.30), (4.12), and sufficiently many
integrations by parts, we find that

K̂∗
w(u) =

∞∫
0

K∗
w(η)ηu−1 dη �j,Reu qε|u|−j

for Reu > 0 and any j � 0. Finally, by (3.14),

X̂w(u) =
1

2πi

∫
( 1
2 Reu)

K̂∗
w(u− v)Ŵ2(v)dv �j,ε qε|u|−j

for ε � Reu � 5, say.
Our next aim is to transform the double integral in (5.2) by several applications of Mellin’s

inversion formula: using (2.26) and (2.17), we write J± and φ as inverse Mellin transforms.
Then the ξ, η-integral in (5.2) equals
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∞∫
0

∞∫
0

4
(2πi)2

∫
(0.2)

∫
(∗)

φ∗(u1)(2π
√

ξη )1+2u1(2π)−2u2Γ(u2)2ξ−u2

×
(

δη<1L(1− η)
(1− η)u2

+
δη>1L(η − 1) cosπu2

(η − 1)u2
+

χ(−1)L(η + 1)cosπu2

(η + 1)u2

)
du2 du1(5.3)

×W1

(
c2ξ

hq

)
Xw

(
abhη

eq

)
dξdη

(ξη)1/2
.

Since the u1-, u2- and ξ-integrals are absolutely convergent (using (4.4)), we can pull the
ξ-integration inside and calculate it explicitly in terms of the Mellin transform Ŵ1 of W1. Then
we write Xw as an inverse Mellin transform getting that (5.3) equals

∞∫
0

4
(2πi)2

∫
(0.2)

∫
(0.6)

φ∗(u1)(2π)1+2u1−2u2η1/2+u1Γ(u2)2

×
(

δη<1L(1− η)
(1− η)u2

+
δη>1L(η − 1) cosπu2

(η − 1)u2
+

χ(−1)L(η + 1)cosπu2

(η + 1)u2

)(
c2

hq

)−1−u1+u2

× Ŵ1(1 + u1 − u2)du2 du1
1

2πi

∫
(0.9)

(
abhη

eq

)−u3

X̂w(u3)du3
dη

η1/2
.

Here we shifted the u2-integration to Reu2 = 0.6 since Ŵ1(u) is rapidly decaying on the line
Reu = 0.6. Since again all integrals are absolutely convergent, we can pull the η-integration
inside and calculate the three terms explicitly (as in [24, (38)]) using [15, 3.191.1, 3.191.2,
3.194.3]. We find

∞∫
0

(
δη<1L(1− η)

(1− η)u2
+

δη>1L(η − 1) cosπu2

(η − 1)u2
+

χ(−1)L(η + 1)cosπu2

(η + 1)u2

)
η1+u1−u3

dη

η

= cos(πu2)(−∂u2 + Λ)
Γ(1 + u1 − u3)Γ(−1− u1 + u3 + u2)

Γ(u2)

(
χ(−1) +

sin(π(u3 − u1))
sin(πu2)

)
− (−∂u2 + Λ)

Γ(1 + u1 − u3)Γ(−1− u1 + u3 + u2)
Γ(u2)

sin(π(−u1 + u3 + u2))
sin(πu2)

.

Introducing the new variable u4 := 1 + u1 − u2 as a substitute for u2, we see that (5.3) equals

−4
(2πi)3

∫
(0.2)

∫
(0.6)

∫
(0.9)

φ∗(u1)(2π)2u4−1Γ(1 + u1 − u4)2Γ(1 + u1 − u3)

×
(

c2

hq

)−u4

Ŵ1(u4)
(

abh

eq

)−u3

X̂w(u3)
(5.4)

×
{

cos
(
π(u1 − u4)

)
(∂u4 + Λ)

Γ(u3 − u4)
Γ(1 + u1 − u4)

(
χ(−1) +

sin(π(u3 − u1))
sin(π(u4 − u1))

)
− (∂u4 + Λ)

Γ(u3 − u4)
Γ(1 + u1 − u4)

sin(π(u3 − u4))
sin(π(u4 − u1))

}
du3 du4 du1.
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Using the identities

(∂u4 + Λ)
Γ(u3 − u4)

Γ(1 + u1 − u4)
=

Γ(u3 − u4)
Γ(1 + u1 − u4)

(
Γ′

Γ
(1 + u1 − u4)−

Γ′

Γ
(u3 − u4) + Λ

)
,

sin(π(u3 − u4))
sin(π(u4 − u1))

=− cos
(
π(u1 − u3)

)
+ cos

(
π(u1 − u4)

) sin(π(u3 − u1))
sin(π(u4 − u1))

,

it is straightforward to verify that the last two lines in (5.4) can be simplified to

Γ(u3 − u4)
Γ(1 + u1 − u4)

{
−π sin

(
π(u1 − u3)

)
+
(
cos
(
π(u1 − u3)

)
+ χ(−1) cos

(
π(u1 − u4)

))(Γ′

Γ
(1 + u1 − u4)−

Γ′

Γ
(u3 − u4) + Λ

)}
.

In particular, we observe that the triple integral is absolutely convergent (since φ∗, Ŵ1 and
X̂w are sufficiently nice) and the integrand is holomorphic whenever 0 < Reu4 < Reu3 <
1 + Reu1. Let us shift the u4-contour to Reu4 = ε (<0.1) and the u3-contour to Reu3 = 1.1.

We now substitute this triple integral back into (5.2) and perform the (absolutely convergent)
sum over c and h. To justify this, we need to evaluate for s = 1 + 2u4, t = u3 − u4 the Dirichlet
series

Dw,q(χ, s, t) :=
∑
q|c

1
cs

∑
h�1

Gχ(h; c)rw(h)
ht

.

First we need to compute the Gauß sum Gχ(h; c): we denote by q∗ the conductor of χ and,
slightly abusing notation, we write χ also for the primitive character of modulus q∗ underlying
χ mod q. For q | c we consider the unique factorization c = q∗q1q2c1c2 where q = q∗q1q2,
c1q1 | (q∗)∞ and (c2q2, q

∗) = 1. Then

Gχ(h; c) = χ(c2q2)Gχ(h; q∗q1c1)rc2q2(h)

(with rc2q2(h) being the Ramanujan sum, cf. (2.29)). Moreover, Gχ(h; q∗q1c1) = 0 unless
c1q1 | h in which case

Gχ(h; q∗q1c1) = χ

(
h

c1q1

)
c1q1Gχ(1; q∗).

Summarizing the above computation, one has

Gχ(h; c) = δc1q1|hχ(c2q2)χ
(

h

c1q1

)
c1q1rc2q2(h)Gχ(1; q∗).(5.5)

Therefore

Dw,q(χ, s, t) =
χ(q2)Gχ(1; q∗)
(q∗)s

qs+t−1
1 qs

2

∑
c1|(q∗)∞

1
cs+t−1
1

∑
(c2,q∗)=1

χ(c2)
cs
2

∑
h�1

χ(h)rw(c1q1h)rc2q2(h)
ht

.

For σ := Res and τ := Re t sufficiently large, the c1, c2, h-sum factors as an Euler product over
the primes:∑

c1|(q∗)∞

1
cs+t−1
1

∑
(c2,q∗)=1

χ(c2)
cs
2

∑
h�1

χ(h)rw(c1q1h)rc2q2(h)
ht

=
∏
p

Πp(χ, s, t),(5.6)
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say. We collected some useful properties of the Euler factors Πp(χ, s, t) in Lemma 2 at the end
of this section. These properties imply that for Reu4 = ε (<0.1) and Reu3 = 1.1 the series
Dw,q(χ, s, t) is absolutely convergent and in the domain σ > 1, τ > 0 it decomposes as

Dw,q(χ, s, t) = ζ(s + t− 1)L(χ, t)Hw,q(χ, s, t),(5.7)

where Hw,q(χ, s, t) is a holomorphic function. Moreover, for 0 < ε < 0.1,

Res = 1 + 2ε, ε/2 < Re t < 3ε/2,

one has

Hw,q(χ, s, t) �ε qε(q1,w)w1−ε/3(q∗)−1/2.(5.8)

Using

Λ = 2γ − log(w2) + log(h)

we obtain that (5.2) equals

1√
ae

−4
(2πi)3

∫
(0.2)

∫
(ε)

∫
(1.1)

φ∗(u1)(2π)2u4−1Γ(1 + u1 − u4)Γ(1 + u1 − u3)Γ(u3 − u4)

× qu4Ŵ1(u4)
(

ab

eq

)−u3

X̂w(u3)

{
1∑

j=0

∂j
u3

(
ζ(u3 + u4)L̃(u3, u4)

)
Fj

}
du3 du4 du1,

where

L̃(u3, u4) := L(χ,u3 − u4)Hw,q(χ,1 + 2u4, u3 − u4)

and

F0(u1, u3, u4) :=−π sin
(
π(u1 − u3)

)
+
(
cos
(
π(u1 − u3)

)
+ χ(−1) cos

(
π(u1 − u4)

))
×
(

Γ′

Γ
(1 + u1 − u4)−

Γ′

Γ
(u3 − u4) + 2γ − log(w2)

)
,

F1(u1, u3, u4) :=−
(
cos
(
π(u1 − u3)

)
+ χ(−1) cos

(
π(u1 − u4)

))
.

Let us now shift the u3-contour from Reu3 = 1.1 to Reu3 = 2ε; we will show below that there
is no pole at u3 + u4 = 1. Then Re(u3 − u4) = ε, hence

∂j
u3

L(χ,u3 − u4) �j,ε (q∗)1/2

by the functional equation for L(χ, t) with implied constants depending on j, ε and (polyno-
mially) on |Im(u3 − u4)|. In addition, (5.8) combined with Cauchy’s integral formula shows
that

∂j
u3

Hw,q(χ,1 + 2u4, u3 − u4) �j,ε qε(q1,w)w1−ε/3(q∗)−1/2;

therefore (5.2) summed over abe = � is bounded by

�ε q10ε(q1,w) log(w)w1−ε/3
∑ (e/ab)Reu3

a
√

abe
�ε q12ε(q1,w)w1−ε/4�−1/2.
abe=�
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Finally, averaging over w the above bound against the weight (ae,w)/w2, we obtain that the
main term (5.1) is bounded by

�ε q13ε�−1/2.(5.9)

To conclude the analysis of the main term, it remains to show that the pole of the zeta-function
at u3 + u4 = 1 does not contribute anything. Let us only focus on the factors depending on u3:

G(u1, u3, u4)

:= Γ(1 + u1 − u3)Γ(u3 − u4)
(

ab

eq

)−u3

X̂w(u3)

{
1∑

j=0

∂j
u3

(
ζ(u3 + u4)L̃(u3, u4)

)
Fj

}
.

If Rj denotes the contribution of the j-term to the residue of G(u1, u3, u4) at u3 = 1− u4, then

R0 = Γ(u1 + u4)Γ(1− 2u4)
(

ab

eq

)u4−1

X̂w(1− u4)L̃(1− u4, u4)×
{

+π sin
(
π(u1 + u4)

)
+
{

+2sin(πu1) sin(πu4)
−2cos(πu1) cos(πu4)

}(
Γ′

Γ
(1 + u1 − u4)−

Γ′

Γ
(1− 2u4) + 2γ − log(w2)

)}
,

R1 = Γ(u1 + u4)Γ(1− 2u4)
(

ab

eq

)u4−1

X̂w(1− u4)L̃(1− u4, u4)

×
{
−π sin

(
π(u1 + u4)

)
+
{

+2sin(πu1) sin(πu4)
−2cos(πu1) cos(πu4)

}

×
(
−Γ′

Γ
(u1 + u4) +

Γ′

Γ
(1− 2u4) +

X̂ ′
w

X̂w

(1− u4)− log
(

ab

eq

))}
.

Here the upper line corresponds to κ = 0 and the lower line to κ = 1, and we have used
χ(−1) = (−1)κ. Altogether the residual integral equals, after shifting the u1-integration to
(−ε/2) and interchanging the u1- and u4-integrations,

8
(2πi)2

∫
(ε)

∫
(−ε/2)

φ∗(u1)(2π)2u4−1Γ(1 + u1 − u4)Γ(u1 + u4)Γ(1− 2u4)

× qu4Ŵ1(u4)
(

ab

eq

)u4−1

X̂w(1− u4)L̃(1− u4, u4)(5.10)

×
{

− sin(πu1) sin(πu4)
+cos(πu1) cos(πu4)

}(
Γ′

Γ
(1 + u1 − u4)−

Γ′

Γ
(u1 + u4) + Λ̃(u4)

)
du1 du4,

where

Λ̃(u4) :=
X̂ ′

w

X̂w

(1− u4) + 2γ − log
(

abw2

eq

)
.

We recast the inner integral as

1
2πi

∫
(−ε/2)

φ∗(u1)
(
Λ̃(u4)− ∂u4

)
Γ(1 + u1 − u4)Γ(u1 + u4)

{
− sin(πu1)
+cos(πu1)

}
du1

and use (2.18) to see that (5.10) equals
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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8πq

2πi

∫
( 1
2 )

(2π)2u4−1Γ(1− 2u4)Ŵ1(u4)
(

ab

e

)u4−1

X̂w(1− u4)L̃(1− u4, u4)

×
{

sin(πu4)
cos(πu4)

}(
Λ̃(u4)− ∂u4

)
φ̃
(
i(1

2 − u4)
){ 1

cot(πu4)

i( 1
2−u4)

}
du4.

If φ = Jk−1, k ≡ κ (mod 2) then the integral vanishes by φ̃ = 0. Otherwise we shift ∂u4 to
the other factors by partial integration. Then we sum over ν as in (4.1) and recall that, by the
definition of φ and W1,

Ŵ1(u4) = u2ν
4 Ŵ (u4) and φ̃(t) = φ̃0(t)αν(t)αξ(t).

For t ∈ R we have αν(t) ∈ R; hence the sum over ν introduces factors

4∑
ν=0

αν

(
i(1

2 − u4)
)
u2ν

4 or
4∑

ν=0

αν

(
i(1

2 − u4)
) ∂

∂u4
u2ν

4

to each term. By (3.8)–(3.9) these factors vanish, that is, the residual integral (5.10) is zero in all
cases. This completes the analysis of the main term.

Without the additional zeros in the approximate functional equation, we might still succeed
at the cost of much more work. Applying the functional equation of L(s,χ), expressing
K(ae,w),w(y) in terms of L w

(ae,w)
(y) and therefore Xw in terms of W , it should be possible

to see that the polar contribution (5.10) resembles exactly the contribution of the cusps a = 0,∞
of Q(�), see (3.19).

We conclude this section by stating and proving some useful properties for the Euler factors
Πp(χ, s, t) in (5.6).

LEMMA 2. – Let σ = Res > 1 and τ = Re t > 0. For a prime p, let vp denote the p-adic
valuation, and let ζp (resp. Lp) denote the corresponding Euler factor of the Riemann zeta
function (resp. Dirichlet L-function).

(a) For (p, qw) = 1,

Πp(χ, s, t) = ζp(s + t− 1)
Lp(χ, t)
Lp(χ, s)

.

(b) For p | q∗, ∣∣Πp(χ, s, t)
∣∣� 3pmin(vp(q1),vp(w))+(1−τ)vp(w)ζp(σ − 1)ζp(τ).

(c) For (p, q∗) = 1, p | qw,∣∣Πp(χ, s, t)
∣∣� 4pvp(q2)+(1−τ)vp(w)ζp(σ − 1)ζp(τ).

Proof. – (a) For (p, qw) = 1 we use the notation

α := vp(c2), β := vp(h)

in the sum (5.6); then
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Πp(χ, s, t) =
∞∑

α=0

χ(pα)
pαs

∞∑
β=0

χ(pβ)rpα(pβ)
pβt

=
∞∑

β=0

χ(pβ)
pβt

(
1 +

β∑
α=1

χ(pα)
pαs

(pα − pα−1)− χ(pβ+1)
p(β+1)s

pβ

)

=
1− χ(p)p−s

1− χ(p)p1−s

∞∑
β=0

χ(pβ)
pβt

(
1− χ(pβ+1)

p(β+1)s
pβ+1

)

=
1− χ(p)p−s

1− χ(p)p1−s

(
1

1− χ(p)p−t
− χ(p)p1−s

1− p1−s−t

)
=

1− χ(p)p−s

(1− χ(p)p−t)(1− p1−s−t)
.

(b) For p | q∗ we use the notation

α := vp(c1), β := vp(h), γ := vp(q1), δ := vp(w)

in the sum (5.6); then clearly

∣∣Πp(χ, s, t)
∣∣� ∞∑

α=0

1
pα(σ+τ−1)

∞∑
β=0

|rpδ(pα+β+γ)|
pβτ

.

We distinguish between two cases. For γ � δ we infer

∣∣Πp(χ, s, t)
∣∣� ∞∑

α=0

1
pα(σ+τ−1)

∞∑
β=0

pδ

pβτ
= pδζp(σ + τ − 1)ζp(τ).

For γ < δ we infer∣∣Πp(χ, s, t)
∣∣

�
δ−γ−1∑

α=0

1
pα(σ+τ−1)

(
pδ−1

p(δ−γ−1−α)τ
+

∞∑
β=δ−γ−α

pδ

pβτ

)
+

∞∑
α=δ−γ

1
pα(σ+τ−1)

∞∑
β=0

pδ

pβτ

= pγ

δ−γ−1∑
α=0

1
pα(σ+τ−1)

(
pδ−γ−1

p(δ−γ−1−α)τ
+

pδ−γ

p(δ−γ−α)τ
ζp(τ)

)
+ pδζp(τ)

∞∑
α=δ−γ

1
pα(σ+τ−1)

� 2pγ+(δ−γ)(1−τ)ζp(τ)ζp(σ − 1) + pγ+(δ−γ)(2−σ−τ)ζp(τ)ζp(σ + τ − 1).

In both cases we conclude∣∣Πp(χ, s, t)
∣∣� 3pmin(γ,δ)+δ(1−τ)ζp(σ − 1)ζp(τ).

(c) For (p, q∗) = 1, p | qw, we use the notation

α := vp(c2), β := vp(h), γ := vp(q2), δ := vp(w)
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in the sum (5.6), then clearly

∣∣Πp(χ, s, t)
∣∣� ∞∑

α=0

1
pασ

∞∑
β=0

|rpδ(pβ)rpα+γ (pβ)|
pβτ

.

We distinguish between two cases. For γ � δ we infer (note that γ > 0 in this case)

∣∣Πp(χ, s, t)
∣∣� ∞∑

α=0

pδ

pασ

(
pα+γ−1

p(α+γ−1)τ
+

∞∑
β=α+γ

pα+γ

pβτ

)

� pδζp(τ)
∞∑

α=0

1
pασ

(
pα+γ−1

p(α+γ−1)τ
+

pα+γ

p(α+γ)τ

)
� 2pδ+γ(1−τ)ζp(τ)ζp(σ + τ − 1)

� 2pγ+δ(1−τ)ζp(τ)ζp(σ + τ − 1).

For γ < δ we infer

∣∣Πp(χ, s, t)
∣∣� δ−γ−1∑

α=0

pα+γ

pασ

(
pδ−1

p(δ−1)τ
+

∞∑
β=δ

pδ

pβτ

)
+

∞∑
α=δ−γ

pδ

pασ

(
pα+γ−1

p(α+γ−1)τ
+

∞∑
β=α+γ

pα+γ

pβτ

)

� 2pγ+δ(1−τ)ζp(τ)ζp(σ − 1) + 2pδ+γ(1−τ)ζp(τ)
∞∑

α=δ−γ

1
pα(σ+τ−1)

= 2pγ+δ(1−τ)ζp(τ)ζp(σ − 1) + 2pδ−σ(δ−γ)+δ(1−τ)ζp(τ)ζp(σ + τ − 1).

In both cases we conclude∣∣Πp(χ, s, t)
∣∣� 4pγ+δ(1−τ)ζp(σ − 1)ζp(τ).

The proof of Lemma 2 is complete. �

6. Transforming the Kloosterman sums

6.1. Applying the trace formula

Finally we estimate the contribution of (4.14) to (4.11). This time, we fix c and evaluate the
h-sum non-trivially: in other words, we will bound the terms SE,±(a, b, e, c; q) in (4.14) for c
satisfying (cf. (4.9))

q | c, q � c �
√

eq1+ε

√
ab

.

As a first step, we use the identity∑
w�1

F
(
w, (ae,w)

)
=
∑
r|ae

∑
(ae,w)=r

F (w,r) =
∑
rs|ae

μ(s)
∑

w≡0 (rs)

F (w,r)

and write (4.14) as
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∑
±

∑
rs|ae

rμ(s)
∑

w≡0 (rs)

1
w2

∑
h�=0

Gχ(h; c)
∞∑

n=1

τ(n)S(∓h,±n;w)

×
∞∫
0

J±
(√

n(±(h− aex))
w

)
Kr,w(x)g±

(
x,±(h− aex); c

)
ψ
(
±(h− aex)

)
dx.

We want to apply the trace formulae (2.11) and (2.12) to the w-sum. This needs some preparation.
By (4.9) we can restrict the x-integration to

|h− aex|� aexqε � eq1+ε

ab
(6.1)

and the h-summation to

|h|� eq1+ε

ab
,(6.2)

up to negligible error. Let ρ be a smooth nonnegative function with bounded derivatives,
supported on [1/2,2] such that ρ(y) + ρ(2y) = 1 for y ∈ [1/2,1]. Then

∑
ν∈Z ρ(2νy) = 1 for

y > 0. We apply this smooth partition of unity to all variables and insert (4.7); thus we will
bound O(log6 q) terms ((6.4), (6.6), (6.9) show that each of W , H , N , R, X , Y can be taken
from the interval [1/2, �3q1+ε]), of the shape∑

rs|ae

rμ(s)
∑

w≡0(rs)

ρ(w/W )
w2

∑
h

Gχ(h; c)ρ
(
|h|
H

)∑
n

ρ

(
n

N

)
τ(n)S(∓h,±n;w)

×
∞∫
0

∞∫
0

Kr,w(x)ρ
(
±(h− aex)

R

)
ρ

(
x

X

)
ρ

(
y

Y

)
W1

(
y

q

)
W2

(
a2bx

q

)
(6.3)

×J±
(√

n(±(h− aex))
w

)
J±
(√±(h− aex)y

c

)
φ

(
4π

√
aexy

c

)
dy dx

(xy)1/2
.

(More precisely, for 1/2 � R � 1 we adjust the first ρ-factor by the function ψ as in the
discussion following (4.8).) In view of (6.1), (4.9), (4.4), (2.31) and (4.12), and the remark
following (4.8), we can assume

1
2

� R � aeXqε,
q1−ε

ae
� X � q1+ε

a2b
,

(6.4)
abq1−ε

e
� Y � q1+ε,

1
2

� W � rq1/2+ε

a
√

b
.

Now we use (2.16) to integrate the first factor in the third line of (6.3) by parts sufficiently many
times; in order to apply (2.16) we change variables r := ±(h − aex) � R. By (2.30) and (4.4),
the j-th derivative with respect to r of the integrand without the J±(

√
nr/w) factor is

�ε,j qε

(
1
R

+
1

Xae
+

√
Y

c
√

R
+

√
Y

c
√

Xae

)j

�ε,j qε

(
1
R

+
√

Y

q
√

R

)j

.

This shows, by (2.16), that the integral in (6.3) is negligible unless

W√
(

1√ +
√

Y

q

)
� q−ε.(6.5)
N R

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



728 V. BLOMER, G. HARCOS AND P. MICHEL
Note that this implies either
√

RN/W � qε or
√

N/W � q−1/2+ε (since Y � q1+ε), and so in
any case

√
RN

W
�
√

eqε.(6.6)

Let us now define

Ψ(h,n;z) :=
zρ(n/N)
4π
√

|h|n
ρ

(
4π
√
|h|n

zW

) ∞∫
0

∞∫
0

K
r,4π

√
|h|n/z

(x)

× ρ

(
±(h− aex)

R

)
ρ

(
x

X

)
ρ

(
y

Y

)
W1

(
y

q

)
W2

(
a2bx

q

)
(6.7)

×J±
(

z

√
±(h− aex)
4π
√
|h|

)
J±
(√±(h− aex)y

c

)
φ

(
4π

√
aexy

c

)
dy dx

(xy)1/2
.

Then (6.3) equals

∑
rs|ae

rμ(s)
∑

h

Gχ(h; c)ρ
(
|h|
H

)∑
n

τ(n)
∑

w≡0 (rs)

1
w

S(∓h,±n;w)Ψ
(

h,n;
4π
√
|h|n

w

)
.(6.8)

We are now in a position to apply Kuznetsov’s trace formula (2.11)–(2.12) for

level rs, trivial nebentypus and weight 0.

The innermost sum in (6.8) equals

∑
f∈B(rs,χ0)

Ψ̃(h,n; tf )
4π
√
|h|n

cosh(πtf )
ρf

(
|h|
)
ρf (n) + two similar terms

corresponding to holomorphic forms and Eisenstein series (or a similar expression with Ψ̌ in
place of Ψ̃). We substitute this into (6.8), and are left with bounding

∑
rs|ae

rμ(s)
∑

f∈B(rs,χ0)

∑
h

Gχ(h; c)ρ
(
|h|
H

)√
|h|ρf

(
|h|
)∑

n

τ(n)
√

nρf (n)
Ψ̃(h,n; tf )
cosh(πtf )

for

1
2

� H � eq1+ε

ab
,(6.9)

cf. (6.2). Finally we split the f ∈ B(rs,χ0)-sum into dyadic pieces depending on the size of tf :
namely, ∑

f∈B(rs,χ0)

=
∑

|tf |<1

· · ·+
∑

τ

∑
|tf |	τ

· · ·

for τ = 2k , k � 0 an integer. Thus typically we need to bound sums of the form

∑
rs|ae

rμ(s)
∑

|tf |	τ

∑
h

Gχ(h; c)ρ
(
|h|
H

)√
|h|ρf

(
|h|
)∑

n

τ(n)
√

nρf (n)
Ψ̃(h,n; tf )
cosh(πtf )

(6.10)
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(plus one more sum with
∑

|tf |	τ replaced by
∑

|tf |<1). Moreover, as we will see in Lemma 3

below, the contribution of the τ ’s greater than qε(1 +
√

N
W (

√
H +

√
R)) is negligible.

It will be useful to separate the h, n, tf variables; we proceed by partial summation: for j ∈ N0

let

Ξj(h,n;z) :=
∂j

∂hj

∂

∂n
ρ

(
|h|
H

)
Ψ(h,n;z);(6.11)

note that differentiation commutes with taking Bessel transforms. Then by partial summation
(6.10) equals a sum of two expressions (corresponding to the signs ±)

∑
rs|ae

rμ(s)

∞∫
0

∞∫
0

∑
|tf |	τ

Ξ̃1(±h,n; tf )
cosh(πtf )

∑
h�h

Gχ(±h; c)
√

hρf (h)
∑
n�n

τ(n)
√

nρf (n)dhdn,(6.12)

but we can also suppress the partial summation with respect to h getting two expressions
(corresponding to the signs ±)

−
∑
rs|ae

rμ(s)

∞∫
0

∑
|tf |	τ

∑
h�1

Gχ(±h; c)
√

hρf (h)
Ξ̃0(±h,n; tf )

cosh(πtf )

∑
n�n

τ(n)
√

nρf (n)dn.(6.13)

We summarize the properties of Ξ̃j(t) = Ξ̃j(h,n; t) in the following lemma.

LEMMA 3. – Let

Z :=
qεR

√
Y

NWae
√

X

(
1 +

√
RN

W

)−1/2

(6.14)

and

Z̃ := min
(

1,

√
HN

W
,

√
H√
R

)
.(6.15)

Then for n� N , |h| � H and for any j ∈ N0 we have

Ξ̇j(t), Ξ̃j(t), Ξ̌j(t) �j,ε
Z

1 + |t|

(
e

H

)j

Z̃−2|Im t|,

assuming |Im t| < 1/2 and t ∈ N in the case of Ξ̇j(t). Moreover, all three functions are
negligible unless

|t|� qε

(
1 +

√
N

W
(
√

H +
√

R )
)

.(6.16)

Proof. – Let us first show that the function Ξj defined by (6.11) and (6.7) and supported on
z �

√
HN/W satisfies

zi ∂i

∂zi
Ξj(h,n;z)�i,j,ε Z

(
e

H

)j(
1 +

√
RN

W

)i

(6.17)

for all i, j ∈ N0. To verify this we fix i and the sign of h and observe that, by the Leibniz rule for
the operator zi(∂i/∂zi), the left hand side is a finite linear combination of integrals of the form
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(cf. (6.11) and (6.7))

∂j

∂hj

∞∫
0

∞∫
0

A(h− aex, y)B
(

h− aex

h

)
C(h,x, y)dxdy,(6.18)

where we have used an obvious abstract notation and suppressed the dependence on n, z for
simplicity. In particular, A : R \ {0} × (0,∞) → C is a smooth function supported on a product
of compact intervals t�±R, y � Y satisfying

A(t, y)�ε qε

(
1 +

√
RY

c

)−1/2

,

B(t) := zk(∂k/∂zk)J±(z
√

|t|/(4π)) for some 0 � k � i satisfying in the relevant range
(cf. (6.6))

ts
∂s

∂ts
B(t)�s,i,ε qε

(
1 +

√
RN

W

)s+i−1/2

, z
√

|t| �
√

RN

W
�
√

eqε,(6.19)

and C : (R\{0})×(0,∞)×(0,∞)→ C is a smooth function supported on a product of compact
intervals h� H , x� X , y � Y satisfying

HrXs ∂r

∂hr

∂s

∂xs
C(h,x, y)�r,s,i,ε

qε

NW
√

XY

(
1 +

√
aeXY

c

)s

.(6.20)

Now for j � 1 we rewrite (6.18) as

∂j−1

∂hj−1

∞∫
0

∞∫
0

∂

∂h

{
A(h− aex, y)B

(
h− aex

h

)}
C(h,x, y)dxdy

+
∂j−1

∂hj−1

∞∫
0

∞∫
0

A(h− aex, y)B
(

h− aex

h

)
∂

∂h
C(h,x, y)dxdy.

The inner integral in the first term equals

− 1
h

∞∫
0

A(h− aex, y) B0

(
h− aex

h

)
C(h,x, y)dx

(6.21)

+
1
ae

∞∫
0

A(h− aex, y) B

(
h− aex

h

)
C0(h,x, y)dx,

where

B0(t) := t
∂

∂t
B(t), C0(h,x, y) :=

∂

∂x
C(h,x, y).

This decomposition is not obvious but follows easily by using the identities

∂

∂h
A(h− aex, y) = − 1

ae

∂

∂x
A(h− aex, y),

∂

∂h
B

(
h− aex

h

)
= −x

h

∂

∂x
B

(
h− aex

h

)
,
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and then integrating by parts in

∞∫
0

∂

∂x

{
A(h− aex, y)B

(
h− aex

h

)}
C(h,x, y)dx.

From (6.19)–(6.21) we can see that (6.18) is a linear combination of 3 integrals of the form

(√
e

H
+

1
aeX

+
√

Y

c
√

aeX

)
∂j−1

∂hj−1

∞∫
0

∞∫
0

A(h− aex, y) B1

(
h− aex

h

)
C1(h,x, y)dxdy,

where A is as before; B1 and C1 have the same support as B and C and satisfy the same bound
as in (6.19) and (6.20), respectively. By (6.4) and (6.9) we see that

√
e

H
+

1
aeX

+
√

Y

c
√

aeX
�ε qε e

H
.

By iterating this process we can finally decompose (6.18) as a linear combination of 3j integrals
of the form (

e

H

)j
∞∫
0

∞∫
0

A(h− aex, y)Bj

(
h− aex

h

)
Cj(h,x, y)dxdy,(6.22)

where A is as before; Bj and Cj have the same support as B and C and satisfy the same
bound as in (6.19) and (6.20), respectively. By estimating the integral pointwise we obtain (6.17)
immediately.

The lemma follows now from part (a) of Lemma 1, if t is real and
√

RN/W � qε. If√
RN/W � qε then we look more closely at the first factor in the third line of (6.7). In the

J + case we are done by the rapid decay of the Bessel K-function. In the J− case we use the
asymptotic expansion of the Bessel Y -function to see that for large x,

J−(x) =
1√
x

e(2x)J1(x) +
1√
x

e(−2x)J2(x)

with smooth functions J1,2 satisfying J
(j)
1,2(x) �j x−j . Now a similar argument as above

together with part (c) of Lemma 1 yields the proof of Lemma 3. A technical point to note here
is that in this case we develop the above decomposition for i = 0 only and then estimate the
z-derivatives and the Bessel transforms inside the resulting integrals (6.22) individually. In our
exposition we did not follow this path as we wanted to suppress the z-dependence for simplicity.
Finally, if t is imaginary, part (b) of Lemma 1 completes the proof of Lemma 3. �

We will bound separately the contribution of the τ ’s not exceeding a specific parameter T and
of the τ ’s larger than this parameter. In the former case we shall use (6.13), in the latter (6.12).

6.2. The case of large spectral parameter

Using (5.5), Lemma 3 and Cauchy–Schwarz, (6.12) can be estimated from above by

(q∗)1/2c1q1

∑
rs|ae

r
∑

d|c2q2

d

∫
n	N

∫
h	H

Ze

τH
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×
( ∑

|tf |	τ

1
cosh(πtf )

∣∣∣∣ ∑
h�h/c1q1d

(h,
c2q2

d )=1

χ(h)
√

c1q1dhρf (c1q1dh)
∣∣∣∣2)

1
2

×
( ∑

|tf |	τ

1
cosh(πtf )

∣∣∣∣∑
n�n

τ(n)
√

nρf (n)
∣∣∣∣2)

1
2

dhdn.

Decompose d into d2d
′
2 such that d2 | q∞2 and (d′2, q2) = 1; then for f a Hecke eigenform one

has (since (rs, q) = 1)√
c1q1dhρf (c1q1dh) = λf (c1q1d2)

√
d′2hρf (d′2h),

so that by the large sieve inequalities (2.14) one obtains that (6.12) is bounded by

�ε qε(q∗)1/2(c1q1)1+θ
∑
rs|ae

r
∑

d|c2q2

d′2d
1+θ
2

Ze

τH
HN

×
(

τ +
(

H

c1q1d2rs

)1/2)(
H

c1q1d

)1/2(
τ +

(
N

rs

)1/2)
N1/2.

Here we clearly have the inequalities r � rs � ae � �,

d′2d
1+θ
2

(
τ +

(
H

c1q1d2rs

)1/2)(
H

c1q1d

)1/2

= d′2
1/2

dθ
2

(
d
1/2
2 τ +

(
H

c1q1rs

)1/2)(
H

c1q1

)1/2

� (c2q2)1/2+θ

(
τ +

(
H

c1q1q2r

)1/2)(
H

c1q1

)1/2

,

and

r

(
τ +

(
H

c1q1q2r

)1/2)(
τ +

(
N

r

)1/2)
� �

(
τ +

(
H

c1q1q2�

)1/2)(
τ +

(
N

�

)1/2)
.

Using these and the definition (6.14) of Z , we obtain, according to (6.4), (6.5), (6.9), (6.16), that
(6.12) is bounded by

�ε qε(q∗)1/2(c1c2q1q2)1/2+θ �3/2R

τW

Y 1/2

X1/2
q1/2N1/2

(
τ +

q1/2

(c1q1q2)1/2

)(
τ +

N1/2

�1/2

)
(6.23)

�ε qεc1/2

(
c

q∗

)θ

�2
R

τW
q1/2N1/2

(
τ + (q∗)1/2

)(
τ +

N1/2

�1/2

)
.

Let us recall that (by (6.4), (6.5), (6.9), (6.16))

1 � qε W

N1/2

(
1

R1/2
+

1
q1/2

)
, τ � qε

(
1 +

�1/2q1/2N1/2

W

)
, W � qε�q1/2;

we observe that the first two conditions imply that

τ � qε�1/2

(
1 +

(
q

R

)1/2)
.
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If we assume that

τ � �1/2T for some T � qε,

then

R1/2 � q1/2+εT −1 � q1/2,

and in particular, (RN)1/2 � qεW. Now we bound the four terms of the product

R

τW
q1/2N1/2

(
τ + (q∗)1/2

)(
τ +

N1/2

�1/2

)
in (6.23):

τ
RN1/2

W
q1/2 �ε τqεR1/2q1/2 �ε �1/2q1+ε,

RN1/2

W
(q∗)1/2q1/2 �ε qεR1/2(q∗)1/2q1/2 �ε

(q∗)1/2q1+ε

T ,

RN

W

q1/2

�1/2
�ε qεW

q1/2

�1/2
�ε �1/2q1+ε,

1
τ

RN

W�1/2
(q∗)1/2q1/2 �ε qε W

τ�1/2
(q∗)1/2q1/2 �ε

(q∗)1/2
q1+ε

T .

The same argument works for holomorphic forms and Eisenstein series and gives the same
estimates. Therefore the total contribution of large eigenvalues to the sum (cf. (4.11))

∑
abe=�

χ(ab)μ(a)τ(b)
a
√

b

∑
q|c

1
c2

SE,±(a, b, e, c; q)(6.24)

is bounded by

�ε qε

(
�2

T

(
q∗

q

)1/2−θ

+
�5/2

q1/2

(
q∗

q

)−θ)
.(6.25)

6.3. The case of small spectral parameter

The estimate (6.25) is useful if τ is not too small, that is, if T is at least some small power
of q. In fact we shall later specify T so that logT � log q. In view of the preceding subsection,
we suppose that

0 � τ � �1/2T .(6.26)

For such small τ we use (6.13) which can be bounded by

�ε qε
∑
rs|ae

r

∫
n	N

( ∑
|tf |	τ

∣∣∣∣∑
h�1

Gχ(h; c)
√

hρf (h)
Ξ̃0(±h,n; tf )√

cosh(πtf )

∣∣∣∣2)1/2

(6.27)

×
(

τ
√

N +
N√
rs

)
dn,

using Cauchy–Schwarz and the large sieve (2.14).
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734 V. BLOMER, G. HARCOS AND P. MICHEL
For f ∈ B(rs,χ0) (which we recall is a Hecke eigenform), let L(f,u) denote the Dirichlet
series

L(f,u) :=
∑
h�1

Gχ(h; c)
√

hρf (h)
hu

.

In the following we study this Dirichlet series in order to estimate the h-sum in (6.27). The
Dirichlet series is absolutely convergent for Reu � 1; by (5.5), one has

L(f,u) =
∑

h1|(rsc)∞

∑
(h2,rsc)=1

Gχ(h1; c)χ(h2)
√

h1h2ρf (h1h2)
hu

1hu
2

= L(rsc)(f ⊗ χ,u)× χ(c2q2)Gχ(1; q∗)(c1q1)1−u

×
∑

h|(rsc)∞

rc2q2(h)
√

c1q1hρf (c1q1h)χ(h)
hu

= L(rsc)(f ⊗ χ,u)×H(f,u),

say, with

L(rsc)(f ⊗ χ,u) :=
∑

(h,rsc)=1

λf (h)χ(h)
hu

and

H(f,u) := χ(c2q2)Gχ(1; q∗)(c1q1)1−u
∑

d|c2q2

d1−uχ(d)μ
(

c2q2

d

)

×
∑

h|(rsc)∞

√
c1q1dhρf (c1q1dh)χ(h)

hu
.

On the one hand,

L(rsc)(f ⊗ χ,u) =
∏

p|rsc

(
1−

λf̃ (p)χ(p)
ps

+
χ(p2)
p2s

)
×L(f̃ ⊗ χ,u)

where f̃ is the newform (of level dividing rs) underlying the Hecke eigenform f (and with the
same spectral parameter tf ). Applying a subconvex bound of the form (1.2), one has

L(rsc)(f ⊗ χ,u)�ε

(
|u|
(
1 + |tf |

)
rsc
)ε|u|α(τ)β(rs)γ(q∗)1/2−δ;(6.28)

in particular, we remark that (1.3) is applicable if (cf. (6.26))

q∗ � (�3/2T )4 � (rsτ)4.(6.29)

On the other hand, H(f,u) is holomorphic for Reu � 1/2 and satisfies in this domain the
uniform bound

H(f,u) � (q∗c1q1)1/2
∑

d|c2q2

d1/2
∑

h|(rsc)∞

√
c1q1dh|ρf (c1q1dh)|

h1/2
,(6.30)
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cf. [17, (83)]. By Mellin inversion, the h-sum in (6.27) equals, without the factor
√

cosh(πtf )
and after replacing f(z) by f(−z̄),

1
2πi

∫
(1/2)

L(f,u)

( ∞∫
0

Ξ̃0(±x,n; tf )xu−1 dx

)
du.

By partial integration and Lemma 3 we see

∞∫
0

Ξ̃0(x,n; tf )xu−1 dx �ε
Z
√

H

1 + τ

(
e

|u|

)ν

Z̃−2|Im tf |(6.31)

on Reu = 1/2, for any ν � 0 (at first for integer ν, but then by convexity also for real ν). We
choose ν := α + 1 + ε in order to ensure absolute convergence of the u-integral. Using Cauchy–
Schwarz and (2.15), we see that

( ∑
|tf |	τ

∣∣∣∣ ∑
h|(rsc)∞

√
c1q1dh|ρf (c1q1dh)|
h1/2

√
cosh(πtf )

∣∣∣∣2)
1
2

�ε (rsc)ε
∑

h|(rsc)∞

(
1

h1−ε

∑
|tf |	τ

c1q1dh|ρf (c1q1dh)|2
cosh(πtf )

) 1
2

(6.32)

�ε cε(c1q1d)θ(1 + τ),

where θ = 7/64 < 1/2 (cf. (2.4)–(2.5)). Collecting the estimates (6.28), (6.30), (6.31), (6.32),
we can bound (6.27) by

�ε qε
∑
rs|ae

reα+1(τ)β(rs)γ(q∗)1−δ
∑

d|c2q2

(c1q1d)1/2+θNZ
√

H

(
τ
√

N +
N√
rs

)
Z̃−2θ0

(6.33)

�ε c2ε(τ)β�2+α+γ(q∗)1−δ

(
c

q∗

)1/2+θ

NZ
√

H

(
τ
√

N +
N√
�

)
Z̃−2θ0 ,

where θ0 = 0 if τ � 1 and θ0 = θ if τ � 1.
If τ � 1, Z̃−2θ0 = 1 and we use the bound (6.26) to obtain that (6.33) is at most

c2εT β�2+α+β/2+γ
(
q∗
)1−δ

(
c

q∗

)1/2+θ

NZ
√

H

(
τ
√

N +
N√
�

)
.(6.34)

We deal now with the sum (6.27) where the summation
∑

|tf |	τ is replaced by
∑

|tf |<1: we

recall that Z̃ depends on H according to (6.15), so that (6.33) is an increasing function of H .
Thus we estimate (6.33) from above using (6.9). But then, together with (6.4), we see that
Z̃ � �−1/2q−ε so that Z̃−2θ0 � qε�θ; in that case however, there is no factor (T

√
�)β . Since

β � 3/8 > 2θ, the contribution of |tf |< 1 is dominated by (6.34).
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Using (6.14), and the bound (cf. (6.4) and (6.9))

√
Y

ae
√

X

√
H �ε q1/2+ε,

we are left with

c2εT β�2+α+β/2+γ(q∗)1−δ
q1/2

(
c

q∗

)1/2+θ
RN1/2

W

(
1 +

√
RN

W

)−1/2(
T
√

� +
√

N√
�

)
,

subject to

√
RN

W
�
√

�qε, R � �q1+ε, W � �q1/2+ε.

Averaging over c ≡ 0 (mod q), we see that the total contribution of small eigenvalues to (6.24)
is at most

�ε qε�α+ β
2 +γ+2T β (q∗)1/2−θ−δ

q1−θ

R
3
4 N

1
4

W
1
2

(
T
√

� +
√

N√
�

)
�ε qε�α+ β

2 +γ+2T β (q∗)1/2−θ−δ

q1−θ
(R

1
2 T �

3
4 + W�

1
4 ),(6.35)

�ε qε�α+ β
2 +γ+ 13

4 T β+1

(
q∗

q

)1/2−θ

(q∗)−δ.

The same bound holds for holomorphic cusp forms. The case of Eisenstein series is somewhat
different, at least when they are parametrized by the cusps, for their Fourier coefficients are not
multiplicative anymore. Instead we proceed as in [26,17] and calculate the coefficients directly.
Unfolding the Gauß sum leads, for each cusp a = v

w , w | rs, to the normalized series

∑
h

χ(h)
√

ghρa(1/2 + it, gh)
hu
√

cosh(πt)
,(6.36)

where g := c1q1dd′ and dd′ | c2q2. By the computation of [17, Section 5.4.2] this series can be
written in terms of products of two Dirichlet L-functions L(χϕ,u− it)L(χϕ,u + it) for certain
characters ϕ having conductor dividing (w, rs

w ), times a holomorphic function in Reu � 1/2
that is bounded on Reu = 1/2 by

�ε (grs)ε(g,w)
(

w,
rs

w

)1/2

(rs)−1/2.

Here we used that (rs, q) = 1. In particular, the function defined by (6.36) can be holomorphi-
cally continued to Reu � 1/2 and on Reu = 1/2 it is bounded by

�ε

(
q
(
1 + |t|

)
|u|
)ε(|u|+ |t|

)3/8(g, rs)
(

w,
rs

w

)7/8

(rs)−1/2q3/8,
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according to Heath-Brown’s hybrid bound [18] for Dirichlet L-functions. Summing over all
cusps of Γ0(rs) and noting that

∑
w|rs

ϕ

(
w,

rs

w

)(
w,

rs

w

)7/8

(rs)−1/2 �ε (rs)7/16+ε,

we obtain a bound of at least the same quality as in the case of Maaß cusp forms if we assume
α,β � 3/8, γ � 7/16, δ � 1/8. Then we proceed analogously.

7. Concluding the proof of Theorem 2

Collecting (4.2), (4.8), (4.16), (5.9), (6.25) and (6.35), we obtain that

k−18
∣∣Qholo

k (�)
∣∣+ ∣∣Q(�)

∣∣
�s,t0,ε qε

(
1

�1/2
+

�2

T

(
q∗

q

)1/2−θ

+
�5/2

q1/2

(
q∗

q

)−θ

(7.1)

+ �α+ β
2 +γ+ 13

4 T β+1

(
q∗

q

)1/2−θ

(q∗)−δ

)
�s,t0,ε qε

(
1

�1/2
+

�2

T

(
q∗

q

)1/2−θ

+ �α+ β
2 +γ+ 13

4 T β+1(q∗)−δ

(
q∗

q

)1/2−θ)
(in the first inequality above the last term is always larger than the third one).

Set q∗ = qη with η ∈ [0,1]. If η is small (to be determined in a moment) we choose T := qε
√

�
and apply the convexity bound (cf. (1.2)) with

α =
1
2
, β =

1
2
, γ =

1
4
, δ = 0,

and so we arrive at (3.20) with

c1 := 5 and c2 := (1− η)
(

1
2
− θ

)
.

Substituting the expressions for c1 and c2 into (3.23) we obtain

L(f0, s) �s,t0,ε q
1
4−

(1−η)(1−2θ)
168 +ε.(7.2)

If η is large, we use the exponents provided by (1.3),

α :=
1
2
, β := 3, γ :=

1
4
, δ :=

1
8
,

assuming that (6.29) holds. Equating the second and third terms on the right hand side of (7.1)
we choose

T := (q∗)
δ

β+2+ε�−
α+β/2+γ+5/4

β+2 ,

provided

qηδ−ε > �α+ β
2 +γ+ 5

4(7.3)
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(so that logT � log q), and provided

qη(β+2−4δ)−ε > �−4α+4β−4γ+7(7.4)

(in order to satisfy (6.29)). Under these assumptions we obtain a total error term of

�ε qε

(
1

�1/2
+

�
α+5β/2+γ+21/4

β+2

qη δ
β+2+(1−η)( 1

2−θ)

)
�ε qε

(
1

�1/2
+

�
α+5β/2+γ+21/4

β+2

q
δ

β+2

)
,

since 1
2 − θ � δ

β+2 for any β � 0 and any δ ∈ [0,1/2]. Hence we arrive at (3.20) with

c1 :=
α + 5β/2 + γ + 21/4

β + 2
and c2 :=

δ

β + 2
.

We choose L as in (3.22):

L := qc2/(2c1+1/2).

In (3.21) we apply (3.20) for � � L2, and it is easily checked that (7.3) and (7.4) are satisfied as
long as η � 14/59. Substituting the expressions for c1 and c2 into (3.23) we obtain

L(f0, s) �s,t0,ε q
1
4− δ

16α+44β+16γ+92+ε �s,t0 q
1
4− 1

1889(7.5)

for η � 14/59 while for η � 14/59 the bound (7.2) is stronger. This concludes the proof of
Theorem 2.
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