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TORSION p-ADIC GALOIS REPRESENTATIONS
AND A CONJECTURE OF FONTAINE

BY TONG LIU

ABSTRACT. – Let p be a prime, K a finite extension of Qp and T a finite free Zp-representation
of Gal(K̄/K). We prove that T ⊗Zp Qp is semi-stable (resp. crystalline) with Hodge–Tate weights in
{0, . . . , r} if and only if, for all n, T/pnT is torsion semi-stable (resp. crystalline) with Hodge–Tate weights
in {0, . . . , r}.
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RÉSUMÉ. – Soient p un nombre premier, r un entier positif, K une extension finie de Qp et T une
Zp-représentation de Gal(K̄/K) libre de rang fini en tant que Zp-module. On montre que T ⊗Zp Qp est
semi-stable (resp. cristalline) à poids de Hodge–Tate dans {0, . . . , r} si et seulement si, pour tout entier n, la
représentation T/pnT est le quotient de deux réseaux dans une représentation semi-stable (resp. cristalline)
à poids de Hodge–Tate dans {0, . . . , r}.
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1. Introduction

Let k be a perfect field of characteristic p, W (k) its ring of Witt vectors, K0 = W (k)[ 1p ],
K/K0 a finite totally ramified extension and e = e(K/K0) the absolute ramification index. For
many technical reasons, we are interested in understanding the universal deformation ring of a
fixed residual representation of G := Gal(K̄/K). In particular, it is important to study those
deformations that are semi-stable (resp. crystalline). In [12], Fontaine conjectured that there
exists a quotient of the universal deformation ring parameterizing semi-stable (resp. crystalline)
representations. To prove the conjecture, it suffices to prove the following:

CONJECTURE 1.0.1 [12]. – Fix an integer r > 0. Let T be a finite free Zp-representation
of G. Then T ⊗Zp Qp is semi-stable (resp. crystalline) with Hodge–Tate weights in {0, . . . , r} if
and only if, for all n, Tn := T/pnT is torsion semi-stable (resp. torsion crystalline) with Hodge–
Tate weights in {0, . . . , r}, in the sense that there exist G-stable Zp-lattices L′

(n) ⊂ L(n) inside a
semi-stable (resp. crystalline) Galois representation V(n) with Hodge–Tate weights in {0, . . . , r}
such that Tn � L(n)/L′

(n) as Zp[G]-modules.

If T/pnT comes from the generic fiber of a finite flat group scheme over OK , i.e., in the
case that r = 1 and V(n) is crystalline for all n, the conjecture has been proved by Ramakrishna
([21]). The case that e = 1 and V(n) is crystalline has been proved by L. Berger ([2]), and the
case that e = 1 and r < p− 1 was shown by Breuil ([6]). In this paper, we give a complete proof
of Conjecture 1.0.1 without any restriction. Our main input is from [14], where Kisin proved
that any G-stable Zp-lattice in a semi-stable Galois representation is of finite E(u)-height. More
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

0012-9593/04/© 2007 Elsevier Masson SAS. All rights reserved.



634 T. LIU
precisely, fix a uniformiser π ∈K with Eisenstein polynomial E(u). Let K∞ =
⋃

n�1 K( pn√
π),

G∞ = Gal(K̄/K∞) and S = W (k)�u�. We equip S with the endomorphism ϕ which acts via
Frobenius on W (k), and sends u to up. For every positive integer r, let Modr,fr

/S
denote the

category of finite free S-modules M equipped with a ϕ-semi-linear map ϕ :M → M such that
the cokernel of ϕ∗ = 1⊗ϕ :S⊗ϕ,S M→M is killed by E(u)r . Such modules with ϕ-structure
are called ϕ-modules of finite E(u)-height. For any M ∈ Modr,fr

/S
, one associates a finite free

Zp-representation TS(M) of G∞ ([8]). Kisin ([14]) proved that any G∞-stable Zp-lattice L
in a semi-stable Galois representation arises from a ϕ-module of finite E(u)-height, i.e., there
exists L ∈Modr,fr

/S
such that TS(L)� L. In particular, this result implies that if a Zp[G]-module

M is torsion semi-stable with Hodge–Tate weights in {0, . . . , r} then there exists a (p-power)
torsion ϕ-module M of height r (see §2 for precise definitions) such that TS(M) � M as
G∞-modules. Therefore, we can use torsion ϕ-modules of finite E(u)-height to study torsion
representations of G∞. If p > 2 and r = 1, Breuil and Kisin proved that there exists an anti-
equivalence between the category of finite flat group schemes over OK and torsion ϕ-modules
of height 1 ([14], [4]). Thus, torsion ϕ-modules of finite E(u)-height can be seen as a natural
extension of finite flat group schemes over OK . In particular, we extend many results on finite
flat group schemes over OK to torsion ϕ-modules of finite E(u)-height. For example, under the
hypotheses of Conjecture 1.0.1, we prove that the Zp-representation T in Conjecture 1.0.1 must
arise from a ϕ-module of finite E(u)-height, i.e., there exists M ∈Modr,fr

/S
such that TS(M) � T

as G∞-modules. To prove this result, we extend Tate’s isogeny theorem on p-divisible groups
to finite level as in [19] and [3], i.e., we show that the functor TS is “weakly” fully faithful on
torsion objects. (See Theorem 2.4.2 for details.)

So far, only the G∞-action on T has been used. To fully use the G-action on T , we construct
an Acris-linear injection (in §5)

ι :M⊗S,ϕ Acris → T∨ ⊗Zp Acris(1.0.1)

such that ι is compatible with Frobenius and G∞-action (cf. Lemma 5.3.4). Note that T is a
representation of G. There is a natural G-action on the right-hand side of (1.0.1). However,
it is not clear if M ⊗S,ϕ Acris is G-stable (viewed as a submodule of T∨ ⊗Zp Acris via ι).
In §6 we prove that M ⊗S,ϕ B+

cris is stable under the G-action after very carefully analyzing
“G-action” on M/pnM ⊗S,ϕ Acris for each n. In fact, we show that G(M) lies in M ⊗S,ϕ

RK0 for a subring RK0 of B+
cris. Finally, we prove that RK0 is small enough to show that

dimK0(T
∨ ⊗Zp B+

st)
G � rankZp(T ) and thus prove Conjecture 1.0.1. Let us apply our theorem

to the universal deformation ring of Galois representations. Let E/Qp be a finite extension with
finite residue field F. Denote by � the category of local Noetherian complete OE-algebras with
residue field F. For A ∈ �, an A-representation T of G is an A-module of finite type equipped
with a linear and continuous action of G. Fix a finite free F-representation ρ̄ which is torsion
semi-stable (resp. crystalline) with Hodge–Tate weights in {0, . . . , r}. Let D(A) be the set of
isomorphism classes of finite free A-representations T such that T/mOE

T � ρ̄ and Dss,r(A)
(resp. Dcris,r(A)) the subset of D(A) consisting of isomorphism classes of those representations
that are torsion semi-stable (resp. crystalline) with Hodge–Tate weights in {0, . . . , r}. By [20]
and [21], if H0(G,GL(ρ̄)) = F, then D(A), Dss,r(A) and Dcris,r(A) are pro-representable
by complete local Noetherian rings Rρ̄, Rss,r

ρ̄ and Rcris,r
ρ̄ , respectively. Rss,r

ρ̄ and Rcris,r
ρ̄ are

quotients of Rρ̄.

THEOREM 1.0.2. – For any finite K0-algebra B, a map x :Rρ̄ → B factors through Rss,r
ρ̄

(resp. Rcris,r
ρ̄ ) if and only if the induced B-representation Vx of G is semi-stable (resp.

crystalline) with Hodge–Tate weights in {0, . . . , r}.
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In fact, the existence of such a quotient of Rρ̄ satisfying the property in the above theorem has
been known by Kisin (cf., Theorem in [16]). Here we reprove the Theorem in [16] and further
show that such quotient is just Rss,r

ρ̄ (or Rcris,r
ρ̄ ). As explained in the introduction of [16], it will

be useful to distinguish four flavors of the statement that some property P (e.g., being crystalline,
semi-stable etc.) of p-adic Galois representations cuts out a closed subspace of the generic fiber
of SpecRρ̄.

(1) Let E/Qp be a finite extension and xi :Rρ̄ → E (i � 1) a sequence of points
converging p-adically to a point x :Rρ̄ → E. Write Vxi and Vx for the corresponding
E-representations. If the Vxi have P, then Vx has P.

(2) The set {x ∈ HomE(Rρ̄,Cp) | x has P} cuts out a closed analytic subspace in the rigid
analytic space associated to Rρ̄ (see [1] for the more precise statement).

(3) There is a quotient RP
ρ̄ of Rρ̄ such that Rρ̄ → E factors through RP

ρ̄ if and only if Vx

has P.
(4) Let V be a finite dimensional E-representation of G, and L ⊂ V a G-stable Zp-lattice.

Suppose that for each n, L/pnL is a subquotient of lattices in a representation having P.
Then V has P.

It is not hard to see that we have the implications (4) =⇒ (3) =⇒ (2) =⇒ (1). Conjecture 1.0.1
is just (4) for P the property of being semi-stable or crystalline with bounded Hodge–Tate
weights. For the same condition P, (3) is established in [16], which is sufficient for applications to
modularity theorems as in [15] (whereas (1) is not). Recently, Berger and Colmez proved (2) for
P the property of being de Rham, crystalline or semi-stable with bounded Hodge–Tate weights
via the theory of (ϕ,Γ)-modules in [1].

Convention 1.0.3. – We will deal with many p-power torsion modules. To simplify our
notations, if M is a Z-module, then we denote M/pnM by Mn. We also have to consider various
Frobenius structures on different modules. To minimize possible confusion, we sometimes add a
subscript to ϕ to indicate over which module the Frobenius is defined. For example, ϕM indicates
the Frobenius defined over M. We often drop the subscript if no confusion will arise. We use
contravariant functors (almost) everywhere. So removing the “ * ” from the notations for those
functors will be more convenient. For example, the notation Vst as used in this paper is denoted
by V ∗

st in [7]. If V is a finite Zp-representation of G∞, we denote by V ∨ the dual representation
of V , i.e., V ∨ = HomZp(V,Qp/Zp) if V is killed by some power of p and V ∨ = HomZp(V,Zp)
if V is a finite free Zp-module. Finally, if X is a matrix, Xt denotes its transpose. We always
denote the identity map by Id.

2. ϕ-modules of finite E(u)-height and representations of G∞

This paper consists of 2 parts. §2–§4 is the first part, where we mainly discuss the theory of
ϕ-modules of finite E(u)-height over S and their associated Zp-representations of G∞. The key
results to be proved are Theorem 2.4.2, Theorem 3.2.2 and Theorem 2.4.1 and its refinement
Corollary 4.4.1. The second part (§5–§8) of this paper will combine the inputs from the first part
and Kisin’s result (Theorem 5.4.1) to prove Conjecture 1.0.1.

2.1. Preliminaries

Throughout this paper we fix a positive integer r and a uniformiser π ∈ K with Eisenstein
polynomial E(u). Recall that S = W (k)�u� is equipped with a Frobenius endomorphism ϕ via
u 	→ up and the natural Frobenius on W (k). A ϕ-module (over S) is an S-module M equipped
with a ϕ-semi-linear map ϕ :M → M. A morphism between two objects (M1,ϕ1), (M2,ϕ2)
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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is a S-linear morphism compatible with the ϕi. Denote by Modr
/S the category of ϕ-modules

of finite E(u)-height r in the sense that M is of finite type over S and the cokernel of ϕ∗ is
killed by E(u)r , where ϕ∗ is the S-linear map 1 ⊗ ϕ :S ⊗ϕ,S M → M. Let Modr,tor

/S
be the

sub-category of Modr
/S consisting of finite S-modules M which are killed by some power of

p and have projective dimension 1 in the sense that M has a two term resolution by finite free
S-modules. We give Modr

/S the structure of an exact category induced by that on the Abelian

category of S-modules. We denote by Modr,fr
/S

the subcategory of Modr
/S consisting of finite

free S-modules. Let R = lim←−OK̄/p where the transition maps are given by Frobenius. By the
universal property of the Witt vectors W (R) of R, there is a unique surjective projection map
θ :W (R) → ÔK̄ to the p-adic completion of OK̄ , which lifts the projection R → OK̄/p onto
the first factor in the inverse limit. Let πn ∈ K̄ be a pn-root of π, such that (πn+1)p = πn;
write π = (πn)n�0 ∈ R and let [π] ∈ W (R) be the Teichmüller representative. We embed
the W (k)-algebra W (k)[u] into W (R) by the map u 	→ [π]. This embedding extends to an
embedding S ↪→ W (R), and, as θ([π]) = π, θ|S is the map S → OK sending u to π. This
embedding is compatible with Frobenius endomorphisms. Denote by OE the p-adic completion
of S[ 1

u ]. Then OE is a discrete valuation ring with residue field the Laurent series ring k((u)).
We write E for the field of fractions of OE . If FrR denotes the field of fractions of R, then the
inclusion S ↪→ W (R) extends to an inclusion OE ↪→ W (FrR). Let Eur ⊂ W (FrR)[ 1p ] denote

the maximal unramified extension of E contained in W (FrR)[ 1p ], and Our its ring of integers.
Since FrR is easily seen to be algebraically closed, the residue field Our/pOur is the separable
closure of k((u)). We denote by Êur the p-adic completion of Eur, and by Ôur its ring of integers.
Êur is also equal to the closure of Eur in W (FrR)[ 1p ]. We write Sur = Ôur∩W (R) ⊂ W (FrR).

We regard all these rings as subrings of W (FrR)[ 1p ]. Recall that K∞ =
⋃

n�0 K(πn), and

G∞ = Gal(K̄/K∞). G∞ acts continuously on Sur and Eur and fixes the subring S ⊂ W (R).
Finally, we denote by RepZp

(G∞) the category of continuous Zp-linear representations of G∞
on finite Zp-modules and by Reptor

Zp
(G∞) the subcategory consisting of those representations

killed by some power of p.

2.2. Fontaine’s theory on finite Zp-representations of G∞

Recall ([8], A, §1.1.4) that a finite OE -module M is called étale if M is equipped with a
ϕ-semi-linear map ϕM :M → M , such that the induced OE -linear map ϕ∗

M :OE ⊗ϕ,OE M → M
is an isomorphism. We denote by ΦMOE the category of étale modules with the obvious
morphisms. An argument in [4], §2.1.1, shows that K∞/K is a strictly APF extension in the
sense of [24]. Then Proposition A 1.2.6 in [8] implies that the functor

T∨ :ΦMOE → RepZp
(G∞); M 	→ (M ⊗OE Ôur)ϕ=1(2.2.1)

is an equivalence of Abelian categories and the inverse of T∨ is given by

RepZp
(G∞)→ΦMOE ; V 	→ (V ⊗Zp Ôur)G∞ .

In particular, for any M ∈ ΦMOE , we have the following natural Ôur-linear isomorphism
compatible with ϕ-structures.

ι̃ :M ⊗OE Ôur � T∨(M)⊗Zp Ôur.(2.2.2)
4e SÉRIE – TOME 40 – 2007 – N◦ 4
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We frequently use the contravariant version of T∨ in this paper. For M ∈ΦMOE , define

T (M) = HomOE ,ϕ(M, Ôur) if M is p-torsion free(2.2.3)

and (recall Our
n = Our/pnOur)

T (M) = HomOE ,ϕ(M,Our
n ) if M is killed by pn.(2.2.4)

It is easy to show that T∨(M) is the dual representation of T (M). See for example §1.2.7 in [8],
where Fontaine uses V ∗

E (M) to denote T (M).
Recall that a S-module M is called p′-torsion free ([8], B 1.2.5) if for all nonzero x ∈ M,

Ann(x) = 0 or Ann(x) = pnS for some n. This is equivalent to the natural map M→ M⊗SOE
being injective. If M is killed by some power of p, then M is p′-torsion free if and only if M is
u-torsion free. A ϕ-module M over S is called étale if M is p′-torsion free and M⊗S OE is an
étale OE -module. Since E(u) is a unit in OE , we see that for any M ∈Modr

/S, M is étale if and

only if M is p′-torsion free. Obviously, any object in Modr,fr
/S

is étale. In the next subsection, we

will show that any object in Modr,tor
/S

is also étale. For any étale M ∈ Modr,tor
/S

, we can associate
a Zp[G∞]-module via

TS(M) = HomS,ϕ

(
M,Sur[1/p]/Sur

)
.(2.2.5)

Similarly, for any M ∈Modr,fr
/S

, we define

TS(M) = HomS,ϕ(M,Sur).(2.2.6)

There is a natural injection TS(M) ↪→ T (M) where M := M⊗S OE . In fact, this injection is an
isomorphism by the following Proposition 2.2.1 below. Let Λ be a ϕ-module over S. We denote
by FS(Λ) the set of S-submodules M such that M is of S-finite type, stable under ϕ and étale.
Define j∗(Λ) =

⋃
M∈FS(Λ) M. If A is a ring of characteristic p, we denote by Asep the separable

closure of A.

PROPOSITION 2.2.1 (Fontaine). – For all n � 1, we have
(1) j∗(FrR) = k((π))sep ∩R = k�π�

sep,
(2) j∗(Wn(FrR)) = Sur

n ,
(3) j∗(W (FrR)) ⊂ Sur and j∗(W (FrR)) is dense in Sur,
(4) Sur

n = Wn(R)∩Our
n ⊂ Wn(FrR).

Proof. – Proposition 1.8.3 in [8]. Note that Fontaine uses A+
S,n to denote Sur

n . �
COROLLARY 2.2.2. – Let M ∈ Modr,tor

/S
be étale or M ∈ Modr,fr

/S
. Then TS(M) =

T (M⊗S OE).

Proof. – Let M := M⊗S OE . It suffices to show that the natural injection TS(M) ↪→ T (M)
is a surjection. Suppose that M is killed by pn. For any f ∈ T (M) = HomS,ϕ(M,Our

E,n),
f(M) ⊂Our

E,n is obviously a S-module of S-finite type, stable under ϕ. Since Our
E,n is obviously

p′-torsion free, f(M) is p′-torsion free. By Lemma 2.3.1 below, we see that f(M) is étale.
Therefore f(M) ∈ FS(Our

E,n) and f(M) ⊂ Sur. Thus f ∈ HomS,ϕ(M,Sur
n ) = TS(M). The

above proof also works if M is S-finite free by replacing Sur
n with Sur, and Our

E,n with Our
E . �

COROLLARY 2.2.3. – For all n � 1, Sur
n [ 1

u ] = Sur
n ⊗S OE �Our

n .

Proof. – It is clear if n = 1 by Proposition 2.2.1 (1). The more general case can be proved by
a standard dévissage argument; the details are left to the readers. �
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2.3. Some properties of Modr,tor
/S

By §2.3 in [14] and [4], if p � 3, then Mod1,tor
/S

is anti-equivalent to the category of finite

flat group schemes over OK (also see [17]). It is thus expected that modules in Modr,tor
/S

have
similar properties to those of finite flat group schemes over OK . In this subsection, we extend
some basic properties of finite flat group schemes over OK to Modr,tor

/S
.

LEMMA 2.3.1. – Let 0 → M′ → M → M′′ → 0 be an exact sequence of ϕ-modules over S.
Suppose that M′, M and M′′ are p′-torsion free and M ∈ Modr

/S. Then M′ and M′′ are étale
and in Modr

/S.

Proof. – See Proposition 1.3.5 in [8]. �
PROPOSITION 2.3.2. – Let M ∈ Modr

/S be killed by pn. The following statements are
equivalent:

(1) M ∈Modr,tor
/S

,
(2) M is u-torsion free,
(3) M is étale,
(4) M is a successive extension of finite free k�u�-modules Mi with Mi ∈Modr

/S,

(5) M is a quotient of two finite free S-modules N′ and N′′ with N′, N′′ ∈Modr,fr
/S

.

Proof. – (1) =⇒ (2) By the definition of Modr,tor
/S

, there exist finite free S-modules N′ and
N′′ such that

0 → N′′ → N′ → M→ 0

is exact. Let α1, . . . , αd and β1, . . . , βd be bases for N′′ and N′ respectively and let A be the
transition matrix; that is, (α1, . . . , αd) = (β1, . . . , βd)A. Since M is killed by pn for some n,
there exists a matrix B with coefficients in S such that AB = pnI . Now suppose that x̄ ∈ M is
killed by um with x =

∑d
i=1 xiαi. Then we have

um(x1, . . . , xd) = (y1, . . . , yd)At

for some yi ∈S, i = 1, . . . , d. Since AB = pnI , we have

(y1, . . . , yd) = um(pn)−1(x1, . . . , xd)Bt.

Let (z1, . . . , zd) = (pn)−1(x1, . . . , xd)Bt. Since yi ∈ S, it is not hard to see that zi ∈ S for all
i = 1, . . . , d. Then we see that (x1, . . . , xd) = (z1, . . . , zd)At, x ∈N′′ and x̄ = 0.

(2) ⇐⇒ (3) Since E(u) is a unit in OE , any M ∈Modr
/S is étale if and only if M is p′-torsion

free. If M is killed by some power of p, then this is equivalent to M being u-torsion free.
(3) =⇒ (4) We proceed by induction on n. The case n = 1 is obvious. For n > 1, consider the

exact sequence of étale OE -modules

0 −→ pM −→ M
pr−→M/pM −→ 0,

where M := M ⊗S OE and pr is the natural projection. Let M′′ = pr(M) and M′ = Ker(pr),
then we get an exact sequence of ϕ-modules over S

0 −→M′ −→ M
pr−→ M′′ −→ 0.(2.3.1)
4e SÉRIE – TOME 40 – 2007 – N◦ 4
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By induction, it suffices to show that M′ and M′′ are étale and belong to Modr
/S. But M′

and M′′ are obviously u-torsion free and hence p′-torsion free. Then by Lemma 2.3.1, we have
M′,M′′ ∈ Modr

/S.
(4) =⇒ (5) Fontaine has proved this result (Theorem 1.6.1 in B, [8]) for the case e = 1.

In particular, Fontaine’s argument for reducing the problem to the case that M is killed by
p also works here. Therefore, without loss of generality, we may assume that M is killed
by p. In this case, M is a finite free k�u�-module. Let α1, . . . , αd be a basis of M and
ϕ(α1, . . . , αd) = (α1, . . . , αd)X , where X is a d × d matrix with coefficients in k�u�. Since
the cokernel of ϕ∗

M is killed by uer , there exists a matrix Y with coefficients in k�u� such
that XY = uerI , where I is the identity matrix. Let N be a finite free k�u�-module with basis
β1, . . . , βd, β

′
1, . . . , β

′
d and a ϕ-structure defined by

ϕN(β1, . . . , βd, β
′
1, . . . , β

′
d) = (β1, . . . , βd, β

′
1, . . . , β

′
d)

(
I 0
0 uerI

)(
A I
I uI

)
,

where A = (I −uY )−1(ϕ(E)−Y ) and E = X −uer+1I . It is obvious that (N,ϕN) belongs to
Modr,tor

/S
. We construct a S-linear map f :N→ M defined by:

f(β1, . . . , βd, β
′
1, . . . , β

′
d) = (α1, . . . , αd)(E,I).(2.3.2)

It is obvious that f is surjective. To check that f is compatible with ϕ-structures, it suffices
to check f ◦ ϕN = ϕM ◦ f on the basis. This is equivalent to verifying the following matrix
equation:

X
(
ϕ(E), I

)
= (E,I)

(
I 0
0 uerI

)(
A I
I uI

)
,

which is a straightforward computation. So let N′ be a finite free S-module with basis
β̂1, . . . , β̂d, β̂

′
1, . . . , β̂

′
d and a ϕ-structure defined by

ϕN′(β̂1, . . . , β̂d, β̂
′
1, . . . , β̂

′
d) = (β̂1, . . . , β̂d, β̂

′
1, . . . , β̂

′
d)

(
I 0
0 E(u)rI

)(
Â I
I uI

)

with Â any lift of A. It is easy to check that N = N′/pN′ and N ∈ Modr,fr
/S

. Thus we have
a ϕ-module morphism g :N′ → M with g surjective. Let N′′ = Ker(g). Using the explicit
definition (2.3.2) of f , we can easily find a S-basis for N′′. Thus N′′ is S-finite free. Finally,
using Lemma 2.3.1 for 0 → N′′ →N′ g−→ M→ 0, we see that N′′ ∈Modr,fr

/S
.

(5) =⇒ (1) Trivial. �
COROLLARY 2.3.3. – Let f :M → M′ be a morphism in Modr,tor

/S
. Then Ker(f) belongs to

Modr,tor
/S

.

Proof. – Lemma 2.3.1 shows that Ker(f) ∈ Modr
/S and Ker(f) is obviously u-torsion

free. �
In general, Cok(f) is not necessarily in Modr,tor

/S
. See Example 2.3.5.

By the above lemma, any object M ∈ Modr,tor
/S

is étale. Thus Corollary 2.2.2 implies that
TS(M) = T (M ⊗S OE) = HomOE ,ϕ(M ⊗S OE ,Our). Therefore, the functor TS defined
in (2.2.5) is well defined on Modr,tor

/S
. In summary, we have
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COROLLARY 2.3.4. – The contravariant functor TS from Modr,tor
/S

to Reptor
Zp

(G∞) is well
defined and exact.

If r = 1 and p > 2, [4] and §2.3 in [14] proved that there exists an anti-equivalence G between
Mod1,tor

S
(resp. Mod1,fr

S
) and the category of finite flat group schemes over OK (resp. p-divisible

groups over OK ). Furthermore, for any M ∈ Mod1,tor
S

(resp. Mod1,fr
S

), there exists a natural
isomorphism of Zp[G∞]-modules

G(M)(K̄)|G∞ � TS(M).

In general, TS is not fully faithful if er � p− 1.

Example 2.3.5. – Let S� := S · α be the rank-1 free S-module equipped with ϕ(α) =
c0

−1E(u) · α where pc0 is the constant coefficient of E(u). By Example 2.2.3 in [4], if p > 2,
G(S�) = μp∞ . In particular, TS(S�) = μp∞(K̄)|G∞ = Zp(1). If p = 2, Theorem (2.2.7) in [14]
shows that G(S�) is isogenous to μ2∞ . Thus TS(S�) is a G∞-stable Z2-lattice in Q2(1). So
we still have TS(S�) � Z2(1). Suppose e = p − 1. Consider the map f :S�

1 → S1 given by
α 	→ c−1

0 ue. An easy calculation shows that f is a well-defined morphism of ϕ-modules and
f ⊗S OE is an isomorphism. Then TS(f) is an isomorphism but f is not. Also, Cok(f) is not an
object in Modr,tor

/S
.

The following lemma is an analogy of “scheme-theoretic closure” in the theory of finite flat
group schemes over OK .

LEMMA 2.3.6 (Scheme-theoretic closure). – Let f :M → L be a morphism of ϕ-modules
over S. Suppose that M and L are p′-torsion free and M ∈ Modr

/S. Put M′ = Ker(f) and

M′′ = f(M). Then M′ and M′′ are étale and belong to Modr
/S. In particular, if M ∈Modr,tor

/S
,

then M′ and M′′ ∈Modr,tor
/S

.

Proof. – By the construction, it is obvious that M′ and M′′ are p′-torsion free. By Lemma 2.3.1,
M′ and M′′ are étale and belong to Modr

/S. If M ∈ Modr,tor
/S

, then M′ and M′ are u-torsion

free. By Proposition 2.3.2 (2), we see that M′ and M′′ belong to Modr,tor
/S

. �
LEMMA 2.3.7. – Let M ∈ Modr

/S be torsion free, M = M⊗S OE . Then there exists a finite

free S-module M′ ∈ Modr,fr
/S

such that M⊂ M′ ⊂ M .

Proof. – Let M′ = M ∩ M[1/p]. By Proposition B 1.2.4 of [8], we have M ⊂ M′ ⊂ M with
M′ a finite free S-module. It is obvious that M′ is ϕ-stable, so it remains to check that Cok(ϕ∗

M′)
is killed by E(u)r . Note that there exists an integer s such that psM′ ⊂ M. Since E(u)r

kills Cok(ϕ∗
M), we have that psE(u)r kills Cok(ϕ∗

M′). Let α1, . . . , αd be a basis of M′ and
ϕM′(α1, . . . , αd) = (α1, . . . , αd)A where A is a d × d matrix with coefficients in S. Since M′

is étale, A−1 exists with coefficients in OE . It suffices to prove that E(u)rA−1 has coefficients
in S, but this follows easily from the fact that psE(u)rA−1 has coefficients in S. �

COROLLARY 2.3.8. – Let f :M→ N be a surjective morphism in Modr
/S with M ∈Modr,fr

/S

a finite free S-module and N ∈Modr,tor
/S

killed by some power of p. Then L := Ker(f) ∈Modr,fr
/S

is S-finite free.

Proof. – By Lemma 2.3.1, L ∈ Modr
/S. L is obviously torsion free and of S-finite type.

Let L := L ⊗S OE and M := M ⊗S OE . Since N is u-torsion free, we have M ∩ L = L.
By the proof of Lemma 2.3.7, we see that L ∩ L[ 1p ] is S-finite free. But L[ 1p ] = M[ 1p ], so

L∩L[ 1p ] = L∩ (M ∩M[ 1p ]) = L∩M = L. Thus L is S-finite free. �
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COROLLARY 2.3.9. – Let M ∈ Modr,fr
/S

(resp. Modr,tor
/S

), let N be a ϕ-stable S-submodule

of M and N := N ⊗S OE . Then there exists an N′ ∈ Modr,fr
/S

(resp. N′ ∈ Modr,tor
/S

) such that
N ⊂ N′ ⊂ N ∩M.

Proof. – Let M = M ⊗S OE and L = M/N . By Lemma 2.3.6, in this case, there exists
N′′ ∈ Modr

/S such that N ⊂ N′′ ⊂ M ∩ N and N′′ is étale. If M is in Modr,tor
/S

, then put

N′ = N′′, so N′ belongs to Modr,tor
/S

because N′ is obviously u-torsion free. If M is a finite
free S-module, then N′′ ∈ Modr

/S is torsion free. Therefore, by Lemma 2.3.7, there exists

N′ ∈Modr,fr
/S

such that N ⊂N′′ ⊂ N′ ⊂ M∩N . �
2.4. Main results of the first part

Now we can state the main theorems to be proved in the first part of this paper. The first
theorem is an analog of Raynaud’s theorem (Proposition 2.3.1 in [22]) which states that a
Barsotti–Tate group H over K can be extended to a Barsotti–Tate group over OK if and only if,
for each n, H[pn] can be extended to a finite flat group scheme Hn over OK .

THEOREM 2.4.1. – Let T be a finite free Zp-representation of G∞. If for each n, there exists
an M(n) ∈ Modr,tor

/S
such that TS(M(n)) � T/pnT , then there exists a finite free S-module

M ∈Modr,fr
/S

such that TS(M) � T .

Though the functor TS on Modr,tor
/S

is not a fully faithful functor if er � p − 1 as explained
in Example 2.3.5, we will prove that the functor TS enjoys “weak” full faithfulness.

THEOREM 2.4.2. – Let M, M′ ∈Modr,tor
/S

, let f :TS(M′)→ TS(M) be a morphism of finite
Zp[G∞]-modules. Then there exists a morphism f :M → M′ such that TS(f) = pcf , where c is
a constant depending only on the absolute ramification index e = e(K/K0) and the height r. In
particular, c = 0 if er < p− 1.

Remark 2.4.3. – The constant c has an explicit (but complicated) formula. We do not optimize
it, so there should still be room to improve. We have proved a similar, though weaker, result in
[19] for truncated Barsotti–Tate groups (see also [3]). The constant obtained here is independent
of the height of the truncated Barsotti–Tate group, though we do use many of the techniques
found in [19].

To prove these theorems, we need to construct the Cartier dual on Modr,tor
/S

and a theorem
(Theorem 3.2.2) to compare M with TS(M). These preparations will be discussed in §3.

2.5. Construction of Sf(r)

For a fixed height r, Sur is too big to work with. In this subsection, we cut out a S-submodule
Sf(r) inside Sur which is big enough for representations arising from Modr

/S. Let Λ be a
p′-torsion free ϕ-module over S. We denote by F fr

S (Λ) the set of S-submodules M of Λ such
that M ∈ Modr

/S. Since Λ is p′-torsion free, M is étale, so F fr
S (Λ) ⊂ FS(Λ). (Recall that FS(Λ)

is the set of S-submodules M such that M is of S-finite type and stable under ϕ.) Define

S
f(r)
(n) =

⋃
M∈F fr(Sur)

M for each fixed n � 1,
S n
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and

Sf(r) =
⋃

M∈F fr
S

(Sur)

M.

Obviously, S
f(r)
(n) (resp. Sf(r)) is a subset of Sur

n (resp. Sur).

PROPOSITION 2.5.1. – For each n � 1,
(1) S

f(r)
(n) is a G∞-stable and ϕ-stable S-submodule of Sur

n ,

(2) Sf(r) is a G∞-stable and ϕ-stable S-submodule of Sur,
(3) S

f(r)
(n) = Sf(r)/pnSf(r), i.e., S

f(r)
n = S

f(r)
(n) .

Proof. – For each fixed n � 1, let M′ and M′′ ∈ F fr
S (Sur

n ). To prove (1), it suffices to check

that M := M′ + M′′ ∈ F fr
S (Sur

n ). It is obvious that S
f(r)
(n) is G∞-stable and ϕ-stable. Since

Sur
n is p′-torsion free, M is p′-torsion free. It therefore suffices to check that the cokernel

of ϕ∗
M :S ⊗ϕ,S M → M is killed by E(u)r . This follows from the fact that the cokernels

of ϕ∗
M′ and ϕ∗

M′′ are killed by E(u)r . The above argument also works for proving (2). For

(3), we need to show that the natural map ι :Sf(r)
n → S

f(r)
(n) induced by pr :Sur → Sur

n is an

isomorphism. We first prove the surjectivity by claiming that for any M ∈ F fr
S (Sur

n ) there
exists an N ∈ F fr

S (Sur) such that pr(N) = M. In fact, by Proposition 2.3.2, (3), there exists
a finite free ϕ-module N′ ∈ Modr,fr

/S
with a surjection f :N′ � M. Recall that the functor

TS :Modr,tor
/S

→ RepZp
(G∞) is exact (Corollary 2.3.4). Thus TS(f) :TS(N′) → TS(M) is

surjective, so by Lemma 2.2.2, there exists a morphism of ϕ-modules h : N′ → Sur which
lifts the identity embedding M ↪→ Sur

n . Therefore N = h(N′) ∈ F fr
S (Sur) and pr(N) = M,

as required. For the injectivity, it suffices to prove that for any M ∈ F fr
S (Sur) and x ∈ Sur, if

px ∈ M, then there exists L ∈ F fr
S (Sur) such that x ∈ L. Let N be the S-submodule in Sur

generated by {ϕm(x)}m�0 and Ñ the S-submodule of M generated by ϕm(px). Let α : Ñ → N

be the morphism defined by

α :
∑

siϕ
mi(px) 	→

∑
siϕ

mi(x).

Since Sur is torsion free, α is an isomorphism and α extends to an isomorphism Ñ⊗S OE
∼−→

N⊗S OE inside Ôur. By Corollary 2.3.9, we have Ñ′ ∈ Modr,fr
/S

such that Ñ ⊂ Ñ′ ⊂ Ñ⊗S OE .

Let L = α(Ñ′). We see that x ∈ N ⊂ L ⊂ Ôur with L ∈ Modr,fr
/S

, so by Proposition 2.2.1 (3),
x ∈ N⊂ L ⊂ Sur. �

COROLLARY 2.5.2. – For each n � 1, S
f(r)
n is flat over Sn.

Proof. – By Proposition 2.5.1 (3), it suffices to prove that, for any M ∈ F fr
S (Sur), there exists

a finite free S-modules M′ ∈ F fr
S (Sur) such that M ⊂ M′. By Lemma 2.3.7, there exists such

a module M′ ⊂M⊗S OE ⊂ Ôur. By Proposition 2.2.1 (3), we see that M′ ⊂ Sur. �
COROLLARY 2.5.3. – For any M ∈Modr,tor

/S
,

HomS,ϕ

(
M,Sf(r) ⊗Z (Qp/Zp)

)
� HomS,ϕ(M,E/Our

E ) = TS(M).
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3. A theorem to compare M with TS(M)

In this section, we prove a “comparison” theorem (Theorem 3.2.2) to compare M with
TS(M). This theorem will be the technical hearts in many of our proofs. In the following two
sections, we will focus on torsion objects Modr,tor

/S
. For M ∈ Modr,tor

/S
, n will always denote an

integer such that pn kills M.

3.1. Cartier dual

We need to generalize to Modr,tor
/S

the concept of Cartier dual on finite flat group schemes
over OK . Example 2.3.5 shows that if r = 1, then S� is the correct Cartier dual of S. Motivated
by this example, we have:

Convention 3.1.1. – Define a ϕ-semi-linear morphism ϕ∨ :S → S by 1 	→ c−r
0 E(u)r . We

denote by S∨ the ring S with ϕ-semi-linear morphism ϕ∨. The same notations apply for Sn

and S
f(r)
n , etc. By Example 2.3.5, we have TS(S∨

n)� Zp/pnZp(r).

Obviously, such “Cartier dual” (if it exists) must be compatible with the associated Galois
representations, so we first analyze the dual on ΦMtor

OE
. Let M ∈ ΦMtor

OE
and M∨ =

HomOE (M,E/OE). As an OE -module, we have M �
⊕d

i=1OE,ni , so there exists a canonical
perfect pairing of OE -modules

〈 , 〉 :M ×M∨ →E/OE .(3.1.1)

We equip E/OE with a ϕ-structure by 1 	→ c−r
0 E(u)r . We will construct a ϕ-structure on M∨

such that (3.1.1) is also compatible with ϕ-structures. A S-linear map f :M → N is also called
ϕ-equivariant if f is a morphism of ϕ-modules.

LEMMA 3.1.2. – There exists a unique ϕ-semi-linear morphism ϕM∨ :M∨ → M∨ such that
(1) (M∨,ϕ∨) ∈ΦMtor

OE
.

(2) For any x ∈ M, y ∈M∨, 〈ϕM (x),ϕM∨(y)〉 = ϕ(〈x, y〉).
(3) T (M∨) � T∨(M)(r) as Zp[G∞]-modules.

Proof. – We first construct a ϕM∨ satisfying (2). Let M �
⊕d

i=1OE,niαi and let β1, . . . , βd

be the dual basis of M∨. Write ϕM (α1, . . . , αd) = (α1, . . . , αd)A, where A is a d × d matrix
with coefficients in OE . Define

ϕM∨(β1, . . . , βd) = (β1, . . . , βd)
(
c−r
0 E(u)r

)
(A−1)t.

Note that A is invertible in OE because M is étale. It is easy to check that (M∨,ϕM∨) satisfies
(1), (2) and uniqueness, so it remains to check (3). We can extend the ϕ-equivariant perfect
pairing 〈 , 〉 to

〈 , 〉 : (M ⊗OE Our)× (M∨ ⊗OE Our) →Our,∨
n ,(3.1.2)

where n = Max(n1, . . . , nd). Since the above pairing is ϕ-equivariant, we have a pairing

(M ⊗OE Our)ϕ=1 × (M∨ ⊗OE Our)ϕ=1 → (Our,∨
n )ϕ=1.

Thus, we have a pairing

T∨(M)× T∨(M∨)→ Z/pnZ(−r)(3.1.3)
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compatible with G∞-action. It suffices to check the above pairing is perfect. By (2.2.2), we see
that a Zp-basis of T∨(M) is also a Our-basis of M ⊗OE Our. Then the fact that (3.1.3) is perfect
follows from the fact that (3.1.2) is perfect. �

Since the functor T∨ is an equivalence between ΦMtor
OE

and Reptor
Zp

(G∞), we have

COROLLARY 3.1.3. – The functor M → M∨ is an anti-equivalence on ΦMtor
OE

and
(M∨)∨ = M .

Now let us extend Lemma 3.1.2 to Modr,tor
/S

. Let M ∈ Modr,tor
/S

and M = M[ 1
u ] := M⊗SOE .

Define M∨ = HomS(M,S[1/p]/S). Before we equip M∨ with a suitable ϕ-structure, a lemma
is needed to compare the underlying space of M∨ with that of M∨.

LEMMA 3.1.4. – Let M ∈ Modr,tor
/S

and Λ = S[1/p]/S. Then Ext1S(M,Λ) = 0, where Ext
is taken in the category of S-modules.

Proof. – By Proposition 2.3.2 (4) and taking dévissage, we can reduce the problem to the
case that M is killed by p, where M is a finite free k�u�-module. So it suffices to show that
Ext1S(k�u�,Λ) = 0. The short exact sequence

0 → S
p−→ S→ k�u�→ 0

yields a long exact sequence

0 → k�u�→ Λ p−→ Λ → Ext1S(k�u�,Λ) → 0,

so Ext1S(M,Λ) = 0. �
COROLLARY 3.1.5. – Let 0 → M → N → L → 0 be an exact sequence in Modr,tor

/S
. Then

0 → L∨ → N∨→M∨→0 is exact as S-modules.

COROLLARY 3.1.6. – With notations as above, M∨ is u-torsion free and (M∨)[ 1
u ] =

(M[ 1
u ])∨.

Proof. – The u-torsion freeness of M∨ is obvious by definition and u-torsion freeness of M

(Proposition 2.3.2 (2)). To see the natural map M∨[1/u] → (M[1/u])∨ is bijective, we reduce
the proof by Lemma 3.1.4 and dévissage to the case that M is killed by p, where M is a finite
free k�u�-module. Then the statement that (M∨)[ 1

u ] = (M[ 1
u ])∨ is obvious. �

PROPOSITION 3.1.7. – Keeping the above notations, there exists a unique ϕ-semi-linear
endomorphism ϕM∨ on M∨ such that

(1) (M∨,ϕM∨) ∈ Modr,tor
/S

,
(2) the following diagram commutes

M∨ ϕM∨
M∨

M∨ ϕM∨
M∨

(3.1.4)

In particular, ϕM∨ ⊗S OE = ϕM∨ .
The assignment M 	→ M∨ is an anti-equivalence on Modr,tor

/S
and (M∨)∨ = M for all M ∈

Modr,tor
/S

.
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Proof. – Of course, (2) implies that we need to define that ϕM∨ := ϕM∨ |M∨ . We claim that
ϕM∨ is well defined in this way; that is, ϕM∨(M∨) ⊂ M∨ and the cokernel of ϕ∗

M∨ :S ⊗ϕ,S

M∨→M∨ is killed by E(u)r . To prove the claim, we first consider the case that M is a finite
free Sn-module. Let (α1, . . . , αd) be a basis of M and β1, . . . , βd the dual basis of M∨. Write
ϕM(α1, . . . , αd) = (α1, . . . , αd)A, where A is a d × d matrix with coefficients in Sn. Recall
from the proof of Lemma 3.1.2 that we have defined

ϕM∨(β1, . . . , βd) = (β1, . . . , βd)
(
c−r
0 E(u)r

)
(A−1)t.

Since M ∈ Modr,tor
/S

, we see that E(u)r(A−1)t is a matrix with coefficients in Sn. Thus

ϕM∨(M∨) ⊂ M∨ and E(u)r kills the cokernel of ϕ∗
M∨ , i.e., M∨ ∈ Modr,tor

/S
. For a general

M ∈ Modr,tor
/S

, there exists by Proposition 2.3.2 (5) a right exact sequence

L
f−→ N → M→ 0(3.1.5)

in Modr,tor
/S

, where N,L ∈ Modr,tor
/S

are finite free Sn-modules. By taking duals, we have a left
exact sequence

0 → M∨ → N∨ f∨
−−→ L∨.(3.1.6)

Since OE is flat over S, by tensoring OE and using Lemma 3.1.6, we have the following
commutative diagram of ϕ-modules:

0 M∨ N∨ f∨

L∨

M∨ N∨
f∨[ 1

u ]
L∨,

where M = M ⊗S OE , N = N ⊗S OE and L = L ⊗S OE . Note that f∨ is a morphism in
Modr,tor

/S
. By Lemma 2.3.6, we have that ϕM∨ = ϕM∨ |M∨ is well defined and (M∨,ϕM∨) =

Ker(f∨) ∈ Modr,tor
/S

. This completes the proof of (1) and (2). Since M → M∨ is an anti-

equivalence on ΦMtor
OE

by the characterizing properties of ϕM∨ , we see that the assignment
(−)∨ :M→ M∨ is a functor from Modr,tor

/S
to itself which is exact by Corollary 3.1.5. It remains

to check that the natural map M → (M∨)∨ is an isomorphism. If M is a finite free Sn-module,
this is obvious. For a general M ∈ Modr,tor

/S
, we use Proposition 2.3.2 (4) and dévissage to

reduce the proof to the case that M is killed by p, where M is finite k�u�-free, in which case that
M = (M∨)∨ is obvious. �
3.2. Comparing M with TS(M)

Let M, N be ϕ-modules over S; note that ϕM ⊗S ϕN is a ϕ-semi-linear map on M ⊗S N.
If L is any finite Zp-module, we define a ϕ-semi-linear map on L⊗Zp M by 1⊗ϕM.

PROPOSITION 3.2.1. – Let M ∈Modr,tor
/S

. There is a natural Sur-linear morphism

ι̂ :M⊗S Sur → T∨
S(M)⊗Zp Sur

such that
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(1) ι̂ is G∞-equivariant and ϕ-equivariant,
(2) ι̂⊗Sur Our = ι̃, where ι̃ is defined in (2.2.2).

Proof. – This is a tautological proof, given Proposition 2.5.3. We may assume that pn kills M.
First, observe that

TS(M) = HomS,ϕ(M,Sur
n ) = HomSur,ϕ(M⊗S Sur,Sur

n ).

Note that for each f ∈HomSur,ϕ(M⊗S Sur,Sur
n ), the G∞-action on f is defined as fσ(m) =

σ(f(σ−1(m⊗ s))) for any σ ∈ G∞ and m⊗ s ∈M⊗S Sur. We can define a natural morphism
ι̂′ :M⊗S Sur → HomZp(TS(M),Sur

n ) by:

m⊗ s 	→
(
f 	→ f(m⊗ s), ∀f ∈ TS(M)

)
.

On the other hand, since TS(M) �
⊕

i∈I Zp/piZp as finite Zp-modules, we have a natural
isomorphism HomZp(TS(M),Sur

n ) � T∨
S(M) ⊗Zp Sur. Combining this with ι̂′, we have a

natural morphism ι̂ :M ⊗S Sur → T∨
S(M) ⊗Zp Sur. It is easy to check that ι̂′ is G∞- and

ϕ-equivariant. This settles (1). To prove (2), let M = M⊗S OE ∈ΦMOE . By Lemma 2.2.2, we
have

TS(M) = HomS,ϕ

(
M,Sur[1/p]/Sur

) ∼−→ HomOE ,ϕ(M,Eur/Our) = T (M).

Repeating the argument in (1), we get a natural map

ι̂⊗Sur Our :M ⊗OE Our → T∨
S(M)⊗Zp Our.

By §1.2 of [8], ι̂⊗Sur Our = ι̃ (with ι̃ as defined in (2.2.2)) is an isomorphism. �
Combining Proposition 3.2.1 with Example 2.3.5, we have the following Sur

n -linear mor-
phism:

ι̂ :Sur,∨
n → Sur

n (−r),

with ι̂(1) = tr and t ∈ Sur satisfying ϕ(t) = c−1
0 E(u)t. Such choice of t is unique up to

multiplication by a unit in Zp, so we also denote the above morphism by tr .

THEOREM 3.2.2. – Let M ∈Modr,tor
/S

or Modr,fr
/S

. There exist natural Sur-linear morphisms

ι̂ :M⊗S Sur → T∨
S(M)⊗Zp Sur(3.2.1)

and

ι̂∨ :T∨
S(M)⊗Zp Sur,∨ → M⊗S Sur(−r)(3.2.2)

such that
(1) ι̂, ι̂∨ are compatible with G∞-actions and ϕ-structures on both sides,
(2) if we identify Sur with Sur,∨ by ignoring the ϕ-structures, then

ι̂∨ ◦ ι̂ = Id⊗Str.

In the following, we only consider the case that M is of p-power torsion. The case that M is
S-finite free is an easy consequence by taking inverse limits of torsion objects. The construction
of ι̂ is completed in Proposition 3.2.1, but the construction of ι̂∨ requires the following lemma.
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LEMMA 3.2.3. – For any M ∈Modr,tor
/S

, there is a natural isomorphism

HomS,ϕ(S∨,M⊗S Sf(r)) ∼−→ HomS,ϕ(M∨,Sf(r)
n ) = T∨

S(M)(r).(3.2.3)

Proof. – By Cartier duality, § 3.1, it suffices to construct a natural isomorphism

HomS,ϕ(S∨,M∨ ⊗S Sf(r)) ∼−→ HomS,ϕ(M,Sf(r)
n ).

We first claim that by ignoring ϕ-structures, we have natural isomorphisms

HomS(S,M∨ ⊗S Sf(r)) ∼−→M∨⊗SSf(r) ∼−→ HomS(M,Sf(r)
n ).(3.2.4)

In fact, it suffices to check that the natural morphism

M∨ ⊗S Sf(r) = HomS(M,Sn)⊗S Sf(r) → HomS(M,Sf(r)
n )(3.2.5)

is an isomorphism. (3.2.5) is certainly an isomorphism if M is a finite free Sn-module.
For general M, there exists by Proposition 2.3.2 (5) a morphism of ϕ-modules f :N′ → N

with N and N′ finite free over Sn such that M = Cok(f). Let f ′ :HomS(N,S
f(r)
n ) →

HomS(N′,S
f(r)
n ) be the natural map induced by f . Then HomS(M,S

f(r)
n ) = Ker(f ′).

Similarly, we have M∨ ⊗S S
f(r)
n = Ker(f̃∨) where f̃∨ :N∨ ⊗S S

f(r)
n → N′∨⊗SS

f(r)
n is

induced by f∨. Since (3.2.5) is an isomorphism for N′ and N, Ker(f ′) = HomS(M,S
f(r)
n ) �

M∨ ⊗S S
f(r)
n = Ker(f̃∨). It remains to check that ϕ-structures on both sides of (3.2.4) cut

out the same elements under the given isomorphism. Let f ∈ HomS,ϕ(S∨,M∨ ⊗S Sf(r)) and
f(1) =

∑
i fi ⊗ ai with fi ∈M∨ and ai ∈ Sf(r). Then we have

ϕM∨⊗Sf(r)

(
f(1)

)
= f

(
ϕS∨(1)

)
= f

(
c−r
0 E(u)r

)
= c−r

0 E(u)rf(1).

Setting h =
∑

i aifi ∈HomS,ϕ(M,Sf(r)), we have

c−r
0 E(u)r

∑
i

aifi =
∑

i

ϕ(ai)ϕM∨(fi).(3.2.6)

It now suffices to check that for any m ∈ M, ϕ(h(m)) = h(ϕM(m)). Using (3.2.6), we have

c−r
0 E(u)rh

(
ϕM(m)

)
=

∑
i

ϕ(ai)ϕM∨(fi)
(
ϕM(m)

)
.

By Lemma 3.1.2, ϕM∨(fi)(ϕM(m)) = c−r
0 E(u)rϕ(fi(m)). Then the above formula implies

that c−r
0 E(u)rh(ϕM(m)) = c−r

0 E(u)rϕ(h(m)), and we thus have that ϕ(h(m)) = h(ϕM(m)),
as c−1

0 E(u) is not a zero divisor in Sn. �
COROLLARY 3.2.4. – Keep notations as above and let M = M⊗S OE .
(1) T∨(M)(r) = HomOur,ϕ(Our,∨,M ⊗OE Our),
(2) the natural map

i :HomSur,ϕ(Sur,∨,M⊗S Sur) →HomOur,ϕ(Our,∨,M ⊗OE Our)

is an isomorphism of Zp[G∞]-modules.
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Proof. – By Proposition 3.2.1 (2), we have an Our-linear isomorphism

tr ⊗Sur Our :Our,∨
n �Our

n (−r).(3.2.7)

Thus,

HomOur,ϕ(Our,∨,M ⊗Our) = HomOur,ϕ(Our(−r),M ⊗OE Our)

= (M ⊗OE Our)ϕ=1(r)

= T∨(M)(r),

which settles (1). Consider the natural map

HomS,ϕ(S∨,M⊗S Sf(r))→HomSur,ϕ(Sur,∨,M⊗S Sur)

→HomOur,ϕ(Our,∨,M ⊗OE Our).

Since the first term and the last term have been proved to be isomorphic to T∨(M), which is
a finite set, it suffices to check the above natural maps are injections. Therefore, it is enough to
check that the maps

M⊗S Sf(r) → M⊗S Sur → M ⊗O Our

are injections. By Proposition 2.3.2 (4), noting that S
f(r)
n , Sur

n and Our
n are flat over Sn, we

can reduce the problem to the case that M is a finite free k�u�-module, where the injectivity is
obvious. �

Proof of Theorem 3.2.2. – By Corollary 3.2.4, we have

T∨
S(M)(r) = HomSur,ϕ(Sur,∨,M⊗S Sur).

Using the same idea as in the proof for Proposition 3.2.1, we see that there exists a natural
ϕ-equivariant, G∞-equivariant and Sur-linear morphism

ι̂∨ :T∨
S(M)⊗Zp Sur,∨ → M⊗S Sur(−r).

It now suffices to check that ι̂∨ ◦ ι̂ = Id⊗Str . Let M = M⊗S OE . It suffices to check that

(ι̂∨ ⊗Sur Our) ◦ (ι̂⊗Sur Our) = IdM ⊗OE (tr ⊗Sur Our).(3.2.8)

Note that M �
⊕d

i=1OE,ni as OE -modules, T∨(M) �
⊕d

i=1 Z/pniZ as Zp-modules and
ι̂⊗Sur Our = ι̃ by Proposition 3.2.1 (2), so it suffices to show that

(ι̂⊗Sur Our) ◦ (ι̂∨ ⊗Sur Our) = ι̃ ◦ (ι̂∨ ⊗Sur Our) = IdT∨(M)⊗Zp(tr ⊗Sur Our).

Note that we have used the isomorphism (3.2.7) to establish

HomOur,ϕ(Our,∨
n ,M ⊗OE Our) = T∨(M)(r),

so ι̂∨⊗SurOur is a composition of the two maps

Id⊗Zp(tr ⊗Sur Our) :T∨(M)⊗Zp Our,∨(r) → T∨(M)⊗Zp Our
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and

ι̃−1 :T∨(M)⊗Zp Our → M ⊗OE Our.

Therefore,

ι̃ ◦ (ι̂∨ ⊗S OE) = ι̃ ◦
(
Id⊗Zp(tr ⊗Sur Our)

)
◦ ι̃−1 = Id⊗Zp(tr ⊗Sur Our),

as required. �
COROLLARY 3.2.5. – Restricting ι̂∨ to T∨

S(M)⊗Zp Sf(r) gives a natural injection

ι̂∨ :T∨
S(M)⊗Zp Sf(r) → M⊗S Sf(2r)(−r).

Proof. – By Lemma 3.2.3, we see that ι̂∨(T∨(M) ⊗Zp S∨) ⊂ M ⊗S Sfr(−r). Since ι̂∨ is
Sur-linear, it suffices to check that Sf(r) · Sf(r) ⊂ Sf(2r). Recall from § 2.5 that F fr

S (Sur
n ) is

the set consisting of finite S-submodules inside Sur
n for which the cokernel of ϕ∗ is killed

by E(u)r . Let M,N ∈ F fr
S (Sur

n ) and let L be the S-submodule generated by M · N. We see
that L is a S-submodule inside Sur

n and is obviously ϕ-stable. For any x ∈ M and y ∈ N,
since M,N ∈ F fr

S (Sur
n ), there exist xi ∈ M and yj ∈ N such that E(u)rx =

∑
i aiϕ(xi)

and E(u)ry =
∑

j bjϕ(yj) with ai, bj ∈ S. Thus, we have E(u)2rxy =
∑

i,j aibjϕ(xiyj).

Therefore, L = M ·N ∈ F
f(2r)
S

(Sur
n ). �

4. Proof of the main theorems in part I

4.1. Reducing the proof to the rank-1 case

We will use the Theorem 3.2.2 to reduce Theorem 2.4.2 to the case that M is a finite free
rank-1 Sn-module. As in the beginning of § 3, we assume that M and M′ in Theorem 2.4.2 are
killed by pn. First of all,

LEMMA 4.1.1. – To prove Theorem 2.4.2 it suffices to consider the case that

f :TS(M′)→ TS(M)

is an isomorphism, with M′ a finite free Sn-module and there exists a morphism of ϕ-modules
g :M′ → M such that TS(g) = f−1.

Proof. – We reduce the proof of Theorem 2.4.2 to the above case in three steps. Let M =
M⊗S OE , M ′ = M′⊗S OE and f̃ :M → M ′ the morphism in ΦMtor

OE
induced by f . Note that

the statement of Theorem 2.4.2 is equivalent to the existence of a constant c such that pcf̃(M) ⊂
M′. First, we reduce to the case that M is a finite free Sn-module. By Proposition 2.3.2 (5), we
have a surjection q :N → M in Modr,tor

/S
with N a finite free Sn-module. Let N = N ⊗S OE

and q̃ = q ⊗S OE . We see that pcf̃(M) ⊂ M′ if and only if pcf̃ ◦ q̃(N)⊂ M′. Thus it suffices to
prove the theorem when M is a finite free module over Sn. Second, by taking the Cartier dual
constructed in §3.1, we reduce the proof to the case that M′ is a finite free Sn-module. Finally,
let Γ be the image of 1× f̃ in M ×M ′. We have an exact sequence in ΦMtor

OE
:

0 → Γ→ M ×M ′ pr−→ M ′ → 0.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



650 T. LIU
Let N = pr(M×M′), and let i1 :M ↪→M×M′ and i2 :M′ ↪→ M×M′ be the natural injections;
we have

(1) N ∈ Modr,tor
/S

,
(2) (pr◦ i2)⊗S OE : M ′ → N is an isomorphism, where N = N⊗S OE ,
(3) ((pr◦ i2)⊗S OE)−1 ◦ ((pr◦ i1)⊗S OE) = f̃ .

Thus we get pr ◦ i2 :M′ → N with M′ a finite free Sn-module and (pr ◦ i2) ⊗S OE is an
isomorphism. Thus, if we can prove Theorem 2.4.2 for this case, i.e., assuming that there exists
g′ :N → M′ such that g′ ⊗S OE = pc((pr ◦ i2) ⊗S OE)−1, then let g := g′ ◦ (pr ◦ i1), and we
see that g⊗S OE = pcf̃ as required. �

Since g⊗S OE = f̃−1 is an isomorphism, g :M′ → M is an injection, so we may regard M′

as a submodule of M. It thus suffices to prove the following:

LEMMA 4.1.2. – Let M, M′ ∈ Modr,tor
/S

with M′ finite Sn-free such that M′ ⊂ M and
M ⊗S OE = M′ ⊗S OE . There exists a constant c only depending on e and r such that
pcM⊂ M′.

By Corollary 3.2.5, we have the following commutative diagram:

M′ ι̂ (T∨
S(M′)⊗Zp Sf(r))G∞ ι̂∨

(M′ ⊗S Sf(2r)(−r))G∞

M
ι̂M (T∨

S(M)⊗Zp Sf(r))G∞

Since M′ is a finite free Sn-module, we have(
M′ ⊗S Sf(2r)(−r)

)G∞ = M′ ⊗Sn

(
Sf(2r)

n (−r)
)G∞

.

By Theorem 3.2.2, we have

ι̂∨◦ι̂(M′) = M′ ⊗S Sn · tr ⊂ ι̂∨◦ι̂M(M) ⊂M′ ⊗Sn

(
Sf(2r)

n (−r)
)G∞

,

so it suffices to prove that

pc
(
Sf(2r)

n (−r)
)G∞ ⊂ Sn · tr.(4.1.1)

Let us further shrink (Sf(2r)
n (−r))G∞ by claiming that (Sf(2r)

n (−r))G∞ ⊂ OE,n · tr. In fact,
recall that we have an isomorphism tr ⊗Sur Our :Our,∨

n
∼−→Our

n (−r). Taking G∞-invariants of
both sides, we have (Our

n (−r))G∞ =OE,n · tr . Thus,(
Sf(2r)

n (−r)
)G∞ ⊂

(
Our

n (−r)
)G∞ =OE,n · tr.

Now we have reduced the proof of Lemma 4.1.2 (hence the proof of Theorem 2.4.2) to proving
that there exists a constant c only depending on e and r such that

pc
(
Sf(2r)

n ∩OE,n · tr
)
⊂ Sn · tr.

For any x ∈ S
f(2r)
n ∩OE,n · tr , let N be the S-submodule generated by ϕn(x) for all n. Using

Corollary 2.3.9, we can reduce the proof to the following:
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LEMMA 4.1.3. – There exists a constant c only depending on e and r such that for any
M ∈Mod2r,tor

/S
, if Sn · tr ⊂ M⊂OE,n · tr , then pcM ⊂Sn · tr .

4.2. Proof of Lemma 4.1.3

We first need a Weierstrass Preparation Theorem to proceed with our calculation. There are
several versions of such a theorem available; the version we use is from [23]. For any f ∈ Sn,
let f̄ = f mod p, the order of f is defined to be the order of f̄ , i.e., ord(f) = min{i |
ai mod p is a unit} where f =

∑∞
i=0 aiu

i.

THEOREM 4.2.1 (Venjakob). – Let f ∈ Sn have order d. Then there exist a unit ε ∈ Sn and
a polynomial F ∈ Wn(k)[u] of degree d such that F = ud mod p and f = εF .

Proof. – Corollary 3.2 in [23]. �
The above corollary allows us to study division by an irreducible polynomial in Sn. For

f ∈ Sn and a positive integer m � n, we write E(u) | f mod pm if there exists h ∈ Sn such
that f = E(u)h mod pm. For a real number x, recall that [x] = max{m | m is an integer such
that m � x}.

LEMMA 4.2.2. – Let f, g ∈ Sn and n � 2. Suppose that E(u) | gf mod pn. Then either
E(u) | g mod p[n/2] or E(u) | h mod p[n/2].

Proof. – By Theorem 4.2.1, we may assume that g and h are polynomials of degrees d̃ and
d̃′ such that g ≡ ud̃ mod p and h ≡ ud̃′

mod p, respectively. Since E(u) is a monomial, we
can write g = E(u)q1 + g̃1 and h = E(u)q′1 + h̃1 with deg(g̃1),deg(h̃1) < deg(E(u)). If either
g̃1 or h̃1 is zero then the proof is complete. Suppose that neither of them is zero. We may write
g̃1 = pαg1 and h̃1 = pα′

h1 with g1, h1 �≡ 0 mod p. It suffices to prove that

α + α′ � n− 1.

Suppose that the above inequality is not true. Then there exists δ ∈ S2 such that g1h1 ≡
E(u)δ mod p2. By Theorem 4.2.1, we may assume that g1 (resp. h1) has degree d (resp. d′) and
g1 ≡ ud mod p (resp. h1 ≡ ud′

mod p). Since g1h1 ≡ E(u)δ mod p, we have d + d′ = e + e′

where e′ is the degree of δ mod p, so we get 0 < d,d′ < e and e′ < min(d, d′). Write

g1 =
∑d

i=0 aiu
i, h1 =

∑d′

j=0 bju
j , E(u) = ue +

∑e−1
i=0 ciu

i, δ =
∑∞

j=0 fju
j . Comparing the

e′-degree terms on both sides of the equation g1h1 = E(u)δ mod p2, we have

∑
i+j=e′

aibj =
∑

i+j=e′

cjfj = c0fe′ +
e′∑

i=1

cife′−i.

Since d, d′ > e′, we have p | ai, p | bj for any i, j satisfying i + j = e′, so the left hand side
is 0 mod p2. On the other hand, since e′ < e, we have p | ei, p | fe′−i for all i = 1, . . . , e′

and fe′ �= 0 mod p, so we have that the right-hand side is pμ mod p2 with μ a unit in Zp,
a contradiction. �

Let c2 = r([ er
p−1 ]) + 1. Put c1 = 0 if er < p− 1 and c1 = 22rc2 if er � p− 1.

LEMMA 4.2.3. – With hypotheses as in Lemma 4.1.3, suppose that M is a finite free rank-1
Sn-module. Then if n � c1 we have M = Sn · tr .
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Proof. – Since M ⊂ OE,n · tr and M is Sn-free of rank 1, there exists f ′ ∈ OE,n such
that M = Sn · f ′tr . Note that Sn · tr ⊂ M, so there exists f ∈ Sn such that f ′f = 1. Thus,
we can write M = Sn · t

r

f . By Theorem 4.2.1, we may assume that f is a polynomial with

f = ud mod p. It suffices to prove that f is a unit in Sn, or equivalently, d = 0 if n � c1. We
have

ϕ

(
1
f

tr
)

=
(
c−1
0 E(u)

)r
f/ϕ(f) · 1

f
tr.

Since the cokernel of ϕ∗
M is killed by E(u)2r , if we let g := E(u)rf/ϕ(f) ∈ Sn, then there

exists h ∈ Sn such that gh = E(u)2r . Put f̄ := f mod p and ḡ := g mod p. Then

deg(uref̄/f̄p) = re− (p− 1)d = deg(ḡ) � 0.

Therefore, d � er
p−1 and deg(ḡ) � er. In particular, if er < p − 1, then d = 0, i.e., f is a unit.

Now suppose that d > 0, so deg(ḡ) < er. Since E(u)2r = gh mod pn, by Lemma 4.2.2, we see
that either E(u) | g mod p[n/2] or E(u) | h mod p[n/2]. Suppose that E(u) | g mod p[n/2] and
write g = E(u)g1 mod p[n/2]. Then we have E(u)2r−1 = g1h mod p[n/2]. Similarly, we have
E(u)2r−1 = gh1 mod p[n/2] if E(u) | h mod p[n/2]. Induction on 2r shows that

g = εE(u)r1 mod pc2(4.2.1)

with r1 < r and ε ∈Sn a unit, so E(u)rf/ϕ(f) = E(u)r1ε mod pc2 ; that is,

E(u)r−r1f = ϕ(f)ε mod pc2 .(4.2.2)

Write f =
∑d

i=0 aiu
i and let b0 be the coefficient of the constant term of ε. Comparing the

constant terms of both sides of (4.2.2), we get (c0p)r−r1a0 = ϕ(a0)b0 mod pc2 . Since b0 is a
unit of Zp, a0 = 0 mod pc2 . Therefore, E(u)r−r1f1 = ϕ(f1)ε mod pc2 with f1 =

∑d
i=1 aiu

i.
Comparing the coefficients of u-terms both sides, we have (c0p)r−r1a1 = 0 mod pc2 . Hence
a1 = 0 mod pc2−r . Since c2 = r([ er

p−1 ]) + 1 � rd + 1, an easy induction shows that ad =
0 mod p. This contradicts the fact that f = ud mod p, which we assumed at the beginning
of the proof. Thus, deg(ḡ) = er, d = 0 and therefore f is a unit. �

Let M ∈ Mod2r,tor
/S

with M := M ⊗S OE a finite free OE,n-module. In general, M may not
be a finite free Sn-module. However, we will prove that M “contains” finite free pieces by
employing the following trick. For 0 � i � j � n, let

Mi,j := Ker(piM
pj−i

−−−→ pjM).(4.2.3)

Since piM and pjM are in Mod2r,tor
/S

, Mi,j ∈ Mod2r,tor
/S

by Lemma 2.3.3. Easy computations

show that psMi,j = Ms+i,j for any s � j− i and Mi,j ⊗S OE � M/pj−iM . For any l � 0 such
that l + j � n, the natural injections pi+lM ↪→ piM and pj+lM ↪→ pjM induce a map

αi,j,l :Mi+l,j+l → Mi,j .

It is easy to check that αi,j,l ⊗S OE is an isomorphism. In particular, for l = 1 and i = j we get
the following decreasing chain

Mn−1,n · · · ⊂M1,2 ⊂ M0,1 ⊂ M1(4.2.4)
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such that Mi,i+1 ⊗S OE = M1 for 0 � i � n− 1.

LEMMA 4.2.4. – Notations as above. In the decreasing chain (4.2.4), if there exist i0 and s
such that

Mi0+s−1,i0+s = · · ·= Mi0+1,i0+2 = Mi0,i0+1,(4.2.5)

then Mi0,i0+s is Ss-finite free.

Proof. – For any 0 � m � s, let Γm = Mi0+(s−m),i0+s and Γ = Γs. Obviously, we have
Γm = ps−mΓ. We claim that Γm+1/pmΓm+1 = Γm. To see the claim, considering the following
commutative diagram:

Γm+1 Mi0+(s−m−1),i0+s

β

pm

Mi0+(s−m−1),i0+s Γm+1

Mi0+(s−1),i0+s
α

Mi0+(s−m−1),i0+(s−m),

γ(4.2.6)

where α := αi0+(s−m−1),i0+(s−m),m is an isomorphism by (4.2.5). The map β is induced
by pm :pi0+(s−m−1)M → pi0+(s−1)M and it is a surjection. The map γ is induced by
pm :pi0+(s−m)M → pi0+sM and it is an injection. Tensoring (4.2.6) by OE , it is easy to check
that diagram (4.2.6) is commutative. Since α is an isomorphism, we see that Γm+1/pmΓm+1 =
Cok(γ). By the Snake lemma and chasing the diagram, we have

Cok(γ) = Ker(pi0+(s−m)M
pm

−−→ pi0+sM) = Γm.

Therefore, we have Γm+1/pmΓm+1 = Γm. Now we prove that Γm is a finite free Sm-module
by induction on m. The case m = 1 is obvious. Now assume that Γm is a finite free
Sm-module with rank d. Select x1, . . . , xd ∈ Γm+1 such that px1, . . . , pxd is a basis of Γm.
Since Γm+1/pmΓm+1 = Γm, by Nakayama’s lemma, x1, . . . , xd generates Γm+1. Therefore,
we have a natural surjection f :

⊕d
i=1 Sm+1 → Γm+1. Since Mm+1 = M/pm+1M is a finite

free OE,m+1-module with rank d, we see that f ⊗OE is a bijection. Note that Γ is u-torsion free.
So f is an injection. Thus Γm+1 is Sm+1-finite free. �

Let c = 0 if er < p− 1 and c = [ er
p−1 ](c1 − 1) + 1 if er � p− 1.

Proof of Lemma 4.1.3. – We will follow the idea of the proof for Proposition 1.0.6 in [19].
Keep notations as in Lemma 4.1.3. Define

Mi,j := Ker(piM
pj−i

−−−→ pjM).

Then, as in the argument above Lemma 4.2.4, we have

S1 · tr ⊂ Mn−1,n · · · ⊂M1,2 ⊂ M0,1 ⊂OE,1 · tr.(4.2.7)

Suppose that Mi,i+1 = S1 · t
r

fi
with fi ∈ S1. By Theorem 4.2.1, we may assume that fi = uλi

since the cokernel of ϕ∗
Mi,i+1 has to be killed by u2er . As in the beginning of the proof of

Lemma 4.2.3, we have that 0 � λi � er
p−1 , so if er < p− 1, then Mi,i+1 = S1 · tr for all i. Thus

M is a finite free Sn-module and M = Sn · tr by Lemma 4.2.3. If er � p− 1, then there are at
most [ er ]+1 distinct terms in (4.2.7). Thus, if n > [ er ]+1, then there must be repeated terms
p−1 p−1
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in (4.2.7). If n � c = [ er
p−1 ](c1−1)+1, then there exist at least c1 terms which coincide in (4.2.7).

By Lemma 4.2.4, there exists i0 � c such that Mi0,i0+c1 is a finite free rank Sc1 -module of
rank 1. By Lemma 4.2.3, we see that Mi0,i0+c1 = Sc1 · tr . In particular, Mi0,i0+1 = S1 · tr and
so Mi,i+1 = S1 · tr for all i � i0. Therefore, Mi0,n ⊂ Sn · tr , so pcM ⊂Sn · tr . �

Now we complete the proof of Theorem 2.4.2. As a consequence, we have

COROLLARY 4.2.5. – Suppose that M̃, M ∈ Modr,tor
/S

are such that TS(M) � TS(M̃). If

we identify M̃⊗S OE with M⊗S OE , then
(1) pcM̃⊂ M and pcM⊂ M̃,
(2) if M and M̃ are finite free Sn-modules with n � c then Mn−c = M̃n−c.

Proof. – We only need to prove (2). pcM⊂ M̃ implies that pcM⊂ M̃0,n−c, where M̃0,n−c =
Ker(pn−c :M̃→ pn−cM̃). Since M̃ is finite Sn-free, M̃0,n−c = pcM̃. Therefore, pcM⊂ pcM̃,
and for the same reason we have pcM̃⊂ pcM. �

As the consequence of Theorem 2.4.2, we also get another proof of Proposition 2.1.12 in [14].
Let Repfr

Zp
(G∞) denote the category of continuous finite free Zp-representations of G∞.

COROLLARY 4.2.6. – The functor TS :Modr,fr
/S

→ Repfr
Zp

(G∞) is fully faithful.

Proof. – Let M,N ∈ Modr,fr
/S

, M := M ⊗S OE , N := N ⊗S OE and f̃ :TS(N) → TS(M)

a morphism of Zp[G∞]-modules. Then we get a morphism f :M → N such that T (f) = f̃ . It
suffices to show that f(M) ⊂ N. By Theorem 2.4.2, we see that pcf(Mn) ⊂ Nn for any n � c.
Since M, N are finite free, we see that f(Mn−c)⊂ Nn−c. Thus f(M)⊂ N. �
4.3. Proof of Theorem 2.4.1

LEMMA 4.3.1. – Let M ∈ Modr,tor
/S

such that M := M⊗S OE is a finite free OE,n-module.

Suppose that n � 2c + 1; then there exists a finite free Sn−2c-module M̃ ∈ Modr,tor
/S

such that

M̃⊗S OE � M/p2cM .

Proof. – Use the same notations in Lemma 4.2.4 and set Mi,j := Ker(piM
pj−i

−−−→ pjM), and
M̃ := Mc,n−c. We claim that M̃ is a finite free Sn−2c-module. By Lemma 4.2.4, it suffices to
prove

Mn−c−1,n−c = · · ·= Mc,c+1.

For any 0 � i � n − c − 1, we have a natural injection α : pn−c−1M ↪→ Mi,i+c+1. It is easy to
see that α⊗S OE is an isomorphism. Thus, by Corollary 4.2.5,

pcMi,i+c+1 ⊂ pn−c−1M.

Since p kills pcMi,i+c+1, we have pcMi,i+c+1 ⊂ Mn−c−1,n−c. On the other hand, we have
pcMi,i+c+1 = Mi+c,i+c+1. Therefore, Mi+c,i+c+1 ⊂ Mn−c−1,n−c. But by (4.2.7), we always
have a decreasing chain Mi,i+1 ⊂ Mi+1,i+2 ⊂ M1 for 0 � i � n− 2, so we get Mn−c−1,n−c =
· · ·= Mc,c+1, as required. �

Proof of Theorem 2.4.1. – Suppose that for each n, there exists M(n) ∈ Modr,tor
/S

such that
TS(M(n))� Tn = T/pnT . For n a fixed integer, let

M′
(n) = M

2c,n+2c

(n+3c) = pcM
c,n+2c

(n+3c) = pc Ker(pcM(n+3c)
pn+c

−−−→ pn+2cM(n+3c)).(4.3.1)
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We claim that M′
(n) ∈Modr,tor

/S
and is finite free over Sn and that we have M′

(n+1)/pnM′
(n+1) �

M′
(n). If this is the case, letting M = lim←−n

M′
(n), we see that M ∈ Modr,fr

/S
and TS(M) = T , as

required. Hence, it suffices to prove the claim. By the proof of Lemma 4.3.1, we see that M
c,n+2c

(n+3c)

is a finite free Sn+c-module, so M′
(n) = pcM

c,n+2c

(n+3c) is Sn-free. To see M′
(n+1)/pnM′

(n+1) �
M′

(n), it suffices to show that pM′
(n+1) � M′

(n). Note that pM
c,n+2c

(n+1+3c) and M
c,n+2c

(n+3c) are both
finite free Sn+c-modules and give the same finite free Zn+c-representation Tn+c of G∞. Thus,
by Corollary 4.2.5,

pM′
(n+1) = pcpM

c,n+2c

(n+1+3c) � pcM
c,n+2c

(n+3c) = M′
(n). �

4.4. A refinement of Theorem 2.4.1

In order to prove Conjecture 1.0.1, we need a slight variant of Theorem 2.4.1. Recall that
G := Gal(K̄/K). Let T be a finite free Zp-representation of G. Suppose that, for each n, there
exist G-stable Zp-lattices L′

(n) ⊂ L(n) in a Qp-representation V(n) of G such that
(1) L(n)/L′

(n) � Tn = T/pnT as Zp[G]-modules,

(2) there exist finite free S-modules L(n),L
′
(n) ∈ Modr,fr

/S
such that

TS(L(n)) = L(n)|G∞ and TS(L′
(n)) = L′

(n)|G∞ .

Letting M(n) := L′
(n)/L(n), we have TS(M(n)) � Tn|G∞ . By Theorem 2.4.1, there exists an

M ∈ Modr,fr
/S

such that TS(M) � T |G∞ . In general, it is not necessarily true that Mn � M(n).
To remedy this, we have the following:

LEMMA 4.4.1. – We can always choose G-stable lattices L′
(n) ⊂ L(n) in V(n) such that

Mn = L′
(n)/L(n).

Proof. – Using the covariant functor will be more convenient here. For M ∈ Modr,fr
/S

or

M ∈Modr,tor
/S

, recall that

T∨(M) := T∨(M⊗S OE) = (M⊗S Ôur)ϕ=1 =
(
TS(M)

)∨
.

Applying the functor T∨ to the exact sequence 0 → L(n) → L′
(n) → M(n) → 0, we get

an exact sequence of Zp[G]-modules 0 → L∨
(n)→L′∨

(n) → T∨
n →0. By (4.3.1) in the proof of

Theorem 2.4.1, we see that

Mn := M
2c,n−c

(n+3c) = Ker(p2cM(n+3c) → pn+2cM(n+3c)).

Let f :L′
(n+3c) → M(n+3c) be the surjection such that T∨(f) is the surjection L′∨

(n+3c) →
T∨

n+3c. Then p2cf :p2cL′
(n+3c) → p2cM(n+3c) is a surjection and T∨(p2cf) is a surjection of

Zp[G]-modules p2cL′∨
(n+3c) → p2cT∨

n+3c. For the same reason, T∨(pn+2cf) is a surjection of

Zp[G]-modules pn+2cL′∨
(n+3c) → pn+2cT∨

n+3c. Let N := Ker(p2cf), N′ := Ker(pn+2cf), N :=
Ker(T∨(p2cf)) and N ′ := Ker(T∨(pn+2cf)). By Lemma 2.3.8, N and N′ are S-finite free.
Therefore, we get an exact sequence 0 → N′ → N → Mn → 0 in Modr

/S; applying the functor
T∨ to this sequence, we get an exact sequence of Zp[G]-modules 0 → N ′ → N → T∨

n → 0. �
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5. Preliminaries on semi-stable Galois representations

We begin the second part with this section. In this section we first briefly review several
theories for constructions of semi-stable p-adic Galois representations from Fontaine, Breuil and
Kisin and then set up several variations of Theorem 3.2.2 to connect Galois representations and
their various associated p-adic Hodge structures. These comparisons will play central technical
roles in the later calculations.

5.1. Semi-stable Galois representations and (ϕ,N)-modules

Recall that a p-adic representation is a continuous linear representation of G := Gal(K̄/K)
on a finite dimensional Qp-vector space V .

Definition 5.1.1 [10]. – A p-adic representation V of G is called semi-stable if

dimK0(Bst ⊗Qp V )G = dimQp V,(5.1.1)

where Bst is the period ring constructed by Fontaine, see for example [9] or § 5.2 for the
construction.

If V is any p-adic representation of G, then one always has dimK0(Bst ⊗Qp V )G � dimQp V
([11]). To prove that T ⊗Zp Qp in Conjecture 1.0.1 is semi-stable, it therefore suffices to prove
that dimK0(Bst ⊗Zp T )G � RankZp T .

Recall that a filtered (ϕ,N)-module is a finite dimensional K0-vector space D endowed with:
(1) a Frobenius semi-linear injection: ϕ :D → D,
(2) a linear map N : D → D such that Nϕ = pϕN ,
(3) a decreasing filtration (Fili DK)i∈Z on DK := K ⊗K0 D by K-vector spaces such that

Fili DK = DK for i� 0 and Fili DK = 0 for i� 0.
If D is a 1-dimensional (ϕ,N)-module and v ∈ D is a basis vector, then ϕ(v) = αv for some
α ∈ K0. We write tN (D) for the p-adic valuation of α and tH(D) the unique integer i such
that gri DK is nonzero. If D has dimension d ∈ N+, then we write tN (D) = tN (

∧d
D) and

tH(D) = tH(
∧d

D). A filtered (ϕ,N)-module is called weakly admissible if tH(D) = tN (D)
and for any (ϕ,N)-submodule D′ ⊂ D, tH(D′) � tN (D′), where D′

K ⊂ DK is equipped with
the induced filtration. A (ϕ,N)-module is called positive if Fil0 DK = DK . We denote by
MF(ϕ,N) the category of positive filtered (ϕ,N)-modules, and by MFw(ϕ,N) the subcategory
consisting of weakly admissible (ϕ,N)-modules. In [7], Fontaine and Colmez proved that the
functor D∗

st :V → (Bst ⊗Qp V )G establishes an equivalence of categories between the category
of semi-stable p-adic representations of G and the category of weakly admissible filtered
(ϕ,N)-modules. Therefore, we can always use weakly admissible filtered (ϕ,N)-modules to
describe semi-stable Galois representations. In the sequel, we will instead use the contravariant
functor Dst(V ) := D∗

st(V ∨), where V ∨ is the dual representation of V . The advantage of this
is that the Hodge–Tate weights of V are exactly the i ∈ Z such that gri Dst(V )K �= 0. A quasi-
inverse to Dst is then given by

Vst(D) := Homϕ,N (D,Bst)∩HomFil·(DK ,K ⊗K0 Bst).(5.1.2)

Convention 5.1.2. – From now on, we always assume that the filtration on the weakly
admissible filtered (ϕ,N)-module D under consideration is such that Fil0 DK = DK and
Filr+1 DK = 0. Equivalently, the Hodge–Tate weights of the semi-stable p-adic Galois
representation Vst(D) are always contained in {0, . . . , r}.
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5.2. Theory of Breuil modules

We denote by S the p-adic completion of the divided power envelope of W (k)[u] with respect
to Ker(s) where s :W (k)[u] →OK is the canonical surjection sending u to π. For any positive
integer i, let Fili S ⊂ S be the p-adic closure of the ideal generated by the divided powers

γj(u) = E(u)j

j! for all j � i. There is a unique map (Frobenius) ϕ :S → S which extends the
Frobenius on W (k) and satisfies ϕ(u) = up. Define a continuous K0-linear derivation N :S → S
such that N(u) =−u. Finally, we denote S[1/p] by SK0 . Following [5], a filtered ϕ-module over
SK0 is a finite free SK0 -module D with

(1) a ϕSK0
-semi-linear morphism ϕD :D →D such that the determinant of ϕD is invertible

in SK0 ,
(2) a decreasing filtration over D of SK0 -modules (Fili(D))i∈Z with Fil0(D) = D and

Fili SK0 ·Filj(D) ⊂ Fili+j(D).
Similarly, a filtered ϕ-module over S is a finite free S-module M with

(1) a ϕS-semi-linear morphism ϕM :M→M such that the determinant of ϕM is invertible
in SK0 ,

(2) a decreasing filtration over M of S-modules (Fili(M))i∈Z with Fil0(M) = M and
Fili S ·Filj(M) ⊂ Fili+j(M).

Clearly, if M is a filtered ϕ-module over S, then M⊗Zp Qp is a filtered ϕ-module over SK0 .
A filtered (ϕ,N)-module over SK0 or a Breuil module is a filtered ϕ-module D over SK0 with
following extra monodromy structure:

(1) a K0-linear (monodromy) map N :D→D such that
(a) for all f ∈ SK0 and m ∈D, N(fm) = N(f)m + fN(m),
(b) Nϕ = pϕN ,
(c) N(Fili D) ⊂ Fili−1(D).

We denote the category of filtered ϕ-modules over SK0by Modϕ
/SK0

, the category of filtered

ϕ-modules over S by Modϕ
/S and the category of Breuil modules by Modϕ,N

/SK0
. It turns out that

the categories MF(ϕ,N) and Modϕ,N
/SK0

are equivalent. More precisely, for any filtered (ϕ,N)-

module D ∈MF(ϕ,N), we can associate an object D ∈Modϕ,N
/SK0

by defining D = S ⊗W (k) D;

ϕD := ϕS ⊗ϕD; ND := N ⊗ Id+Id⊗N ; Fili(D) := D if Fili DK = DK and by induction

Fili+1D := {x ∈D |N(x) ∈ Fili D and fπ(x) ∈ Fili+1 DK},

where fπ :D � DK is defined by s(u) ⊗ x 	→ s(π)x. In §6 of [5], Breuil proved the above
functor D :D → D ⊗W (k) S is an equivalence of categories. Furthermore, D and D(D) give
rise to the same Galois representations. Several periods rings have to be constructed to make the
statement more precise. Recall R = lim←−OK̄/p and the unique surjective map θ :W (R) → ÔK̄

which lifts the projection R →OK̄/p onto the first factor in the inverse limit. We denote by Acris

the p-adic completion of the divided power envelope of W (R) with respect to Ker(θ). Recall that
[π] ∈W (R) is the Teichmüller representative of π = (πn)n�0 ∈R. We embed the W (k)-algebra
W (k)[u] into W (R) via u 	→ [π]. Since θ(π) = π, this embedding extends to an embedding
S ↪→ S ↪→ Acris, and θ|S is the K0-linear map s : S → OK defined by sending u to π. The
embedding is compatible with Frobenius endomorphisms. As usual, we write B+

cris = Acris[1/p],
and denote by B+

dR the Ker(θ)-adic completion of W (R)[1/p].
For any field extension F/Qp, set Fp∞ =

⋃∞
n=1 F (ζpn) with ζpn a primitive pn-th root of

unity. Note that K∞,p∞ =
⋃∞

n=1 K( pn√
π, ζpn) is Galois over K . Let G0 := Gal(K∞,p∞ ,Kp∞),

HK = Gal(K∞,p∞ ,K∞) and Ĝ := Gal(K∞,p∞/K). If Kp∞ ∩K∞ = K then we easily see that
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Ĝ = G0 �HK and G0 � Zp(1). In fact, Lemma 5.1.2 in [18] shows that Kp∞ ∩K∞ = K always
holds unless p = 2. Therefore,

Assumption 5.2.1. – From now to §7, we always assume that p � 3 or Kp∞ ∩ K∞ = K if
p = 2.

§8 will deal with the case when the above assumption breaks.
For any g ∈ G, let ε(g) = g([π])/[π]. Then ε(g) is a cocycle from G to the group of units

of Acris. In particular, fixing a topological generator τ of G0, Assumption 5.2.1 implies that
ε(τ) = [(εi)i�0] ∈ W (R) with εi a primitive pi-th root of unity. Therefore, t := − log(ε(τ)) ∈
Acris is well defined and for any g ∈ G, g(t) = χ(g)t where χ is the cyclotomic character.
Let BdR := B+

dR[1t ]. u := log([π]) ∈ BdR is well defined. We define B+
st := B+

cris[u] and

Bst := B+
st [

1
t ]. Let D ∈ Modϕ,N

/SK0
be a Breuil module. Using the monodromy N on D, we can

define a semi-linear G-action on D⊗S Acris by

σ(x⊗ a) =
∞∑

i=0

N i(x)⊗ σ(a)γi

(
− log

(
ε(σ)

))
(5.2.1)

for σ ∈G, x ∈D and a ∈ Acris. In particular, the G-action preserves the Frobenius and filtration
on D⊗S Acris and for any g ∈ G∞ and x⊗ a ∈D ⊗S Acris, we have g(x⊗ a) = x⊗ g(a) (see
Lemma 5.1.1 in [18]). Define

Vst(D) := HomAcris,Fil,ϕ(D⊗S Acris,B
+
cris).

Since D⊗S Acris has a natural G-action defined by (5.2.1), we can define a G-action on Vst(D)
by (g ◦ f)(x) = g(f(g−1(x))) for any f ∈ Vst(D), g ∈ G and x ∈D⊗S Acris. Thus, Vst(D) is a
Qp[G]-module.

PROPOSITION 5.2.2 (Breuil). – For any D ∈MF(ϕ,N), let D :=D(D) = D⊗W (k) S. Then
there is a natural isomorphism Vst(D) � Vst(D) of Qp[G]-modules.

Proof. – This result has been explicitly or non-explicitly used in several papers (e.g.,
Proposition 2.1.5 in [14]). Lemma 5.2.1 in [18] gives a proof by using the main result of [5]. �

By the above proposition, we always identify Vst(D) with Vst(D) as the same Galois
representations.

5.3. Comparisons

In this subsection, we set up a variant of Theorem 3.2.2 to compare filtered ϕ-modules over S
with their associated G∞-representations. Note that the natural embedding S ↪→ S is compatible
with Frobenius structures. As in [4], for any finite free ϕ-module M ∈ Modr,fr

/S
of finite height,

we can associate a filtered ϕ-module over S via MS(M) := S ⊗ϕ,S M, a ϕS-semi-linear
endomorphism ϕMS(M) := ϕS ⊗ ϕM (as usual, we drop the subscript from ϕMS(M) if no
confusion will arise) and a decreasing filtration on MS(M) via

Fili(MS(M)) = {m ∈MS(M) | (1⊗ϕ)(m) ∈ Fili S ⊗S M}.

To see that M := MS(M) is a filtered ϕ-module over S, note that the cokernel of ϕ∗
M

is killed by E(u)r , so the determinant of ϕM is a divisor of ϕ(E(u)r), which is a unit
in SK0 . Once can easily check that Fili S · Filj M ⊂ Fili+j M from the definition. We set
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DS(M) = MS(M) ⊗Zp Qp, which is a filtered ϕ-module over SK0 . To any M ∈ Modr,fr
/S

and
M := MS(M), we can associate a Zp[G∞]-module by:

Tst(M) := HomS,ϕ,Fil·(M,Acris).

Since G∞ acts trivially on S, Tst(M) is a Zp[G∞]-module. Note that Sur ⊂ W (R) ⊂ Acris.
Given f ∈ TS(M) = HomS,ϕ(M,Sur), we define an S-linear map f :MS(M) →Acris by

f(s⊗m) = sϕ
(
f(m)

)
, for any s⊗m ∈ S ⊗ϕ,S M.(5.3.1)

It is easy to check that f is compatible with Frobenius and filtration. Thus, we have a map

TS(M) → Tst

(
MS(M)

)
.(5.3.2)

LEMMA 5.3.1. – The map (5.3.2) is an injection, and is compatible with G∞-actions.

Proof. – It suffices to check that the map is an injection. By (5.3.1), if f = 0, then note that M

is a finite free S-module, so ϕ(f) = 0. But ϕ :Sur → Acris is easily checked to be an injection,
so f = 0. �

Remark 5.3.2. – If r < p − 1, then the map (5.3.2) is an isomorphism (cf. Lemma 3.3.4 of
[18]). However, if p � r − 1, we may only get an injection as in the following example.

Example 5.3.3. – Let S∨ := MS(S∨). Then ϕS∨(1) = ϕ(c−r
0 E(u)r), Fili S∨ = S for

0 � i � r and Fili S∨ = Fili−r S for i > r. Let c =
∏∞

n=0 ϕn(ϕ(c−1
0 E(u))

p ) and S∗ be the rank-1
ϕ-module over S with ϕS∗(1) = pr , Fili S∗ = S for 0 � i � r and Fili S∗ = Fili−r S for i > r.
Note that c is a unit in S. Then the map cr :S∗ → S∨ sending 1 to cr is an isomorphism of
filtered ϕ-modules over S, so Tst(S∗) � Tst(S∨)� Zp(r). In particular, there exists a generator
f ∈ Tst(S∗) such that f(1) = t{r}, where t{n} = tr(n)γq̃(n)(tp−1/p) and n = (p−1)q̃(n)+r(n)
with 0 � r(n) < p − 1 (here we use the notations in §5.2 of [9]). Hence, if r = p − 1, then we
see that t{p−1} /∈ W (R) and TS(S∨) ↪→ Tst(S∗) is not surjective. If p � 3 and r = 1 < p − 1,
by Remark 5.3.2, we have

TS(S∨) � HomS,Fil·,ϕ(S∗,Acris).

Therefore, cϕ(t) = u0t with u0 a unit in Zp. If p = 2 and r = 1, then we only have an injection
TS(S∨) ↪→ Tst(S∗). Therefore, cϕ(t) = λt with a λ ∈ Zp. We claim that λ is a unit in Zp.
In fact, using that ϕ(t) = c0

−1E(u)t, one can easily compute that ϕ(t) − c′E(u)2 ∈ 2W (R)
with c′ a unit in W (k̄). Therefore, ϕ(t) ∈ 2Acris and ϕ(t) /∈ 4Acris and we still have that
cϕ(t) = 2u0

t
2 = u0t with a u0 an unit in Z2.

Let M ∈ Modr,fr
/S

be a finite free ϕ-module over S of finite E(u)-height. By Theorem 3.2.2, we
have Frobenius equivariant Sur-linear morphisms

ι̂ :M⊗S Sur → T∨
S(M)⊗Zp Sur

and

ι̂∨ :T∨
S(M)⊗Zp Sur,∨ → M⊗S Sur(−r)
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such that ι̂∨◦ι̂ = Id⊗tr . In order to extend the comparison of G-actions, we tensor ι̂ and ι̂∨ with
Acris via the map ϕ :Sur →Acris. We have

ι̂⊗ϕ Acris :M⊗S,ϕ Acris → T∨
S(M)⊗Zp Acris

and

ι̂∨⊗ϕAcris :T∨
S(M)⊗Zp A∨

cris → M⊗S,ϕ Acris(−r),

where ϕ on A∨
cris sends 1 	→ ϕ(c−1

0 E(u)r). Let A∗
cris = S∗ ⊗S Acris where S∗ is constructed

in Example 5.3.3. For the same reason as in Example 5.3.3, the Acris-linear isomorphism
cr :A∗

cris → A∨
cris sending 1 to cr is compatible with Frobenius and filtration on both sides. We

summarize the above discussion in the following lemma:

LEMMA 5.3.4. – Notations as above, there exist Acris-linear injections

ι :M⊗S,ϕ Acris → T∨
S(M)⊗Zp Acris

and

ι∗ :T∨
S(M)⊗Zp A∗

cris → M⊗S,ϕ Acris(−r)

such that ι and ι∗ are compatible with Frobenius and G∞-actions on both sides. Furthermore,
ι∗ ◦ ι = Id⊗tr if we identify A∗

cris with Acris.

Proof. – Let ι = ι̂ ⊗ϕ Acris and ι∗ = cr(ι̂∨⊗ϕAcris). Note that ι̂ ⊗ϕ Acris and ι̂∨⊗ϕAcris

are Acris-linear. By Theorem 3.2.2, ι∗ ◦ ι = Id⊗(ϕ(t)c)r . In Example 5.3.3, we showed that
ϕ(t)c = u0t for a unit u0 ∈ Zp, and we can modify ι∗ by multiplication by u−r

0 so that
ι∗ ◦ ι = Id⊗tr . Since tr is not a zero divisor in Acris, we see that ι and ι∗ are injections. �

Remark 5.3.5. – In the applications that follow, we abuse the notation by identifying A∗
cris

with Acris. The map ι∗ is no longer compatible with Frobenius with such identification. However,
we do not use the Frobenius compatibility of ι∗ in our applications (cf. Proposition 6.1.1).

5.4. Kisin’s theory on (ϕ,N)-modules over S

In this subsection, we input Kisin’s theory ([14]) on the classification of semi-stable Galois
representations by (ϕ,N)-modules over S. A (ϕ,N)-module over S is a finite free ϕ-module
M ∈Modr,fr

/S
equipped with a K0-linear endomorphism N :M/uM⊗Zp Qp → M/uM⊗Zp Qp

such that Nϕ = pϕN . We denote by Modϕ,N
/S

the category of (ϕ,N)-modules over S, and by

Modϕ,N
/S

⊗ZpQp the associated isogeny category. The following theorem summarizes results we
need from [14] (cf. Corollary 1.3.15, Proposition 2.1.5 and Lemma 2.1.15 there).

THEOREM 5.4.1 (Kisin). – There exists a fully faithful ⊗-functor Θ from the category of
positive weakly admissible filtered (ϕ,N)-modules MFw(ϕ,N) to Modϕ,N

/S
⊗ZpQp. Let D ∈

MFw(ϕ,N) and M := Θ(D). Then there exists a canonical bijection

η :TS(M)⊗Zp Qp
∼−→ Vst(D)(5.4.1)

compatible with the action of G∞ on both sides. Let V = TS(M) ⊗Zp Qp. The map N →
HomS,ϕ(N,Sur) is a bijection between the set of finite free ϕ-stable S-modules N ⊂ E ⊗S M

such that N/ϕ∗N is killed by E(u)r and the set of G∞-stable Zp-lattices L⊂ V .
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In fact, Kisin also gave a criterion to detect whether an M ∈ Modϕ,N
/S

⊗ZpQp is in the essential
image of functor Θ. In particular, let M = Θ(D) for D ∈ MFw(ϕ,N) and D := DS(M).
§3.2 in [18] showed that this criterion implies that there exists a unique monodromy operator
N defined over D such that the data (D,Fili D,ϕ,N) is a Breuil module and D(D) � D in
Modϕ,N

/SK0
(where D(·) is the functor constructed in §5.2). For our purposes, it will be convenient

to reconstruct (5.4.1) somewhat differently from [14] following the idea in [18]. By Lemma 5.3.1,
we have injections of Zp[G∞]-modules:

TS(M) ↪→ Tst(M) ↪→ HomS,Fil·,ϕ(D,B+
cris).(5.4.2)

Note that

HomS,Fil,ϕ(D,B+
cris)� HomAcris,Fil,ϕ(D⊗S Acris,B

+
cris) = Vst(D)

which is compatible with G∞-actions on both sides. By Proposition 5.2.2, we have a natural
injection

TS(M)⊗Zp Qp ↪→ Vst(D) � Vst(D)

compatible with G∞-actions on both sides. On the other hand, since D is weakly admissible, an
argument in Proposition 4.5 of [7] shows that dimQp Vst(D) � dimK0(D) = d. Since (5.4.2) is
an injection and rankZp TS(M) = d, we must have dimQp Vst(D) = dimK0(D) = d and

TS(M)⊗Zp Qp
∼−→ HomAcris,Fil,ϕ(D⊗S Acris,B

+
cris)� Vst(D),(5.4.3)

where the first isomorphism is compatible with G∞-actions and the second is compatible with
G-actions. Note that the second isomorphism allows us to construct a B+

cris-linear map

ι′ :D⊗S Acris → V ∨
st (D)⊗Zp Acris

that is compatible with G-actions, Frobenius and filtration. On the other hand, by Lemma 5.3.4,
we have

ι :M⊗S,ϕ Acris → T∨
S(M)⊗Zp Acris.

Note that (M⊗S,ϕ Acris)⊗Zp Qp = M⊗S,ϕ SK0 ⊗SK0
B+

cris = DS(M)⊗S Acris, we claim that
ι⊗Zp Qp = ι′; that is, ι̂⊗ϕ B+

cris = ι′. To prove the claim, note that TS(M) = HomSur,ϕ(M⊗S

Sur,Sur). The functor

M⊗S Sur 	→ (M⊗S Sur)⊗Sur,ϕ B+
cris =DS(M)⊗S B+

cris

induces a natural map

HomSur,ϕ(M⊗S Sur,Sur)⊗Zp Qp → HomAcris,Fil,ϕ

(
DS(M)⊗S B+

cris,B
+
cris

)
.

Since the left-hand side is TS(M)⊗Zp Qp and the right-hand side is isomorphic to Vst(D), (5.4.3)
shows that the above map is an isomorphism. Therefore, by the construction of ι′ and ι, we have
ι⊗Zp Qp = ι′. In summary, we have proved the following:

THEOREM 5.4.2. – Let T be a G∞-stable Zp-lattice in a semi-stable Galois representa-
tion V , and let M ∈ Modr,fr

/S
be such that η(TS(M)) = T , as in Theorem 5.4.1. We have the
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following commutative diagram:

M⊗S,ϕ B+
cris

ι⊗Zp Qp

T∨ ⊗Zp B+
cris

M⊗S,ϕ Acris
ι

T∨ ⊗Zp Acris

(5.4.4)

where ι⊗Zp Qp preserves G-actions, Frobenius and filtrations and ι preserves G∞-actions and
Frobenius.

Remark 5.4.3. – In the following applications of Theorem 5.4.2 and Lemma 5.3.4, we
sometimes replace M⊗S,ϕ Acris by M⊗S Acris where M := MS(M). It is possible to define
filtrations on both sides of ι such that ι is compatible with these filtrations, but we do not need
filtrations in the applications below.

6. The G-action on M⊗S,ϕ Acris

Let T be the finite free Zp-representation of G in Conjecture 1.0.1. By the hypotheses of
Conjecture 1.0.1, we have Tn = T/pnT = L(n)/L′

(n) for each n � 0, where L′
(n) ⊂ L(n) are

G-stable Zp-lattices in a semi-stable Galois representation V(n) with Hodge–Tate weights in

{0, . . . , r}. By Theorem 5.4.1, there exist finite free ϕ-modules L(n), L′
(n) ∈ Modr,fr

/S
and an

injection in : L(n) ↪→ L′
(n) in Modr

/S such that TS(L(n)) � L(n)|G∞ , TS(L′
(n)) � L′

(n)|G∞ and

TS(in) is the inclusion L′
(n) ⊂ L(n). Setting M̃(n) := L′

(n)/L(n), we have TS(M̃(n))� Tn|G∞ .

Thus, by Theorem 2.4.1, there exists a finite free S-module M ∈ Modr,fr
/S

such that TS(M) �
T |G∞ . A refinement of Theorem 2.4.1 in §4.4 shows that we can assume that Mn � M̃(n). Let
M =MS(M) = S⊗ϕ,S M. Note that M⊗S Acris = M⊗S,ϕ Acris. By Lemma 5.3.4, we have
the following commutative diagram

M⊗S B+
cris

ι⊗Zp Qp

T∨ ⊗Zp B+
cris

M⊗S Acris
ι

T∨ ⊗Zp Acris
ι∗ M⊗S Acris(−r).

(6.0.1)

Since T is a Zp-representation of G, the second column has a natural G-action. Unlike
diagram (5.4.4), we do not know whether M ⊗S B+

cris is stable under the G-action on
T∨ ⊗Zp B+

cris because there is no monodromy on DS(M) = M ⊗Zp Qp available, which is
crucial in defining the G-action on M⊗S B+

cris via (5.2.1).
This section is devoted to proving that M⊗S B+

cris is indeed G-stable under the hypotheses
of Conjecture 1.0.1. We also describe the precise image of the G-action of M in M⊗S B+

cris.
For any integer n � 0, recall that t{n} = tr(n)γq̃(n)(tp−1/p) and n = (p − 1)q̃(n) + r(n) with
0 � r(n) < p− 1. Define a subring RK0 of B+

cris by

RK0 =

{
x =

∞∑
i=0

fit
{i}, fi ∈ SK0 and fi → 0 as i→ +∞

}
.

Put R := RK0 ∩Acris. The main goal of this section is to prove the following:
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PROPOSITION 6.0.4. – Under the hypotheses of Conjecture 1.0.1, M⊗S B+
cris is stable under

the action of G and G(M) ⊂M⊗S RK0 .

6.1. Action of G0 on M⊗S Acris

Suppose that T is a G-stable Zp-lattice in a semi-stable Galois representation V . Let
M ∈ Modr,fr

/S
be such that η(TS(M)) = T as in Theorem 5.4.2 and M := MS(M). We first

analyze the action of G0 on M ⊗S B+
cris. Recall that τ is a fixed topological generator of

G0 := Gal(K∞,p∞ ,Kp∞) (§5.2).

PROPOSITION 6.1.1. – There exists a constant s0 � 0 only depending on the maximal Hodge–
Tate weight r of V such that ps0τ(M)⊂M⊗S R.

Remark 6.1.2. – When r < p−1, we proved in §5.3 [18] that τ(M)⊂M⊗SR. Thus, s0 may
be chosen to be 0. Little is known about the minimal bound for s0 if r � p− 1.

To prove Proposition 6.1.1, we need a fact about Acris. Following the notations in §5.2 of [9],
let

I [i] = {a ∈Acris | ϕn(a) ∈ Fili Acris for all n}.
By Proposition 5.3.1 in [9],

I [i] =

{ ∞∑
j�i

ajt
{j}

∣∣∣ aj ∈W (R), aj → 0 as j → +∞
}

.

LEMMA 6.1.3. – There exists a constant λ � 0 only depending on r such that for all m � λ
and all a ∈ Acris, if tra ∈ pmAcris then

a ∈
∑

i+j=m−λ

piI [j].

Proof. – By Theorem 5.2.7 in [9], for any a ∈ Acris, we can write a in the following form:
a =

∑∞
n=0 ant{n}, where an ∈W (R) and an → 0 as n → +∞. Thus, tra =

∑∞
n=0 ancnt{n+r}

with

cn =
pq̃(n+r)q̃(n + r)!

pq̃(n)q̃(n)!
.

It is easy to check that q̃(n+r)− q̃(n) is bounded and n−v(cn) →+∞ as n→ +∞, where v(·)
is the standard valuation in Zp. Thus, λ = −min{n− v(cn)} � 0 is well defined. Now suppose
that m > λ and tra ∈ pmAcris. Then there exists bn ∈W (R) such that

∞∑
n=0

ancnt{n+r} = pm

( ∞∑
n=0

bnt{n}

)
.

Looking at this equation modulo I [r], we get pm(
∑r−1

n=0 bnt{n}) = 0 mod I [r]. By Proposi-
tion 5.3.5 in [9], Acris/I [r] has no p-torsion. Therefore,

∑r−1
n=0 bnt{n} ∈ I [r], so without loss of

generality, we can assume that

∞∑
ancnt{n+r} = pm

( ∞∑
bnt{n+r}

)
.

n=0 n=0
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Looking modulo I [r+1] gives that (a0c0 − pmb0)t{r} ∈ I [r+1]. Since

ϕn
(
(a0c0 − pmb0)t{r}) = ϕn(a0c0 − pmb0)pnt{r} ∈ Filr+1 Acris

and tr ∈ Filr Acris − Filr+1 Acris, we get (a0c0 − pmb0) ∈ I [1]. Note that m > λ � v(c0), so
we may write a0c0 − pmb0 = pv(c0)d0, and, clearly, d0 ∈ I [1]. Therefore, a0 = (c−1

0 pv(c0))d0 +
pm(c−1

0 )b0 and we get

a = pm(c−1
0 )b0 +

(
c−1
0 pv(c0)d0 +

∞∑
n=1

ait
{n}

)
.

Hence, we can write a =
∑∞

n=0 ant{n}, where a0 ∈ pm−λAcris and a0c0 ∈ pmAcris. It now
suffices to prove that we can always write a =

∑∞
n=0 ant{n} such that an ∈ pm−λ−nAcris and

pm | ancn for 0 � n � m− λ. We prove this by induction on n. The above argument settles the
case n = 0. Now suppose that we have an ∈ pm−λ−nAcris and pm | ancn for 0 � n � l − 1.
Consider the case that n = l. Since ancn ∈ pmAcris for 0 � n � l − 1, we have

∞∑
n=l

ancnt{n+r} = pm

( ∞∑
n=0

bnt{n+r} −
l−1∑
n=0

ancn

pm
t{n+r}

)
.(6.1.1)

As in the case n = 0, using the fact that Acris/I [l+r] has no p-torsion, we can rewrite (6.1.1) as
the following:

∞∑
n=l

ancnt{n+r} = pm

( ∞∑
n=l

bnt{n+r}

)
.

Repeating the same argument as in the case n = 0, we have alcl − pmbl = dl with dl ∈ I [1].
We claim that v(cl) � m. In fact, if v(cl) � l, then v(cl) � l � m − λ � m; if v(cl) > l, then
v(cl) = (v(cl)− l) + l � λ + l � λ + m− λ = m. Therefore, dl ∈ pv(cl)Acris and we can write
al = (c−1

l pm)bl + c−1
l dl with c−1

l dl ∈ I [1]. Thus,

a =
l−1∑
n=1

ant{n} + (c−1
l pm)blt

{l} + (c−1
l dl)t{l} +

∞∑
n=l+1

ant{n}.

Rewrite al = (c−1
l pm)bl. Note that v(cl) − l � λ, so m − v(cl) � m − λ − l, and obviously

alcl ∈ pmAcris. Thus we have proved the case n = l, which proves the lemma. �
Proof of Proposition 6.1.1. – Let s0 = λ + r. We choose m big enough so that pmτ(M⊗S

Acris) ⊂ (M ⊗S Acris). Put τ̃ := pmτ . By Theorem 5.4.2 and Lemma 5.3.4, we have the
following commutative diagram:

M⊗S Acris

τ̃

ι
T∨ ⊗Zp Acris

pmτ

M⊗S Acris
ι

T∨ ⊗Zp Acris
ι∗ M⊗S Acris.

(6.1.2)

It suffices to show that if m > s0, then p | τ̃ . Note that M = M⊗S,ϕ S with M ∈ Modr,fr
/S

. Let
(e1, . . . , ed) be a basis of M and ϕM(e1, . . . , ed) = (e1, . . . , ed)A, where A is a d×d matrix with
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coefficients in S. Then there exists a matrix B such that BA = AB = E(u)rI (I is the identity
matrix). Clearly, we can regard e1, . . . , ed as a basis of M. Let (y1, . . . , yd) := (e1, . . . , ed)B in
M. Then

ϕM(y1, . . . , yd) = ϕM(e1, . . . , ed)ϕ(B)

= (e1, . . . , ed)ϕ(A)ϕ(B) = pr(c1)r(e1, . . . , ed),

where c1 = ϕ(E(u))/p is a unit in S. By (6.1.2), we have

ι∗ ◦ ι ◦ τ̃(y1, . . . , yd) = ι∗ ◦ pmτ ◦ ι(y1, . . . , yd).

Write τ̃(y1, . . . , yd) = (e1, . . . , ed)C where C = (cij)d×d is a d × d matrix with coefficients in
Acris. Since ι∗ ◦ ι = Id⊗tr by Lemma 5.3.4, trcij ∈ pmAcris for all i, j = 1, . . . , d. Thus, by
Lemma 6.1.3, we have

cij ∈
∑

i+j=m−λ

piI [j], i, j = 1, . . . , d.

In particular, ϕ(cij) ∈ pm−λAcris for all i, j = 1, . . . , d. On the other hand,(
ϕ(e1), . . . ,ϕ(ed)

)
ϕ(C) = ϕ

(
τ̃(y1, . . . , yd)

)
= τ̃

(
ϕ(y1, . . . , yd)

)
= τ̃

(
pr(c1)r(e1, . . . , ed)

)
,

so we have τ̃(e1, . . . , ed) ∈ pm−s0Acris; that is, p | τ̃ . �
6.2. Proof of Proposition 6.0.4

Since G∞ acts on M trivially, it suffices to prove that there must exist a constant s1 only
depending on e and r such that ps1τ(M)⊂M⊗S R. Since T/pnT is torsion semi-stable, there
exist G-stable lattices L′

(n) ⊂ L(n) in semi-stable Galois representations V(n) with Hodge–Tate

weights in {0, . . . , r} such that L(n)/L′
(n) � Tn. Let L(n) ↪→ L′

(n) be the injection in Modr,fr
/S

corresponding to L′
(n) ⊂ L(n) as Zp[G∞]-modules. We may assume that L′

(n)/L(n) = Mn as
explained in § 4.4. By Theorem 3.2.2, we have

0 L∨
(n) ⊗Zp Sur L′∨

(n) ⊗Zp Sur (T/pnT )∨ ⊗Zp Sur 0

0 L(n) ⊗S Sur L′
(n) ⊗S Sur

Mn ⊗S Sur 0

where the two rows are short exact. Tensoring the above diagram with Acris via ϕ :Sur → Acris,
we have

0 L∨
(n) ⊗Zp Acris L′∨

(n) ⊗Zp Acris (T/pnT )∨ ⊗Zp Acris 0

0 L(n) ⊗S,ϕ Acris L′
(n) ⊗S,ϕ Acris Mn ⊗S,ϕ Acris 0.

The injectivity of the first two columns is guaranteed by Theorem 5.4.2. Since Acris is flat over
Zp, the top row is exact, then the second row is also exact by the injectivity of the first column.
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For the same reason, we have the following commutative diagram:

0 L∨
(n) ⊗Zp Acris L′∨

(n) ⊗Zp Acris (T/pnT )∨ ⊗Zp Acris 0

0 L(n) ⊗S,ϕ Acris L′
(n) ⊗S,ϕ Acris Mn ⊗S,ϕ Acris 0

0 L(n) ⊗S,ϕ R L′
(n) ⊗S,ϕ R Mn ⊗S,ϕ R 0

and the third row is exact. By Proposition 6.1.1, ps0τ(L(n)) ⊂ L(n) ⊗S,ϕ R and ps0τ(L′
(n)) ⊂

L′
(n) ⊗S,ϕ R. Then τ̃n := ps0τ and τn := ps0τ are well defined on Mn ⊗S,ϕ R and Mn ⊗S,ϕ

Acris, respectively. Let ιn := ι mod pn, where ι is constructed in Lemma 5.3.4; we have the
following commutative diagram:

Mn ⊗S,ϕ R

τ̃n

Mn ⊗S,ϕ Acris

τn

ιn (T/pnT )∨ ⊗Zp Acris

ps0τ

Mn ⊗S,ϕ R Mn ⊗S,ϕ Acris
ιn (T/pnT )∨ ⊗Zp Acris.

(6.2.1)

The above diagram tells us that for all n,

ps0τ
(
ι(M⊗S,ϕ R)

)
⊂ ι(M⊗S,ϕ R) + pn(T∨⊗ZpAcris).

Since M⊗S,ϕ R is p-adically complete, we have

ps0τ
(
ι(M⊗S,ϕ R)

)
⊂ ι(M⊗S,ϕ R)

and therefore τ is stable on M⊗S B+
cris and G(M) ⊂M⊗SRK0 . This proves Proposition 6.0.4.

7. G-invariants in M⊗S B+
st

In this section, we will show dimK0(M ⊗S B+
st)G � d, where d = rankZp(T ), and

then prove that T ⊗Zp Qp is semi-stable. Recall that under Assumption 5.2.1, we have
Ĝ := Gal(K∞,p∞/K) � G0 � HK where G0 := Gal(K∞,p∞/Kp∞) � Zp(1) and HK :=
Gal(K∞,p∞/K∞).

7.1. Ĝ-action on D⊗S RK0

Recall that D := M⊗Zp Qp = M ⊗S,ϕ SK0 . By Proposition 6.0.4, we have a Ĝ-action on
D⊗S RK0 such that

(1) the action is RK0 -semi-linear, i.e., for any x ⊗ a ∈ D ⊗S RK0 and g ∈ Ĝ, g(x ⊗ a) =
g(x)⊗ g(a),

(2) the action is compatible with Frobenius, i.e., ϕ(g(x⊗ a)) = g(ϕ(x⊗ a)),
(3) HK acts trivially on D.
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Let D := D/uD. Then there is a Frobenius ϕ :D → D induced by Frobenius on D. Proposition
6.2.1.1 in [5] (also see Lemma 7.3.1) shows that there exists a unique section s :D →D such
that s is Frobenius equivariant, i.e., s ◦ϕD = ϕD ◦ s.

Thinking of D as a K0-submodule of D via s, we have

PROPOSITION 7.1.1. – Notations as above, there exists a K0-morphism N :D →D such that
(1) pϕN = Nϕ,
(2) for any g ∈ Ĝ and x ∈D,

g(x) =
∞∑

i=0

N i(x)⊗ γi

(
− log ε(g)

)
,(7.1.1)

where ε(g) = g([π])/[π] and γi(x) = xi/i!.

Note that pϕN = Nϕ implies that N is nilpotent. Thus (7.1.1) is well defined. To prove the
above proposition, we need to analyze the structure of RK0 more carefully.

LEMMA 7.1.2. – Let x =
∑∞

j=0 fjt
{j} ∈ RK0 with fj ∈ SK0 for all j � 0. If x = 0; then

fj = 0 for all j � 0.

Proof. – Without loss of generality, we can assume that x =
∑∞

j=0 fjt
{j} ∈ Acris with fj ∈ S

for all j. Let fj0 be the first nonzero term. For any n � 0,

0 = ϕn(x) =
∞∑

j=j0

ϕn(fj)ϕn(t{j}) =
∞∑

j=j0

ϕn(fj)pnt{j}.

Note that t ∈ Fil1 Acris, so ϕn(fj0)t
j0 ∈ Filj0+1 Acris for all n. Since tj0 ∈ Filj0 Acris and

tj0 /∈ Filj0+1 Acris, ϕn(fj0) ∈ Fil1 S for all n � 1. We claim that this is impossible unless
fj0 = 0. In fact, write

fj0(u) =
∞∑

i=i0

wi
ui

e(i)!
, wi ∈W (k), lim

i→∞
wi = 0, wi0 �= 0,

where i = e · e(i) + r(i) with 0 � r(i) < e and wi0 is the first nonzero term. ϕn(fj0) ∈ Fil1 S

implies that σn(fj0)(π
pn

) = 0 where σn(f) :=
∑∞

i=i0
ϕn(wi) ui

e(i)! . But it is easy to see that there
exists n0 such that for any n � n0,

v

(
πipn

e(i)!

)
> v

(
ϕn(wi0)π

i0pn

e(i0)!

)
for all i > i0,

where v(·) is the valuation on W (k). Thus, v(σn(fj0)(π
pn

)) = v(ϕn(wi0 )πi0pn

e(i0)!
), which

contradicts the fact that σn(fj0)(π
pn

) = 0. Therefore, fj0 = 0, so fj = 0 for all j. �
By Lemma 7.1.2, we may regard K0�t� and RK0 as subrings of K0�x, y� via u 	→ x and

t 	→ y. Define R̃ :=RK0 ∩K0�t�. The element x ∈ R̃ has the following shape:

x =
∞∑

i=0

ait
{i}, ai ∈K0, ai → 0 as n →+∞.
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LEMMA 7.1.3. – Notations as in Proposition 7.1.1, Ĝ(D) ⊂ D ⊗K0 R̃.

Proof. – Let e1, . . . , ed be a basis of D. Recall that τ is a topological generator of G0. Write
τ(e1, . . . , ed) = (x1, . . . , xd)A where A is a d×d matrix with coefficients in RK0 . For any n � 0,
we have

τ
(
ϕn(e1, . . . , ed)

)
= ϕn

(
τ(e1, . . . , ed)

)
= ϕn(e1, . . . , ed)ϕn(A).(7.1.2)

Note that ϕ is a bijection on D, so there exists an invertible matrix Bn with coefficients in
K0 such that ϕn(e1, . . . , ed) = (e1, . . . , ed)Bn. Thus, comparing both sides of (7.1.2), we have
ABn = Bnϕn(A).

Write A =
∑∞

i=0 Ait
{i} where Ai is a d× d matrix with coefficients in SK0 . Then we have

∞∑
i=0

BnAit
{i} =

∞∑
i=0

ϕn(Ai)Bnpnt{i}.

By Lemma 7.1.2, BnAi = pnϕn(Ai)Bn for all n and all i. Now we claim that all coefficients of
Ai have to be in K0. In fact, write Ai =

∑∞
j=0 Cju

j with the Cj coefficients in K0. Note that

ϕn(Ai) =
∑∞

j=0 ϕn(Cj)upnj and Bn is an invertible matrix with coefficients in K0. Then we
have Cj = 0 for all j > 0 by comparing the coefficients of uj terms. �

Proof of Proposition 7.1.1. – Recall that (§5.2) Ĝ = G0 � HK , HK � Gal(Kp∞/K) ⊂
Gal(Qp,p∞/Qp) � Z×

p and G0 � Zp(1). If we identify HK with a closed subgroup of Z×
p , HK

acts on G0 via the p-adic cyclotomic character χ; that is, for any g ∈ HK , we have gτ = τχ(g)g.
Let (e1, . . . , ed) be a basis of D. Write

τ(e1, . . . , ed) = (e1, . . . , ed)A, A =
∞∑

i=0

Aiγi(t),

where Ai is a d× d matrix with coefficients in K0. Then for any g ∈HK ,

gτ(e1, . . . , ed) = (e1, . . . , ed)g

( ∞∑
i=0

Aiγi(t)

)

= (e1, . . . , ed)
∞∑

i=0

Aiγi

(
g(t)

)
= (e1, . . . , ed)

∞∑
i=0

Aiγi

(
χ(g)t

)
.

On the other hand,

gτ(e1, . . . , ed) = τχ(g)g(e1, . . . , ed) = τχ(g)(e1, . . . , ed) = (e1, . . . , ed)Aχ(g).

Writing A := A(t), we have A(χ(g)t) = A(t)χ(g) and log(A(χ(g)t)) = χ(g) log(A(t)).
Choosing g ∈HK such that χ(g) �= 1, we have log(A(t)) = Nt for some matrix N ; thus,

A(t) =
∞∑

N iγi(t) and τ(e1, . . . , ed) = (e1, . . . , ed)
∞∑

N iγi(t).

i=0 i=0
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We can then define a K0-linear endomorphism on D by using the matrix N , which settles (7.1.1).
To check that pϕN = Nϕ, note that ϕτ(e1, . . . , ed) = τϕ(e1, . . . , ed). We get

(e1, . . . , ed)Bϕ

(
d∑

i=0

N iγi(t)

)
= (e1, . . . , ed)

d∑
i=0

N iγi(t)B,

where ϕ(e1, . . . , ed) = (e1, . . . , ed)B. Therefore, pBN = NB and we have shown that pϕN =
Nϕ. �
7.2. The proof of Conjecture 1.0.1 for semi-stable representations

We now calculate dimK0(M⊗S B+
st)G. Recall that u = log([π]) ∈ B+

st and for any g ∈ G,
g(u)− u = log(ε(g)). Consider the K0-vector space

D̄ :=

{ ∞∑
i=0

N i(y)⊗ γi(u) ∈M⊗S B+
st | y ∈D

}
.

It is easy to see that dimK0(D̄) = dimK0(D) = d. We claim that D̄ ⊂ (M ⊗S B+
st)G. In

fact, since G∞ acts on u and D trivially, it suffices to check that τ(x) = x for any x =∑
i�0 N i(y)⊗ γi(u) ∈ D̄ with y ∈ D. We have

τ(x) =
∞∑

i=0

N i
(
τ(y)

)
⊗ γi

(
τ(u)

)
=

∞∑
i=0

∞∑
j=0

N i+j(y)⊗ γj

(
− log

(
ε(τ)

))
· γi

(
log

(
ε(τ)

)
+ u

)
=

∞∑
i=0

N i(y)⊗
∑

j+l=i

γj(t)γl(−t + u)

=
∞∑

i=0

N i(y)⊗ γi(u)

= x.

Therefore,

dimK0(T
∨ ⊗Zp B+

st)
G � dimK0(M⊗S B+

st)
G � dimK0(D̄) = d.

Thus, T ⊗Zp Qp is semi-stable.

7.3. The case of crystalline representations

In this subsection, we give the proof of Conjecture 1.0.1 for crystalline representations.
Though the arguments above have already shown that T ⊗Zp Qp has to be semi-stable provided
that T/pnT is torsion crystalline for all n, we need a further argument to prove that T ⊗Zp Qp

is indeed crystalline. This is mainly due to the fact that we need more precise information
from torsion representations. Use the notations of the previous subsection and further suppose
that T/pnT is torsion crystalline. Recall that there exists M ∈ Modr,fr

/S
corresponding to the

representation T |G∞ . Let M := MS(M), D = M⊗Zp Qp and M := M/uM =M/uM.
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LEMMA 7.3.1. – There exists a unique section η′ :D → D such that η′ ◦ ϕ = ϕ ◦ η′. Also
there exists a constant s2 only depending on the absolute ramification index e and the maximal
Hodge–Tate weight r such that

ps2η′(M) ⊂M.

Proof. – The case r = 1 was proved in an early version of [13], but is no longer included
there. Here we include the details of the proof for any r > 0 by modifying Kisin’s argument.
Let η0 :M →M be any W (k)-linear section. Since M = M/uM = M/uM and E(u)r kills
M/ϕ∗M, we see that prM ⊂ ϕ(M). Therefore,

(ϕ ◦ η0 ◦ϕ−1 − η0)(M) ⊂ p−ruM,

so for i � 1, (ϕi ◦ η0 ◦ϕ−i −ϕi−1 ◦ η0 ◦ϕ1−i)(M) ⊂ p−irupi−1M. Thus,

η′ = η0 +
∞∑

i=1

(ϕi ◦ η0 ◦ϕ−i −ϕi−1 ◦ η0 ◦ϕ1−i) :M →M⊗W (k) K0

is a well defined map and satisfies η′ ◦ ϕ = ϕ ◦ η′. Taking s2 = Max{ri − v(e(pi−1)!)} where
pi−1 = e · e(pi−1) + r(pi−1) with 0 � r(pi−1) < e, we have η′(M) ⊂ p−s2M. The uniqueness
of η′ will be a consequence of Lemma 7.3.3 below, which extends the uniqueness of such η′ to
the torsion level. �

Let η = ps2η′. Then η :M →M is well defined and q ◦ η = ps2 Id where q :M → M is the
canonical projection. If V = T ⊗Zp Qp is crystalline, then N acts as 0 on D := Dst(V ). Thus,
the semi-linear G-action defined by (5.2.1) is trivial on D. Therefore, we have

LEMMA 7.3.2. – T ⊗Zp Qp is crystalline if and only if ι̃ ◦ η(M) ⊂ (T∨⊗ZpAcris)G, where
ι̃ :M ↪→ T∨ ⊗Zp Acris is the composite of the embedding M → M ⊗S Acris and ι :M ⊗S

Acris → T∨ ⊗Zp Acris is constructed in Lemma 5.3.4.

Since T/pnT is torsion crystalline, as in the beginning of §6.2 we have a short exact sequence
in Modr

/S

0 → L(n) → L′
(n) → Mn → 0

corresponding to the short exact sequence of Zp[G]-modules

0 → L∨
(n)→L′∨

(n) → (T/pnT )∨→0.

Let L(n) := MS(L(n)), L′
(n) := MS(L′

(n)), Mn := M/pnM and Mn := Mn/uMn. We
then have a commutative diagram

0 L(n) L′
(n) Mn 0

0 L(n)/uL(n)

ηL(n)

L′
(n)/uL′

(n)

ηL′
(n)

Mn

η̃n

0

where η̃n is induced by ηL(n) and ηL′
(n)

. Note that the bottom row is short exact because

L(n)/uL(n) is finite W (k)-free. Therefore, η̃n is ϕ-equivariant and qn ◦ η̃n = ps2 Id, where
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qn :Mn → Mn is the canonical projection. Furthermore, since L(n) and L′
(n) are lattices in a

crystalline representation, Lemma 7.3.2 implies that

ι̃L(n) ◦ ηL(n)(L(n)/uL(n))⊂ (L∨
(n) ⊗Zp Acris)G

and

ι̃L′
(n)

◦ ηL′
(n)

(L′
(n)/uL′

(n))⊂ (L′∨
(n) ⊗Zp Acris)G.

Hence, letting ι̃n := ι̃M mod pn, we have

ι̃n ◦ η̃n(Mn) ⊂
(
(T/pnT )∨ ⊗Zp Acris

)G
.

Now let ηn := η mod pn where η := ps2η′ :M → M is constructed in Lemma 7.3.1. By
Lemma 7.3.2, to prove that T ⊗Zp Qp is crystalline, it suffices to show that there exists a constant
λ2 only depending on r and e such that pλ2 η̃n = pλ2ηn. This is settled in the following lemma.

LEMMA 7.3.3. – Let Mn = M/pnM with M ∈ Modr,fr
/S

finite S-free, M := MS(M),
Mn :=M/pnM and Mn :=Mn/uMn. Suppose that there exist two W (k)-linear morphisms
η1, η2 :Mn →Mn such that

(1) η1 and η2 are ϕ-equivariant, i.e., ηi ◦ϕMn = ϕMn ◦ ηi for i = 1,2,
(2) q ◦ η1 = q ◦ η2 where q :Mn → Mn is the canonical projection.

Then there exists a constant λ2 depending only on e and r such that pλ2(η1 − η2) = 0.

Proof. – Select a basis e1, . . . , ed of Mn such that q(e1), . . . , q(ed) is a basis of Mn. Suppose
that (η1−η2)(q(e1), . . . , q(ed)) = (e1, . . . , ed)A where A is a d×d matrix with coefficients in S.
Let I be the ideal of S given by

I =
{∑

i�1

wi
ui

e(i)!

∣∣ wi ∈W (k),wi → 0 as i→ +∞
}

,

where i = e · e(i) + r(i) with 0 � r(i) < e. Since q ◦ (η1 − η2) = 0, all the coefficients of A
belong to I . Note that (η1 − η2) is Frobenius equivariant, so we have

(η1 − η2)
(
ϕ
(
q(e1)

)
, . . . ,ϕ

(
q(ed)

))
= ϕ

(
(η1 − η2)

(
q(e1), . . . , q(ed)

))
= ϕ(e1, . . . , ed)ϕ(A).(7.3.1)

Write ϕ(e1, . . . , ed) = (e1, . . . , ed)X where X is a d × d matrix with coefficients in S.
Then ϕ(q(e1), . . . , q(ed)) = (q(e1), . . . , q(ed))X0, where X0 = X mod I . By (7.3.1), we get
Xϕ(A) = AX0. Since Mn = M/pnM, by repeating the same argument as in the proof of
Proposition 6.1.1, there exists a matrix Y such that XY = prc1

r , where c1 = ϕ(E(u))/p a
unit in S. Then we have X0Y0 = (c0p)r Id where Y0 := Y mod I and pc0 is the constant term
of E(u). Therefore,

Xϕ(A)Y0 = (c0p)rA.(7.3.2)

Write A =
∑∞

i=0 Ai
ui

e(i)! with the coefficients of the Ai in Wn(k); then

ϕ(A) =
∞∑

ϕ(Ai)
e(pi)!
e(i)!

upi

e(pi)!
.

i=0
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An easy calculation shows that vp(e(pi)!/e(i)!) → +∞ as i → +∞ and there exists a constant
i0 depending only on e and r such that vp(e(pi)!/e(i)!) � r for all i � i0. Now put λ2 = i0r.
To prove the lemma, it suffices to show that pλ2A = 0. We first prove that pλ2Ai = 0 for i < i0.
To see this, note that A ∈ I , so A0 = 0. If A1 �= 0, then the lowest term in the right-hand side
of (7.3.2) is (c0p)rA1u, but then the lowest term in ϕ(A) is ϕ(A1)up, so prA1 = 0. Therefore,
if we repeat the same argument for the lowest term of pirA for i < i0, then we have pλ2Ai = 0
for i < i0. Now suppose that pλ2Ai1

ui1

e(i1)!
is the lowest term in pλ2A. Consider the lowest term

in pλ2−rXϕ(A)Y0. We claim that

pλ2−rϕ(Ai)
upi

e(i)!
= 0 for all i < i1,(7.3.3)

so the lowest possible term of pλ2−rϕ(A) is pλ2−rϕ(Ai1)
upi1

e(i1)!
. Comparing the lowest term of

pλ2A with that of pλ2−rXϕ(A)Y0, we see that pλ2Ai1 = 0, and hence pλ2A = 0. It remains to
prove claim (7.3.3). We have seen that p(i0−1)rAi = 0 for i < i0, so i0 � i1. For i0 � i < i1, note
that

pλ2−rϕ(Ai)
upi

e(i)!
= p(i0−1)r e(pi)!

e(i)!
ϕ(Ai)

upi

e(i)!
.

By definition of i0, we see that vp(p(i0−1)r e(pi)!
e(i)! ) � i0r = λ2. Since pλ2Ai = 0 for all i < i1, we

see that p(i0−1)r e(pi)!
e(i)! ϕ(Ai) = 0. This proves the claim. �

8. The case p = 2

Recall that K∞ =
⋃

n�0 K(πn) and Kp∞ =
⋃

n�0 K(ζpn) with πp
n+1 = π and ζpn primi-

tive pn-th root of unity. We have proved Conjecture 1.0.1 in previous sections under Assump-
tion 5.2.1, that is, p � 3 or Kp∞ ∩K∞ = K if p = 2. In this section, we prove Conjecture 1.0.1
for p = 2 and we assume p = 2 throughout this section.

LEMMA 8.0.4. – Let K̃ = Q2(ζ8)∩K . If [K̃ : Q2] > 1, then K∞ ∩K2∞ = K .

Proof. – Gal(Q2(ζ8)/Q2) � Z/2Z × Z/2Z. Therefore, Q2(ζ8) contains three quadratic
extensions over Q2: Q2(

√
−1), Q2(

√
2) and Q2(

√
−2). Since [K̃ : Q2] > 1, K must contain one

of the above three quadratic extensions. If K contains ζ4 =
√
−1, then the proof of Lemma 5.1.2

in [18] (where we proved the case p � 3) also works here. So we may assume that K ∩Q2(ζ8) =
Q2(

√
2) or K ∩Q2(ζ8) = (

√
−2). We only prove the case that K ∩Q2(ζ8) = Q2(

√
2) because

another case is totally symmetric. Now we prove that Fn := K(πn) ∩ K2∞ = K by induction
on n. The case that n = 0 is trivial. Now assume that Fn = K but Fn+1 �= K . Then [Fn+1 ·
K(πn) : K(πn)] is nontrivial. So [Fn+1 · K(πn) : K(πn)] = 2 and Fn+1 · K(πn) = K(πn+1).
Note that Fn+1 ∩ K(πn) ⊂ Fn = K; we have Gal(K(πn+1)/K(πn)) � Gal(Fn+1/Fn) and
[Fn+1 : Fn] = [Fn+1 : K] = 2. Now we claim that Fn+1 has to be K(ζ8). Let us accept the
claim for a while. Now ζ8 ∈ OK(πn+1), we may write ζ8 = a + bπn+1 with a, b ∈ OK(πn). Let
σ ∈ Gal(K(πn+1)/K(πn)) be the nontrivial element; we have σ(ζ8) = a + bσ(πn+1) = a −
bπn+1. Since Gal(K(πn+1)/K(πn)) � Gal(Fn+1/K), we have σ(ζ8) = −ζ8 = −a − bπn+1.
Therefore a = 0 and ζ8 = bπn+1. This contradicts that ζ8 is a unit. Thus Fn+1 has to be K . Now
it suffices to show that Fn+1 = K(ζ8). Let K ′ := K ∩ Q2∞ and F = Q2(

√
2). We claim that

K ′ = F . In fact, Gal(Q2∞/F ) � 1 + 2Z2 which is a procyclic 2-group. If [K ′ : F ] > 1, then
K ′ must contain Q2(ζ8) and this contradicts the fact that K ∩Q2(ζ8) = Q2(

√
2). Thus we must
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have K ′ = F . Therefore, Gal(K2∞/K) � Gal(Q2∞/F ) � 1 + 2Z2. Since [Fn+1 : K] = 2 and
Fn+1 ⊂ K2∞ , Fn+1 must be K(ζ8). �

Now to complete the proof of Conjecture 1.0.1, we only need to consider the case that
Q2(ζ8) ∩ K = Q2. Let K1 = K(

√
−1) and K2 = K(

√
2). Clearly, K1 ∩ K2 = K . Recall

that T is the Zp-representation in Conjecture 1.0.1 and set V := T ⊗Zp Qp. From the above
discussion, we see that V restricted to Gal(K̄/K1) and to Gal(K̄/K2) is semi-stable (resp.
crystalline) with Hodge–Tate weights in {0, . . . , r}. Now Let D := (V ⊗Qp Bst)Gal(K̄/K(ζ8))

(resp. D := (V ⊗Qp Bcris)Gal(K̄/K(ζ8))). Then dimK0 D = dimQp V and Gal(K(ζ8)/K) acts
on D. Now it suffices to show that Gal(K(ζ8)/K) acts on D trivially. Since V is semi-stable
(resp. crystalline) over K1 and K2, Gal(K(ζ8)/K1) and Gal(K(ζ8)/K2) act trivially on D.
Therefore, Gal(K(ζ8)/K) acts on D trivially.
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