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HOMOLOGY STABILITY FOR ORTHOGONAL GROUPS
OVER ALGEBRAICALLY CLOSED FIELDS

BY JEAN-LOUIS CATHELINEAU

ABSTRACT. – We give the best ranges of stability, for homology of orthogonal groups and special
orthogonal groups, over an algebraically closed field, of characteristic different from 2. This answers
affirmatively a conjecture asserted in a previous paper. We find distinct ranges of stability for orthogonal and
special orthogonal groups, and Milnor K-theory appears as an obstruction to stability for special orthogonal
groups. The main results are formulated, more generally, for infinite Pythagorean fields.
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RÉSUMÉ. – On donne les meilleures bornes de stabilité, pour l’homologie des groupes orthogonaux et
spéciaux orthogonaux, sur un corps algébriquement clos de caractéristique différente de 2. Cela résout
par l’affirmative une conjecture antérieure. Les bornes sont distinctes pour les deux types de groupes,
et la K-théorie de Milnor apparaît comme première obstruction à la stabilité, dans le cas des groupes
spéciaux orthogonaux. Les résultats principaux ont plus généralement pour cadre naturel celui où le corps
est pythagoricien infini et de caractéristique différente de 2.
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1. Introduction

1.1. Notations and basic definitions

For k a field of characteristic different from 2, let qn(x) =
∑n

i=1 x2
i be the Euclidean quadratic

form on kn. We denote by O(n,k) the corresponding orthogonal group, that is the group of
orthogonal matrices with coefficients in k. The special orthogonal group is written SO(n,k).
The quadric: Qn(k) = {x ∈ kn: qn(x) = 1} plays a crucial role in what follows.

If M is an O(n,k)-module, M t means the same module twisted by the action of the
determinant.

Sometimes, when we want to stress the fact that x ∈ kn is a vector, we write −→x instead of x.
We use the notation −→xy, for y − x. If V is an affine subspace of kn, the direction of V is the
linear space

−→
V = {−→xy: x, y ∈ V }. If V is an affine subspace not containing the origin 0, V is the

linear span of V .
A Euclidean space is a quadratic space which is isometric to some (kn, qn). A Pythagorean

field is a field where the sum of two squares is a square [25]. Pythagorean fields form a natural
class containing algebraically closed fields and the real field. From a geometrical point of view,
their best characterization is the following: a field is Pythagorean iff every non-degenerate linear
subspace of a Euclidean space is Euclidean.

For the rest of the paper, k is always an infinite field of characteristic �= 2 which is assumed
to be Pythagorean, unless specifically stated. This is a rather drastic restriction which discards
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488 J.-L. CATHELINEAU
arithmetic difficulties, but it is very unlikely that, without this hypothesis, our results remain true:
see Remark 4.6, and the paper [40] for a study in a wider context.

1.2. Main results

Homology stability, for linear groups over rings, was a current object of study some years
ago (see the references at the end of the paper). One motivation was in Algebraic K-theory. The
special case of the orthogonal groups for Euclidean forms was considered in Vogtman [40] and
Sah [33]. For recent works on homology stability, see also [12,28].

In this paper, we want to return to the case of orthogonal groups of Euclidean forms, for
which the subject of Scissors Congruences or extended Hilbert’s third problem, has opened
new perspectives [34,15]. In a series of beautiful papers, the homology of classical Lie groups
considered as discrete groups was used by Dupont and Sah, in the study of Scissors Congruences.
Goncharov in his article on the volume of hyperbolic manifolds and mixed Tate motives [20],
gave another extension of the third problem: it appeared that the homology of orthogonal groups
over algebraically closed fields, although not explicit in his work, was indeed relevant (see [7,8]).

Our purpose here is to give the best ranges of stability for the homology of orthogonal and
special orthogonal groups, for Pythagorean fields. Our main results were conjectured in [10], as a
natural counterpart to analogous facts on the Lie algebra homology of skew-symmetric matrices.

Recall that we have a natural morphism

Hi

(
O(n,k),Z

)
→Hi

(
O(n + 1,k),Z

)
,

which is induced by the map

A �→
(

A 0
0 1

)
,

or any of its conjugates. Concerning the orthogonal group, we have

THEOREM 1.1. – The natural map

Hi

(
O(n,k),Z

)
→Hi

(
O(n + 1,k),Z

)
,

is surjective for n = i, and bijective for n � i + 1.

This theorem is proved in Section 5. It gives the best range of stability. For example, the map

H2

(
O(2,C),Z

)
→ H2

(
O(3,C),Z

)
,

is surjective but not injective.
For k = R, Theorem 1.1 is the stability Theorem 1.3 in Sah [33]. One crucial step, in Sah’s

proof of his theorem, is the existence of circumcenters 1 for spherical simplices. Let St(n,R) be
the classical Steinberg module of Rn [14], considered as an O(n,R)-module. It is implicit, in
the work of Sah, that the existence of circumcenters implies the triviality of the homology group
H0(O(n,R), St(n,R)).

As a main step to the proof of Theorem 1.1, we will generalize this fact in the following form.
For the quadratic space (kn, qn), we consider the “Tits building” of flags of non-degenerate
subspaces (see [7] and Section 4). There is yet a Steinberg O(n,k)-module, written St(qn),
which coincides 2 with the previous one when k = R.

1 Circumcenters in hyperbolic geometry, have also been used in [15,6], to prove homological results.
2 Of course, it is no more a GL(n,k)-module in general.
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THEOREM 1.2. – For an infinite Pythagorean field of characteristic not 2, the homology group
H0(O(n,k),St(qn)) is trivial, for n � 2.

The proof of this theorem is completed in Section 4, where we prove also that H0(O(2,k),
St(q2)) �= 0, if k is not Pythagorean.

By contrast, for the twisted module St(qn)t where n is an even integer, the homology group
H0(O(n,k),St(qn)t) which is a so-called scissors congruence group [7,8] seems to be highly
non-trivial in general.

If one tries to generalize the circumcenter argument of Sah, one is rapidly confronted with the
annoying fact that Geometry, in a Euclidean space over a Pythagorean field, is more complicated
than in the case of the real field. The main reason is the presence of degenerate subspaces. In
Sections 2 and 3, we introduce and study the necessary material for avoiding this difficulty.
Crucial arguments use elementary algebraic geometry.

Here is our main result concerning stability for special orthogonal groups. The different
ranges of stability between orthogonal and special orthogonal groups are related to the fact that
orthogonal groups are not connected as algebraic groups [4].

THEOREM 1.3. – The natural map

Hi

(
SO(n,k),Z[1/2]

)
→ Hi

(
SO(n + 1,k),Z[1/2]

)
,

is surjective for n = 2i, and bijective for n � 2i + 1.
The kernel of the map

Hn

(
SO(2n,k),Z[1/2]

)
→ Hn

(
SO(2n + 1,k),Z[1/2]

)
,

is isomorphic to the homology group Hn(O(2n,k),Z[1/2]t), with coefficients in the determinant
module Z[1/2]t.

A special case of this theorem for k = R and homology in degree 2, but with coefficients in Z, is
also found in Sah [33].

To prove this theorem, we generalize slightly in Section 6 the results of [6,7]. Recall that
the involution of Hi(SO(n,k),Z[1/2]), induced by the action by conjugation of O(n,k) in
SO(n,k), is responsible for a decomposition into eigenspaces

Hi

(
SO(n,k),Z[1/2]

)
= Hi

(
SO(n,k),Z[1/2]

)+ ⊕Hi

(
SO(n,k),Z[1/2]

)−
.

This decomposition is related to the homology groups of O(n,k) as follows. To the extension

0 → SO(n,k)→ O(n,k) →{±1}→ 0,

are associated two Hochschild–Serre spectral sequences, with coefficients in Z[1/2] and Z[1/2]t.
From the collapsing of these spectral sequences, we get

Hi

(
SO(n,k),Z[1/2]

)+ ∼= Hi

(
O(n,k),Z[1/2]

)
and

Hi

(
SO(n,k),Z[1/2]

)− ∼= Hi

(
O(n,k),Z[1/2]t

)
.

Concerning these twisted homology groups, we find that
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490 J.-L. CATHELINEAU
THEOREM 1.4. – (i) For i � 0, Hi(O(2n + 1,k),Z[1/2]t) = 0.
(ii) For i < n, Hi(O(2n,k),Z[1/2]t) = 0.
In particular: Hi(O(2n,k),Z[1/2]) = Hi(SO(2n,k),Z[1/2]), for n > i.

Theorem 1.3 is a direct consequence of Theorems 1.1 and 1.4.
The proof of Part (i) in Theorem 1.4 is a simple consequence of the “center kills” lemma (see

for example [15], Lemma 5.4). Indeed for n odd, −Id is in the center of O(n) and acts by −1 in
Z[1/2]t, which is 2-divisible.

For coefficients in Q, Theorem 1.4(ii) is a special case of a result of [6,7]. We will rework the
proof, for coefficient in Z[1/2], in Section 6.

In Section 6.3 we address the special case of quadratically closed fields 3 .
Let KM

n (k) denote the Milnor K-theory of k [27]. For a quadratically closed field, it is known
that KM

n (k) is uniquely 2-divisible, for n � 2, that is

KM
n (k)⊗Z[1/2] = KM

n (k), for n � 2.

For n = 0,1

KM
0 (k)⊗Z[1/2] = Z[1/2],

KM
1 (k)⊗Z[1/2] = k×/μ2(k),

where k× is the multiplicative group of k, and μ2(k) is the 2-primary part of the group of roots
of unity.

We can now make precise the obstruction to stability for SO(n,k).

THEOREM 1.5. – If k is quadratically closed

Hn

(
SO(2n,k),Z[1/2]

)− ∼= Hn

(
O(2n,k),Z[1/2]t

) ∼= KM
n (k)⊗Z[1/2].

We end the paper in Section 6.4, by a complement in the case of the real field.

1.3. Applications and complements

If k is quadratically closed, the orthogonal group O(2n,k) is isomorphic to the orthogonal
group O(n,n,k) of the hyperbolic quadratic form: x1xn+1 + · · ·+ xnx2n. In this special case,
we can relate our results to Suslin’s stability theorem for GL(n,k) (see Suslin [36], and the
remarks at the end of the introduction in [8]). Identifying O(2n,k) to O(n,n,k), the hyperbolic
morphism

GL(n,k)→ O(n,n,k),

M �→
(

M 0
0 tM−1

)
induces a composed morphism

Hi

(
GL(n,k),Z[1/2]

)
→Hi

(
SO(2n,k),Z[1/2]

)
→ Hi

(
O(2n,k),Z[1/2]t

)
.

The maps

Hi

(
O(2m,k),Z[1/2]t

)
→Hi

(
O(2m + 2,k),Z[1/2]t

)
,

3 That is fields where each element is a square. Such fields are exactly Pythagorean fields where −1 is a square [25].
4e SÉRIE – TOME 40 – 2007 – N◦ 3



HOMOLOGY STABILITY FOR ORTHOGONAL GROUPS 491
are trivial, since the groups Hi(O(2m+1,k),Z[1/2]t) are zero. We get by naturality a morphism

Hi(GL(n,k),Z[1/2])
ImHi(GL(n− 1,k),Z[1/2])

−→ Hi

(
O(2n,k),Z[1/2]t

)
,

where ImHi(GL(n− 1,k),Z[1/2]), is the image of the stabilization map.

PROPOSITION 1.6. – For a quadratically closed field, the previous morphism

Hi(GL(n,k),Z[1/2])
ImHi(GL(n− 1,k),Z[1/2])

−→ Hi

(
O(2n,k),Z[1/2]t

)
,

is an isomorphism, for i � n. Actually these groups are identified to KM
n (k)⊗Z[1/2], for i = n,

and are reduced to 0, for i < n.

Concerning the composed morphism

Hi

(
GL(n,k),Z[1/2]

)
→ Hi

(
SO(2n,k),Z[1/2]

)
→Hi

(
O(2n,k),Z[1/2]

)
,

we have also the following.

PROPOSITION 1.7. – For a quadratically closed field, the morphism induced by the hyperbolic
map

Hi

(
GL(n,k),Z[1/2]

)
→ Hi

(
O(2n,k),Z[1/2]

)
,

is surjective for n � i.

For a quadratically closed field, the Witt ring is Z/2Z. The result then follows from
Karoubi [23], Théorème 3.5, Suslin’s stability theorem, and our own stability results.

In Friedlander [18], one finds the following theorem

THEOREM. – Let Fp be the algebraic closure of the finite field Fp, with p an odd prime; the
natural map

Hi

(
SO(n,Fp),Z

)
→ Hi

(
SO(n + 1,Fp),Z

)
,

is bijective for n � i + 2.

Combined with our own results, this has the following consequence

PROPOSITION 1.8. – If Fp is the algebraic closure of Fp (p �= 2),

Hi

(
O(n,Fp),Z[1/2]t

)
= 0, for n � i + 2.

There is no contradiction with Theorem 1.5 because KM
n (Fp) = 0, for n � 2. Note that the range

of stability, in the result of Friedlander, is the best possible. For example, the map

H1

(
SO(2,Fp),Z

)
→H1

(
SO(3,Fp),Z

)
is the map: F

×
p → 0, since SO(3,Fp) is equal to its commutator subgroup [13].

Here is another complement, without details. The generalization to orthogonal groups, over
rings of dual numbers k[X]/(X2), along the ideas of [6] is easy. If moreover k has characteristic
0, we can apply [6] Proposition 1 to get the following corollary of our main results.
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THEOREM 1.9. – For k a Pythagorean field of characteristic 0, let so(n,k) be the Lie algebra
of skew-symmetric (n×n)-matrices. We consider so(n,k) as an O(n,k)-module, by the adjoint
action, and write so(n,k)t the adjoint action twisted by the determinant.

(i) The natural map

Hi

(
O(n,k), so(n,k)

)
→Hi

(
O(n + 1,k), so(n + 1,k)

)
,

is surjective for n = i + 1, and bijective for n � i + 2.
(ii) The natural map

Hi

(
SO(n,k), so(n,k)

)
→Hi

(
SO(n + 1,k), so(n + 1,k)

)
,

is surjective for n = 2i + 1, and bijective for n � 2i + 2.
(iii) For i � 0, Hi(O(2n + 1,k), so(2n + 1,k)t) = 0.

For i < n− 1, Hi(O(2n,k), so(2n,k)t) = 0.
For n > i + 1, Hi(O(2n,k), so(n,k)) = Hi(SO(2n,k), so(n,k)).

(iv) If moreover −1 is a square,

Hn−1

(
O(2n,k), so(2n,k)t

) ∼= Ωn−1
k ,

where Ωn
k is the space of absolute Kähler differentials of degree n.

1.4. Problems

Here is a list of open questions.
(A) What can be said of Theorem 1.3, considering coefficients in Z, instead of Z[1/2]? Note

that the result is yet true for i = 2, as in [33] for the case of k = R.
(B) What could be the kernel of the map: Hn(O(n,k),Z) → Hn(O(n + 1,k),Z)? Even in

the simpler analogous case of the Lie algebra homology of skew-symmetric matrices, the
corresponding kernel is not known. It should be related to the invariant theory of matrices
(see [26,10]).

(C) What are the homology groups Hi(O(2n,k),Zt), for n < i < 2n? These homology
groups are potentially interesting, in the study of scissors congruences. They could be
related to Adams decompositions, in algebraic K-theory.

(D) One can define, as above, a Steinberg O(E)-module St(E), for any non-degenerate
quadratic space (E,q) (see [9]). Calculate H0(O(E),St(E)).

(E) Generalize our stability results to a good class of local rings, with infinite Pythagorean
residue fields.

(F) Make precise the ranges of homology stability for orthogonal groups of Euclidean forms
over non-Pythagorean fields (see [40]).

(G) What is the relation if any, between Milnor K-theory and homology stability problems
for orthogonal groups over rings (see [29,19] for GLn)?

1.5. Simplified notations

Henceforth we will write O(n) (resp. SO(n), St(n)), instead of O(n,k) (resp. SO(n,k),
St(qn)).

For the convenience of the reader, and also to be as self contained as possible, I have resumed,
along the text, several arguments contained in my previous papers on orthogonal groups.
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2. Configurations of points and lines

2.1. Simplices

We will consider two types of simplices: p-simplices of vectors: (v0, v1, . . . , vp), with vi ∈ kn,
and p-simplices of linear subspaces of kn of dimension 1: (L0,L1, . . . ,Lp), called simplices of
lines. These lines will be also considered as points of the projective space P(kn).

The rank: rkω, of a simplex ω = (X0,X1, . . . ,Xp), is the dimension of the linear space
generated by its vertices Xi. For I = {i0 < i1 < · · · < ir} ⊂ {0,1, . . . , p}, the related face of
(X0,X1, . . . ,Xp) is (Xi0 ,Xi1 , . . . ,Xip).

DEFINITION 2.1. – A p-simplex ω is generic, if rkω = p + 1. Note that if (v0, v1, . . . , vp) is
a generic simplex of vectors of kn, the affine subspace generated by the points {v0, v1, . . . , vp}
does not contain the origin.

A p-simplex ω is non-degenerate, if the linear space generated by its vertices is non-
degenerate.

A p-simplex ω is geometric, if all its faces are non-degenerate.
A p-simplex (v0, v1, . . . , vp), with vi ∈Qn(k), is said to be strongly geometric, if it is generic

and geometric, and if for each subset I of {0,1, . . . , p} the vector space Vect〈−−→vivj , i, j ∈ I〉 is
non-degenerate.

We now introduce a few notations specific to a strongly geometric simplex ω = (v0, v1, . . . , vp).
For I ⊂ {0,1, . . . , p}, the vector space: Vec〈−−→vivj , i, j ∈ I〉 is a non-degenerate subspace of codi-
mension 1, in the non-degenerate vector space Vec〈−→vi , i ∈ I〉. We denote by LI the orthog-
onal of Vec〈−−→vivj , i, j ∈ I〉 in Vec〈vi, i ∈ I〉. For I reduced to one element i, LI = −→kvi. For
i ∈ {0,1, . . . , p}, and any permutation σ of {0,1, . . . , p}, we put Lσ

i := L{σ(0),σ(1),...,σ(i)}. We
remark that the simplex of lines (Lσ

0 ,Lσ
1 , . . . ,Lσ

p ) can be non-generic and is not geometric in
general (nevertheless one can check that: for 0 � r � s � p, the face (Lσ

r ,Lσ
r+1, . . . ,L

σ
s ) is non-

degenerate).
The following proposition will be used in Section 3.

PROPOSITION 2.2. – Let ω = (v0, v1, . . . , vp) be a strongly geometric simplex, σ a permuta-
tion of {0,1, . . . , p}, and τ the transposition (01). Denote by H the non-degenerate linear sub-
space of codimension 1 of kn, orthogonal to −−−−−−→vσ(0)vσ(1), and let sH be the orthogonal symmetry
around H . We have

sH

((
Lσ

0 ,Lσ
1 , . . . ,Lσ

p

))
=

(
Lστ

0 ,Lστ
1 , . . . ,Lστ

p

)
.

As a result, these two simplices are generic and geometric or not, at the same time.

Since Lσ
0 = k−−→vσ(0), and Lστ

0 = k−−→vσ(1), we have sH(Lσ
0 ) = Lστ

0 . On the other hand, Lσ
i = Lστ

i ,
for i � 1, and these lines are in the hyperplane H . �

DEFINITION 2.3. – A strongly geometric simplex ω = (v0, v1, . . . , vp) is said to be nice if, for
all σ, the p-simplex of lines (Lσ

0 ,Lσ
1 , . . . ,Lσ

p ) is generic and geometric. A geometric simplex
ω = (v0, v1, . . . , vp), with vi ∈Qn(k), will be called excellent, if all its generic faces are nice.

Remark 2.4. – A 0-simplex (v0), with qn(v0) = 1, is nice, as well as a strongly geometric
1-simplex (v0, v1). The faces of a nice simplex are nice, and the faces of an excellent simplex
are excellent.
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2.2. Complexes of configurations

We introduce three complexes of O(n)-modules:
The projective complex (B∗(n), d), where Bp(n) is the free abelian group generated by the

geometric p-simplices of lines (L0,L1, . . . ,Lp), with the standard differential

d
(
(L0,L1, . . . ,Lp)

)
=

p∑
i=0

(−1)i(L0, . . . , L̂i, . . . ,Lp).

The geometric complex of Qn(k): (C∗(n), d). Here Cp(n) is the free abelian group generated
by the geometric p-simplices (v0, v1, . . . , vp), with vi ∈Qn(k), and the differential is analogous
to the previous one.

The excellent complex (D∗(n), d) is the subcomplex of (C∗(n), d), generated by the excellent
simplices.

These complexes are naturally Z-augmentated, with augmentations εB, εC , εD : (X) �→ 1 . The
map which associates to a vector −→v the line k−→v induces a morphism of complexes

Ψ:C∗(n) →B∗(n).

This morphism is surjective, when k is Pythagorean.
The following theorem is a crucial step.

THEOREM 2.5. – The three augmented complexes(
B∗(n), d, εB

)
,
(
C∗(n), d, εC

)
,
(
D∗(n), d, εD

)
,

are acyclic, for n � 1.

This result is a consequence of the following extension property, which is proved in the next
section. One can check directly that the augmentations identify the 0-homology groups of
these complexes to Z. In the case of D∗(n), one remarks that if v1, v2 ∈ Qn(k), one can find
w ∈Qn(k), such that −−→wv1 and −−→wv2 are anisotropic.

PROPOSITION 2.6. – (i) For a non-degenerate simplex of lines (L0,L1, . . . ,Lp), the set of
anisotropic lines L, such that (L,L0,L1, . . . ,Lp) is non-degenerate, contains a non-empty
Zariski open subset of the projective space P(kn).

(ii) For a non-degenerate simplex (v0, v1, . . . , vp) of points of Qn(k), the set of points
v ∈ Qn(k), such that (v, v0, v1, . . . , vp) is non-degenerate, contains a non-empty Zariski open
subset of Qn(k).

(iii) For a nice simplex (v0, v1, . . . , vp) of rank < n, the set of points v ∈ Qn(k), such that
(v, v0, v1, . . . , vp) is nice, is exactly a non-empty Zariski open subset of Qn(k).

We deduce Theorem 2.5 from the extension property. For this, we need a lemma. Fix an
algebraic closure k̄ of k, and let Qn(k̄) = {x ∈ k̄: qn(x) = 1}. The following result, true for
any infinite field, will be used repeatedly to prove the existence of points satisfying a finite set of
algebraic requirements.

LEMMA 2.7. – The set Qn(k) is dense in Qn(k̄) for the Zariski topology. Since Qn(k̄) is
irreducible, this implies that two non-empty open sets of Qn(k) have a non-empty intersection.
The same is true for the projective space.
4e SÉRIE – TOME 40 – 2007 – N◦ 3



HOMOLOGY STABILITY FOR ORTHOGONAL GROUPS 495
Of course the property holds for the affine space, since k is infinite. The proof of the lemma is
an easy consequence of this, using the irreducibility of Qn(k̄), and the stereographic projection
from the point (−1,0, . . . ,0)(

Qn(k̄)\
{

(−1, x2, . . . , xn):
n∑

i=2

x2
i = 0

})
−→

(
k̄n−1\

{
(0, x2, . . . , xn):

n∑
i=2

x2
i = −1

})
.

In the same vein, the result works for the projective space. More generally, it is well known that
the lemma is true for any “rational variety” defined over an infinite field. �

From the previous lemma and Proposition 2.6, we deduce that for a geometric simplex
(v0, v1, . . . , vp) (resp. an excellent simplex), the set of v ∈ Qn(k), such that (v, v0, v1, . . . , vp)
is geometric (resp. excellent), contains a non-empty Zariski open subset of Qn(k). In
the same way, for a geometric simplex (L0,L1, . . . ,Lp), the set of L ∈ P(kn), such that
(L,L0,L1, . . . ,Lp) is geometric, contains a non-empty Zariski open subset of P(kn). Then
let ω =

∑
i ±(Xi

0,X
i
1, . . . ,X

i
p) be a cycle in one of the three complexes C∗(n), D∗(n)

and B∗(n). By the Zariski argument, it is clear now that there exists an X such that for
all i, (X,Xi

0,X
i
1, . . . ,X

i
p) is yet a simplex of the corresponding complex. For such an X ,

d(X � ω) = ω, where X � ω :=
∑

i ±(X,Xi
0,X

i
1, . . . ,X

i
p) is the join of X with ω. This proves

Theorem 2.5. �
We conclude this section with a corollary of Theorem 2.5. Let C ′

∗(n) (resp. B′
∗(n), D′

∗(n))
be the subcomplex of C∗(n) (resp. B∗(n), D∗(n)), generated by the simplices of rank < n. We
have the quotient complexes

Ĉ∗(n) := C∗(n)/C ′
∗(n),

B̂∗(n) := B∗(n)/B′
∗(n),

and

D̂∗(n) := D∗(n)/D′
∗(n).

COROLLARY 2.8. – For i < n− 2,

H̃i

(
C ′

∗(n)
)

= Hi+1

(
Ĉ∗(n)

)
= 0.

The same is true for the other two complexes B∗(n) and D∗(n).

Since Ĉi(n) = 0, for i � n − 2, this is a consequence of Theorem 2.5, applied to the long
homology sequence of the short exact sequence

0 → C ′
∗(n) → C∗(n) → Ĉ∗(n) → 0. �

Remark 2.9. – We observe that the Z-module D̂n−1(n) is generated as a free module, by the
nice simplices of rank n.

3. The extension property

The purpose of this section is the proof of Proposition 2.6.

3.1. Easy cases

The cases (i) and (ii) of the proposition are easy.
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Let (L0,L1, . . . ,Lp) be a non-degenerate simplex of lines. If
∑

i Li = kn, we can extend this
simplex by any anisotropic line. If

∑
i Li �= kn, one sees by using Gram determinants 4 , that

the set of anisotropic lines L outside
∑

i Li, such that the simplex (L,L0,L1, . . . ,Lp) is non-
degenerate, is a Zariski open subset of the projective space. And this set is not empty, because it
contains any anisotropic line which is orthogonal to

∑
i Li.

Now let (v0, v1, . . . , vp) be a non-degenerate simplex of points of Qn(k). It is enough to
consider the case Vec〈vi, i〉 �= kn. The set of vectors v ∈ kn, outside Vec〈vi, i〉, such that the
simplex (v, v0, v1, . . . , vp) is non-degenerate, is a Zariski open subset of kn. We have to show that
this set intersects the quadric Qn(k). But a point, in the intersection, is given by the intersection
of Qn(k) with any anisotropic linear space of dimension 1, orthogonal to Vec〈vi, i〉: such a point
exists because k is Pythagorean (actually, proceeding as in Lemma 3.5 below, one can see that
this hypothesis is not necessary here).

3.2. Extension of nice simplices

Although elementary, this case needs some care. We solve the extension problem, for nice
simplices, by reduction to another problem, concerning flags of affine subspaces of kn. The
main calculations will concern “orthoschemes”. In Euclidean geometry, a simplex of points
(z0, z1, . . . , zp) is an orthoscheme if the vectors −−→z0z1, −−→z1z2, . . . , −−−−→zp−1zp are orthogonal. The
analogous notion in spherical geometry was introduced by Schäfli [34]. In classical Euclidean
or spherical geometry, it is well known that circumcenters give decompositions of simplices into
orthoschemes.

DEFINITION 3.1. – A good affine flag

V0 ⊂ V1 ⊂ · · · ⊂ Vp,

is a flag of affine subspaces of kn, with the following properties.
(1) p � n− 2.
(2) The direction

−→
Vi of the affine space Vi is a non-degenerate linear subspace, of dimension i.

(3) If ai is the orthogonal projection of the origin 0 upon Vi, which is well defined by the
previous hypothesis, the simplex of vectors (−→a0,−→a1, . . . ,−→ap) is generic and geometric.

Note that V0 = {a0}. We call a0 the vertex of the flag.

Basic example. Let (v0, v1, . . . , vp) be a nice simplex of rank < n (recall that vi ∈ Qn(k)), and
let σ be a permutation of {0,1, . . . , p}. If V σ

i denote the affine subspace of kn, generated by the
points {vσ(0), . . . , vσ(i)}, the flag V σ

0 ⊂ V σ
1 ⊂ · · · ⊂ V σ

p is a good affine flag with vertex vσ(0) in
Qn(k). Note that the line Lσ

i is generated by the vector −→ai , with the previous notations.

LEMMA 3.2. – Let: V0 ⊂ V1 ⊂ · · · ⊂ Vp, be a good affine flag.
(i) The affine subspace Vi does not contain the origin. The set {a0, . . . , ai} is an affine frame

of Vi.
The vectors

−−→a0a1, . . . , −−−−→ai−1ai

form an orthogonal basis of
−→
Vi , and the vectors

−−→a0a1, . . . , −−−−→ai−1ai, −→ai ,

4 Recall that, for a symmetric form 〈 . , . 〉, the Gram determinant Gram(v1, . . . , vl) of the vectors: v1, . . . , vl, is the
determinant of the matrix: (〈vi, vj〉), i, j ∈ {1, . . . , l}.
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form an orthogonal basis of the vector space Vi = k−→a0 +−→
Vi generated by Vi.

(ii) We have

qn(−→ai ) �= 0, i = 0, . . . , p,

qn(−−→aiaj) �= 0, 0 � i < j � p.

Only the part (ii) needs a proof. By the hypothesis, for i < j, the linear space generated by −→ai

and −→aj is non-degenerate of dimension 2. But since −→aj is orthogonal to −−→aiaj for j > i, these two
vectors are an orthogonal basis of a non-degenerate space. �

DEFINITION 3.3. – A vector −→u is said to be admissible for the good affine flag

V0 ⊂ V1 ⊂ · · · ⊂ Vp,

if the following conditions are satisfied.
(1) −→u is not in

−→
Vp.

(2) The vector space
−→
Wi = k−→u +−→

Vi is non-degenerate, for i ∈ {0,1, . . . , p}.
(3) If bi is the orthogonal projection of the origin upon the affine space Wi = a0 +−→

Wi, the simplex of vectors (−→a0, . . . ,−→ai ,
−→
bi , . . . ,

−→
bp) is generic and geometric, for any

i ∈ {0,1, . . . , p}.

We remark that, Hypothesis (2), for i = 0, implies that an admissible vector is anisotropic.
Also by Hypothesis (3), −→a0 and −→u are not orthogonal.

DEFINITION 3.4. – Let V0 ⊂ V1 ⊂ · · · ⊂ Vp, be a good affine flag with vertex a0 ∈ Qn(k).
A point ω of Qn(k) is said to be admissible, if the vector −−→a0ω is admissible.

LEMMA 3.5. – Let V0 ⊂ V1 ⊂ · · · ⊂ Vp, be a good affine flag with vertex a0 ∈ Qn(k), and −→u
an admissible vector. The affine line a0 + k−→u intersects Qn(k) in a second point ω �= a0 which
is admissible.

From the above remark, qn(−→u ) �= 0 and 〈−→a0,−→u 〉 �= 0. We have

−→ω = −→a0 − 2
〈−→a0,−→u 〉
qn(−→u )

−→u . �
PROPOSITION 3.6. – The set of admissible vectors, for the good affine flag

V0 ⊂ V1 ⊂ · · · ⊂ Vp,

is a non-empty Zariski open cone in kn.

COROLLARY 3.7. – For a good affine flag V0 ⊂ V1 ⊂ · · · ⊂ Vp, with vertex in Qn(k), the set
of admissible points is a non-empty Zariski open subset of Qn(k).

The corollary is clear from the previous lemma. �
For the proof of the proposition, we start from a good affine flag V0 ⊂ V1 ⊂ · · · ⊂ Vp. The

fact that the set of admissible vectors, for this flag, is Zariski open is a standard matter of Gram
determinants which we omit. In our case, this involves not only polynomials in the coordinates,
but also rational functions coming from solutions of systems of linear equations.

The really crucial point is to show the existence of an admissible vector.
We fix, for the rest of the proof, an anisotropic vector −→w orthogonal to Vp. Such a vector

exists because dimVp < n, since p � n − 2. For λ ∈ k×, let −→wλ = −→ap + λ−→w . The vector −→wλ is
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anisotropic if

λ2 �= −qn(−→ap)
qn(−→w )

.

We assume this condition for λ, in what follows. This implies that the vector spaces

−→
Wi = k−→wλ +−→

Vi

are non-degenerate.
We denote yet by bi the orthogonal projection of the origin on the affine space

Wi = a0 +−→
Wi = k−→wλ + Vi.

By a series of lemmas, we now prove that, except for a finite set of values of λ, the vector −→wλ is
admissible.

LEMMA 3.8. – (i) The vector
−−→
aibi does not depend on i, and coincides with the orthogonal

projection of −−→ap on k−→wλ, which is − qn(−→ap)

qn(−→wλ)
−→wλ. This gives, for 0 � i � n

qn(−−→aibi) =
qn(−→ap)2

qn(−→wλ)
�= 0.

(ii) We have
−−→
bibj = −−→aiaj . So that, for 0 � i < j � p

qn(−−→bibj) �= 0.

For the proof, we remark that the vectors
−−→
aibi and −→wλ are collinear, because

−−→
aibi is contained

in
−→
Wi and is orthogonal to

−→
Vi . We have

−−→
aibi = −−→aiap −−→ap +−→

bi , and −−→aiap and
−→
bi are orthogonal

to −→wλ. This implies

−−→
aibi = −〈−→ap,−→wλ〉

qn(−→wλ)
−→wλ = − qn(−→ap)

qn(−→wλ)
−→wλ.

From Part (i), we deduce that

−−→
bibj = −−→

biai +−−→aiaj +−−→
ajbj = −−→aiaj . �

LEMMA 3.9. – (i) For i = 0, . . . , p, qn(−→bi ) �= 0 if

λ2 �= −qn(−→ap)qn(−−→aiap)
qn(−→ai )qn(−→w )

.

(ii) For 0 � i < j � p, qn(−−→aibj) �= 0 if

λ2 �= −qn(−→ap)(qn(−−→aiaj) + qn(−→ap))
qn(−−→aiaj)qn(−→w )

.

Let us compute qn(−→bi ). We have
−→
bi = −→ap + −−→apai + −−→

aibi. And since −−→apai is orthogonal to −→ap

and
−−→
aibi, we get
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qn(−→bi ) = qn(−−→aiap) + qn(−→ap) + qn(−−→aibi) + 2〈−→ap,
−−→
aibi〉

= qn(−−→aiap) + qn(−→ap)−
qn(−→ap)2

qn(−→wλ)

= qn(−→ai )−
qn(−→ap)2

qn(−→wλ)
.

Finally, from the equality qn(−→ai )− qn(−→ap) = qn(−−→aiap),

qn(−→bi ) =
λ2qn(−→ai )qn(−→w ) + qn(−→ap)qn(−−→aiap)

qn(−→wλ)
.

This proves Part (i).
Since for i < j,

−→
bj is orthogonal to

−−→
aibj , we have qn(−−→aibj) = qn(−→ai ) − qn(−→bj ). Using the

previous calculation, we get

qn(−−→aibj) =
λ2qn(−−→aiaj)qn(−→w ) + qn(−→ap)(qn(−−→aiaj) + qn(−→ap))

qn(−→wλ)
.

This gives the condition (ii). �
LEMMA 3.10. – For i � j, we have

〈−→ai ,−→aj〉= qn(−→aj),

and

〈−→ai ,
−→
bj 〉= 〈−→bi ,

−→
bj 〉 = qn(−→bj ).

The first relation is already known. For the second, we use the equalities −→ai = −→
bj + −−→

bjai and
−→
bi = −→

bj +−−→
bjbi, as well as the fact that

−→
bj is orthogonal to

−−→
bjai and

−−→
bjbi, for i < j. �

LEMMA 3.11. – We assume that λ satisfies the conditions of Lemma 3.9. For any i ∈
{0,1, . . . , p}, the simplex

(−→a0, . . . ,−→ai ,
−→
bi , . . . ,

−→
bp)

is generic and geometric. In other words the vector −→wλ is admissible.

This achieves the proof of Proposition 3.6. �
For the proof of this lemma, it is enough to show that for

0 � i0 < · · ·< is < is+1 < · · ·< it � p,

the Gram determinants

Δs,t = Gram(−→ai0 , . . . ,
−→ais ,

−→
bis , . . . ,

−→
bit),

and

Δ′
s,t = Gram(−→ai0 , . . . ,

−→ais ,
−−→
bis+1 , . . . ,

−→
bit),

are not 0.
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We need the following determinant

D(α1, . . . , αl) :=

∣∣∣∣∣∣∣∣∣∣

α1 α2 α3 . . . αl

α2 α2 α3 . . . αl

α3 α3 α3 . . . αl

. . . . . . .
αl αl αl . . . αl

∣∣∣∣∣∣∣∣∣∣
= αl

l−1∏
i=1

(αi − αi+1).

We get from Lemma 3.10, that

Δs,t = D
(
qn(−→ai0), qn(−→ai1), . . . , qn(−→ais), qn(−→bis), . . . , qn(−→bit)

)
,

and

Δ′
s,t = D

(
qn(−→ai0), qn(−→ai1), . . . , qn(−→ais), qn(−−→bis+1), . . . , qn(−→bit)

)
.

And we finally deduce from the previous lemmas, that these determinants are not 0, with the
conditions imposed on λ. More precisely, we have proved that:
for 0 � i � p,

qn(−→ai ) �= 0, qn(−→bi ) �= 0,

qn(−→ai )− qn(−→bi ) = qn(−−→aibi) �= 0,

and for 0 � i < j � p,

qn(−→ai )− qn(−→aj) = qn(−−→aiaj) �= 0,

qn(−→bi )− qn(−→bj ) = qn(−−→bibj) �= 0,

qn(−→ai )− qn(−→bj ) = qn(−−→aibj) �= 0. �
We are now in a position to finish the proof of the extension property, for nice simplices. Let

(v0, v1, . . . , vp) be a nice simplex, with p � n − 2. By Corollary 3.7 and Lemma 2.7, the set of
points which are admissible for all the flags (see the basic example above)

V σ
0 ⊂ V σ

1 ⊂ · · · ⊂ V σ
p

is a non-empty Zariski open subset of Qn(k). But this open set G coincides with the set of
points ω ∈ Qn(k), for which (v0, v1, . . . , vp, ω) is nice. One of the inclusions results from the
definitions. To see the second consider vp+1 ∈G; it is clear that the simplex (v0, v1, . . . , vp, vp+1)
is strongly geometric. Now, fix a permutation σ of {0,1, . . . , p}. With the previous notations, the
p + 1 simplices (i = 0,1, . . . , p)

(k−→a0, . . . ,k−→ai ,k
−→
bi , . . . ,k

−→
bp),

related to the flag: V σ
0 ⊂ V σ

1 ⊂ · · · ⊂ V σ
p , with vertex vσ(0) and admissible point vp+1, are

exactly the simplices (Lμ
0 ,Lμ

1 , . . . ,Lμ
p+1), corresponding to (v0, v1, . . . , vp, vp+1), with μ one

of the permutations(
0 1 . . . i− 1 i i + 1 . . . p p + 1

σ(0) σ(1) . . . σ(i− 1) p + 1 σ(i) . . . σ(p− 1) σ(p)

)
,
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where i = 1,2, . . . , p, p + 1. In this way, when σ varies, we get all the simplices (Lμ
0 ,Lμ

1 , . . . ,
Lμ

p+1), such that μ(0) ∈ {0,1, . . . , p}. If μ(0) = p+1 and q = μ(1), let Hq be the linear subspace
of codimension 1, orthogonal to −−−−→vp+1vq . By Proposition 2.2, (Lμ

0 ,Lμ
1 , . . . ,Lμ

p+1) is symmetric
to one of the previous simplices, through the orthogonal symmetry sHq . Therefore this simplex
is generic and geometric. But so far, we have exhausted all the simplices (Lμ

0 ,Lμ
1 , . . . ,Lμ

p+1), for
the simplex (v0, v1, . . . , vp, vp+1). This proves that (v0, v1, . . . , vp, vp+1) is nice, and achieves
the proof of the extension property. �

Remark 3.12. – The proofs in this section use only the fact that k is infinite. As a result,
Proposition 2.6 and Theorem 2.5 are true for any infinite field k of characteristic not 2.

4. Steinberg modules

4.1. Tits buildings

In this subsection we could work equally well with any non-degenerate quadratic space as
in [9], and the hypothesis k Pythagorean is not necessary.

DEFINITION 4.1. – We define the “Tits simplicial set” T (n) of (kn, qn), as the nerve of the
category of non-zero strict non-degenerate linear subspaces of kn, with morphisms given by
inclusions.

In particular, a p-simplex is a flag U0 ⊂ U1 ⊂ · · · ⊂ Up of non-degenerate linear subspaces of
kn, with the conditions U0 �= 0 and Up �= kn. The faces and degeneracies are given by

U0 ⊂ U1 ⊂ · · · ⊂ Up �→ U0 ⊂ · · · ⊂ Ûi ⊂ · · · ⊂ Up,

U0 ⊂ U1 ⊂ · · · ⊂ Up �→ U0 ⊂ · · · ⊂ Ui ⊂ Ui ⊂ · · · ⊂ Up.

We denote by C∗(T (n), ∂) the singular complex of T (n).

PROPOSITION 4.2. – For n � 2, the homology of the simplicial set T (n) satisfies

H̃i

(
T (n),Z

)
= 0, for i �= n− 2.

Proof. – We proceed along the lines of [15] Theorem 3.5. Since a non-degenerate simplex is
of the form U0 � U1 � · · · � Up, there is no non-degenerate p-simplex for p > n− 2, and then

H̃i

(
T (n),Z

)
= 0, for i > n− 2.(1)

Let Bp,q be the free Z-module generated by the couples ((L0, . . . ,Lp),U0 ⊂ U1 ⊂ · · · ⊂ Uq),
where U0 ⊂ U1 ⊂ · · · ⊂ Up is a non-degenerate flag, and (L0, . . . ,Lp) is a geometric simplex of
lines in U0. The two spectral sequences of the bicomplex (B∗,∗,d,∂) collapse. Actually, we have
exact augmented complexes

· · · ∂→B∗,q(n) ∂→ · · · ∂→ B∗,0(n)
η→ B′

∗(n) → 0,(2)

· · · d→Bp,∗(n) d→ · · · d→ B0,∗(n) ε→ C∗
(
T (n)

)
→ 0.(3)

The exactness of (3) stems from Theorem 2.5, and for the complex (2) there is a contracting
homotopy h, given by

h
(
(L0, . . . ,Lp),U0 ⊂ U1 ⊂ · · · ⊂ Uq

)
=

(
(L0, . . . ,Lp),W ⊂ U0 ⊂ U1 ⊂ · · · ⊂ Uq

)
,
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where W =
∑

i Li. Note that the map ε is surjective.
As a consequence, for i � 0, we get isomorphisms

H̃i

(
T (n),Z

) ∼= H̃i

(
B′

∗(n)
) ∼= Hi+1

(
B̂∗(n)

)
.

But these groups are respectively reduced to 0, for i > n− 2 by (1) above, and for i < n− 2, by
Corollary 2.8. �

It is amusing to check directly that H̃0(T (n),Z) = 0, for n > 2.

4.2. Coinvariants of Steinberg modules

DEFINITION 4.3. – We define the Steinberg O(n)-module St(n), by

St(0) = St(1) = Z,

and

St(n) = H̃n−2

(
T (n),Z

)
, for n � 2.

We proceed now to prove Theorem 1.2, asserting that

H0

(
O(n),St(n)

)
= 0, for n � 2,

when k is Pythagorean.
It is interesting to give a simple direct proof, in the particular case n = 2. We use the fact that

for any anisotropic line U , U ∩Q2(k) is not empty. One observes firstly that St(2) is generated
by the differences U1 − U2, where U1 and U2 are anisotropic lines. Since k is infinite, one can
find an anisotropic line U3, such that for a choice of ui ∈ Ui ∩Q2(k), u1 + u3 and u2 + u3 are
anisotropic. The orthogonal symmetry, around the anisotropic line V1 = k(u1 + u3), exchanges
U1 and U3. As a result, in the group of coinvariants, one gets U1 − V1 = U3 − V1 and then
U1 − U3 = 0. Proceeding in the same way, with V2 = k(u2 + u3), one gets U3 − U2 = 0. This
proves that U1 −U2 = 0, in H0(O(2),St(2)).

We can be more precise.

PROPOSITION 4.4. – We have H0(O(2),St(2)) = 0, iff k is Pythagorean.

Let G be the subgroup of k×/(k×)2 generated by the elements which are the sum of two
squares. This group is reduced to 1, iff k is Pythagorean. Now one checks easily that there is a
surjection

H0

(
O(2),St(2)

)
→ G,

induced by

U1 −U2 �→
(
x2

1 + y2
1

)
/
(
x2

2 + y2
2

)
,

where (x1, y1) and (x2, y2) are non-zero vectors of U1 and U2. �
The proof of Theorem 1.2 in full generality combines the projective and excellent complexes.

We begin with a byproduct of the proof of Proposition 4.2, where the coinvariants of an
O(n)-module M are denoted by MO(n).

PROPOSITION 4.5. – For n � 2, there is an exact sequence of groups of coinvariants

Ĉn(n)O(n)
d→ Ĉn−1(n)O(n) → St(n)O(n) → 0,
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and a commutative diagram with exact rows

B̂n(n)O(n)
d

B̂n−1(n)O(n) St(n)O(n) 0

D̂n(n)O(n)

Ψ

d
D̂n−1(n)O(n)

Ψ

St(n)O(n)

Id

0

For k Pythagorean, the proof of Proposition 4.2 works equally well for the three complexes,
giving exact sequences

Ĉn(n) d→ Ĉn−1(n) → St(n) → 0,

B̂n(n) d→ B̂n−1(n) → St(n) → 0,

D̂n(n) d→ D̂n−1(n) → St(n) → 0.

To finish, we apply the right exact functor (.)O(n). �
Remark 4.6. – This is the point where the hypothesis: k is Pythagorean, is essential. In the

versions of the complex (3) for C∗ and D∗, the map ε is not surjective in general. For the
surjectivity, any non-degenerate linear subspace of dimension 1 of kn, with n � 2, has to be
Euclidean. But already for n = 2, this implies that k is Pythagorean.

Theorem 1.2 results from the lemma

LEMMA 4.7. – The morphism induced by Ψ

D̂n−1(n)O(n)/dD̂n(n)O(n) −→ B̂n−1(n)O(n)/dB̂n(n)O(n),

is equal to 0.

Of course this assertion is equivalent to the equality IdH0(O(n),St(n)) = 0, which is the
theorem. �

Now the lemma is an avatar of the “circumcenter argument” of Sah [33]. We start from a nice
simplex of rank n, ω = (v0, v1, . . . , vn−1). With the notations of Section 2, we have

Ψ
(
(v0, v1, . . . , vn−1)

)
= (L{0},L{1}, . . . ,L{n−1}).

We now stay in the complex B∗(n). Modulo a boundary, we can write

Ψ(ω) =
n−1∑
i=0

(−1)i+n−1(L{0}, . . . , L̂{i}, . . . ,L{n−1},L{0,1,...,n−1}).

An induction shows that for j � 1, up to boundaries and modulo simplices in B′
∗(n), Ψ(ω) can

be written as a sum (with coefficients ±1) of simplices in Bn−1(n), of the type

(L{i0},L{i1}, . . . ,L{ij},LIj+1 , . . . ,LIn−1).

Here
– Ii is a subset of {0,1, . . . , n− 1} with i + 1 elements,
– {i0 < i1 < · · ·< ij} ⊂ Ij+1,
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– Ij+1 ⊂ Ij+2 ⊂ · · · ⊂ In−1

(incidentally, for j = 0, these data are in bijection with the permutations of {0,1, . . . , n− 1}).
For j = 1, we arrive at simplices of the type

(L{i0},L{i1},LI2 ,LI3 , . . . ,LIn−1).

Let us detail the end of the proof. We want to show that such a simplex is equal to 0, in the group
of coinvariants B̂n−1(n)O(n). If we put I1 = {i0, i1}, we have in the complex B̂∗(n)

d(L{i0},L{i1},LI1 ,LI2 , . . . ,LIn−1) = (L{i1},LI1 ,LI2 ,LI3 , . . . ,LIn−1)

− (L{i0},LI1 ,LI2 ,LI3 , . . . ,LIn−1) + (L{i0},L{i1},LI2 ,LI3 , . . . ,LIn−1).

Thus modulo boundaries

(L{i0},L{i1},LI2 ,LI3 , . . . ,LIn−1)

= (L{i0},LI1 ,LI2 ,LI3 , . . . ,LIn−1)− (L{i1},LI1 ,LI2 ,LI3 , . . . ,LIn−1).

If we consider now the orthogonal symmetry sH , corresponding to the linear hyperplane H
orthogonal to −−−→vi0vi1 , we get

sH

(
(L{i0},LI1 ,LI2 ,LI3 , . . . ,LIn−1)

)
= (L{i1},LI1 ,LI2 ,LI3 , . . . ,LIn−1),

because LIi ⊂ H , for i � 1. This shows that (L{i0},L{i1},LI2 ,LI3 , . . . ,LIn−1) is 0, in the group

of coinvariants B̂n−1(n)O(n). �
The following proposition is used in the next section.

PROPOSITION 4.8. – The homology of the complex of coinvariants stemming from the quotient
complex Ĉ∗(n) satisfies

Hn−1

(
Ĉ∗(n)O(n)

)
= 0, for n � 2.

In fact this group is equal to H0(O(n),St(n)), by Proposition 4.5. �

5. Homology stability for O(n)

The proof of Theorem 1.1 follows the arguments of Sah in [33], Section 1.
The filtration of the complex C∗(n), by the rank of the simplices, induces a filtration Fr

j (n) of
the complex Hj(O(n),C∗(n)). In particular Fn

0 (n) = C∗(n)O(n), and Fn−1
0 (n) is the image

of the complex C ′
∗(n)O(n) in C∗(n)O(n). The following lemma uses the “Orthogonal Join

Construction” of Sah [33] 5 .

LEMMA 5.1. – (i) The complex Fr
0 (n) is (r− 2)-acyclic with augmentation Z, for 1 � r � n.

(ii) Furthermore, for r � 2,

Hr−1

(
Fr

0 (n)/Fr−1
0 (n)

)
= 0.

We recall briefly the arguments. Let e1, . . . , en be the canonical basis of kn. For m � n,
we identify km with the linear space generated by the e1, . . . , em. For p � r − 2, an element

5 Unfortunately, we were unable to find any good complex, generated by simplices with circumcenters, for which the
orthogonal join construction works.
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of Hp(Fr
0 (n)) is represented by a chain c ∈ Cp(r − 1). An application of the Witt extension

theorem shows that we have in Fr
0 (n): d(er � c) = c, where er � c is the join of er with c, and

this join is geometric. This proves Part (i) of the lemma.
The second part is a corollary of Proposition 4.8. One checks easily that the natural morphism

of complexes

Ĉ∗(r)O(r) →Fr
0 (n)/Fr−1

0 (n),

induces a surjection

Hr−1

(
Ĉ∗(r)O(r)

)
→ Hr−1

(
Fr

0 (n)/Fr−1
0 (n)

)
.

For this, one remarks that these complexes are 0, in degree � r − 2, and in degree r − 1 the
chains are generated by the simplices of rank r. �

PROPOSITION 5.2. – The complex Fr
0 (n) is (r − 1)-acyclic, for 1 � r � n.

One applies the lemma to the long homology sequence of the short exact sequence of
complexes

0 →Fr−1
0 (n) →Fr

0 (n) →Fr
0 (n)/Fr−1

0 (n) → 0.

One settles first the case r = n, using the fact that the maps for i > 0

Hi

(
Fn−1

0 (n)
)
→ Hi

(
Fn

0 (n)
)
,

are zero, by the orthogonal join construction. �
Now the proof of Theorem 1.1 is connected to the proof of the following proposition.

PROPOSITION 5.3. – From the acyclicity of the complex of O(n)-modules C∗(n), the hyper-
homology Hi(O(n),C∗(n)) is equal to Hi(O(n),Z). The hyperhomology spectral sequence

E1
i,j = Hj

(
O(n),Ci(n)

)
=⇒ Hi+j

(
O(n),Z

)
,

satisfies
(i) E1

0,j = Hj(O(n − 1),Z), for j � 0, and the edge morphism E1
0,j → Hj(O(n),Z), is

canonically identified to the stabilization map

Hj

(
O(n− 1),Z

)
→ Hj

(
O(n),Z

)
.

(ii) E2
i,j = 0, for 1 � i � n− j − 1.

From (ii), E2
0,j → E∞

0,j is bijective for j < n− 1, and surjective for j = n− 1. Also, the edge
morphism E∞

0,j →Hj(O(n),Z) is bijective for j � n− 1. Therefore, Theorem 1.1 is a corollary
of the proposition, for the case n + 1, instead of n.

Part (i) of the proposition is independent of the theorem. The free Z-module C0(n) is a
permutation module under the action of O(n), with basis composed of one orbit. By Schapiro’s
lemma ([5] Chap. 3), E1

0,j = Hj(O(n−1),Z), where O(n−1) is taken to be the stabilizer of en.
Now the differential d1 : E1

1,j → E1
0,j is the zero map. Actually, by Schapiro’s lemma, an element

in E1
1,j can be represented, up to signs, by a sum of terms of the type c⊗ (v0, v1), where (v0, v1)

is a geometric simplex, and c is a j-cycle in the bar complex of the stabilizer G(v0,v1) of (v0, v1).
We have, up to sign, d1(c⊗ (v0, v1)) = c⊗ v1 − c⊗ v0. One can find an element f ∈O(n), such
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that f(v0) = v1, with c fixed by conjugation by f . This shows that d1(c ⊗ (v0, v1)) = 0, by a
well known fact in homology of groups.

Proof of (ii). One proceeds by induction, starting from the case n = 1 of Proposition 5.3.
Assume the proposition proved, for l < n. Then the theorem is also true for l < n − 1,
by the above remark. We want to prove that the complex (E1

∗,j , d
1) is acyclic in degrees:

1 � i � n− j − 1. This is the complex

· · · d→Hj

(
O(n),Ci(n)

) d→ · · · d→ Hj

(
O(n),C0(n)

)
.

We already know that its homology, in degree 0, is Hj(O(n−1),Z). To prove the acyclicity, it is
enough to consider the subcomplex Fn−j

j (n) in the interval of interest, that is for 0 � i � n− j,
because the two complexes coincide in the interval 0 � i � n− j − 1. Also we have to consider
the j such that: j < n− 1. To finish the proof, we use the following lemma.

LEMMA 5.4. – There exists an exact sequence

0 → A(j)⊗Fn−j−1
0 (n) →Hj

(
O(j),Z

)
⊗Fn−j

0 (n) →Fn−j
j (n) → 0,

where A(j) is the kernel of the map: Hj(O(j),Z) → Hj(O(j + 1),Z), which is surjective for
j � n− 2, by induction.

Proof of the lemma. – By Schapiro’s lemma, Hj(O(n),Ci(n)) can be written as a direct sum
of groups of the type Hj(O(r),Z) ⊗ Ci(n)n−r , where Ci(n)n−r means the coinvariants of the
submodule of Ci(n), generated by the simplices of rank: n − r. In our subcomplex Fn−j

j (n),
we have r � j. By induction Hj(O(r),Z) = Hj(O(j + 1),Z), for r > j. The case where r = j
appears for the simplices of rank j, for which we have the exact sequence,

0 → A(j)→ Hj

(
O(j),Z

)
→ Hj

(
O(j + 1),Z

)
→ 0.

This gives easily the searched exact sequence. �
Finally, to prove that Fn−j

j (n) is (n− j − 1)-acyclic, one applies Proposition 5.2 to the long
homology sequence of the short exact sequence of the lemma, using the fact that Fr

0 (n) is a free
Z-module. �

6. Homology stability for SO(n)

6.1. A spectral sequence

The purpose of this section is the proof of Theorem 1.4(ii). Here is a basic elementary result.

PROPOSITION 6.1. – (i) In degree 0

H0

(
O(2),Zt

)
= Z/2Z,

H0

(
O(2),Z[1/2]t

)
= 0.

(ii) In degree 1

H1

(
O(2),Zt

) ∼= H1

(
SO(2),Z

)∼= SO(2),

H1

(
O(2),Z[1/2]t

) ∼= H1

(
SO(2),Z[1/2]

)∼= SO(2)⊗Z[1/2].
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One can use the Hochschild–Serre spectral sequence of the semi-direct extension

0 → SO(2)→ O(2) →{±1}→ 0,

with coefficients in Zt, and remark that the natural action of {±1} on SO(2) arising from this
extension, is given by x �→ x−1. Note also that Z[1/2] is Z-flat. �

We give now another description of the Steinberg module.

DEFINITION 6.2. – For the quadratic space (kn, qn), we define the quasi-simplicial 6 ,
Z-module: [p]→Lp(n), as follows:

(i) L0(0) = Z.
(ii) For n �= 0, Lp(n) = 0 if p = 0 or p > n.

(iii) Otherwise, Lp(n) is the free Z-module generated by the symbols (E1, . . . ,Ep), where
kn = E1 ⊕ · · · ⊕ Ep is an orthogonal direct sum decomposition by non-zero and non-
degenerate subspaces.

(iv) The faces are given by the maps δ0 = 0, δp = 0 and δi : (E1, . . . ,Ep) �→ (E1, . . . ,Ei ⊕
Ei+1, . . . ,Ep), for i = 1, . . . , p− 1.

The associated chain complex is written (L∗(n), δ).

LEMMA 6.3. – For n � 0, Hn(L∗(n)) = St(n), and Hi(L∗(n)) = 0 if i �= n.

Actually, for n � 2, the complex (L∗(n), δ) is in bijection with the double suspension of
C∗(T (n), ∂), augmented to Z. To see this fact, one associates to the p-tuple (E1, . . . ,Ep), the
flag U0 ⊂ U1 ⊂ · · · ⊂ Up−2, with Ui = E1 ⊕ · · · ⊕Ei+1. �
For what follows, the complex (L∗(n), δ) is more convenient than C∗(T (n)).

PROPOSITION 6.4. – For n = 2m, there is a spectral sequence

E1
p,q =

∑
n1+···+np=n

Hq

(
O(n1)× · · · ×O(np),Z[1/2]t

)
⇒ Hp+q−n

(
O(n),St(n)⊗Z[1/2]t

)
,

where the integers ni are even and �= 0.

Proof. – We start from the hyperhomology groups

H∗
(
O(n),L∗(n)⊗Z[1/2]t

)
.

These are the homology groups of the double complex(
Cs

(
O(n),Lr(n)⊗Z[1/2]t

)
, d, δ

)
,(4)

where C∗ means the non-homogeneous chain complex, in homology of groups, d being here the
corresponding differential. The differential δ is the one coming from the complex L∗(n).

The spectral sequence of this bicomplex, corresponding to the filtration by degree s, collapses
from E1. In fact, since E1

p,q = Cp(O(n),Hq(L∗(n) ⊗ Z[1/2]t)), we get E1
p,q = 0 for q �= n,

and E1
p,n = Cp(O(n),St(n)⊗Z[1/2]t). Therefore we have E2

p,n = E∞
p,n = Hp(O(n),St(n)⊗

Z[1/2]t), so that

Hi

(
O(n),L∗(n)⊗Z[1/2]t

) ∼= Hi−n

(
O(n),St(n)⊗Z[1/2]t

)
.

6 That is without degeneracies.
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In the other spectral sequence of the bicomplex (4), the E1 term is

E1
p,q = Hq

(
O(n),Lp(n)⊗Z[1/2]t

)
.

The basic fact is that the O(n)-module Lp(n)⊗Z[1/2]t splits as a direct sum of induced modules,
along the orbits, for the action of O(n) on the set of orthogonal direct-sum decompositions of
kn into p non-zero and non-degenerate linear subspaces. These orbits are parametrized by the
p-tuples (n1, . . . , np) of non-zero integers with n1 + · · · + np = n, and the stabilizer of the
associated canonical decomposition is O(n1)×· · ·×O(np). An application of Shapiro’s lemma
gives an isomorphism

E1
p,q =

∑
n1+···+np=n

Hq

(
O(n1)× · · · ×O(np),Z[1/2]t

)
,

the restriction on the parity of the integers ni comes from the Künneth exact sequence and the
fact that Hi(O(n),Z[1/2]t) = 0, for n odd. �

We can now prove Theorem 1.4(ii). We proceed by induction on the dimension 2m. By
Proposition 6.1

H0

(
O(2),Z[1/2]t

)
= 0.

Assume that we have proved that

Hq

(
O(2l1)× · · · ×O(2lp),Z[1/2]t

)
= 0,

for (l1, . . . , lp) and q, such that li �= 0 and 0 � q < l1 + · · ·+ lp � m− 1.
Let m1 + · · ·+ mp = m, and ni = 2mi the Künneth exact sequence, with q < m and p > 1,

0→
∑

i+j=q
j<m2+···+mp

Hi

(
O(n1),Z[1/2]t

)
⊗Hj

(
O(n2)× · · · ×O(np),Z[1/2]t

)
→Hq

(
O(n1)× · · · ×O(np),Z[1/2]t

)
→

∑
r+s=q−1

s<m2+···+mp

Tor
(
Hr

(
O(n1),Z[1/2]t

)
,Hs

(
O(n2)× · · · ×O(np),Z[1/2]t

))
,

implies that

Hq

(
O(n1)× · · · ×O(np),Z[1/2]t

)
= 0, for q < m.

In the previous spectral sequence, we have

E1
p,q = 0, for q < m, and p > 1.

Therefore

Hq

(
O(n),Z[1/2]t

)
= E1

1,q = E∞
1,q = 0.

This achieves the proof of Theorem 1.4(ii). �
As observed in the introduction, Theorem 1.3 is a corollary of Theorems 1.1 and 1.4.
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6.2. A quadratic algebra

This section is a preliminary to the proof of Theorem 1.5. It generalizes slightly some results
in [8,9]. Let

B =
∑
m�0

Hm

(
O(2m),Z[1/2]t

)
.

The Z[1/2]-module B is provided with the structure of a graded algebra by the compositions

Hm1

(
O(2m1),Z[1/2]t

)
⊗Hm2

(
O(2m2),Z[1/2]t

)
φ→ Hm1+m2

(
O(2m1)×O(2m2),Z[1/2]t ⊗Z[1/2]t

)
ψ→ Hm1+m2

(
O

(
2(m1 + m2)

)
,Z[1/2]t

)
,

where the first map is the Eilenberg–Zilber cross-product [5], and the second one comes from
the diagonal embedding O(2m1)×O(2m2)⊂ O(2(m1 + m2)).

LEMMA 6.5. – The Z[1/2]-algebra B is graded commutative.

By the property of the cross-product [5], the natural diagram

Hm1 (O(2m1),Z[1/2]t)⊗Hm2 (O(2m2),Z[1/2]t)
φ

Hm1+m2(O(2m1)×O(2m2),Z[1/2]t ⊗ Z[1/2]t)

τ

Hm2 (O(2m2),Z[1/2]t)⊗Hm1 (O(2m1),Z[1/2]t)
φ

Hm1+m2(O(2m2)×O(2m1),Z[1/2]t ⊗ Z[1/2]t)

commutes up to the sign (−1)m1m2 .
Moreover the natural diagram

Hm1+m2(O(2m1)×O(2m2),Z[1/2]t ⊗Z[1/2]t)
ψ

τ Hm1+m2(O(2(m1 + m2)),Z[1/2]t)

Hm1+m2(O(2m2)×O(2m1),Z[1/2]t ⊗Z[1/2]t)
ψ′

is commutative. In fact, let gσ be the matrix associated to the permutation

σ =
(
2m2 + 1,2m2 + 2, . . . ,2(m1 + m2),1,2, . . . ,2m2

)
.

Now: detgσ = signσ = 1. As a result (see [5] Chap. III, Sect. 8) conjugation by gσ induces the
identity on Hi+j(O(n)×O(m),Z[1/2]t ⊗Z[1/2]t). This implies that ψ′ ◦ τ = ψ. �

Note that B is connected, and has a split augmentation ε :B → Z[1/2], with augmentation
ideal B =

∑
m�1 Hm(O(2m),Z[1/2]t).

Recall that a graded algebra A =
∑

n An over a ring R is quadratic if it is connected, generated
as an algebra by the elements of degree 1, and the ideal of relations is generated by some elements
of degree 2. In other words, the natural morphism of R-algebras

T∗A1 → A,
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where T∗A1 is the tensor algebra of A1 over R, is surjective with kernel generated, as a two-sided
ideal, by some elements of degree 2.

THEOREM 6.6. – The Z[1/2]-algebra B is quadratic.

This will be a consequence of the following lemma (see for example [9] Proposition 4.4,
where the result is yet true for R instead of Q). We have written H∗,m(A,R), for the component
of weight m of the Hochschild homology of A, with coefficients in the trivial module R [41].

LEMMA 6.7. – A graded R-algebra is quadratic, if and only if, its Hochschild homology
satisfies

(1) H0,0(A,R) = R, H0,m(A,R) = 0, for m � 1.
(2) H1,m(A,R) = 0, for m � 2.
(3) H2,m(A,R) = 0, for m � 3. �
Taking into account Theorem 1.4 and certain Künneth exact sequences, we get in the spectral

sequence of Proposition 6.4

E1
p,q = 0, for q < m,

E1
1,m = Hm

(
O(2m),Z[1/2]t

)
,

E1
2,m =

∑
m1+m2=m

Hm1

(
O(2m1),Z[1/2]t

)
⊗Hm2

(
O(2m2),Z[1/2]t

)
,

E1
3,m =∑

m1+m2+m3=m

Hm1

(
O(2m1),Z[1/2]t

)
⊗Hm2

(
O(2m2),Z[1/2]t

)
⊗Hm3

(
O(2m3),Z[1/2]t

)
.

Now since the abutment of the spectral sequence is 0, in degree: p + q < 2m, we get the
following exact sequences, where we have omitted the coefficients Z[1/2]t:
(1) For m � 2, ∑

m1+m2=m

Hm1

(
O(2m1)

)
⊗Hm2

(
O(2m2)

) d1

→ Hm

(
O(2m)

)
→ 0.

(2) For m � 3, ∑
m1+m2+m3=m

Hm1

(
O(2m1)

)
⊗Hm2

(
O(2m2)

)
⊗Hm3

(
O(2m3)

)
d1

→
∑

m′
1+m′

2=m

Hm′
1

(
O(2m′

1)
)
⊗Hm′

2

(
O(2m′

2)
) d1

→ Hm

(
O(2m)

)
→ 0.

To recognize, in these sequences, portions of the weight m-part of the reduced bar complex of
B, we have just to identify d1 with the differential of Hochschild. As a direct sum of induced
modules, Lp(n)⊗Z[1/2]t is canonically (here n = 2m) isomorphic to∑

n1+···+np=n

Z[1/2]
[
O(n)

]
⊗Z[1/2][O(n1)×···×O(np)] Z[1/2]t,

by the choice of base points on the orbits given by the orthogonal decompositions of kn,
associated to the partitions of the canonical basis. The Shapiro isomorphism is induced by the
morphisms of pairs (see [5] Chap. III, Sect. 8, Exerc. 2)
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(
O(n1)× · · · ×O(np),Z[1/2]

[
O(n1)× · · · ×O(np)

]
⊗Z[1/2][O(n1)×···×O(np)] Z[1/2]t

)
→

(
O(n),Z[1/2]

[
O(n)

]
⊗Z[1/2][O(n1)×···×O(np)] Z[1/2]t

)
.

So it suffices to observe that there are commutative diagrams of modules, where the right vertical
map is the i-th face of L∗,

Z[1/2]
[
O(n)

]
⊗Z[1/2][O(n1)×···×O(ni)×O(ni+1)×···×O(np)] Z[1/2]t Lp(n)⊗Z[1/2]t

Z[1/2]
[
O(n)

]
⊗Z[1/2][O(n1)×···×O(ni+ni+1)×···×O(np)] Z[1/2]t Lp−1(n)⊗Z[1/2]t.

Finally, the algebra B satisfies the hypothesis of the lemma. �
6.3. The case of quadratically closed fields

Henceforth, we assume that the field k is quadratically closed. This allows one to identify
O(2n) to the orthogonal group of the hyperbolic form: x1x2 + x3x4 + · · · + x2n−1x2n. The
groups k× and SO(2) are isomorphic by the map

ρ :a �→
(

a 0
0 a−1

)
.

We have k× ⊗Z[1/2]∼= k×/μ2(k), and

H1

(
O(2),Z[1/2]t

) ∼= H1

(
SO(2),Z[1/2]

)∼= k×/μ2(k).

We note also that: k×/μ2(k)⊗ k×/μ2(k) = k× ⊗ k×.

PROPOSITION 6.8. – If k is quadratically closed, there is a natural isomorphism

γ :H2

(
SL(2,k),Z[1/2]

)
→ H2

(
O(4),Z[1/2]t

)
.

From the Hochschild–Serre spectral sequence of

0 → SO(4)→ O(4) →{±1}→ 0,

we get an isomorphism

H2

(
O(4),Z[1/2]t

) ∼= H0

(
{±1},H2

(
SO(4),Z[1/2]

))
.

Here the action of −1 in H2(SO(4),Z[1/2]) can be taken to be induced by the conjugation in
SO(4), by any element of O(4) of determinant −1, combined with the multiplication by −1 in
Z[1/2]. Let M2(k) be the space of two by two matrices. If we identify k4 with M2(k), by the
map

(x1, . . . , x4) �→
(

x1 −x3

x4 x2

)
,

the determinant coincides with the previous hyperbolic form on k4.
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For k quadratically closed, the Spin group Spin(4) is the twofold covering

π :SL(2,k)× SL(2,k)→ SO(4),

which comes from the representation of SL(2,k)× SL(2,k) on M2(k), given by

(f, g) �→
(
m �→ fmg−1

)
.

An elementary calculation shows that the permutation of the two factors in SL(2,k)×SL(2,k) is
transformed by the morphism π, into the conjugation of SO(4) by the matrix of determinant −1:⎛⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ .

This gives isomorphisms

H2

(
O(4,k),Z[1/2]t

)∼= H0

(
{±1},H2

(
SO(4),Z[1/2]

))
∼= H2

(
SL(2,k)× SL(2,k),Z[1/2]

)
{±1}.

Note that in the right term above, −1 acts by permutation of the two factors and by multiplication
in Z[1/2].

Since H1(SL(2,k),Z) = 0, there is no torsion problem in the Künneth exact sequence, and
we get

H2

(
SL(2,k)× SL(2,k),Z[1/2]

)∼= H2

(
SL(2,k),Z[1/2]

)
×H2

(
SL(2,k),Z[1/2]

)
.

In this isomorphism, the action of −1 becomes (x, y) �→ −(y,x). The isomorphisms of the
proposition

H2

(
SL(2,k),Z[1/2]

) ∼=→ H2

(
O(4),Z[1/2]t

)
,

are then given by the compositions

H2

(
SL(2,k),Z[1/2]

)
→

(
H2

(
SL(2,k),Z[1/2]

)
×H2

(
SL(2,k),Z[1/2]

))
{±1}

→H2

(
O(4),Z[1/2]t

)
,

where the first map is x �→ (x,−x). �
COROLLARY 6.9. – For a quadratically closed field k, the following is true

H2

(
O(4),Z[1/2]t

) ∼= H2

(
SL(2,k),Z

)∼= KM
2 (k).

This is a consequence of known results. For an infinite field (see for example [21]), the
Milnor group KM

2 (k) is isomorphic to: H0(k×,H2(SL(2,k),Z)), where the action of k× in
H2(SL(2,k),Z) stems from the extension

0 → SL(2,k)→ GL(2,k)→ k× → 0.
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Furthermore, when each element in k is a square, this action of k× is trivial. Finally
for quadratically closed fields, KM

n (k) is uniquely 2-divisible, for n � 2. In particular:
H2(SL(2,k),Z[1/2]) = H2(SL(2,k),Z). �

We can be more precise. For u, v two commuting elements in a group G, denote by [[u, v]] the
element of H2(G,Z) represented by the cycle [u|v]− [v|u], in the bar complex. By the appendix
of [16] on the Bloch–Wigner sequence 7 , the map

λ :k× ⊗ k× → H2

(
SL(2,k),Z

)
,

a⊗ b �→
[[

ρ(a), ρ(b)
]]

is surjective with kernel generated by the Steinberg elements a ⊗ (1 − a). Therefore it induces
an isomorphism

KM
2 (k) →H2

(
SL(2,k),Z

)
.

In the following result, θ is the cross product.

PROPOSITION 6.10. – If k is quadratically closed, the following diagram, where the vertical
maps are bijective, is commutative up to a factor 4.

k× ⊗ k× λ

ρ⊗ρ

H2(SL(2,k),Z)

γ

H1(O(2),Z[1/2]t)⊗H1(O(2),Z[1/2]t)
θ

H2(O(4),Z[1/2]t).

Consider the group morphism

ν :k× × k× → SO(4),

(a, b) �→
(

ρ(a) 0
0 ρ(b)

)
.

It induces a morphism

ν∗ :∧2
(
k× × k×)

→ H2

(
O(4),Z[1/2]t

)
(a, b)∧ (a′, b′) �→

[[
ν(a, b), ν(a′, b′)

]]
.

By easy computations, we get

γ ◦ λ(a⊗ b) = ν∗
(
(a,a)∧ (b, b)−

(
a−1, a

)
∧

(
b−1, b

))
,

and

θ ◦ (ρ⊗ ρ)(a⊗ b) = ν∗
(
(a,1)∧ (1, b)

)
.

But calculating in ∧2(k× × k×), and using the fact that the conjugation by the permutation
matrix (13)(24) gives ν∗((a, b)∧ (a′, b′)) = ν∗((b, a)∧ (b′, a′)), we have

ν∗
(
(a,a)∧ (b, b)−

(
a−1, a

)
∧

(
b−1, b

))
= ν∗

(
(a,1)∧ (b,1) + (a,1)∧ (1, b) + (1, a)∧ (b,1) + (1, a)∧ (1, b)

−
(
a−1,1

)
∧

(
b−1,1

)
−

(
a−1,1

)
∧ (1, b)− (1, a)∧

(
b−1,1

)
− (1, a)∧ (1, b)

)
= 4ν∗

(
(a,1)∧ (1, b)

)
.

7 See also in this appendix the reference to [35] concerning quadratically closed fields.
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This proves the commutativity of the diagram. �
Now, taking into account the results of this section, and the fact that the Milnor groups form

a quadratic algebra, we see that the algebra B and the Milnor algebra KM
∗ (k) ⊗ Z[1/2] are

canonically isomorphic, for k quadratically closed. Theorem 1.5 is then proved. �
Finally, we check that the stabilization map H2(O(2),Z) → H2(O(3),Z) is not injective in

general. Actually tensoring by Z[1/2], this would imply for k quadratically closed, the injectivity
of the Steinberg map

∧2k× →KM
2 (k),

a fact which is well known to be false in general. Therefore the range of stability in Theorem 1.1.
is the best possible. The argument is as follows.

For k quadratically closed, let k3 be identified with the set of matrices(
x3 −x1

x2 x3

)
∈M2(k).

We also consider O(3) as the orthogonal group of the quadratic form x1x2 +x2
3. The Spin group

Spin(3) is then the twofold covering

Ψ :SL(2,k)→ SO(3),

which comes from the representation of SL(2,k) on k3, given by

f �→
(
m �→ fmf−1

)
.

We have

Ψ
((

a 0
0 a−1

))
=

⎛⎜⎝a2 0 0
0 a−2 0
0 0 1

⎞⎟⎠ .

This implies that the following diagram in homology

k× ∧ k× λ

Φ

H2(SL(2,k),Z)

Ψ∗

H2(O(2),Z[1/2]) H2(O(3),Z[1/2]),

where Φ(a ∧ b) = [[ρ(a), ρ(b)]], is commutative up to a factor 4. But one can check that, for k
quadratically closed, the vertical maps in this diagram are isomorphisms.

6.4. The case of the real field

Here is a complement for k = R. Let σm be the involution of KM
m (C) ⊗ Z, induced by the

complex conjugation on KM
m (C) and the product by (−1)m on Z. From [35], the subalgebra of

KM
∗ (C) generated by U = {eiα ∈ C} coincides with the direct sum of invariant subspaces⊕

m�0

(
KM

m (C)⊗Z
)σm

.
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Unfortunately we do not know if this algebra is quadratic. However we have the following.

PROPOSITION 6.11. – There is a surjective morphism of algebras⊕
m�0

Hm

(
O(2m,R),Z[1/2]t

)
→

⊕
m�0

(
KM

m (C)⊗Z[1/2]
)σm

.

From [17,15], there is a commutative diagram, where the vertical map is bijective

H2(SU(2,C),Z)

U⊗U

K2(C)+

Here, K2(C)+ is the invariant subspace under the complex conjugation.
On the other hand, proceeding as in the proofs of Propositions 6.8 and 6.10, one gets a

commutative diagram

U⊗U H2(SU (2,C),Z)

H1(O(2,R),Z[1/2]t)⊗H1(O(2,R),Z[1/2]t) H2(O(4,R),Z[1/2]t),

where the vertical maps are isomorphisms.
Inverting the vertical maps in the previous diagrams, the proposition follows from the fact that

the algebra
⊕

m�0 Hm(O(2m,R),Z[1/2]t) is quadratic. �
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