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DEFORMATION OF HOLOMORPHIC MAPS ONTO THE
BLOW-UP OF THE PROJECTIVE PLANE

BY JUN-MUK HWANG 1

ABSTRACT. – Let S be the blow-up of the projective plane at d distinct points and ψ :S′ → S be any
surjective holomorphic map from a compact complex manifold S′. We will show that all deformations of
ψ come from automorphisms of S if d � 3. The result is optimal in the sense that it is not true if d � 2. The
strategy of the proof is to use the infinitesimal automorphisms of the web geometry on S arising from the
natural foliations of S induced by the pencils of the lines through the blow-up centers.
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RÉSUMÉ. – Soit S l’éclaté du plan projectif en d points distincts, et ψ :S′ → S une application surjective
quelconque d’une variété complexe compacte S′ dans S. Nous montrons que toutes les déformations de
ψ proviennent d’automorphismes de S si d � 3. Le résultat est optimal, au sens qu’il n’est pas vrai si
d � 2. La stratégie de la preuve est d’utiliser les automorphismes infinitésimaux de la géométrie des tissus
sur S provenant des feuilletages naturels de S induits par les pinceaux de droites passant par les points
d’éclatements.

© 2007 Elsevier Masson SAS

1. Introduction

Let ψ :X ′ → X be a surjective holomorphic map between two compact complex manifolds.
We say that a deformation

{
ψt :X ′ →X, ψ0 = ψ, t ∈C, |t|< ε

}

of ψ comes from automorphisms of X if there exists a holomorphic family of biholomorphic
automorphisms {gt, |t| < ε} of X such that g0 = IdX and ψt = gt ◦ ψ for each t. In this case,
two points of X ′ have the same images under ψt if and only if they have the same images
under ψ. This looks like a very strong restriction on the deformation ψt. However, in recent
works, it has been discovered that for many target manifolds X , all deformations of ψ come from
automorphisms of the target. This is the case, for example, when the target is simply connected,
algebraic and non-uniruled [7] or a Calabi–Yau manifold [5]. Moreover, in [6,8,9], it was proved
that this holds for many Fano manifolds of Picard number 1, excepting the projective space. It
is natural to ask what happens when the target is a Fano manifold of Picard number >1. In this
case, even the 2-dimensional case has not been studied. Our goal is to answer this question for

1 This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD)
(KRF-2006-341-C00004).
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180 J.-M. HWANG
the 2-dimensional Fano manifolds, namely, del Pezzo surfaces. Note that a del Pezzo surface is
the blow-up of P2 at d points in general position with d � 8. We will prove the following general
result.

MAIN THEOREM. – Let S be the blow-up of P2 at three or more distinct points. Let
ψ :S′ → S be a surjective holomorphic map from a compact complex manifold S′. Then
all deformations of ψ come from automorphisms of S. In particular, there is no non-trivial
deformation if S has no holomorphic vector field.

In Section 2, we will show that this result is optimal, namely, when S is the blow-up of one or
two points, there exist examples of deformations which do not come from automorphisms of S.

Our approach to Main Theorem is motivated by the work [9]. The key idea in that work was to
use the geometric structure defined by minimal rational curves in the target X . When the target
is the blow-up of P2, the natural analog of minimal rational curves are those rational curves
with trivial normal bundle coming from the pencils of lines through the blow-up centers. But
there is an essential difference in our situation from [9]. Unlike in the case of Fano manifold of
Picard number 1, the geometric structure induced by deformation of a minimal rational curve on
the blow-up of P2 is rather trivial, namely, it is just a fibration. Our idea here is to exploit the
nontrivial geometry of the collection of these fibrations, namely, their web geometry.

For this purpose, we will recall in Section 3, the basic notion of web geometry and some
computations. However, we need no deep results from the theory of web geometry. All the
computations regarding webs in this paper are elementary and use only very basic ordinary
differential equations. In fact, while most works in web geometry seem to be centered around
the local property, especially, the linearizability question (see [3] for a nice survey), all the webs
we encounter here are linear by definition. In this regard, our result shows that even simple
linear webs have interesting geometry, related to its infinitesimal automorphisms. Moreover it
shows that a certain global aspect of the web geometry, having to do with the monodromy of the
infinitesimal automorphisms, can play an important role in problems of algebraic geometry such
as our Main Theorem.

In Section 4, we will introduce the notion of webs of fibrations, which is crucial in relating the
deformations of holomorphic maps to the infinitesimal automorphisms of webs.

The proof of Main Theorem will be given in Sections 5 and 6. Logically speaking, it suffices
to prove Main Theorem when S is the blow-up of P2 at three distinct points. But when it is the
blow-up at four or more points (or three collinear points), a stronger result holds, which is an
analog of the classical Liouville theorem in conformal geometry [1, 15.2]. We will treat this case
separately in Section 5. The proof for the blow-up at three points will be given in Section 6, using
a monodromy argument.

2. Blow-up at one or two points

Here we will explain that an analog of Main Theorem for the blow-up of P2 at one or two
points cannot hold by giving examples of deformations of surjective holomorphic maps which
do not come from automorphisms of the target. Logically, it suffices to do it only for the blow-
up at two points, since a family of surjective holomorphic maps to the blow-up at two points
naturally induces a family of surjective holomorphic maps to the blow-up at one point. However,
we will treat the case of the blow-up at one point separately, to show that there are examples
which do not factor through the blow-up at two points.
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DEFORMATION OF HOLOMORPHIC MAPS 181
Example 2.1. – Let us start with the blow-up at one point. Choose any surface M ⊂ P3 and
a point z0 ∈P3 \M to define the projection

f0 :M →P2

with the vertex z0. Pick x ∈P2 such that f0 is unramified at

f−1
0 (x) = {s1, . . . , sr}

where r is the degree of the surface M . Let {zt /∈ M, t ∈ C, |t| < ε} be a deformation of z0

along the line joining z0 and x. Then the projection with the vertex zt defines

ft :M →P2

which is a deformation of f0. If M and x are chosen generically, the deformation ft cannot come
from automorphisms of P2. Note that

f−1
t (x) = {s1, . . . , sr} = f−1

0 (t) for each t ∈C, |t|< ε.

Let M ′ be the blow-up of M at s1, . . . , sr and S be the blow-up of P2 at x. Then ft induces a
surjective holomorphic map ψt :M ′ → S. The family {ψt, t ∈C, |t|< ε} defines a deformation
of the holomorphic map ψ0 which does not come from automorphisms of S.

Example 2.2. – The case of the blow-up at two points is a slight variation of Example 2.1. Let
C ⊂P2 be a plane curve. As above, we can find a family of projections

ht :C →P1

satisfying

h−1
t (y) = h−1

0 (y) for each t ∈C, |t|< ε

for some point y ∈P1 such that the deformation ht of h0 does not come from automorphisms of
P1 and each ht is unramified at h−1

t (y). Let

ft :C ×P1 →P1 ×P1

be the product

ft := ht × IdP1 .

Then {ft, t ∈C, |t| < ε} is a deformation of f0, which does not come from automorphisms of
P1 ×P1 and satisfies

f−1
t (y × x) = f−1

0 (y × x) for each t ∈ Δ and for each x ∈P1.

Fix a point z ∈ {y} ×P1. Let

f−1
t (z) = {s1, . . . , sr}

where r is the degree of C . Let M be the blow-up of C ×P1 at s1, . . . , sr and S be the blow-
up of P1 × P1 at z. Then ft induces a surjective holomorphic map ψt :M → S. But it is well
known that S is biholomorphic to the blow-up of P2 at two distinct points [2, 4.3]. Thus the
family {ψt, t ∈ C, |t| < ε} defines a deformation of the holomorphic map ψ0 which does not
come from automorphisms of S.
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182 J.-M. HWANG
Remark 2.3. – It is natural to ask whether there is a version of Main Theorem when S is
a successive blow-up of P2 with the blow-up centers possibly lying on the exceptional divisor
of the previous blow-up. For example, one may ask whether an analog of Main Theorem holds
if we take sufficiently many successive blow-ups of P2. This is not the case. Example 2.2 can
be modified to give an example of deformations of holomorphic maps which does not come
from automorphisms of S, for S obtained after an arbitrary large number of successive blow-ups
of P2. In Example 2.2, pick � > 0 distinct points Z := {z1, . . . , z�} ⊂ {y} ×P1. Let M be the
blow-up of C ×P1 at f−1

t (Z) and S be the blow-up of P1 ×P1 at Z . Then we get a family of
surjective holomorphic maps ψt :M → S which does not come from automorphism of the target.
In this case, the image in P2 of the exceptional divisors of the successive blow-ups S →P2 has
cardinality 2. Note that if the image in P2 of the exceptional divisors of the successive blow-ups
S →P2 has cardinality � 3, then we can apply Main Theorem to conclude that all deformations
of surjective holomorphic maps to S come from automorphisms of S.

3. Infinitesimal automorphisms of a web

Let U be a 2-dimensional complex manifold and PT (U) be the projectivization of its
holomorphic tangent bundle. Recall that a web on U is a submanifold W ⊂PT (U) with finitely
many connected components each of which is biholomorphic to U by the natural projection
PT (U) → U . If d is the number of the components of W , we say that W is a d-web. Given
an open subset V ⊂ U , the restriction of W to V defines a web on V , which we denote by
W |V . Also given an unramified holomorphic map ψ :U ′ → U , the natural pull-back of W by
dψ :PT (U ′) →PT (U) is a web on U ′, which we denote by ψ−1W and call the pull-back web
of W . A web W ′ ⊂PT (U) is a sub-web of W if W ′ ⊂ W . A web W ⊂PT (U) on a complex
manifold U and a web W ′ ⊂ PT (U ′) on another complex manifold U ′ are equivalent if there
exists a biholomorphic map ψ : U ′ → U such that ψ−1W = W ′.

Given a web W on U , a holomorphic vector field v on U is an infinitesimal automorphism of
W if for any relatively compact domain U0 ⊂ U , the 1-parameter family of biholomorphic maps
generated by v {

exp(tv) :U0 → Ut := exp(tv)(U0), t ∈C, |t|< ε
}

for sufficiently small ε defines an equivalence of webs W |U0 and W |Ut for each t. Let v1, . . . , vd

be d holomorphic vector fields on U which are pairwise and point-wise independent on U . Then
their images [v1], . . . , [vd] ⊂PT (U) define a d-web, which we call the web defined by the vector
fields v1, . . . , vd. It is immediate to see the following two propositions.

PROPOSITION 3.1. – Let U be a 2-dimensional complex manifold with pairwise point-wise
independent holomorphic vector fields v1, . . . , vd. A holomorphic vector field v on U is an
infinitesimal automorphism of the d-web defined by v1, . . . , vd, if and only if for each i = 1, . . . , d,
there exists a holomorphic function hi on U such that

[v, vi] = hi · vi

where the bracket denotes the Lie bracket of vector fields.

PROPOSITION 3.2. – Let W be a web on a 2-dimensional complex manifold U . Then a
holomorphic vector field on U which is an infinitesimal automorphism of W , is an infinitesimal
automorphism of any sub-web of W .

We collect below some explicit calculations regarding the infinitesimal automorphisms of
some simple webs on C2. We will fix a standard coordinate system (x, y) on C2.
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DEFORMATION OF HOLOMORPHIC MAPS 183
PROPOSITION 3.3. – Let f(x, y) ∂
∂x + g(x, y) ∂

∂y be a holomorphic vector field on a domain

U ⊂ C2, which is an infinitesimal automorphism of the web defined by the vector fields ∂
∂x and

∂
∂y . Then f(x, y) depends only on x and g(x, y) depends only on y.

Proof. – This is an easy consequence of Proposition 3.1. �
PROPOSITION 3.4. – Fix a, b ∈C. Consider a domain U in C2 where the three vector fields

∂

∂x
,

∂

∂y
, (x− a)

∂

∂x
+ (y − b)

∂

∂y

define a 3-web W . Let f(x, y) ∂
∂x + g(x, y) ∂

∂y be a holomorphic vector field on U , which is an
infinitesimal automorphism of the web W . Then there exist some constants c1, c2, c3 ∈ C such
that

f(x) = c1(x− a) + c2(x− a) log(x− a),

g(y) = c3(y − b) + c2(y − b) log(y − b).

Proof. – By Proposition 3.3, f(x, y) = f(x) and g(x, y) = g(y). Note that

[
f

∂

∂x
+ g

∂

∂y
, (x− a)

∂

∂x
+ (y − b)

∂

∂y

]
=

(
f − (x− a)

df

dx

)
∂

∂x
+

(
g − (y − b)

dg

dy

)
∂

∂y
.

By Proposition 3.1, this should be proportional to (x− a) ∂
∂x + (y − b) ∂

∂y . Thus

f − (x− a) df
dx

x− a
=

g − (y − b) dg
dy

y − b
.(†)

Since the right-hand side of (†) depends only on y while the left hand side depends only on x,
this must be a constant. Thus

d

dx

(
f

x− a
− df

dx

)
= − f

(x− a)2
+

1
x− a

df

dx
− d2f

dx2
= 0,

yielding the ordinary differential equation

(x− a)2
d2f

dx2
− (x− a)

df

dx
+ f = 0.

Under the change of variable x− a = et, the equation becomes

d2f

dt2
− 2

df

dt
+ f = 0

giving the solution

f = c1e
t + c2te

t = c1(x− a) + c2(x− a) log(x− a)

for some constants c1, c2 ∈C. Similarly, the equation

d

dy

(
g

y − b
− dg

dy

)
= 0
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



184 J.-M. HWANG
has the solution

g(y) = c3(y − b) + c4(y − b) log(y − b)

for some constants c3, c4 ∈C. Substituting in (†), we see that c2 = c4. �
PROPOSITION 3.5. – Let a �= a′, b �= b′ be complex numbers. Consider the web W defined

by the following four vector fields on a domain in C2 where they are pairwise and point-wise
independent.

∂

∂x
,

∂

∂y
, (x− a)

∂

∂x
+ (y − b)

∂

∂y
, (x− a′)

∂

∂x
+ (y − b′)

∂

∂y
.

Then W has no non-zero infinitesimal automorphism.

Proof. – W has two sub-webs W1 and W2, W1 defined by

∂

∂x
,

∂

∂y
, (x− a)

∂

∂x
+ (y − b)

∂

∂y
,

and W2 defined by

∂

∂x
,

∂

∂y
, (x− a′)

∂

∂x
+ (y − b′)

∂

∂y
.

By Propositions 3.2 and 3.4, an infinitesimal automorphism f(x) ∂
∂x + g(y) ∂

∂y must satisfy

f(x) = c1(x− a) + c2(x− a) log(x− a) = c′1(x− a′) + c′2(x− a′) log(x− a′),

g(y) = c3(y − b) + c2(y − b) log(y − b) = c′3(y − b′) + c′2(y − b′) log(y − b′).

It follows that c1 = c2 = c3 = c′1 = c′2 = c′3 = 0. �
PROPOSITION 3.6. – Consider a domain U in C2 where the three vector fields

∂

∂x
,

∂

∂y
,

∂

∂x
− ∂

∂y

define a 3-web W . Let f(x) ∂
∂x + g(y) ∂

∂y be a holomorphic vector field on U , which is an
infinitesimal automorphism of the web W . Then there exist some constants c1, c2, c3 ∈ C such
that

f(x) = c1 + c2x, g(y) = c3 + c2y.

Proof. – An easy computation using Proposition 3.1 shows that

df

dx
=

dg

dy
= constant.

Proposition 3.6 follows by setting the constant c2. �
PROPOSITION 3.7. – Consider a domain U in C2 where the four vector fields

∂

∂x
,

∂

∂y
,

∂

∂x
− ∂

∂y
, (x− a)

∂

∂x
+ (y − b)

∂

∂y
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DEFORMATION OF HOLOMORPHIC MAPS 185
define a 4-web W . Let f(x) ∂
∂x + g(y) ∂

∂y be a holomorphic vector field on U , which is an
infinitesimal automorphism of the web W . Then there exists some constant c such that

f(x) = c(x− a), g(y) = c(y − b).

Proof. – As in the proof of Proposition 3.5, Proposition 3.2 shows that f and g must be of the
form appearing in both Propositions 3.4 and 3.6, from which the result is clear. �

4. Web of fibrations on smooth projective surfaces

For our purpose, it will be convenient to introduce the notion of a ‘web of fibrations’.
Let S be a smooth projective surface. Suppose we are given
(i) a collection of Zariski dense open subsets U1, . . . ,Ud of S, and

(ii) for each i = 1, . . . , d, a smooth quasi-projective curve Ci and a surjective proper
holomorphic map fi :Ui → Ci such that for each i �= j, the fibers of fi and fj through
a general point of S are distinct.

The closure of the kernel of the differential dfi :T (Ui) → T (Ci) defines a subvariety Wi ⊂
PT (S) such that the natural projection PT (S) → S restricted to Wi is birational. By the
assumption in (ii), W1, . . . ,Wd are d distinct (reduced) subvarieties of PT (S). Let

W := W1 ∪ · · · ∪Wd ⊂PT (X).

A subvariety W ⊂ PT (X) with finitely many irreducible components is called a web of
fibrations on S if it arises from a collection of surjective proper holomorphic maps {fi :Ui → Ci}
as explained above. Strictly speaking, this is not a web in the sense of Section 3. However there
is a canonical way of associating a web to a web of fibrations. In fact, given a web of fibrations
W , there exists a unique maximal Zariski dense open subset in S, denoted by Dom(W ), over
which W defines a web.

Example 4.1. – Let P1, . . . , Pd be d distinct points on P2. Let π :S →P2 be the blow-up of
the d points and let Ei ⊂ S be the exceptional curve over Pi. We can identify Ei with PTPi(P2)
in a canonical manner. Under this identification, let Qij , j �= i, be the point on Ei corresponding
to the tangent vector of the line Lij joining Pi to Pj . Let L̃ij be the strict transform of Lij to S.
For a fixed choice of i = 1, . . . , d, let Ui be the open subset of S defined by

Ui = S \
⋃
i �=j

(
L̃ij ∪Ej

)
.

Then the pencil of lines passing through Pi defines a P1-bundle

fi :Ui → Ci := Ei \ {Qij , i �= j}.

The web of fibrations defined by {fi, 1 � i � d} on S will be called the canonical d-web on S.

PROPOSITION 4.2. – There exist only countably many webs of fibrations on a given smooth
projective surface.

Proof. – Note that each irreducible component of a general fiber of the holomorphic map
fi :Ui →Ci defining a web of fibrations is a smooth projective curve with trivial normal bundle.
Thus its small deformations in S are irreducible components of fibers of fi, too. This means
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that general fibers of fi correspond to a Zariski dense subset of an irreducible component of the
Hilbert scheme of curves on S. This way, a d-web of fibrations on S determines d irreducible
components of the Hilbert scheme of curves on S. It is clear that these d irreducible components
of the Hilbert scheme of curves on S determine the web of fibrations. Thus Proposition 4.2
is a consequence of the countability of the number of irreducible components of the Hilbert
scheme. �

PROPOSITION 4.3. – Let ψ :S′ → S be a generically finite holomorphic map between two
smooth projective surfaces. Let W ⊂PT (S) be a web of fibrations on S. Let U ⊂ S′ be a Zariski
open subset such that ψ|U is unramified and ψ(U) ⊂ Dom(W ). Denote by ψ−1W ⊂ PT (S′)
the closure of the pull-back of W by ψ|U . Then ψ−1W is a web of fibrations on S′.

Proof. – If {fi :Ui → Ci} is the collection of proper holomorphic maps defining W as a web
of fibrations, then {fi ◦ ψ|ψ−1(Ui)∩U ′} makes ψ−1W a web of fibrations on S′. �

PROPOSITION 4.4. – Let W be a web of fibrations on a smooth projective surface S. Let v
be a holomorphic vector field on S. Then v|Dom(W ) is an infinitesimal automorphism of W .

Proof. – Let ψ :S → S be a biholomorphic automorphism of S. By Proposition 4.3, ψ defines
a new web of fibrations ψ−1W on S. Thus for a holomorphic vector field v on S, the family of
biholomorphic automorphisms {ψt := exp(tv), t ∈C, |t|< ε} of S defines a family of webs of
fibrations ψ−1

t W . It is clear that on some analytic open subset they define a holomorphic family
of webs parametrized by t. By Proposition 4.2, they must be the same web of fibrations, which
means that v is an infinitesimal automorphism of the web W . �

For the next proposition, let us recall the Kodaira–Spencer class of deformations of
holomorphic maps (see e.g. [4]). Let

ψt :S′ → S, t ∈C, |t|< ε

be a deformation of a surjective holomorphic map ψ0 between two compact complex manifolds.
Then we can define the derivative at to, |to|< ε,

τto :=
d

dt

∣∣∣∣
to

ψt

as an element of H0(S′, ψ∗
to

T (S)). τto is called the Kodaira–Spencer class of the deformation
ψt at t = to. In other words, H0(S′, ψ∗

to
T (S)) is the space of infinitesimal deformations of ψto .

We know that H0(S,T (S)) is the space of infinitesimal automorphisms of S. Thus if

H0
(
S′, ψ∗T (S)

)
= ψ∗H0

(
S,T (S)

)

for any surjective holomorphic map ψ :S′ → S, then all deformations of surjective holomorphic
maps from S′ to S come from automorphisms of S.

When ψ :S′ → S is a generically finite holomorphic map, we can regard elements of
H0(S′, ψ∗T (S)) as multi-valued holomorphic vector fields on S. The next result says that
Proposition 4.4 can be generalized to multi-valued holomorphic vector fields on S, as long as
they arise as Kodaira–Spencer classes of deformations of holomorphic maps.

PROPOSITION 4.5. – Let

ψt :S′ → S, t ∈C, |t|< ε
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be a deformation of a generically finite holomorphic map ψ0 between two smooth projective
surfaces. Let τ0 ∈ H0(S′, ψ∗

0T (S)) be its Kodaira–Spencer class at t = 0. Assume that there
exists a web W of fibrations on S. Choose an analytic open subset V ⊂ S′ such that ψt(V ) ⊂
Dom(W ) and

ψt|V :V → ψt(V )

is biholomorphic for each |t|< ε. Then τ0|V , regarded as a holomorphic vector field on ψ0(V ),
is an infinitesimal automorphism of the web W |ψ0(V ).

Proof. – By Proposition 4.3, we have a family of webs of fibrations ψ−1
t W parametrized by t.

By Proposition 4.2, they must be identical. Thus

(
ψ−1

t W
)∣∣

V
=

(
ψ−1

0 W
)∣∣

V
for each |t|< ε.

This implies the proposition. �

5. Liouville theorem: Blow-up at three collinear points or at four or more points

Let W be a web of fibrations on a smooth projective surface S. We have seen in Propo-
sition 4.4, that a global holomorphic vector field v on S gives an infinitesimal automorphism
of W . Motivated by the classical Liouville theorem in conformal geometry [1, 15.2], we say
that Liouville theorem holds for W if for any connected analytic open subset V ⊂ Dom(W )
and an infinitesimal automorphism vo of W |V , there exists a global holomorphic vector field
v ∈ H0(S,T (S)) such that vo = v|V . In particular, if W |V has no non-zero infinitesimal auto-
morphism for any analytic open subset V ⊂Dom(W ), then Liouville theorem holds trivially.

PROPOSITION 5.1. – Let S be a smooth projective surface with a web of fibrations for which
Liouville theorem holds. Let ψ :S′ → S be a generically finite holomorphic map from another
smooth projective surface. Then all deformations of ψ come from automorphisms of S.

Proof. – Let τ ∈ H0(S′, ψ∗T (S)) be the Kodaira–Spencer class of a given deformation of ψ.
It suffices to show that τ ∈ ψ∗H0(S,T (S)). Let W be the web of fibrations. By Proposition 4.5,
there exists an analytic open subset V ⊂ S such that τ induces an infinitesimal automorphism
of W |V . Since Liouville theorem holds for W , τ must come from a global holomorphic vector
field on S. �

The following result is a direct consequence of Stein factorization. For details, see [7, 2.2].

PROPOSITION 5.2. – Let S be a smooth projective surface. Assume that for any smooth
projective surface S′ and any generically finite holomorphic map ψ :S′ → S, all deformations of
ψ come from automorphisms of S. Then for any compact complex manifold M and any surjective
holomorphic map φ :M → S, all deformations of φ come from automorphisms of S.

By Propositions 5.1 and 5.2, the following two propositions prove Main Theorem when S is
the blow-up at three collinear points or at four or more points.

PROPOSITION 5.3. – Let S be the blow-up of P2 at 3 collinear points. Then Liouville theorem
holds for the canonical 3-web on S.

Proof. – Let us use the terminology of Example 4.1. It is easy to see that H0(S,T (S))
corresponds to vector fields on P2 vanishing on the line containing the three collinear points.
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In particular, dimH0(S,T (S)) = 3. Choose a homogeneous coordinate system [z0 : z1 : z2] on
P2 such that

P1 = [0 : 1 : 0], P2 = [0 : 0 : 1], P3 = [0 : 1 : 1].

Consider the inhomogeneous coordinate

x =
z1

z0
, y =

z2

z0
on the open set P2 \ (z0 = 0)∼= C2.

The web W on Dom(W ) is equivalent to the web in Proposition 3.6 in terms of the above
inhomogeneous coordinates via the blow-up π :S → P2. Consequently, on any analytic open
subset V of Dom(W ), the space of infinitesimal automorphisms of W |V has dimension 3 by
Proposition 3.6. This means that they all come from H0(S,T (S)). �

PROPOSITION 5.4. – Let S be the blow-up of P2 at d � 4 distinct points. Then Liouville
theorem holds for the canonical d-web on S.

Proof. – Let us use the terminology of Example 4.1. There are three cases to consider.
(Case 1) All {P1, . . . , Pd} lie on a single line.
(Case 2) {P1, . . . , Pd−1} lie on a single line, but Pd are not on the line.
(Case 3) There are four points P1, . . . , P4, no three of which are collinear.
Let us show that these three cases exhaust all possibilities. If d = 4, then this is clear. So let us

assume that d � 5. Assume neither Case 1 nor Case 2 hold. Let 3 � � � d − 2 be the maximal
number of collinear points in {P1, . . . , Pd}. We can assume that {P1, . . . , P�} are collinear and lie
on a line L. Let L′ be the line joining Pd−1 and Pd. By assumption, L �= L′. Since � � 3, we can
choose two points, say, P1, P2 on the line L disjoint from L′. Then no three of {P1, P2, Pd−1, Pd}
can be collinear, and we are in Case 3.

Now we will prove Proposition 5.4 in each case separately.
(Case 1) In this case, dimH0(S,T (S)) = 3 and the proof of Proposition 5.2 works verbatim

by Proposition 3.2.
(Case 2) In this case, dimH0(S,T (S)) = 1. We can choose a homogeneous coordinate

system with

P1 = [0 : 1 : 0], P2 = [0 : 0 : 1], P3 = [0 : 1 : 1], Pd = [1 : a : b].

The web W on Dom(W ) is equivalent to a web which has a sub-web equivalent
to the 4-web appeared in Proposition 3.7 in terms of the inhomogeneous coordinate
system chosen in the proof of Proposition 5.3. Proposition 3.7 implies that there can
be at most 1-dimensional family of local infinitesimal automorphisms of W . Since
dimH0(S,T (S)) = 1, they must be those coming from global holomorphic vector fields.

(Case 3) We can choose a homogeneous coordinate system such that

P1 = [0 : 1 : 0], P2 = [0 : 0 : 1], P3 = [1 : a : b], P4 = [1 : a′ : b′]

with a �= a′, b �= b′. Then W on Dom(W ) is equivalent to a web which has a sub-
web equivalent to the 4-web appeared in Proposition 3.5 in terms of the inhomogeneous
coordinate system chosen in the proof of Proposition 5.3. Thus by Proposition 3.2 there
exists no non-zero infinitesimal automorphism on any analytic open subset V ⊂ Dom(W ).
Thus Liouville theorem holds trivially. �
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6. Blow-up at three non-collinear points

From Section 5, to finish the proof of Main Theorem, it suffices to consider the case when S
is the blow-up of three non-collinear points in P2.

Let P1, P2, P3 be three non-collinear points in P2 and π :S →P2 be the blow-up at these three
points. It is easy to check that dimH0(S,T (S)) = 2. Arguing as in the proofs of Propositions 5.3
and 5.4, the canonical 3-web W on S corresponds to the 3-web appeared in Proposition 3.4. By
Proposition 3.4, the dimension of the space of infinitesimal automorphisms of W restricted to
a domain is 3. It follows that Liouville theorem does not hold for this web. So there is an extra
infinitesimal automorphism which does not come from global vector fields on S.

Still, it is possible to prove Main Theorem as follows using the fact that the local infinitesimal
automorphisms cannot have finite monodromy.

Proof of Main Theorem. – By Proposition 5.2, we can assume that S′ is a smooth projective
surface. For a generically surjective holomorphic map ψ :S′ → S, the Kodaira–Spencer class τ
of any deformation of ψ defines a multi-valued holomorphic vector field on S which is locally
an infinitesimal automorphism of W by Proposition 4.5. Note that τ has finitely many multi-
values with the number of different values bounded by the degree of the map ψ. But since W
is equivalent to the web appeared in Proposition 3.4, if a multi-valued vector field is locally an
infinitesimal automorphism of W , either it is univalent or it has infinitely many multi-values,
depending on whether the coefficient c2 in Proposition 3.4 vanishes or not. Thus τ must be
a univalent holomorphic vector field on S. It follows that any deformation of ψ comes from
automorphisms of S. This finishes the proof of Main Theorem. �
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