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ON THE GLOBAL WELLPOSEDNESS
OF THE 3-D NAVIER–STOKES EQUATIONS

WITH LARGE INITIAL DATA

JEAN-YVES CHEMIN AND ISABELLE GALLAGHER

ABSTRACT. – We give a condition for the periodic, three-dimensional, incompressible Navier–Stokes
equations to be globally wellposed. This condition is not a smallness condition on the initial data, as the
data is allowed to be arbitrarily large in the scale invariant space B−1

∞,∞, which contains all the known
spaces in which there is a global solution for small data. The smallness condition is rather a nonlinear type
condition on the initial data; an explicit example of such initial data is constructed, which is arbitrarily large
and yet gives rise to a global, smooth solution.
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RÉSUMÉ. – Nous donnons une condition pour que le système de Navier–Stokes incompressible,
périodique, tridimensionnel, soit globalement bien posé. Cette condition n’est pas une condition de petitesse
sur la donnée initiale, la donnée pouvant être arbitrairement grande dans l’espace invariant d’échelle B−1

∞,∞,
qui contient tous les espaces connus dans lesquels des données petites suffisamment petites produisent une
unique solution globale. La condition de petitesse est plutôt de type non linéaire sur la donnée initiale ; on
construit un exemple explicite de donnée initiale qui est arbitrairement large et qui produit cependant une
solution globale régulière.

© 2006 Elsevier Masson SAS

1. Introduction

The purpose of this text is to establish a condition of global wellposedness for regular
initial data for the incompressible Navier–Stokes system on the three-dimensional torus T3 =
(R/2πZ)3. Let us recall the system:

(NS )

{
∂tu−Δu + u · ∇u =−∇p,
divu = 0,
ut=0 = u0.

Here u is a mean free three-component vector field u = (u1, u2, u3) = (uh, u3) representing the
velocity of the fluid, and p is a scalar denoting the pressure, both are unknown functions of the
space variable x ∈ T3, and the time variable t ∈ R+. We have chosen the kinematic viscosity
of the fluid to be equal to one for simplicity. We recall that the pressure can be eliminated by
projecting (NS ) onto the space of divergence free vector fields, using the Leray projector

P = Id−∇Δ−1 div.
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Thus we shall be using in the following the equivalent system

∂tu−Δu + P(u · ∇u) = 0.

Our motivation is the study of the size of the initial data yielding global existence of solutions
to that system, rather than the minimal regularity one can assume on the initial data. Thus, in all
this work, we shall assume that u0 is a mean free vector field with components in the Sobolev
space H

1
2 (T3): we recall that H

1
2 (T3) is a scale invariant space for (NS ), and that smooth

solutions exist for a short time if the initial data belongs to H
1
2 (T3), globally in time if the data

is small enough. The problem of global wellposedness for general data in H
1
2 (T3) is known

to be open. The search of smallness conditions on u0 the least restrictive as possible is a long
story, essentially initiated by J. Leray (in the whole space R3 but the phenomenon is similar
in the torus) in the seminal paper [11], continued in particular by H. Fujita and T. Kato in [6],
M. Cannone, Y. Meyer and F. Planchon in [2], and H. Koch and D. Tataru in [10]. The theorem
proved in [10] claims that if ‖u0‖∂BMO is small, which means that the components of u0 are
derivatives of BMO functions and are small enough, then (NS ) is globally wellposed in the
sense that a global (and unique using G. Furioli, P.-G. Lemarié and E. Terraneo’s result [7])
solution exists in C(R+;H

1
2 ). Our aim is to prove a theorem of global wellposedness which

allows for very large data in ∂BMO , under a nonlinear smallness condition on the initial data.
In fact the initial data will even be large in B−1

∞,∞, which contains strictly ∂BMO and which is
the largest scale invariant Banach space in which one can hope to prove a wellposedness result.
Before stating the result, let us recall that the question is only meaningful in three or more space
dimensions. We recall indeed that according to J. Leray [12], there is a unique, global solution to
the two-dimensional Navier–Stokes system as soon as the initial data is in L2(T2), and if there
is a forcing term it should belong for instance to L1(R+;L2(T2)).

In order to state our result, we shall need the following notation: one can decompose any
function f defined on T3 as

f = f̄ + f̃ , where f̄(x1, x2) =
1
2π

2π∫
0

f(x1, x2, x3)dx3.

Similarly we shall define the horizontal mean ū of any vector field as ū = (ū1, ū2, ū3). It will
also be convenient to use the following alternative notation: we denote by M the projector onto
vector fields defined on T2,

Mf = f̄ and (Id−M)f = f̃ .

We shall denote the heat semiflow by S(t) = etΔ. Finally let us define negative index Besov
spaces.

DEFINITION 1.1. – Let s be a positive real number, and let p and q be two real numbers in
[1,+∞]. The Besov space B−s

p,q(T
3) is the space of mean free distributions in T3 such that

‖u‖B−s
p,q

def=
∥∥t

s
2
∥∥S(t)u

∥∥
Lp

∥∥
Lq(R+, dt

t )
< +∞.

Remark. – We shall see an equivalent definition in terms of Littlewood–Paley theory in
Section 2 (see Definition 2.2).
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ON THE GLOBAL WELLPOSEDNESS OF THE 3-D NAVIER–STOKES EQUATIONS 681
Now let us consider the following subspace of H
1
2 (T3), where we have noted, for all vector

fields a and b,

Q(a, b) def= Pdiv(a⊗ b + b⊗ a).

DEFINITION 1.2. – Let A and B be two positive real numbers and let p in ]3,+∞]. We define
the set

Ip(A,B) =
{
u0 ∈ H

1
2 (T3) | divu0 = 0 and (H1), (H2), (H3) are satisfied

}
, where

(H1) ‖ū0‖L2(T2) +
∥∥MP(uF · ∇uF )

∥∥
L1(R+;L2(T2))

� A,

(H2) ‖ũ0‖B−1
∞,2

� A,

(H3)
∥∥(Id−M)P(uF · ∇uF ) + Q(u2D, uF )

∥∥
L1(R+;B

−1+ 3
p

p,2 )
� B,

where we have noted uF (t) = S(t)ũ0 and where u2D is a three component vector field defined
on T2, satisfying the following two-dimensional Navier–Stokes equation, in the case when the
initial data is v0 = ū0 and the force is f = −MP(uF · ∇uF ):

(NS2D)
{

∂tv + P(vh · ∇hv)−Δhv = f
v|t=0 = v0,

where Δh denotes the horizontal Laplacian Δh = ∂2
1 + ∂2

2 and where ∇h = (∂1, ∂2).

Now let us state the main result of this paper.

THEOREM 1. – Let p ∈ ]3,+∞[ be given. There is a constant C0 > 0 such that the following
holds. Consider two positive real numbers A and B satisfying

B exp
(
C0A

2
(
1 + A log(e + A)

)2) � C−1
0 .(1.1)

Then for any vector field u0 ∈ Ip(A,B), there is a unique, global solution u to (NS ) associated
with u0, satisfying

u ∈Cb

(
R+;H

1
2
(
T3

))
∩L2

(
R+;H

3
2 (T3)

)
.

Remarks. – (1) Condition (1.1) appearing in the statement of Theorem 1 should be understood
as a nonlinear smallness condition on the initial data: the parameter A, measuring through (H1)
and (H2) the norm of the initial data in a scale-invariant space, may be as large as wanted, as
long as the parameter B, which measures a nonlinear quantity in a scale-invariant space, is small
enough. We give below an example of such initial data, which is a smooth vector field with
arbitrarily large B−1

∞,∞ norm, and which generates a unique, global solution to (NS ): see the
statement of Theorem 2.

(2) Some results of global existence for large data can be found in the literature. To our
knowledge they all involve either an initial vector field which is close enough to a two-
dimensional vector field (see for instance [13,8] or [9]), or initial data such that after a change of
coordinates, the equation is transformed into the three-dimensional rotating fluid equations (for
which global existence is known), see [1]. Here we are in neither of those situations.

Let us now give an example where condition (1.1) holds. As mentioned in the remarks above,
in that example the initial data can be arbitrarily large in B−1

∞,∞, and nevertheless generates a
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



682 J.-Y. CHEMIN AND I. GALLAGHER
global solution (without being in any of the situations mentioned in the remark above). We have
noted by û the Fourier transform of any vector field u.

THEOREM 2. – Let N0 be a given positive integer. A positive integer N1 exists such that, if
N is an integer larger than N1, it satisfies the following properties. If vh

0 is any two component,
divergence free vector fields defined on T2 such that

Supp v̂h
0 ⊂ [−N0,N0]2 and

∥∥vh
0

∥∥
L2(T2)

� (logN)
1
9 ,

then a unique, global smooth solution to (NS ) exists, associated with the initial data

u0(x) =
(
Nvh

0 (xh) cos(Nx3),−divh vh
0 (xh) sin(Nx3)

)
.

Moreover the vector field u0 satisfies

∥∥uh
0

∥∥
B−1

∞,∞
� 1

4π
√

e

∥∥vh
0

∥∥
L2(T2)

.(1.2)

Remarks. – (1) Since the L2 norm of vh
0 can be chosen arbitrarily large, the lower bound given

in (1.2) implies that the B−1
∞,∞ norm of the initial data may be chosen arbitrarily large.

(2) One can rewrite this example in terms of the Reynolds number of the fluid: let re ∈ N be
its Reynolds number, and define the rescaled velocity field v(t, x) = 1

reu( t
re , x). Then v satisfies

the Navier–Stokes equation

∂tv + P(v · ∇v)− νΔv = 0

where ν = 1/re, and Theorem 2 states the following: if v|t=0 is equal to

v0,ν =
(

vh
0 (xh) cos

(
x3

ν

)
,−ν divh vh

0 (xh) sin
(

x3

ν

))

where v̂h
0 is supported in [−N0,N0]2 and satisfies

∥∥vh
0

∥∥
L2(T2)

�
(

log
1
ν

) 1
9

,

then for ν small enough there is a unique, global, smooth solution.
(3) It is possible to prove a theorem analogous to Theorem 1 in the case of the whole space

R3. However it is not clear that such a statement does not reduce to the case of small initial data
(in which case it would be empty in a sense), as we have no equivalent of Theorem 2 in that case;
relevant results in the case of R3 probably require different ideas.

The rest of the paper is devoted to the proof of Theorems 1 and 2. The proof of Theorem 1
relies on the following idea: if u denotes the solution of (NS ) associated with u0, which exists
at least for a short time since u0 belongs to H

1
2 (T3), then it can be decomposed as follows, with

the notation of Definition 1.2:

u = u(0) + R, where u(0) = uF + u2D.

Note that the Leray theorem in dimension two mentioned above, namely the existence
and uniqueness of a smooth solution for an initial data in L2(T2) and a forcing term in
4e SÉRIE – TOME 39 – 2006 – N◦ 4



ON THE GLOBAL WELLPOSEDNESS OF THE 3-D NAVIER–STOKES EQUATIONS 683
L1(R+;L2(T2)), holds even if the vector fields have three components rather than two (as is
the case for the equation satisfied by u2D); this is proved exactly as in the case of the usual Leray
theorem, as stated for instance in [5, Chapter 5]. One notices that the vector field R satisfies the
perturbed Navier–Stokes system

(PNS )
{

∂tR + P(R · ∇R) + Q(u(0),R)−ΔR = F,
R|t=0 = R0,

where

R|t=0 = 0 and F = −(Id−M)P(uF · ∇uF )−Q(uF , u2D).

The proof of Theorem 1 consists in studying both systems, the two-dimensional Navier–Stokes
system and the perturbed three-dimensional Navier–Stokes system. In particular a result on the
two-dimensional Navier–Stokes system will be proved in Section 3, which, as far as we know is
new, and may have its own interest. It is stated below.

THEOREM 3. – There is a constant C > 0 such that the following result holds. Let v be the
solution of (NS2D) with initial data v0 ∈ L2 and external force f in L1(R+;L2). Then we have

‖v‖2
L2(R+;L∞) � CE0

(
1 + E0 log2

(
e + E

1
2
0

))
with E0

def= ‖v0‖2
L2 +

( ∞∫
0

∥∥f(t)
∥∥

L2dt

)2

.

The key to the proof of Theorem 1 is the proof of the global wellposedness of the perturbed
three-dimensional system (PNS ). That is achieved in Section 4 below, where a general statement
is proved, concerning the global wellposedness of (PNS ) for general R0 and F satisfying a
smallness condition. That result is joint to Theorem 3 to prove Theorem 1 in Section 5. Finally
Theorem 2 is proved in Section 6. The coming section is devoted to some notation and the
recollection of well-known results on Besov spaces and the Littlewood–Paley theory which will
be used in the course of the proofs.

2. Notation and useful results on Littlewood–Paley theory

In this short section we shall present some well-known facts on the Littlewood–Paley theory.
Let us start by giving the definition of Littlewood–Paley operators on Td.

DEFINITION 2.1. – Let χ̃ be a nonnegative function in D(]−2,2[) such that χ̃ is equal to one
near [0,1], and define, for all k ∈Zd, the sequence (χj)j∈N of smooth functions on the torus by
χ̂j(k) = χ̃(2−j |k|). Then the Littlewood–Paley frequency localization operators are defined as
follows : for all j ∈N,

Sj = χj ∗ · and Δj = Sj − Sj−1,

with the convention that S−1 = 0.

As is well known, one of the interests of this decomposition is that the Δj operators allow to
count derivatives easily. More precisely we recall the Bernstein inequality. A constant C exists
such that

∀k ∈N, ∀1 � p � q �∞, sup
|α|=k

∥∥∂αΔju
∥∥

Lq(Td)
� Ck+12jk2jd( 1

p− 1
q )‖Δju‖Lp(Td).(2.1)
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



684 J.-Y. CHEMIN AND I. GALLAGHER
Using those operators we can give a definition of Besov spaces for all indexes, and we recall the
classical fact that the definition in the case of a negative index coincides with the definition given
in the introduction using the heat kernel (Definition 1.1 above).

DEFINITION 2.2. – Let f be in D′(Td), and let s ∈ R and (p, q) ∈ [1,+∞]2 be given real
numbers. Then f belongs to the Besov space Bs

p,q(T
d) if and only if

‖f‖Bs
p,q

def=
∥∥2js

∥∥Δjf‖Lp‖�q(N) < +∞.

Using the Bernstein inequality (2.1), it is easy to see that the following continuous embedding
holds:

B
s+ d

p1
p1,r1

(
Td

)
↪→B

s+ d
p2

p2,r2

(
Td

)
,(2.2)

for all real numbers s, p1, p2, r1, r2 such that pi and ri belong to the interval [1,∞] and such that
p1 � p2 and r1 � r2.

We recall that Sobolev spaces are special cases of Besov spaces, since Hs = Bs
2,2.

Throughout this article we shall denote by the letters C or c all universal constants. We shall
sometimes replace an inequality of the type f � Cg by f � g. We shall also denote by (cj)j∈N

any sequence of norm 1 in �2(N).

3. An L∞ estimate for Leray solutions in dimension two

The purpose of this section is the proof of Theorem 3. Let us write the solution v of (NS2D)
as the sum of v1 and v2 with

{
∂tv1 −Δhv1 = Pf,
v1|t=0 = v0

and

{
∂tv2 −Δhv2 = −Pdiv(v ⊗ v),
v2|t=0 = 0.

(3.1)

Duhamel’s formula gives

v1(t) = etΔv0 +

t∫
0

e(t−t′)ΔPf(t′)dt′,

thus we get that

‖v1‖L2(R+;L∞) �
∥∥etΔv0

∥∥
L2(R+;L∞)

+

∞∫
0

∥∥eτΔf(t)
∥∥

L2(R+
τ ;L∞)

dt.

Due to (2.2), we have L2 ↪→B−1
∞,2 so by Definition 1.1 we get that

‖v1‖L2(R+;L∞) � ‖v0‖L2 +

∞∫
0

∥∥f(t)
∥∥

L2 dt.(3.2)

Now let us estimate ‖v2‖L2(R+;L∞). It relies on the following technical proposition.
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PROPOSITION 3.1. – Let v be the solution of (NS2D) with initial data v0 in L2 and external
force f in L1(R+;L2). Then we have

∑
j

‖Δjv‖2
L∞(R+;L2) � E0

(
e + E

1
2
0

)
with E0 = ‖v0‖2

L2 +

( ∞∫
0

∥∥f(t)
∥∥

L2 dt

)2

.

Proof. – Applying Δj to the (NS2D) system and doing an L2 energy estimate gives,
neglecting (only here) the smoothing effect of the heat flow,

∥∥Δjv(t)
∥∥2

L2 � ‖Δjv0‖2
L2 +

t∫
0

∣∣(Δj(v(t′) · ∇v(t′))
∣∣Δjv(t′)

)
L2

∣∣dt′

+

t∫
0

∣∣〈Δjf(t′),Δjv(t′)
〉∣∣dt′.

Lemma 1.1 of [3] and the conservation of energy tell us that∣∣(Δj

(
v(t) · ∇v(t)

)∣∣Δjv(t)
)
L2

∣∣ � cj(t)
∥∥∇v(t)

∥∥
L2

∥∥v(t)
∥∥

L22
j
∥∥Δjv(t)

∥∥
L2

� c2
j (t)

∥∥∇v(t)
∥∥2

L2

∥∥v(t)
∥∥

L2

� E
1
2
0 c2

j (t)
∥∥∇v(t)

∥∥2

L2 .

Since ∣∣〈Δjf(t),Δjv(t)
〉∣∣ �

∥∥Δjf(t)
∥∥

L2

∥∥Δjv(t)
∥∥

L2

� E
1
2
0 c2

j (t)
∥∥f(t)

∥∥
L2 ,

we infer that

‖Δjv‖2
L∞(R+;L2) � ‖Δjv0‖2

L2 + E
1
2
0

∞∫
0

c2
j (t)

(∥∥∇v(t)
∥∥2

L2 +
∥∥f(t)

∥∥
L2

)
dt.

Taking the sum over j concludes the proof of the proposition. �
Conclusion of the proof of Theorem 3. – Let us first observe that interpolating the result of

Proposition 3.1 with the energy estimate, we find that a constant C exists such that, for any p in
[2,∞], we have ∑

j

2j 4
p ‖Δjv‖2

Lp(R+;L2) � CE0

(
e + E

1
2
0

)1− 2
p .(3.3)

Then by Bernstein’s inequality (2.1), we have

2−j(1− 2
p )‖Sjv‖Lp(R+;L∞) � C

∑
j′�j−1

2(j′−j)(1− 2
p )2j′ 2

p ‖Δj′v‖Lp(R+;L2).
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Using Young’s inequality on series and (3.3), we infer that a constant C exists such that, for any
p in ]2,∞],

2−j(1− 2
p )‖Sjv‖Lp(R+;L∞) � Ccj

p

p− 2
E

1
2
0

(
e + E

1
2
0

) 1
2− 1

p .(3.4)

Now using Bernstein’s inequality and Fourier–Plancherel, we get by (3.1)∥∥Δjv2(t)
∥∥

L∞ � 2j
∥∥Δjv2(t)

∥∥
L2(3.5)

� 22j

t∫
0

e−c22j(t−t′)
∥∥ΔjP

(
v(t′)⊗ v(t′)

)∥∥
L2 dt′.

Using Bony’s decomposition, let us write that for any a and b,

Δj

(
a(t)b(t)

)
=

∑
j′�j−N0

Δj

(
Sj′a(t)Δj′b(t)

)
+

∑
j′�j−N0

Δj

(
Δj′a(t)Sj′+1b(t)

)
.

We have

‖Sj′aΔj′b‖
L

2p
p+2 (R+;L2)

� ‖Sj′a‖Lp(R+;L∞)‖Δj′b‖L2(R+;L2).

Using (3.4), we deduce that a constant C exists such that, for any p in ]2,∞],∥∥ΔjP(v ⊗ v)
∥∥

L
2p

p+2 (R+;L2)

� C
∑

j′�j−N0

‖Sj′v‖Lp(R+;L∞)‖Δj′v‖L2(R+;L2)

� C
p

p− 2
E

1
2
0

(
e + E

1
2
0

) 1
2− 1

p
∑

j′�j−N0

cj′‖Δj′v‖L2(R+;L2)2
−j′( 2

p−1).

Using Young’s inequality in time in (3.5) gives

‖Δjv2‖L2(R+;L∞)

� C22j
∥∥e−c22j ·∥∥

L
p

p−1

∥∥ΔjP(v ⊗ v)
∥∥

L
2p

p+2 (R+;L2)

� C
p

p− 2
E

1
2
0

(
e + E

1
2
0

) 1
2− 1

p
∑

j′�j−N0

cj′‖Δj′v‖L2(R+;L2)2j′2(j−j′) 2
p .

By Young’s inequality on series we find that a constant C exists such that, for any p in ]2,∞[,

‖Δjv2‖L2(R+;L∞) � Cc2
j

p2

p− 2
E0

(
e + E

1
2
0

) 1
2− 1

p

and thus

‖v2‖L2(R+;L∞) � C
p2

p− 2
E0

(
e + E

1
2
0

) 1
2− 1

p .

Then let us choose p such that

2
p

= 1− 1

2 log(e + E
1
2 )

·

0
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Then we have that

‖v2‖L2(R+;L∞) � CE0 log
(
e + E

1
2
0

)
,(3.4)

and putting (3.2) and (3.4) together proves Theorem 3.

This theorem will enable us to infer the following useful corollary.

COROLLARY 3.1. – Let p ∈ ]2,+∞[ and let u0 be a vector field in Ip(A,B). Then u(0) =
uF + u2D satisfies ∥∥u(0)

∥∥2

L2(R+;L∞)
� A2

(
1 + A log(e + A)

)2
.

Proof. – As in the proof of (3.2) above, we have clearly by Definition 1.1 and (H2),

‖uF ‖L2(R+;L∞) � ‖ũ0‖B−1
∞,2

� A.

Then by Theorem 3 we have

‖u2D‖2
L2(R+;L∞) � E0

(
1 + E0 log2

(
e + E

1
2
0

))
,

where by definition of E0 and by (H1),

E0 = ‖ū0‖2
L2 +

∥∥MP(uF · ∇uF )
∥∥2

L1(R+;L2)

� A2.

As a result we get

∥∥u(0)
∥∥2

L2(R+;L∞)
� A2 + A2

(
1 + A log(e + A)

)2

and the corollary is proved. �

4. Global wellposedness of the perturbed system

In this section we shall study the global wellposedness of the system (PNS ). The result is the
following.

THEOREM 4. – Let p ∈ ]3,+∞[ be given. There is a constant C0 > 0 such that for any R0 in

B
−1+ 3

p

p,2 , F in L1(R+;B
−1+ 3

p

p,2 ) and u(0) in L2(R+;L∞) satisfying

‖R0‖
B

−1+ 3
p

p,2

+ ‖F‖
L1(R+;B

−1+ 3
p

p,2 )
� C−1

0 e
−C0‖u(0)‖2

L2(R+;L∞) ,(4.1)

there is a unique, global solution R to (PNS ) associated with R0 and F , such that

R ∈ Cb

(
R+;B

−1+ 3
p

p,2

)
∩L2

(
R+;B

3
p

p,2

)
.
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Proof. – Using Duhamel’s formula, the system (PNS ) turns out to be

R = R0 + L0R + BNS (R,R) with

R0(t)
def= etΔR0 +

t∫
0

e(t−t′)ΔF (t′)dt′,

L0R(t) def= −
t∫

0

e(t−t′)ΔQ
(
u(0)(t′),R(t′)

)
dt′ and

BNS (R,R)(t) def= −
t∫

0

e(t−t′)ΔPdiv
(
R(t′)⊗R(t′)

)
dt′.

The proof of the global wellposedness of (PNS ) relies on the following classical fixed point
lemma in a Banach space, the proof of which is omitted.

LEMMA 4.1. – Let X be a Banach space, let L be a continuous linear map from X to X , and
let B be a bilinear map from X ×X to X . Let us define

‖L‖L(X)
def= sup

‖x‖=1

‖Lx‖ and ‖B‖B(X)
def= sup

‖x‖=‖y‖=1

∥∥B(x, y)
∥∥.

If ‖L‖L(X) < 1, then for any x0 in X such that

‖x0‖X <
(1− ‖L‖L(X))2

4‖B‖B(X)
,

the equation

x = x0 + Lx + B(x,x)

has a unique solution in the ball of center 0 and radius
1−‖L‖L(X)

2‖B‖B(X)
·

Solving system (PNS ) consists therefore in finding a space X in which we shall be able to
apply Lemma 4.1. Let us define, for any positive real number λ and for any p in ]3,∞], the
following space.

DEFINITION 4.1. – The space Xλ is the space of distributions a on R+ ×T3 such that

‖a‖2
Xλ

def=
∑

j

2−2j(1− 3
p )

(
‖Δjaλ‖2

L∞(R+;Lp) + 22j‖Δjaλ‖2
L2(R+;Lp)

)
< ∞ with

aλ(t) def= exp

(
−λ

t∫
0

∥∥u(0)(t′)
∥∥2

L∞ dt′

)
a(t).

Remark. – If a belongs to Xλ, then aλ belongs to L∞(R+;B
−1+ 3

p

p,2 ) ∩L2(R+;B
3
p

p,2) and, as
u(0) is in L2(R+;L∞), we have

‖a‖
L∞(R+;B

−1+ 3
p )

+ ‖a‖
L2(R+;B

3
p )

� ‖a‖Xλ
exp

(
λ
∥∥u(0)

∥∥2

L2(R+;L∞)

)
.

p,2 p,2
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The fact that Xλ equipped with this norm is a Banach space is a routine exercise left to the reader.
The introduction of this space is justified by the following proposition which we shall prove at
the end of this section.

PROPOSITION 4.1. – For any p in ]3,∞[, a constant C exists such that, for any positive λ,

‖L0‖L(Xλ) � C

λ
1
2

and ‖BNS‖B(Xλ) � Ce
λ‖u(0)‖2

L2(R+;L∞) .

Conclusion of the proof of Theorem 1 . – In order to apply Lemma 4.1, let us choose λ such
that ‖L0‖L(Xλ) � 1/2. Then, the condition required to apply Lemma 4.1 is

‖R0‖Xλ
� 1

16C
e
−4C2‖u(0)‖2

L2(R+;L∞) .(4.2)

In order to ensure this condition, let us recall Lemma 2.1 of [4].

LEMMA 4.2. – A constant c exists such that, for any integer j, any positive real number t and
any p in [1,∞], ∥∥Δje

tΔa
∥∥

Lp � 1
c
e−c22jt‖Δja‖Lp .

This lemma and the Cauchy–Schwarz inequality for the measure ‖F (t′)‖
B

−1+ 3
p

p,2

dt′ give

∥∥ΔjR0,λ(t)
∥∥

Lp � Ce−c22jt‖ΔjR0‖Lp + C

t∫
0

e−c22j(t−t′)
∥∥ΔjF (t′)

∥∥
Lp dt′

� C2j(1− 3
p )

(
e−c22jtcj‖R0‖

B
−1+ 3

p
p,2

+

t∫
0

e−c22j(t−t′)cj(t′)
∥∥F (t′)

∥∥
B

−1+ 3
p

p,2

dt′

)

� C2j(1− 3
p )

(
e−c22jtcj‖R0‖

B
−1+ 3

p
p,2

+

( t∫
0

e−c22j(t−t′)
∥∥F (t′)

∥∥
B

−1+ 3
p

p,2

dt′

) 1
2

×
( t∫

0

e−c22j(t−t′)c2
j (t

′)
∥∥F (t′)

∥∥
B

−1+ 3
p

p,2

dt′

) 1
2
)

.

Then we infer immediately that

‖ΔjR0,λ‖L∞(R+;Lp)

� 2j(1− 3
p )cj‖R0‖

B
−1+ 3

p
p,2

+ 2j(1− 3
p )

( ∞∫
0

c2
j(t)

∥∥F (t)
∥∥

B
−1+ 3

p
p,2

dt

) 1
2

‖F‖
1
2

L1(R+;B
−1+ 3

p
p,2 )

and

‖ΔjR0,λ‖L2(R+;Lp)

� 2−j 3
p cj‖R0‖

B
−1+ 3

p
p,2

+ 2−j 3
p

( ∞∫
c2
j (t)

∥∥F (t)
∥∥

B
−1+ 3

p
p,2

dt

) 1
2

‖F‖
1
2

L1(R+;B
−1+ 3

p
p,2 )

.

0
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This gives

‖R0‖Xλ
� ‖R0‖

B
−1+ 3

p
p,2

+ ‖F‖
L1(R+;B

−1+ 3
p

p,2 )
.

It follows that the smallness condition (4.1) implies precisely condition (4.2). So we can apply
Lemma 4.1 which gives a global, unique solution R to (PNS ) such that

R ∈ L∞(
R+;B

−1+ 3
p

p,2

)
∩L2

(
R+;B

3
p

p,2

)
.

We leave the classical proof of the continuity in time to the reader. Theorem 4 is proved, provided
we prove Proposition 4.1.

Proof of Proposition 4.1. – It relies mainly on Lemma 4.2 and in a Bony type decomposition.
In order to prove the estimate on BNS , let us observe that Lemma 4.2 implies that∥∥Δj

(
BNS (R,R′)

)
λ
(t)

∥∥
Lp

� e
λ
∫ ∞

0
‖u(0)(t)‖2

L∞ dt

t∫
0

e−c22j(t−t′)
∥∥ΔjPdiv

(
Rλ(t′)⊗R′

λ(t′)
)∥∥

Lp dt′.

Proposition 3.1 of [4] implies that

∥∥ΔjPdiv(Rλ ⊗R′
λ)

∥∥
L2(R+;Lp)

� Ccj2j(−1+ 3
p )‖R‖Xλ

‖R′‖Xλ
.

Young’s inequality in time ensures the estimate on BNS .

The study of L0 follows the ideas of [4]. Let us decompose (L0a)λ
def= L0aλ as a sum of two

operators L1,λ and L2,λ defined by

(Ln,λR)(t) def=

t∫
0

e
(t−t′)Δ−λ

∫ t

t′
‖u(0)(t′′)‖2

L∞ dt′′PdivTn

(
u(0)(t′),Rλ(t′)

)
dt′ with

T1(a, b) def=
∑

j

(Δja⊗ Sj−1b + Sj−1b⊗Δja) and

T2(a, b) def=
∑

j

(Sj+2a⊗Δjb + Δjb⊗ Sj+2a).

As

ΔjT1(a, b) =
∑

|j′−j|�5

Δj(Δj′a⊗ Sj′−1b + Sj′−1b⊗Δj′a),

we have ∥∥ΔjT1(a, b)
∥∥

Lp � C
∑

|j′−j|�5

‖Δj′a‖L∞‖Sj′−1b‖Lp .

Noticing that

‖Sj−1Rλ‖L∞(R+;Lp) � cj2j(1− 3
p )‖R‖Xλ

,

we obtain ∥∥ΔjT1

(
u(0)(t),Rλ(t)

)∥∥
p � Ccj2j(1− 3

p )‖R‖Xλ
‖u(0)(t)‖L∞ .
L
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Using Bernstein’s inequality and Lemma 4.2, we have therefore

∥∥Δj(L1,λR)(t)
∥∥

Lp � C2j

t∫
0

e
−c22j(t−t′)−λ

∫ t

t′
‖u(0)(t′′)‖2

L∞ dt′′∥∥T1(u(0)(t′),Rλ(t′))
∥∥

Lp dt′

� Ccj2j(2− 3
p )‖R‖Xλ

t∫
0

e
−c22j(t−t′)−λ

∫ t

t′
‖u(0)(t′′)‖2

L∞ dt′′∥∥u(0)(t′)
∥∥

L∞ dt′.

Thus we get, by Young’s inequality,

∥∥Δj(L1,λR)
∥∥

L∞(R+;Lp)
+ 2j

∥∥Δj(L1,λR)
∥∥

L2(R+;Lp)
� C

λ
1
2
cj2j(1− 3

p )‖R‖Xλ
.(4.3)

Let us now estimate L2,λR. As

ΔjT2(a, b) =
∑

j′−j�N0

Δj(Δj′a⊗ Sj′−1b + Sj′−1b⊗Δj′a),

we have ∥∥ΔjT2(a, b)
∥∥

Lp � C
∑

j′−j�N0

‖Sj′+2a‖L∞‖Δj′b‖Lp

� C‖a‖L∞
∑

j′−j�N0

‖Δj′b‖Lp .

As for the estimate of L1,λ we get that

∥∥Δj(L2,λR)(t)
∥∥

Lp � C2j
∑

j′�j−N0

t∫
0

e
−c22j(t−t′)−λ

∫ t

t′
‖u(0)(t′′)‖2

L∞ dt′′

×
∥∥u(0)(t′)

∥∥
L∞

∥∥Δj′Rλ(t′)
∥∥

Lp dt′.

The Cauchy–Schwarz inequality implies that

∥∥Δj(L2,λR)(t)
∥∥

Lp � C2j
∑

j′�j−N0

( t∫
0

e−c22j(t−t′)
∥∥Δj′Rλ(t′)

∥∥2

Lp dt′

) 1
2

×
( t∫

0

e
−2λ

∫ t

t′
‖u(0)(t′′)‖2

L∞ dt′′∥∥u(0)(t′)
∥∥2

L∞ dt′

) 1
2

.

Then we infer that

2j 3
p
(∥∥Δj(L2,λR)

∥∥
L∞(R+;Lp)

+ 2j
∥∥Δj(L2,λR)

∥∥
L2(R+;Lp)

)
� C2j

λ
1
2

∑
j′�j−N0

2(j−j′) 3
p 2j′ 3

p ‖Δj′Rλ‖L2(R+;Lp).

Young’s inequality on series and (4.3) allow to conclude the proof of Proposition 4.1. �
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5. End of the proof of Theorem 1

Now we are ready to prove Theorem 1. The idea, as presented in the introduction, is to write

u = u(0) + R,

where R satisfies (PNS ) with R0 = 0 and F = −(Id−M)P(uF · ∇uF ) − Q(uF , u2D), and
where u(0) = uF + u2D . According to the assumptions of Theorem 1, we know that u0 belongs
to Ip(A,B), so in particular by (H3) we have

‖F‖
L1(R+;B

−1+ 3
p

p,2 )
� B.

Moreover by Corollary 3.1 we have

∥∥u(0)
∥∥2

L2(R+;L∞)
� A2

(
1 + A log(e + A)

)2
.

Due to Theorem 4, the global wellposedness of (PNS ) is guaranteed if

‖F‖
L1(R+;B

−1+ 3
p

p,2 )
� C−1

0 e
−C0‖u(0)‖2

L2(R+;L∞) .

Clearly the smallness assumption (1.1) implies directly that inequality, so under the assumptions
of Theorem 1, we have

R ∈Cb

(
R+;B

−1+ 3
p

p,2

)
∩L2

(
R+;B

3
p

p,2

)
.

To end the proof of Theorem 1 we still need to prove that u is in Cb(R+;H
1
2 ) ∩ L2(R+;H

3
2 ).

It is well known (see for instance [3]) that the blow up condition for H
1
2 (T3) data is the blow

up of the norm L2 in time with values in H
3
2 . As u0 is in H

1
2 , so are ū0 and ũ0. Then thanks

to the propagation of regularity in (NS2D) (see for instance [3]) and the properties of the heat
flow, uF and u2D belong to

L∞(
R+;H

1
2
)
∩L2

(
R+;H

3
2
)

and thus to L∞(
R+;B

−1+ 3
p

p,2

)
∩L2

(
R+;B

3
p

p,2

)
by the embedding recalled in (2.2). Thus as R belongs also to this space, it is enough to prove
the following blow up result, which we prove for the reader’s convenience.

PROPOSITION 5.1. – If the maximal time T 	 of existence in L∞
loc(R

+;H
1
2 )∩L2

loc(R
+;H

3
2 )

of a solution u of (NS ) is finite, then for any p,

T �∫
0

∥∥u(t)
∥∥4

B
− 1

2 + 3
p

p,∞
dt = +∞.

Proof. – An energy estimate in H
1
2 gives, for some positive c,

∥∥u(t)
∥∥2

H
1
2

+ c

t∫ ∥∥u(t′)
∥∥2

H
3
2

dt′ � ‖u0‖2

H
1
2

+ 2

t∫ (
div

(
u(t′)⊗ u(t′)

)∣∣u(t′)
)
H

1
2

dt′.
0 0
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Laws of product in Besov spaces imply that∥∥u(t′)⊗ u(t′)
∥∥

H
1
2

� C
∥∥u(t′)

∥∥
B

− 1
2 + 3

p
p,∞

∥∥u(t′)
∥∥

H1 .

Thus by interpolation we infer that

(
div

(
u(t′)⊗ u(t′)

)∣∣u(t′)
)
H

1
2

� C
∥∥u(t′)

∥∥
B

− 1
2 + 3

p
p,∞

∥∥u(t′)
∥∥ 1

2

H
1
2

∥∥u(t′)
∥∥ 3

2

H
3
2
.

Using the convexity inequality ab � 3/4a
4
3 + 1/4b4 gives

∥∥u(t)
∥∥2

H
1
2

+
c

2

t∫
0

∥∥u(t′)
∥∥2

H
3
2

dt′ � ‖u0‖2

H
1
2

+ C

t∫
0

∥∥u(t′)
∥∥4

B
− 1

2 + 3
p

p,∞

∥∥u(t′)
∥∥2

H
1
2
dt′.

A Gronwall lemma concludes the proof of Proposition 5.1, and therefore of Theorem 1. �
6. Proof of Theorem 2

In this final section we shall prove Theorem 2. In order to do so, two points must be checked:
first, that the initial data defined in the statement of the theorem satisfies the assumptions
of Theorem 1, namely the nonlinear smallness assumption (1.1), in which case the global
wellposedness will follow as a consequence of that theorem. Second, that the initial data satisfies
the lower bound (1.2). Those two points are dealt with in Sections 6.1 and 6.2 respectively.

6.1. The nonlinear smallness assumption

Let us check that the initial data defined in the statement of Theorem 2 belongs to the space
Ip(A,B) with the smallness condition (1.1). Recall that A and B are chosen so that

(H1) ‖ū0‖L2(T2) +
∥∥MP(uF · ∇uF )

∥∥
L1(R+;L2(T2))

� A,

(H2) ‖ũ0‖B−1
∞,2

� A,

(H3)
∥∥(Id−M)P(uF · ∇uF ) + Q(u2D, uF )

∥∥
L1(R+;B

−1+ 3
p

p,2 )
� B.

Let us start with Assumption (H1). We first notice directly that ū0 = 0, so we just have to check
that MP(uF · ∇uF ) belongs to L1(R+;L2(T2)), and to compute its bound. We have

uF · ∇uF = div(uF ⊗ uF ) hence M
(
uF · ∇uj

F

)
= Mdivh

(
uj

F uh
F

)
for j ∈ {1,2,3}.

On the one hand, we have

divh

(
u3

F uh
F

)
(x) = N divh

(
−divh

(
etΔhvh

0

)
etΔhvh

0

)
(xh)

(
et∂2

3 sin(Nx3)
)(

et∂2
3 cos(Nx3)

)
=

N

2
e−2tN2

divh

(
−divh

(
etΔhvh

0

)
etΔhvh

0

)
(xh) sin(2Nx3),

which implies that M(uF · ∇u3
F ) = 0. Notice that in particular, since ū0 = 0, we infer that

∀t � 0, u3
2D(t) = 0.(6.1)
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On the other hand, we have

divh

(
uh

F ⊗ uh
F

)
(x) = N2 divh

(
etΔhvh

0 ⊗ etΔhvh
0

)
(xh)

(
et∂2

3 cos(Nx3)
)2

=
N2

2
e−2tN2

divh

(
etΔhvh

0 ⊗ etΔhvh
0

)
(xh)

(
1 + cos(2Nx3)

)
.

Using the frequency localization of vh
0 and Bernstein’s inequality (2.1), we get

∥∥M
(
uF · ∇uh

F

)∥∥
L2(T2)

� N2

2
e−2tN2

N0

∥∥etΔhvh
0

∥∥2

L4(T2)

� CN2
0 N2e−2tN2∥∥vh

0

∥∥2

L2(T2)
.

Finally we infer that ∥∥M
(
uF · ∇uh

F

)∥∥
L1(R+;L2(T2))

� CN2
0 ‖vh

0 ‖2
L2(T2)(6.2)

� CN0(logN)
2
9 .

Let us now consider Assumption (H2). Since ū0 = 0, it simply consists in computing the
B−1

∞,2 norm of u0. We have

uh
0 (x) = Nvh

0 (xh) cos(Nx3),

and by definition of Besov norms,

∥∥uh
0

∥∥
B−1

∞,2
=

∥∥τ
1
2
∥∥eτΔuh

0

∥∥
L∞

∥∥
L2(R+, dτ

τ )
=

∥∥eτΔuh
0

∥∥
L2(R+;L∞)

.

It is easy to see that ∥∥eτΔuh
0

∥∥
L∞ = N

∥∥eτΔhvh
0 (xh)eτ∂2

3 cos(Nx3)
∥∥

L∞

� CN0Ne−τN2∥∥vh
0

∥∥
L2 .

It follows that ∥∥uh
0

∥∥
B−1

∞,2
� CN0N

∥∥vh
0

∥∥
L2

∥∥e−τN2∥∥
L2(R+)

� CN0

∥∥vh
0

∥∥
L2 .

The computation is similar for u3
0, so we get, for N large enough,

‖u0‖B−1
∞,2

� CN0(logN)
1
9 .(6.3)

Thus one can choose for the parameter A in (H1) and (H2)

A = CN0(logN)
2
9 .(6.4)

Finally let us consider Assumption (H3). We shall start with (Id−M)P(uF · ∇uF ). We have

(Id−M)(uF · ∇uF ) = (Id−M)
(
uh

F · ∇huF

)
+ (Id−M)

(
u3

F ∂3uF

)
,
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and we shall concentrate on the first term, as both are treated in the same way. We compute

(Id−M)
(
uh

F · ∇huh
F

)
(x) =

N2

2
(
etΔhvh

0 · ∇hetΔhvh
0

)
(xh)e−2tN2

cos(2Nx3)

and

(Id−M)
(
uh

F · ∇hu3
F

)
=−N

2
(
etΔhvh

0 · ∇hetΔh divh vh
0

)
(xh)e−2tN2

sin(2Nx3).

So ∥∥(Id−M)
(
uh

F · ∇huh
F

)∥∥
B

−1+ 3
p

p,2

=
∥∥τ

1
2− 3

2p

∥∥eτΔ(Id−M)
(
uh

F · ∇huh
F

)∥∥
Lp

∥∥
L2(R+, dτ

τ )

� CN0

N2

2
e−2tN2∥∥τ

1
2− 3

2p e−2τN2∥∥
L2(R+, dτ

τ )

∥∥vh
0

∥∥2

L2

� CN0N
2e−2tN2

N
3
p−1

∥∥vh
0

∥∥2

L2 .

It follows that

∥∥(Id−M)
(
uh

F · ∇huh
F

)∥∥
L1(R+;B

−1+ 3
p

p,2 )
� CN0N

3
p−1

∥∥vh
0

∥∥2

L2 ,(6.5)

and similarly

∥∥(Id−M)
(
uh

F · ∇hu3
F

)∥∥
L1(R+;B

−1+ 3
p

p,2 )
� CN0N

3
p−2

∥∥vh
0

∥∥2

L2 .(6.6)

Finally let us estimate the term Q(u2D, uF ). Since by (6.1), u3
2D is identically equal to zero, we

have

Q(u2D, uF ) = Pdivh(u2D ⊗ uF + uF ⊗ u2D)

so ∥∥Q
(
u2D, uh

F

)∥∥
L1(R+;B

−1+ 3
p

p,2 )

� N
∥∥e−tN2

divh

(
etΔhvh

0 ⊗ uh
2D

)
(xh) cos(Nx3)

∥∥
L1(R+;B

−1+ 3
p

p,2 )
.

We shall only compute that term, as Q(u2D, u3
F ) is estimated similarly (and contributes in fact

one power less in N ). Sobolev embeddings imply that Hs(T2) ↪→ Lp(T2) for s
def= 1− 2

p · So

∥∥divh

(
etΔhvh

0 ⊗ uh
2D

)∥∥
Lp �

∥∥etΔhvh
0 · ∇huh

2D

∥∥
Lp +

∥∥uh
2D · ∇hetΔhvh

0

∥∥
Lp

�
∥∥etΔhvh

0

∥∥
L∞

∥∥∇huh
2D

∥∥
Lp +

∥∥uh
2D

∥∥
Lp

∥∥etΔhvh
0

∥∥
L∞

� CN0

∥∥vh
0

∥∥
L2

∥∥uh
2D

∥∥
Hs+1 + CN2

0

∥∥vh
0

∥∥
L2

∥∥uh
2D

∥∥
Hs .

Propagation of regularity for the two-dimensional Navier–Stokes equations is expressed by

‖u2D‖L∞(R+;H2) �
∥∥M(uF · ∇uF )

∥∥
L1(R+;H2)

e
C‖u2D‖2

L2(R+;H1) .
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Using (6.3) and that the Fourier transform of M(uF ·∇uF ) is supported in [−2N0,2N0]2, we get

‖u2D‖L∞(R+;H2) � CN2
0

∥∥M(uF · ∇uF )
∥∥

L1(R+;L2)
e
CN0

∥∥vh
0

∥∥4

L2

� CN0

∥∥vh
0

∥∥2

L2e
CN0‖vh

0 ‖4
L2 .

Therefore we obtain∥∥Q(u2D, uF )(t)
∥∥

B
−1+ 3

p
p,2

� CN0Ne−tN2∥∥τ
1
2− 3

2p e−τN2∥∥
L2(R+; dτ

τ )

∥∥vh
0

∥∥3

L2e
CN0‖vh

0 ‖4
L2

� CN0N
3
p e−tN2∥∥vh

0

∥∥3

L2e
CN0‖vh

0 ‖4
L2 .

Finally ∥∥Q(u2D, uF )
∥∥

L1(R+;B
−1+ 3

p
p,2 )

� CN0N
3
p−2

∥∥vh
0

∥∥3

L2e
CN0‖vh

0 ‖4
L2 .

Together with (6.5) and (6.6), this gives∥∥(Id−M)P(uF · ∇uF ) + Q(u2D, uF )
∥∥

L1(R+;B
−1+ 3

p
p,2 )

� CN0N
3
p−1

∥∥vh
0

∥∥2

L2

(
1 + N−1

∥∥vh
0

∥∥
L2e

CN0‖vh
0 ‖4

L2
)
.

Using that ‖vh
0 ‖L2(T2) � (logN)

1
9 , we infer that, for N large enough,

∥∥(Id−M)P(uF · ∇uF ) + Q(u2D, uF )
∥∥

L1(R+;B
−1+ 3

p
p,2 )

� CN0N
3
p−1(logN)

2
9 .

Choosing p � 6 gives, still for N large enough,

∥∥(Id−M)P(uF · ∇uF ) + Q(u2D, uF )
∥∥

L1(R+;B
−1+ 3

p
p,2 )

� N− 1
4 .

We can therefore choose for the parameter B in (H3) the value B = N− 1
4 . Let us check

that with such choices of A and B, the smallness assumption (1.1) holds. With the choice of
A = CN0(logN)

2
9 made in (6.4), we have, for N large enough,

exp
(
C0A

2(1 + A logA)2
)
� exp

(
CN0

(
log

8
9 N

)
(log logN)

)
� exp

(
1
8

logN

)

� N
1
8 .

Since B = N− 1
4 , the smallness assumption (1.1) is guaranteed for large enough N , and

Theorem 1 yields the global wellposedness of the system with that initial data.

6.2. The lower bound

Let us now check that the initial data uh
0 satisfies the lower bound (1.2). We recall that the

B−1
∞,∞ norm is defined by

∥∥uh
0

∥∥
B−1

∞,∞
= sup

t�0
t

1
2
∥∥etΔuh

0

∥∥
L∞(T3)

.
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An easy computation, using the explicit formulation of uh
0 , enables us to write that

etΔuh
0 (x) = NetΔhvh

0 (xh)et∂2
3 cos(Nx3)

= NetΔhvh
0 (xh)e−tN2

cos(Nx3).

It follows that ∥∥etΔuh
0

∥∥
L∞(T3)

= Ne−tN2∥∥etΔhvh
0

∥∥
L∞(T2)

� N

2π
e−tN2∥∥etΔhvh

0

∥∥
L2(T2)

� N

2π
e−2tN2∥∥vh

0

∥∥
L2(T2)

,

for N � N0, using the fact that the frequencies of vh
0 are smaller than N0. Finally we have

∥∥uh
0

∥∥
B−1

∞,∞
� N

2π

∥∥vh
0

∥∥
L2(T2)

sup
t�0

(
t

1
2 e−2tN2)

� 1
4π

√
e

∥∥vh
0

∥∥
L2(T2)

,

and Theorem 2 follows.
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