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ABSTRACT. – We prove Rapoport’s dimension conjecture for affine Deligne–Lusztig varieties for GLh

and superbasic b. From this case the general dimension formula for affine Deligne–Lusztig varieties for
special maximal compact subgroups of split groups follows, as was shown in a recent paper by Görtz,
Haines, Kottwitz, and Reuman.
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RÉSUMÉ. – On démontre la conjecture de Rapoport sur la dimension des variétés de Deligne–Lusztig
affines pour GLh et b superbasique. Ce cas implique la formule générale pour la dimension des variétés de
Deligne–Lusztig affines pour des sous-groupes compacts maximaux de groupes déployés, résultat démontré
dans un article récent de Görtz, Haines, Kottwitz et Reuman.
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1. Introduction

Let k be a finite field with q = pr elements and let k be an algebraic closure. Let F = k((t))
and let L = k((t)). Let OF and OL be the valuation rings. We denote by σ :x �→ xq the Frobenius
of k over k and also of L over F .

Let G be a split connected reductive group over k. Let A be a split maximal torus of G
and W the Weyl group of A in G. For μ ∈ X∗(A) let tμ be the image of t ∈ Gm(F ) under the
homomorphism μ :Gm → A. Let B be a Borel subgroup of G containing A. We write μdom for
the dominant element in the orbit of μ ∈X∗(A) under the Weyl group of A in G.

We recall the definitions of affine Deligne–Lusztig varieties from [6,1]. Let K = G(OL) and
let X = G(L)/K be the affine Grassmannian. The Cartan decomposition shows that G(L) is
the disjoint union of the sets KtμK where μ ∈ X∗(A) is a dominant coweight. For an element
b ∈ G(L) and dominant μ ∈ X∗(A), the affine Deligne–Lusztig variety Xμ(b) is the locally
closed reduced k-subscheme of X defined by

Xμ(b)(k) =
{
g ∈G(L)/K | g−1bσ(g) ∈KtμK

}
.

Left multiplication by g ∈ G(L) induces an isomorphism between Xμ(b) and Xμ(gbσ(g)−1).
Thus the isomorphism class of the affine Deligne–Lusztig variety only depends on the
σ-conjugacy class of b.

There is an algebraic group over F associated to G and b whose R-valued points (for any
F -algebra R) are given by

J(R) =
{
g ∈G(R⊗F L) | g−1bσ(g) = b

}
.
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514 E. VIEHMANN
There is a canonical J(F )-action on Xμ(b).
Let ρ be the half-sum of the positive roots of G. By rkF we denote the dimension of a

maximal F -split subtorus. Let defG(b) = rkF G− rkF J . Let ν ∈ X∗(A)Q be the Newton point
of b, compare [3]. For nonempty affine Deligne–Lusztig varieties the dimension is given by the
following formula. Note that there is a simple criterion by Kottwitz and Rapoport (see [5]) to
decide whether an affine Deligne–Lusztig variety is nonempty.

THEOREM 1.1. – Assume that Xμ(b) is nonempty. Then

dim
(
Xμ(b)

)
= 〈ρ,μ− ν〉 − 1

2
defG(b).

Rapoport conjectured this in [7], Conjecture 5.10 in a different form. For the reformulation
compare [4]. In [9], Reuman verifies the formula for some small groups and b = 1. For G = GLn,
minuscule μ and over Qp rather than over a function field, the Deligne–Lusztig varieties have
an interpretation as reduced subschemes of moduli spaces of p-divisible groups. In this case, the
corresponding dimension formula is shown by de Jong and Oort (see [2]) if bσ is superbasic and
in [10] for general bσ. In [1] 2.15, Görtz, Haines, Kottwitz, and Reuman prove Theorem 1.1 for
all b ∈ A(L). They also show in 5.8 that if there is a Levi subgroup M of G such that b ∈ M(L)
is basic in M and if the formula is true for M,b and μM in a certain subset of the set of all
M -dominant coweights, then it is also true for (G,b,μ). Thus it is enough to consider superbasic
elements b, that is elements for which no σ-conjugate is contained in a proper Levi subgroup
of G. They show in 5.9 that it is enough to consider the case that G = GLh for some h and that b
is basic with m = vt(det(b)) prime to h. In this paper we prove Theorem 1.1 for this remaining
case.

The strategy of the proof is as follows: We associate to the elements of Xμ(b) discrete
invariants which we call extended semi-modules. This induces a decomposition of each
connected component of Xμ(b) into finitely many locally closed subschemes. Their dimensions
can be written as a combinatorial expression which only depends on the extended semi-module.
By estimating these expressions we obtain the desired dimension formula.

For minuscule μ, and over Qp, the group J(Qp) acts transitively on the set of irreducible
components of Xμ(b). As an application of the proof we show that for nonminuscule μ, the
action of J(F ) on this set may have more than one orbit.

2. Notation and conventions

From now on we use the following notation: Let G = GLh and let A be the diagonal torus.
Let B be the Borel subgroup of lower triangular matrices. For μ,μ′ ∈ X∗(A)Q we say that
μ � μ′ if μ′ − μ is a non-negative linear combination of positive coroots. As we may identify
X∗(A)Q with Qh, this induces a partial ordering on the latter set. An element μ = (μ1, . . . , μh) ∈
X∗(A) ∼= Zh is dominant if μ1 � · · ·� μh.

Let N = Lh and let M0 ⊂N be the lattice generated by the standard basis e0, . . . , eh−1. Then
K = GLh(OL) = Stab(M0) and g �→ gM0 defines a bijection

Xμ(b)(k) ∼=
{
M ⊂ N lattice | inv

(
M,bσ(M)

)
= tμ

}
.(2.1)

We define the volume of M = gM0 ∈Xμ(b) to be vt(det(g)).
We assume b to be superbasic. The Newton point ν ∈ X∗(A)Q

∼= Qh of b is then of the form
ν = (m , . . . , m ) ∈ Qh with (m,h) = 1. For i ∈ Z define ei by ei+h = tei. We choose b to be
h h
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the representative of its σ-conjugacy class that maps ei to ei+m for all i. For superbasic b, the
condition that the affine Deligne–Lusztig variety is nonempty, namely ν � μ, is equivalent to∑

μi = m. From now on we assume this.
For each central α ∈ X∗(A) there is the trivial isomorphism

Xμ(b)→ Xμ+α

(
tαb

)
.

We may therefore assume that all μi are nonnegative. For the lattices in (2.1), this implies that
bσ(M) ⊆ M .

In the following we will abbreviate the right-hand side of the dimension formula for Xμ(b) by
d(b,μ).

The set of connected components of X is isomorphic to Z, an isomorphism is given by
mapping g ∈GLh(L) to vt(det(g)). Let Xμ(b)i be the intersection of the affine Deligne–Lusztig
variety with the i-th connected component of X . Let π ∈GLh(L) with π(ei) = ei+1 for all i ∈ Z.
Then π commutes with bσ, and defines isomorphisms Xμ(b)i → Xμ(b)i+1 for all i. Thus it is
enough to determine the dimension of Xμ(b)0.

For superbasic b, an element of J(F ) is determined by its value at e0. More precisely, J(F )
is the multiplicative subgroup of a central simple algebra over F . Hence defG(b) = h − 1. If
vt(det(g)) = i for some g ∈ J(F ), then g induces isomorphisms between Xμ(b)j and Xμ(b)j+i

for all j. On Xμ(b)0, we have an action of {g ∈ J(F ) | vt(det(g)) = 0} = J(F )∩ Stab(M0).

Remark 2.1. – To a vector ψ = (ψi) ∈ Qh we associate the polygon in R2 that is the graph of
the piecewise linear continuous function f : [0, h] → R with f(0) = 0 and slope ψi on [i− 1, i].
One can easily see that d(b,μ) is equal to the number of lattice points below the polygon
corresponding to ν and (strictly) above the polygon corresponding to μ.

3. Extended semi-modules

In this section we describe the combinatorial invariants which are used to decompose Xμ(b)0.

DEFINITION 3.1. – (1) Let m and h be coprime positive integers. A semi-module for m,
h is a subset A ⊂ Z that is bounded below and satisfies m + A ⊂ A and h + A ⊂ A. Let
B = A \ (h + A). The semi-module is called normalized if

∑
a∈B a = h(h−1)

2 .
(2) Let ν = (m

h , . . . , m
h ) ∈ Qh. Let μ′ = (μ′

1, . . . , μ
′
h) ∈ Nh not necessarily dominant with

ν � μ′. A semi-module A for m, h is of type μ′ if the following condition holds: Let b0 =
min{b ∈ B} and let inductively bi = bi−1 + m − μ′

ih ∈ Z for i = 1, . . . , h. Then b0 = bh and
{bi | i = 0, . . . , h− 1}= B.

Remark 3.2. – Semi-modules are also used by de Jong and Oort in [2] to define a stratification
of a moduli space of p-divisible groups whose rational Dieudonné modules are simple of
slope m

h . In this case μ is minuscule, and they use semi-modules for m,h−m to decompose the
moduli space.

LEMMA 3.3. – If A is a semi-module, then its translate −Σa∈Ba
h + h−1

2 + A is the unique
normalized translate of A. It is called the normalization of A. There is a bijection between the
set of normalized semi-modules for m, h and the set of possible types μ′ ∈ Nh with ν � μ′.

Proof. – For the first assertion one only has to notice that the fact that the h elements of B are
incongruent modulo h implies that

∑
a∈B a− h(h−1)

2 is divisible by h. For the second assertion
let A be a normalized semi-module, let b0 = min{a ∈ B} and let inductively bi = bi−1+m−μ′

ih
where μ′

i is maximal with bi ∈ A. Then bh = b0 and {bi | i = 0, . . . , h − 1} = B. From
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b0 < bi0 for i0 = 1, . . . , h − 1 we obtain
∑i0

i=1(m − μ′
ih) > 0 for all i0 < h. Similarly, b0 = bh

implies
∑h

i=1 μ′
i = m. This shows ν � μ′. As m + A ⊂ A, the μ′

i are nonnegative. Given
μ′ as above, the corresponding normalized semi-module A can be constructed as follows: Let
b0 = 0, and inductively bi = bi−1 + m− μ′

ih. Then A is the normalization of {bi + αh | α ∈ N,
0 � i < h}. �

DEFINITION 3.4. – Let m and h be as before and let μ = (μi) ∈ Nh be dominant with∑
μi = m. An extended semi-module (A,ϕ) for μ is a normalized semi-module A for m,

h together with a function ϕ :Z → N∪ {−∞} with the following properties:
(1) ϕ(a) = −∞ if and only if a /∈ A.
(2) ϕ(a + h) � ϕ(a) + 1 for all a.
(3) ϕ(a) � max{n | a + m− nh ∈ A} for all a ∈A. If b ∈A for all b � a, then the two sides

are equal.
(4) There is a decomposition of A into a disjoint union of sequences a1

j , . . . , a
h
j with j ∈ N

and the following properties:
(a) ϕ(al

j+1) = ϕ(al
j) + 1.

(b) If ϕ(al
j + h) = ϕ(al

j) + 1, then al
j+1 = al

j + h. Otherwise al
j+1 > al

j + h.
(c) The h-tuple (ϕ(al

0)) is a permutation of μ.
An extended semi-module such that equality holds in (3) for all a ∈A is called cyclic.

Let A be a normalized semi-module for m, h and let μ′ be its type. Let μ = μ′
dom. Let ϕ be

such that (1) holds and that we have equality in (3) for all a ∈ A. Then in (2) the two sides are
also equal for all a ∈A. A decomposition of A as in (4) is given by putting all elements into one
sequence that are congruent modulo h. Hence (A,ϕ) is a cyclic extended semi-module for μ,
called the cyclic extended semi-module associated to A.

Example 3.5. – We give an explicit example of a noncyclic extended semi-module for m = 4,
h = 5, and μ = (0,0,0,2,2). Let A be the normalized semi-module of type (0,0,1,2,1).
Then B = A \ (5 + A) consists of −2,−1,2,5, and 6. Let ϕ(−1) = 0 and ϕ(a) = max{n |
a + m− nh ∈ A} if a ∈ A \ {−1}. See also Fig. 1 that shows elements of A marked by crosses
and the corresponding values of ϕ. A decomposition of A is given as follows: Three sequences
are given by the elements of A congruent to −2, 2, and 5 modulo 5, respectively. The forth
sequence is given by all elements congruent to 4 modulo 5 and greater than −1. The last sequence
consists of the remaining elements −1 and 6,11,16, . . . .

LEMMA 3.6. – If (A,ϕ) is an extended semi-module for μ, and if μ0 is the type of A, then
μ0

dom � μ. If μ0
dom = μ, then (A,ϕ) is a cyclic extended semi-module.

Proof. – Let (A,ϕ0) be the cyclic extended semi-module associated to A. Let

{x1, . . . , xn} =
{
a ∈ A | ϕ(a + h) > ϕ(a) + 1

}

ϕ(a) · · · −∞ 0 0 −∞−∞ 0 1 2 2 1 1 2 · · ·

a −3 −2 −1 0 1 2 3 4 5 6

· · · · · × × · · × × × × × × × · · ·

Fig. 1. A noncyclic extended semi-module.
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with xi > xi+1 for all i. For i ∈ {1, . . . , n} let

ϕi(a) =

⎧⎨⎩
−∞ if a /∈A,

ϕ(a) if a � xi,

ϕi(a + h)− 1 else.

We show that (A,ϕi) is an extended semi-module for some μi with μi−1
dom � μi

dom and
μi−1

dom �= μi
dom for all i � 1. As ϕn = ϕ, it then follows that μ0

dom � μn
dom = μ with equality

if and only if n = 0, that is if ϕ is cyclic.
The decomposition of (A,ϕi) is defined as follows: For a < xi, the successor of a is

a + h. Otherwise it is the successor from the decomposition of (A,ϕ). From the properties
of the decompositions for ϕ0 and ϕ one deduces that the decomposition satisfies the required
properties. Let ni � 0 be maximal with xi − nih ∈ A and let αi = ϕ(xi + h) − 1 − ϕ(xi) > 0.
Thus ϕi is obtained from ϕi−1 by subtracting αi from the values at xi, xi − h, . . . , xi − nih.
From μi−1 we obtain μi by replacing the two entries ϕi−1(xi − nih) = ϕi−1(xi) − ni and
ϕi−1(xi)−αi + 1 (which is the value of ϕ of the successor of xi in the sequence corresponding
to ϕi) by ϕi−1(xi)− αi − ni and ϕi−1(xi) + 1. As

ϕi−1(xi)− ni,ϕi−1(xi)− αi + 1 ∈
(
ϕi−1(xi)− αi − ni,ϕi−1(xi) + 1

)
,

we have μi−1
dom � μi

dom and μi−1
dom �= μi

dom. �
COROLLARY 3.7. – If μ is minuscule, then all extended semi-modules for μ are cyclic.

Proof. – Let (A,ϕ) be such an extended semi-module. Let μ′ be the type of A. Then μ′
dom � μ,

thus μ′
dom = μ. Hence the assertion follows from the preceding lemma. �

LEMMA 3.8. – There are only finitely many extended semi-modules (A,ϕ) for each μ.

Proof. – Let μ′ be the type of the semi-module A. As μ′
dom � μ, there are only finitely many

possible types and corresponding normalized semi-modules. For fixed A, the third condition for
extended semi-modules determines all but finitely many values of ϕ. For the remaining values
we have 0 � ϕ(a) � max{n | a + m − nh ∈ A}. Thus for each A there are only finitely many
possible functions ϕ such that (A,ϕ) is an extended semi-module for μ. �

4. The decomposition of the affine Deligne–Lusztig variety

Let M ∈ Xμ(b)0 be a lattice in N . In this section we associate to M an extended semi-
module for μ. This leads to a paving of Xμ(b)0 by finitely many locally closed subschemes. For
minuscule μ, this decomposition of the set of lattices is the same as the one constructed by de
Jong and Oort in [2], compare also [10, Section 5.1].

Let m and h be as in Section 2. Let v ∈ N and recall that tei = ei+h. Then we can write
v =

∑
i∈Z αiei with αi ∈ k and αi = 0 for small i. Let

I :N \ {0}→Z,

v �→min{i | αi �= 0}.

For a lattice M ∈Xμ(b)0 we consider the set

A = A(M) =
{
I(v) | v ∈ M \ {0}

}
.
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Then A(M) is bounded below and h+A(M) ⊂ A(M). As bσ(M) ⊂M , we have m+A(M) ⊂
A(M), thus A(M) is a semi-module for m, h. We have

vol(M) =
∣∣N \ (A∩N)

∣∣− ∣∣A \ (N∩A)
∣∣ = 0.

This implies that
∑

a∈B a =
∑h−1

i=0 i, thus A is normalized.
Let further

ϕ = ϕ(M) :Z →N∪ {−∞},

a �→
{

max{n | ∃v ∈ M with I(v) = a, t−nbσ(v) ∈M} if a ∈ A(M),
−∞ else.

Note that by the definition of A(M), the set on the right-hand side is nonempty. As bσ(M)⊂ M ,
the values of ϕ are indeed in N∪ {−∞}.

LEMMA 4.1. – Let M ∈Xμ(b)0. Then (A(M),ϕ(M)) is an extended semi-module for μ.

Proof. – We already saw that A(M) is a normalized semi-module. We have to check the
conditions on ϕ. The first condition holds by definition. Let v ∈ M with I(v) = a be realizing
the maximum for ϕ(a). Then tv ∈ M with I(tv) = a + h implies that ϕ(a + h) � ϕ(a) + 1,
which shows (2). Let v ∈ M with I(v) = a and t−ϕ(a)bσ(v) ∈ M . Then I(t−ϕ(a)bσ(v)) =
a + m−ϕ(a)h ∈ A(M), whence the first part of (3). Let b ∈ A for all b � a. Let n0 = max{n |
a + m− nh ∈A}. Let v′ ∈M with I(v′) = a + m− n0h and let v = (bσ)−1(tn0v′) ∈ N . Then
I(v) = a, thus v =

∑
b�a αbeb for some αb ∈ k. As b ∈A for all b � a, we also have eb ∈M for

all such b. Thus v ∈M with t−n0bσ(v) = v′ ∈M . Hence ϕ(a) = n0. It remains to show (4). For
a ∈ Z and ϕ0 ∈ N let

Ṽa,ϕ0 =
{
v ∈M | v = 0 or I(v) � a, t−ϕ0bσ(v) ∈ M

}
and Va,ϕ0 = Ṽa,ϕ0/Ṽa,ϕ0+1. Then Va0,ϕ0 is a k-vector space of dimension |{a � a0 | ϕ(a) =
ϕ0}|. We construct the sequences by inductively sorting all elements a ∈ A with ϕ(a) � ϕ0 for
some ϕ0: For ϕ0 = min{ϕ(a) | a ∈ A} we take each element a with this value of ϕ as the first
element of a sequence. (At the end we will see that we did not construct more than h sequences.)
We now describe the induction step from ϕ0 to ϕ0 + 1: If v1, . . . , vi is a basis of Va,ϕ0 for
some a, then the tvj are linearly independent in Va+h,ϕ0+1. Thus dimVa,ϕ0 � dimVa+h,ϕ0+1

for every a. Hence there are enough elements a ∈ A with ϕ(a) = ϕ0 + 1 to prolong all existing
sequences such that conditions (a) and (b) are satisfied. We take the a ∈ A with ϕ(a) = ϕ0 + 1
that are not already in some sequence as first elements of new sequences. Inductively, this
constructs sequences with properties (a) and (b). To show (c), let a < b0. Then∣∣{i | μi = n}

∣∣ = dimk Va,n − dimk Va−h,n−1

=
∣∣{al

0 | ϕ
(
al
0

)
= n

}∣∣.
This also shows that we constructed exactly h sequences. �

For each extended semi-module (A,ϕ) for μ let

SA,ϕ =
{
M ⊂ N lattice |A(M) = A, ϕ(M) = ϕ

}
⊂ X.

LEMMA 4.2. – The sets SA,ϕ are contained in Xμ(b)0. They define a decomposition
of Xμ(b)0 into finitely many disjoint locally closed subschemes. Especially, dimXμ(b)0 =
max{dimSA,ϕ}.
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Proof. – The last property in the definition of an extended semi-module shows that (A,ϕ)
determines μ. Thus SA,ϕ ⊆ Xμ(b)0. Using Lemmas 3.8 and 4.1 it only remains to show that
the subschemes are locally closed. The condition that a ∈ A(M) is equivalent to dim(M ∩
〈ea, ea+1, . . .〉)/(M ∩ 〈ea+1, ea+2, . . .〉) = 1. This is clearly locally closed. If a is sufficiently
large, it is contained in all extended semi-modules for μ and if a is sufficiently small, it is
not contained in any extended semi-module for μ. Thus fixing A is an intersection of finitely
many locally closed conditions on Xμ(b)0, hence locally closed. Similarly, it is enough to show
that ϕ(a) < n for some a ∈ A and n ∈ N is an open condition on {M ∈ X | bσ(M) ⊂ M,
A(M) = A} ⊂X . But this condition is equivalent to(

〈ei | i � a〉 ∩M ∩ tn(bσ)−1(M)
)
/〈ei | i � a + 1〉 = (0),

which is an open condition. �
Let (A,ϕ) be an extended semi-module for μ. Let

V(A,ϕ) =
{
(a, b) ∈A×A | b > a, ϕ(a) > ϕ(b) > ϕ(a− h)

}
.(4.1)

THEOREM 4.3. –
(1) Let A and ϕ be as above. There exists a nonempty open subscheme U(A,ϕ) ⊆ AV(A,ϕ)

and a morphism U(A,ϕ) → SA,ϕ that induces a bijection between the set of k-valued
points of U(A,ϕ) and SA,ϕ. Especially, dim(SA,ϕ) = |V(A,ϕ)|.

(2) If (A,ϕ) is a cyclic extended semi-module, then U(A,ϕ) = AV(A,ϕ).

Proof. – We denote the coordinates of a point x of AV(A,ϕ) by xa,b with (a, b) ∈ V(A,ϕ).
To define a morphism AV(A,ϕ) → X , we describe the image M(x) of a point x ∈ AV(A,ϕ)(R)
where R is a k-algebra. For each a ∈A we define an element v(a) ∈NR = N ⊗k R of the form
v(a) =

∑
b�a αbeb with αa = 1. The R�t�-module M(x) ⊂ NR will then be generated by the

v(a). We want the v(a) to satisfy the following relations: For a ∈ h + A we want

v(a) = tv(a− h) +
∑

(a,b)∈V(A,ϕ)

xa,bv(b).(4.2)

Let y = max{b ∈B}. If a = y we want

v(a) = ea +
∑

(a,b)∈V(A,ϕ)

xa,bv(b).(4.3)

For all other elements a ∈ B, we want the following equation to hold: Let a′ ∈ A be minimal
with a′ + m−ϕ(a′)h = a. Then v′ = t−ϕ(a′)bσ(v(a′)) ∈NR with I(v′) = a. Let

v(a) = v′ +
∑

(a,b)∈V(A,ϕ)

xa,bv(b).(4.4)

CLAIM 1. – For every x ∈ AV(A,ϕ)(R) there are uniquely determined v(a) ∈ NR for all
a ∈ A satisfying (4.2) to (4.4).

We set

v(a) =
∑
j∈N

αa,jea+j
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520 E. VIEHMANN
with αa,j ∈R and αa,0 = 1 for all a. We solve the equations by induction on j. Assume that the
αa,j are determined for j � j0 and such that the equations for v(a) hold up to summands of the
form βjej with j > a+ j0. To determine the αa,j0+1, we write a≡ y + im (mod h) and proceed
by induction on i ∈ {0, . . . , h− 1}. For i = 0 and a = y, the coefficient αa,j0+1 is the uniquely
determined element such that (4.3) holds up to summands of the form βjej with j > j0 + 1.
Note that by induction on j and as b > a, the coefficient of ey+j0+1 on the right-hand side of
the equation is determined. For a = y + nh with n > 0, the coefficients are similarly defined
by (4.2). For i > 0 and a ∈ A minimal in this congruence class, the coefficient is determined by
(4.4). Here, the coefficient of ea+j0+1 on the right-hand side of each equation is determined by
induction on i and j. For larger a in this congruence class we use again (4.2). By passing to the
limit on j, we obtain the uniquely defined v(a) ∈NR solving the equations.

CLAIM 2. – Let M(x) = 〈v(a) | a ∈ A〉R�t�. Then at each specialization of x to a k-valued
point y we have A = A(M(y)) and ϕ(M(y))(a) � ϕ(a) for all a.

From the definition of M we immediately obtain A ⊆ A(M(y)). To show equality con-
sider an element v =

∑
a αav(a) ∈ M(y) = M . Write v =

∑
i∈Z biei with bi ∈ k. Let

i0 = min{I(αav(a))}. If bi0 �= 0, then I(v) = i0 ∈ A. Otherwise we consider∑
{a|I(αav(a))=i0} αav(a). Note that I(v(a)) ≡ i0 (mod h) for all a occurring in the sum. Then

(4.2) shows that this sum can be written as a sum of v(b) with b > i0. Thus we may replace i0 by
a larger number. As i ∈A for all sufficiently large i, this shows that I(v) ∈ A, so A(M) = A.

Let x ∈ AV(A,ϕ)(k) and let M = M(x). We show that t−ϕ(a)bσ(v(a)) ∈ M for all a. This
means that ϕ(M)(a) � ϕ(a) for all a. Consider the elements a′ ∈ A that are minimal with
a′ +m−ϕ(a′)h = a for some a ∈B \ {y}. For these elements, the assertion follows from (4.4).
If a is minimal with a + m − ϕ(a)h = y, then I(t−ϕ(a)bσ(v(a))) = y. As all ei with i � y
are in M , this element is also contained in M . If ϕ(a) = ϕ(a − h) + 1 then v(a) = tv(a − h)
and the assertion holds for a − h if and only if it holds for h. From this, we obtain the claim
for all a ∈ A with ϕ(a) = max{n | a + m − nh ∈ A}. Especially, it follows for all sufficiently
large elements of A. It remains to prove the claim for the finitely many elements a ∈ A with
max{n | a + m − nh ∈ A} > ϕ(a). We use decreasing induction on a: Let a be in this set, and
assume that we know the assertion for all a′ > a. From (4.2) we obtain that

t−ϕ(a)bσ
(
v(a)

)
= t−ϕ(a)−1bσ

(
tv(a)

)
= t−ϕ(a)−1bσ

(
v(a + h)−

∑
b>a+h,ϕ(a+h)>ϕ(b)�ϕ(a)+1

xa+h,bv(b)
)

.

By induction, the right-hand side is in M and Claim 2 is shown.
As all μi are nonnegative, we constructed a morphism from AV(A,ϕ) to the subscheme XA

of X defined by XA(k) = {M |A(M) = A, bσ(M) ⊆ M}.

CLAIM 3. – There is a nonempty open subscheme U(A,ϕ) of AV(A,ϕ) that is mapped to SA,ϕ.
If (A,ϕ) is cyclic, then U(A,ϕ) = AV(A,ϕ).

In general we do not have ϕ(M)(a) = ϕ(a) for all a. The proof of Lemma 4.2 shows
that ϕ(M)(a) � ϕ(a) is an open condition on XA, and thus on AV(A,ϕ). Let U(A,ϕ) be the
corresponding open subscheme, which is then mapped to SA,ϕ. We have to show that it is
nonempty, thus to construct a point in AV(A,ϕ) where the corresponding function ϕ(M) is equal
to ϕ. If ϕ(a) = max{n | a+m−nh ∈ A}, then ϕ(M)(a) = ϕ(a). Especially, the two functions
are equal for all a if (A,ϕ) is cyclic. In this case U(A,ϕ) = AV(A,ϕ). If ϕ(a) + 1 = ϕ(a + h)
and if ϕ(M)(a + h) = ϕ(a + h), then ϕ(M)(a + h) − 1 � ϕ(M)(a) � ϕ(a) implies that
ϕ(M)(a) = ϕ(a). Thus it is enough to find a point where ϕ(M)(a) = ϕ(a) for all a ∈ A with
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ϕ(a + h) > ϕ(a) + 1. For each such a let ba be the successor in a decomposition of (A,ϕ) into
sequences. Then (a + h, ba) ∈ V(A,ϕ). Let xa+h,ba = 1 for these pairs and choose all other
coefficients to be 0. Then for this point and a as before we have that ϕ(M)(a) = ϕ(ba) − 1 =
ϕ(a). Thus U(A,ϕ) is nonempty.

CLAIM 4. – The map U(A,ϕ)→SA,ϕ defines a bijection on k-valued points.

More precisely, we have to show that for each M ∈ SA,ϕ there is exactly one x ∈ U(A,ϕ)(k)
such that M contains a set of elements v(a) for a ∈ A with I(v(a)) = a and satisfying (4.2) to
(4.4) for this x. The argument is similar as the construction of v(a) for given x: By induction on
j we will show the following assertion: There exist xj = (xj

a,b) ∈ U(A,ϕ)(k) and vj(a) ∈ M

for all a with t−ϕ(a)bσ(vj(a)) ∈ M and which satisfy Eqs. (4.2) to (4.4) for xj up to summands
of the form βnen with n > a + j. Furthermore the xj

a,b with b− a � j and the coefficients of en

in vj(a) for n � a + j will be chosen independently of j and only depending on M .
For j = 0 choose any x0 ∈ U(A,ϕ)(k) and v0(a) ∈ M with I(v0(a)) = a, first coefficient 1

and t−ϕ(a)bσ(v0(a)) ∈ M . The existence of these v0(a) follows from M ∈ Xμ(b). Assume that
the assertion is true for some j0. For n � j0 let xj0+1

a,a+n = xj0
a,a+n. We proceed again by induction

on i to define the coefficients for a≡ y + im (mod h). Let a = y. Choose the coefficients xj0+1
y,y+n

with n > j0 such that

vj0+1(y) = ey +
∑

(y,y+n)∈V(A,ϕ)

xj0+1
y,y+nvj0(y + n)

satisfies t−ϕ(y)bσ(vj0+1(y)) ∈ M . The definition of ϕ = ϕ(M) shows that such coefficients
exist and from ϕ(y + n) < ϕ(y) it follows that they are unique. For the other elements v(a) we
proceed similarly: For those with a − h /∈ A we use Eq. (4.4), on the right-hand side with the
values from the induction hypothesis, to define the new vj0+1(a). For a ∈ h + A we use (4.2).
As we know that t−ϕ(a−h)−1bσ(tvj0(a − h)) ∈ M , it is sufficient to consider the b > a with
ϕ(a−h) < ϕ(b) < ϕ(a). At each step the coefficient of ea+j0+1 of the right-hand side is already
defined by the induction hypothesis. It only depends on the xj0

a,a+n and the coefficients of eb+n

of vj0(b) with n � j0, hence only on M . The coefficients of xj0+1 are given by requiring that
t−ϕ(a)bσ(vj0+1(a)) ∈M . �

5. Combinatorics

In this section we estimate |V(A,ϕ)| to determine the dimension of the affine Deligne–Lusztig
variety Xμ(b).

Remark 5.1. – For cyclic extended semi-modules we have ϕ(a+h) = ϕ(a)+1 for all a ∈A.
Thus

V(A,ϕ) =
{
(bi, b) | bi ∈B, b ∈ A, b > bi, ϕ(b) < ϕ(bi)

}
where B = A \ (h + A).

PROPOSITION 5.2. – Let (A,ϕ) be the cyclic extended semi-module associated to the
normalized semi-module A of type μ. Then |V(A,ϕ)|= d(b,μ).

Proof. – Recall that by b0 we denote the minimal element of A or B. Let bi be as in the
definition of the type of A and let bh = b0. First we show that
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V(A,ϕ)→Z,

(bi, b) �→ b− bi + bh

induces a bijection between V(A,ϕ) and {a /∈ A | a > bh}. Let b ∈ A for some b > bi. Then
b− bi + bi+1 /∈A if and only if (bi, b) ∈ V(A,ϕ). Let bi0 = max{bi ∈B}. We have b ∈A for all
b � bi0 . Thus for every b > bh with b /∈ A, there is an element (bi, b−bh +bi) ∈ V(A,ϕ) for some
h > i � i0. Hence {a /∈A | a > bh} is in the image of the map. To show that it is injective and that
its image is contained in {a /∈A | a > bh}, it is enough to show that (bi, b) ∈ V(A,ϕ) implies that
b − bi + bj /∈ A for all j ∈ {i + 1, . . . , h}. Indeed, this ensures that (bj , b − bi + bj) /∈ V(A,ϕ)
for all such j and that b − bi + bh /∈ A. We write b = bl + αh for some l and α. Recall that
ϕ(bi) = μi+1. As (bi, bl + αh) ∈ V(A,ϕ), we have μl+1 + α < μi+1. Especially, l < i. This
implies μl+1 + · · ·+ μl+β + α < μi+1 + · · ·+ μi+β for all β � h− i. Using the recurrence for
the bj , one sees that this implies b− bi + bi+β /∈A for all β � h− i.

It remains to count the elements of {a /∈A | a > b0}. As h + A ⊆ A, we have

∣∣{a /∈A | a > b0}
∣∣ =

(
h−1∑
i=0

bi − b0 − i

)
· 1
h

.

From the construction of A from its type we obtain

=

(
h−1∑
i=0

i∑
j=1

(m− μjh)− i

)
· 1
h

=

(
h−1∑
i=0

i∑
j=1

m

h
− μj

)
− h− 1

2

= d(b,μ). �
THEOREM 5.3. – Let (A,ϕ) be an extended semi-module for μ. Then |V(A,ϕ)|� d(b,μ).

Proof of Theorem 5.3 for cyclic extended semi-modules. – We write B = {b0, . . . , bh−1} as in
the definition of the type μ′ of A. As the extended semi-module is assumed to be cyclic, μ′ is a
permutation of μ. Using Remark 5.1 we see∣∣V(A,ϕ)

∣∣ =
∣∣{(bi, a) ∈ B ×A | a > bi, ϕ(a) < ϕ(bi)

}∣∣
=

∑
{(bi,bj)∈B×B|bj>bi,μ′

j+1<μ′
i+1}

μ′
i+1 − μ′

j+1

+
∣∣{(bi, bj + αh) | bj < bi < bj + αh, μ′

i+1 > μ′
j+1 + α

}∣∣.
We refer to these two summands as S1 and S2.

Let (b̃0, μ̃1), . . . , (b̃h−1, μ̃h) be the set of pairs (b0, μ
′
1), . . . , (bh−1, μ

′
h), but ordered by the size

of bi. That is, b̃i < b̃i+1 for all i. Let

f :B →B,

bi �→ bi+1 = bi + m− μ′
i+1h

where we identify bh with b0. This defines a permutation of B. From the ordering of the b̃i

we obtain
∑i0

i=0 f(b̃i) �
∑i0

i=0 b̃i for all i0. As f(b̃i) = b̃i + m − μ̃i+1h, this is equivalent to∑i0+1
i=1 μ̃i � (i0 + 1)m for all i0. We thus have ν � μ̃� μ.
h
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Recall the interpretation of d(b,μ) from Remark 2.1. We show that S1 is equal to the number
of lattice points above μ and on or below μ̃. The second summand S2 will be less or equal to
the number of lattice points above μ̃ and below ν. Then the theorem follows for cyclic extended
semi-modules.

We have S1 =
∑

i<j max{μ̃i+1 − μ̃j+1,0}. Consider this sum for any permutation μ̃ of μ. If
we interchange two entries μ̃i and μ̃i+1 with μ̃i > μ̃i+1, the sum is lessened by the difference
of these two values. There are also exactly μ̃i − μ̃i+1 lattice points on or below μ̃ and above the
polygon corresponding to the permuted vector. If μ̃ = μ, both S1 and the number of lattice points
above μ and on or below μ̃ are 0. Thus by induction S1 is equal to the claimed number of lattice
points.

The last step is to estimate S2. It is enough to construct a decreasing sequence (with respect
to �) of ψi ∈ Qh for i = 0, . . . , h− 1 with ψ0 = μ̃ and ψh−1 = ν such that the number of lattice
points above ψi and on or below ψi+1 is greater or equal to the number of pairs (b̃i+1, b̃j + αh)
contributing to S2. Note that the ψi will no longer be lattice polygons. Let fi :B → B be defined
as follows: For j > i let fi(b̃j) = f(b̃j). Let {fi(b̃j) | 0 � j � i} be the set of f(b̃j), but sorted
increasingly. Let ψi = (ψi

j) be such that fi(b̃j) = b̃j + m−ψi
j+1h, i.e.

ψi
j+1 =

b̃j + m− fi(b̃j)
h

=
m

h
− fi(b̃j)− b̃j

h
.

Similarly as for ν � μ̃ one can show that

ν � ψi+1 � ψi � μ̃

for all i. As f0 = f and fh−1 = id, we have ψ0 = μ̃ and ψh−1 = ν. It remains to count the lattice
points between ψi and ψi+1. To pass from fi to fi+1 we have to interchange the value f(b̃i+1)
with all larger fi(b̃j) with j � i. Thus to pass from the polygon associated to ψi to the polygon
of ψi+1 we have to change the value at j by (fi(b̃j) − f(b̃i+1))/h, and that for all j � i with
fi(b̃j) > f(b̃i+1). Thus there are at least

∑
j�i,fi(b̃j)>f(b̃i+1)

⌊
fi(b̃j)− f(b̃i+1)

h

⌋
=

∑
j�i,f(b̃j)>f(b̃i+1)

⌊
f(b̃j)− f(b̃i+1)

h

⌋

lattice points above ψi and on or below ψi+1. For fixed i and j < i + 1, the set of pairs
(b̃i+1, b̃j + αh) contributing to S2 is in bijection with {α � 1 | f(b̃j) − αh > f(b̃i+1)}. The

cardinality of this set is at most � f(b̃j)−f(b̃i+1)
h � which proves that S2 is not greater than the

number of lattice points between μ̃ and ν. �
Example 5.4. – We give an example of a cyclic semi-module (A,ϕ) where the type of A

is not dominant but where |V(A,ϕ)| = d(b,μ). Let m = 4, h = 5, and μ = (0,0,1,1,2). Let
(A,ϕ) be the cyclic extended semi-module associated to the normalized semi-module of type
(0,0,1,2,1). Note that A is the same semi-module as in Example 3.5. Then the dimension of the
corresponding subscheme is∣∣V(A,ϕ)

∣∣ =
∣∣{(−1,2), (5,6), (5,7)

}∣∣ = d(b,μ).

Proof of Theorem 5.3. – Let (A,ϕ) be an extended semi-module for μ. Let ϕi and μi

be the sequences constructed in the proof of Lemma 3.6. By induction on i we show that
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|V(A,ϕi)| � d(b,μi). For i = 0, the extended semi-module (A,ϕ0) is cyclic, hence the assertion
is already shown.

We use the notation of the proof of Lemma 3.6. The description of the difference between μi

and μi−1 given there shows that

d
(
b,μi

)
− d

(
b,μi−1

)
=

h∑
l=1

l∑
j=1

(
μi−1

dom,j − μi
dom,j

)
=

(∣∣{μi−1
j ∈

(
ϕi−1(xi)− αi − ni,ϕi−1(xi) + 1

)}∣∣− 1
)

×min{αi, ni + 1}.

We denote this difference by Δ. To show that |V(A,ϕi)| − |V(A,ϕi−1)| � Δ we use the
decomposition into sequences al

j of the extended semi-module (A,ϕi−1). Using the definition
of V(A,ϕ) and the description of the difference between ϕi and ϕi−1 from the proof of
Lemma 3.6 one obtains ∣∣V(a,ϕi)

∣∣− ∣∣V(a,ϕi−1)
∣∣ = S1 + S2 + S3

where

S1 =
∣∣{(xi + h, b) | b ∈ A, b > xi + h, ϕi−1(xi) + 1 > ϕi−1(b) > ϕi−1(xi)− αi

}∣∣,
S2 =

∣∣{(b, xi − δh) | b ∈ B \ {xi − nih}, b < xi − δh, δ ∈ {0, . . . , ni}
ϕi−1(xi)− δ − αi < ϕi−1(b) � ϕi−1(xi)− δ

}∣∣,
S3 =−

∣∣{(xi − nih, b) | b > xi − nih, ϕi−1(xi)− ni > ϕi−1(b) � ϕi−1(xi)− ni − αi

}∣∣.
Here we used that a � xi implies that ϕi−1(a + h) = ϕi−1(a) + 1. For each sequence al

j of
the extended semi-module (A,ϕi−1) we use S1,l, S2,l, and S3,l for the contributions of pairs
with b ∈ {al

j} to the three summands. Furthermore we write Sl = S1,l + S2,l + S3,l. We show
the following assertions: If ϕi−1(al

0) /∈ (ϕi−1(xi)−αi − ni,ϕi−1(xi) + 1) or if al
0 = xi − nih,

then Sl = 0. Otherwise, Sl � min{αi, ni + 1}. Then the theorem follows from property (4c) of
extended semi-modules.

To determine the Sl, we consider the following cases:

Case 1. – ϕi−1(al
0) � ϕi−1(xi)+1. In this case it is easy to see that S1,l = S2,l = S3,l = 0.

Case 2. – al
0 > xi. This implies that S2,l = 0. If ϕi−1(al

0) � ϕi−1(xi) − ni − αi, then
S1,l + S3,l = αi − αi = 0. Let now ϕi−1(al

0) ∈ (ϕi−1(xi)− αi − ni,ϕi−1(xi) + 1). Then

S1,l + S3,l �
∣∣{al

j | ϕi−1(xi) + 1 > ϕi−1

(
al

j

)
� max

{
ϕi−1(xi)− αi + 1, ϕi−1(xi)− ni

}}∣∣.
As ϕi−1(al

j+1) = ϕi−1(al
j) + 1 for all j, the right-hand side is less or equal to min{αi, ni + 1}.

Case 3. – al
0 = xi −nih. This sequence starts with xi −nih, . . . , xi, xi +h. (Recall that the

sequences {al
j} for ϕi−1 are of this easy form with stepwidth h as long as al

j � xi < xi−1.) Note
that within one sequence al

j > al
j′ implies ϕi−1(al

j) > ϕi−1(al
j′). Hence this special sequence

does not make any contribution, as in Sl we only consider pairs where both elements are in the
sequence starting with xi − nih.

Case 4. – al
0 < xi, but not congruent to xi modulo h. Again al

j+1 = al
j + h if al

j � xi. We
first assume that ϕi−1(al

0) � ϕi−1(xi)−ni −αi. Then S2,l = 0. Assume that b = al
j contributes
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to S1,l. Then j � ni + 1 and al
j > xi + h. If al

0 < xi − nih, then [xi − nih,xi + h] contains
ni + 1 elements of the sequence. Thus in all cases al

j−ni−1 > xi − nih. This element then
leads to a contribution to S3,l, as ϕi−1(al

j−ni−1) = ϕi−1(al
j) − ni − 1. In the other direction,

if al
j contributes to S3,l, then al

j+ni+1 contributes to S1,l. Thus Sl = 0. We now assume that
ϕi−1(al

0) ∈ (ϕi−1(xi) − αi − ni,ϕi−1(xi) + 1). Let n be maximal with al
n = al

0 + nh < xi.
Then we have

S1,l =
∣∣{al

j | j > n + 1, ϕi−1(xi) � ϕi−1

(
al
0

)
+ j > ϕi−1(xi)− αi

}∣∣,
S2,l =

∣∣{al
j | 0 � j � min{n,ni}, ϕi−1(xi) � ϕi−1

(
al
0

)
+ j > ϕi−1(xi)− αi

}∣∣,
S3,l =−

∣∣{al
j | j � max{n− ni + 1,0}, ϕi−1(xi)− ni > ϕi−1

(
al
0

)
+ j

}∣∣
=−

∣∣{al
j | j > max{n + 1, ni}, ϕi−1(xi) � ϕi−1

(
al
0

)
+ j

}∣∣.
Thus

Sl � S1,l + S2,l �
{
j | ϕi−1(xi) � ϕi−1

(
al
0

)
+ j > ϕi−1(xi)− αi

}
= αi.

If n + 1 � ni, then S1,l + S3,l � 0. Thus Sl � S2,l � ni + 1. If ni > n + 1 then S1,l + S3,l �
ni − n− 1 and S2,l � n + 1. Hence in both cases Sl � min{αi, ni + 1}. �

Example 5.5. – Example 3.5 describes a noncyclic extended semi-module (A,ϕ) for
μ = (0,0,0,2,2) such that∣∣V(A,ϕ)

∣∣ =
∣∣{(5,6), (5,7), (4,6), (4,7)

}∣∣ = d(b,μ).

Proof of Theorem 1.1. – Lemma 4.2 and Theorem 4.3 imply that dimXμ(b)0 = max |V(A,ϕ)|.
In Proposition 5.2 we give a pair with |V(A,ϕ)|= d(b,μ). Theorem 5.3 shows that the maximum
is at most d(b,μ). Together we obtain dimXμ(b) = d(b,μ). �

6. Irreducible components

COROLLARY 6.1. – Let G = GLh, let b be superbasic and ν � μ. Then the action of J(F ) on
the set of irreducible components of Xμ(b) has only finitely many orbits.

Proof. – It is enough to consider the intersection of the orbits with the set of irreducible
components of Xμ(b)0. Theorem 4.3 implies that each SA,ϕ is irreducible. Thus the corollary
follows from Lemma 3.8. �

Example 6.2. – We give two examples to show that even for superbasic b, the irreducible
components of Xμ(b) are in general not permuted transitively by J(F ). The description of J(F )
in Section 2 implies that A(gM) = A(M) and ϕ(gM) = ϕ(M) for each g ∈ J(F ) with
vt(det(g)) = 0. First we consider the example m = 4, h = 5, and μ = (0,0,1,1,2). It is enough
to find two extended semi-modules for μ leading to subschemes of dimension d(b,μ) = 3.
Indeed, the subschemes corresponding to different extended semi-modules are disjoint and lead
to irreducible components in different J(F )-orbits. One such extended semi-module is the cyclic
extended semi-module considered in Proposition 5.2. A second extended semi-module (A,ϕ) is
given in Example 5.4. Here, A is of type (0,0,1,2,1), hence different from the semi-module
considered before.

For the second example let m = 4, h = 5, and μ = (0,0,0,2,2). Here the two extended
semi-modules for μ leading to subschemes of dimension d(b,μ) = 4 are the ones considered
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in Proposition 5.2 and Examples 3.5 and 5.5. The corresponding semi-modules are different as
they are of type (0,0,0,2,2) and (0,0,1,2,1).
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