THE DIMENSION OF SOME AFFINE DELIGNE–LUSZTIG VARIETIES

BY EVA VIEHMANN

ABSTRACT. – We prove Rapoport's dimension conjecture for affine Deligne–Lusztig varieties for GL_h and superbasic b. From this case the general dimension formula for affine Deligne–Lusztig varieties for special maximal compact subgroups of split groups follows, as was shown in a recent paper by Görtz, Haines, Kottwitz, and Reuman.

© 2006 Elsevier Masson SAS

RÉSUMÉ. – On démontre la conjecture de Rapoport sur la dimension des variétés de Deligne–Lusztig affines pour GL_h et *b* superbasique. Ce cas implique la formule générale pour la dimension des variétés de Deligne–Lusztig affines pour des sous-groupes compacts maximaux de groupes déployés, résultat démontré dans un article récent de Görtz, Haines, Kottwitz et Reuman.

© 2006 Elsevier Masson SAS

1. Introduction

Let k be a finite field with $q = p^r$ elements and let \overline{k} be an algebraic closure. Let F = k((t))and let $L = \overline{k}((t))$. Let \mathcal{O}_F and \mathcal{O}_L be the valuation rings. We denote by $\sigma : x \mapsto x^q$ the Frobenius of \overline{k} over k and also of L over F.

Let G be a split connected reductive group over k. Let A be a split maximal torus of G and W the Weyl group of A in G. For $\mu \in X_*(A)$ let t^{μ} be the image of $t \in \mathbb{G}_m(F)$ under the homomorphism $\mu : \mathbb{G}_m \to A$. Let B be a Borel subgroup of G containing A. We write μ_{dom} for the dominant element in the orbit of $\mu \in X_*(A)$ under the Weyl group of A in G.

We recall the definitions of affine Deligne–Lusztig varieties from [6,1]. Let $K = G(\mathcal{O}_L)$ and let X = G(L)/K be the affine Grassmannian. The Cartan decomposition shows that G(L) is the disjoint union of the sets $Kt^{\mu}K$ where $\mu \in X_*(A)$ is a dominant coweight. For an element $b \in G(L)$ and dominant $\mu \in X_*(A)$, the affine Deligne–Lusztig variety $X_{\mu}(b)$ is the locally closed reduced \overline{k} -subscheme of X defined by

$$X_{\mu}(b)(\overline{k}) = \left\{ g \in G(L)/K \mid g^{-1}b\sigma(g) \in Kt^{\mu}K \right\}.$$

Left multiplication by $g \in G(L)$ induces an isomorphism between $X_{\mu}(b)$ and $X_{\mu}(gb\sigma(g)^{-1})$. Thus the isomorphism class of the affine Deligne-Lusztig variety only depends on the σ -conjugacy class of b.

There is an algebraic group over F associated to G and b whose R-valued points (for any F-algebra R) are given by

$$J(R) = \left\{ g \in G(R \otimes_F L) \mid g^{-1}b\sigma(g) = b \right\}.$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE 0012-9593/03/© 2006 Elsevier Masson SAS. All rights reserved.

There is a canonical J(F)-action on $X_{\mu}(b)$.

Let ρ be the half-sum of the positive roots of G. By rk_F we denote the dimension of a maximal F-split subtorus. Let $\operatorname{def}_G(b) = \operatorname{rk}_F G - \operatorname{rk}_F J$. Let $\nu \in X_*(A)_{\mathbb{Q}}$ be the Newton point of b, compare [3]. For nonempty affine Deligne–Lusztig varieties the dimension is given by the following formula. Note that there is a simple criterion by Kottwitz and Rapoport (see [5]) to decide whether an affine Deligne–Lusztig variety is nonempty.

THEOREM 1.1. – Assume that $X_{\mu}(b)$ is nonempty. Then

$$\dim(X_{\mu}(b)) = \langle \rho, \mu - \nu \rangle - \frac{1}{2} \operatorname{def}_{G}(b).$$

Rapoport conjectured this in [7], Conjecture 5.10 in a different form. For the reformulation compare [4]. In [9], Reuman verifies the formula for some small groups and b = 1. For $G = GL_n$, minuscule μ and over \mathbb{Q}_p rather than over a function field, the Deligne–Lusztig varieties have an interpretation as reduced subschemes of moduli spaces of p-divisible groups. In this case, the corresponding dimension formula is shown by de Jong and Oort (see [2]) if $b\sigma$ is superbasic and in [10] for general $b\sigma$. In [1] 2.15, Görtz, Haines, Kottwitz, and Reuman prove Theorem 1.1 for all $b \in A(L)$. They also show in 5.8 that if there is a Levi subgroup M of G such that $b \in M(L)$ is basic in M and if the formula is true for M, b and μ_M in a certain subset of the set of all M-dominant coweights, then it is also true for (G, b, μ) . Thus it is enough to consider superbasic elements b, that is elements for which no σ -conjugate is contained in a proper Levi subgroup of G. They show in 5.9 that it is enough to consider the case that $G = GL_h$ for some h and that bis basic with $m = v_t(\det(b))$ prime to h. In this paper we prove Theorem 1.1 for this remaining case.

The strategy of the proof is as follows: We associate to the elements of $X_{\mu}(b)$ discrete invariants which we call extended semi-modules. This induces a decomposition of each connected component of $X_{\mu}(b)$ into finitely many locally closed subschemes. Their dimensions can be written as a combinatorial expression which only depends on the extended semi-module. By estimating these expressions we obtain the desired dimension formula.

For minuscule μ , and over \mathbb{Q}_p , the group $J(\mathbb{Q}_p)$ acts transitively on the set of irreducible components of $X_{\mu}(b)$. As an application of the proof we show that for nonminuscule μ , the action of J(F) on this set may have more than one orbit.

2. Notation and conventions

From now on we use the following notation: Let $G = GL_h$ and let A be the diagonal torus. Let B be the Borel subgroup of lower triangular matrices. For $\mu, \mu' \in X_*(A)_{\mathbb{Q}}$ we say that $\mu \leq \mu'$ if $\mu' - \mu$ is a non-negative linear combination of positive coroots. As we may identify $X_*(A)_{\mathbb{Q}}$ with \mathbb{Q}^h , this induces a partial ordering on the latter set. An element $\mu = (\mu_1, \ldots, \mu_h) \in X_*(A) \cong \mathbb{Z}^h$ is dominant if $\mu_1 \leq \cdots \leq \mu_h$.

Let $N = L^h$ and let $M_0 \subset N$ be the lattice generated by the standard basis e_0, \ldots, e_{h-1} . Then $K = GL_h(\mathcal{O}_L) = \operatorname{Stab}(M_0)$ and $g \mapsto gM_0$ defines a bijection

(2.1)
$$X_{\mu}(b)(\overline{k}) \cong \left\{ M \subset N \text{ lattice } | \operatorname{inv}(M, b\sigma(M)) = t^{\mu} \right\}.$$

We define the volume of $M = gM_0 \in X_{\mu}(b)$ to be $v_t(\det(g))$.

We assume b to be superbasic. The Newton point $\nu \in X_*(A)_{\mathbb{Q}} \cong \mathbb{Q}^h$ of b is then of the form $\nu = (\frac{m}{h}, \dots, \frac{m}{h}) \in \mathbb{Q}^h$ with (m, h) = 1. For $i \in \mathbb{Z}$ define e_i by $e_{i+h} = te_i$. We choose b to be

4° SÉRIE – TOME 39 – 2006 – N° 3

514

the representative of its σ -conjugacy class that maps e_i to e_{i+m} for all *i*. For superbasic *b*, the condition that the affine Deligne-Lusztig variety is nonempty, namely $\nu \leq \mu$, is equivalent to $\sum \mu_i = m$. From now on we assume this.

For each central $\alpha \in X_*(A)$ there is the trivial isomorphism

$$X_{\mu}(b) \to X_{\mu+\alpha}(t^{\alpha}b).$$

We may therefore assume that all μ_i are nonnegative. For the lattices in (2.1), this implies that $b\sigma(M) \subseteq M$.

In the following we will abbreviate the right-hand side of the dimension formula for $X_{\mu}(b)$ by $d(b,\mu)$.

The set of connected components of X is isomorphic to \mathbb{Z} , an isomorphism is given by mapping $g \in GL_h(L)$ to $v_t(\det(g))$. Let $X_\mu(b)^i$ be the intersection of the affine Deligne–Lusztig variety with the *i*-th connected component of X. Let $\pi \in GL_h(L)$ with $\pi(e_i) = e_{i+1}$ for all $i \in \mathbb{Z}$. Then π commutes with $b\sigma$, and defines isomorphisms $X_\mu(b)^i \to X_\mu(b)^{i+1}$ for all *i*. Thus it is enough to determine the dimension of $X_\mu(b)^0$.

For superbasic b, an element of J(F) is determined by its value at e_0 . More precisely, J(F) is the multiplicative subgroup of a central simple algebra over F. Hence $def_G(b) = h - 1$. If $v_t(det(g)) = i$ for some $g \in J(F)$, then g induces isomorphisms between $X_{\mu}(b)^j$ and $X_{\mu}(b)^{j+i}$ for all j. On $X_{\mu}(b)^0$, we have an action of $\{g \in J(F) \mid v_t(det(g)) = 0\} = J(F) \cap Stab(M_0)$.

Remark 2.1. – To a vector $\psi = (\psi_i) \in \mathbb{Q}^h$ we associate the polygon in \mathbb{R}^2 that is the graph of the piecewise linear continuous function $f:[0,h] \to \mathbb{R}$ with f(0) = 0 and slope ψ_i on [i-1,i]. One can easily see that $d(b,\mu)$ is equal to the number of lattice points below the polygon corresponding to ν and (strictly) above the polygon corresponding to μ .

3. Extended semi-modules

In this section we describe the combinatorial invariants which are used to decompose $X_{\mu}(b)^{0}$.

DEFINITION 3.1. – (1) Let m and h be coprime positive integers. A *semi-module* for m, h is a subset $A \subset \mathbb{Z}$ that is bounded below and satisfies $m + A \subset A$ and $h + A \subset A$. Let $B = A \setminus (h + A)$. The semi-module is called *normalized* if $\sum_{a \in B} a = \frac{h(h-1)}{2}$.

(2) Let $\nu = (\frac{m}{h}, \dots, \frac{m}{h}) \in \mathbb{Q}^h$. Let $\mu' = (\mu'_1, \dots, \mu'_h) \in \mathbb{N}^h$ not necessarily dominant with $\nu \leq \mu'$. A semi-module A for m, h is of type μ' if the following condition holds: Let $b_0 = \min\{b \in B\}$ and let inductively $b_i = b_{i-1} + m - \mu'_i h \in \mathbb{Z}$ for $i = 1, \dots, h$. Then $b_0 = b_h$ and $\{b_i \mid i = 0, \dots, h-1\} = B$.

Remark 3.2. – Semi-modules are also used by de Jong and Oort in [2] to define a stratification of a moduli space of *p*-divisible groups whose rational Dieudonné modules are simple of slope $\frac{m}{h}$. In this case μ is minuscule, and they use semi-modules for m, h - m to decompose the moduli space.

LEMMA 3.3. – If A is a semi-module, then its translate $-\frac{\sum_{a \in B^a}}{h} + \frac{h-1}{2} + A$ is the unique normalized translate of A. It is called the normalization of A. There is a bijection between the set of normalized semi-modules for m, h and the set of possible types $\mu' \in \mathbb{N}^h$ with $\nu \leq \mu'$.

Proof. – For the first assertion one only has to notice that the fact that the *h* elements of *B* are incongruent modulo *h* implies that $\sum_{a \in B} a - \frac{h(h-1)}{2}$ is divisible by *h*. For the second assertion let *A* be a normalized semi-module, let $b_0 = \min\{a \in B\}$ and let inductively $b_i = b_{i-1} + m - \mu'_i h$ where μ'_i is maximal with $b_i \in A$. Then $b_h = b_0$ and $\{b_i \mid i = 0, \dots, h-1\} = B$. From

 $b_0 < b_{i_0}$ for $i_0 = 1, ..., h - 1$ we obtain $\sum_{i=1}^{i_0} (m - \mu'_i h) > 0$ for all $i_0 < h$. Similarly, $b_0 = b_h$ implies $\sum_{i=1}^{h} \mu'_i = m$. This shows $\nu \preceq \mu'$. As $m + A \subset A$, the μ'_i are nonnegative. Given μ' as above, the corresponding normalized semi-module A can be constructed as follows: Let $b_0 = 0$, and inductively $b_i = b_{i-1} + m - \mu'_i h$. Then A is the normalization of $\{b_i + \alpha h \mid \alpha \in \mathbb{N}, 0 \le i < h\}$. \Box

DEFINITION 3.4. – Let m and h be as before and let $\mu = (\mu_i) \in \mathbb{N}^h$ be dominant with $\sum \mu_i = m$. An *extended semi-module* (A, φ) for μ is a normalized semi-module A for m, h together with a function $\varphi : \mathbb{Z} \to \mathbb{N} \cup \{-\infty\}$ with the following properties:

- (1) $\varphi(a) = -\infty$ if and only if $a \notin A$.
- (2) $\varphi(a+h) \ge \varphi(a) + 1$ for all a.
- (3) $\varphi(a) \leq \max\{n \mid a + m nh \in A\}$ for all $a \in A$. If $b \in A$ for all $b \ge a$, then the two sides are equal.
- (4) There is a decomposition of A into a disjoint union of sequences a_j^1, \ldots, a_j^h with $j \in \mathbb{N}$ and the following properties:
 - (a) $\varphi(a_{j+1}^l) = \varphi(a_j^l) + 1.$
 - (b) If $\varphi(a_j^l + h) = \varphi(a_j^l) + 1$, then $a_{j+1}^l = a_j^l + h$. Otherwise $a_{j+1}^l > a_j^l + h$.
 - (c) The *h*-tuple $(\varphi(a_0^l))$ is a permutation of μ .

An extended semi-module such that equality holds in (3) for all $a \in A$ is called *cyclic*.

Let A be a normalized semi-module for m, h and let μ' be its type. Let $\mu = \mu'_{dom}$. Let φ be such that (1) holds and that we have equality in (3) for all $a \in A$. Then in (2) the two sides are also equal for all $a \in A$. A decomposition of A as in (4) is given by putting all elements into one sequence that are congruent modulo h. Hence (A, φ) is a cyclic extended semi-module for μ , called the *cyclic extended semi-module associated to A*.

Example 3.5. – We give an explicit example of a noncyclic extended semi-module for m = 4, h = 5, and $\mu = (0, 0, 0, 2, 2)$. Let A be the normalized semi-module of type (0, 0, 1, 2, 1). Then $B = A \setminus (5 + A)$ consists of -2, -1, 2, 5, and 6. Let $\varphi(-1) = 0$ and $\varphi(a) = \max\{n \mid a + m - nh \in A\}$ if $a \in A \setminus \{-1\}$. See also Fig. 1 that shows elements of A marked by crosses and the corresponding values of φ . A decomposition of A is given as follows: Three sequences are given by the elements of A congruent to -2, 2, and 5 modulo 5, respectively. The forth sequence is given by all elements congruent to 4 modulo 5 and greater than -1. The last sequence consists of the remaining elements -1 and $6, 11, 16, \ldots$

LEMMA 3.6. – If (A, φ) is an extended semi-module for μ , and if μ^0 is the type of A, then $\mu^0_{\text{dom}} \preceq \mu$. If $\mu^0_{\text{dom}} = \mu$, then (A, φ) is a cyclic extended semi-module.

Proof. – Let (A, φ_0) be the cyclic extended semi-module associated to A. Let

 $\{x_1, \dots, x_n\} = \{a \in A \mid \varphi(a+h) > \varphi(a) + 1\}$

a		-3	-2	-1	0	1	2	3	4	5	6			
	 •		Х	\times			×	×	×	×	×	×	×	
$\varphi(a)$		$-\infty$	0	0	$-\infty$	$-\infty$	0	1	2	2	1	1	2	

Fig. 1. A noncyclic extended semi-module.

with $x_i > x_{i+1}$ for all *i*. For $i \in \{1, \ldots, n\}$ let

$$\varphi_i(a) = \begin{cases} -\infty & \text{if } a \notin A, \\ \varphi(a) & \text{if } a \geqslant x_i, \\ \varphi_i(a+h) - 1 & \text{else.} \end{cases}$$

We show that (A, φ_i) is an extended semi-module for some μ^i with $\mu_{\text{dom}}^{i-1} \preceq \mu_{\text{dom}}^i$ and $\mu_{\text{dom}}^{i-1} \neq \mu_{\text{dom}}^i$ for all $i \ge 1$. As $\varphi_n = \varphi$, it then follows that $\mu_{\text{dom}}^0 \preceq \mu_{\text{dom}}^n = \mu$ with equality if and only if n = 0, that is if φ is cyclic.

The decomposition of (A, φ_i) is defined as follows: For $a < x_i$, the successor of a is a + h. Otherwise it is the successor from the decomposition of (A, φ) . From the properties of the decompositions for φ_0 and φ one deduces that the decomposition satisfies the required properties. Let $n_i \ge 0$ be maximal with $x_i - n_i h \in A$ and let $\alpha_i = \varphi(x_i + h) - 1 - \varphi(x_i) > 0$. Thus φ_i is obtained from φ_{i-1} by subtracting α_i from the values at $x_i, x_i - h, \ldots, x_i - n_i h$. From μ^{i-1} we obtain μ^i by replacing the two entries $\varphi_{i-1}(x_i - n_i h) = \varphi_{i-1}(x_i) - n_i$ and $\varphi_{i-1}(x_i) - \alpha_i + 1$ (which is the value of φ of the successor of x_i in the sequence corresponding to φ_i) by $\varphi_{i-1}(x_i) - \alpha_i - n_i$ and $\varphi_{i-1}(x_i) + 1$. As

$$\varphi_{i-1}(x_i) - n_i, \varphi_{i-1}(x_i) - \alpha_i + 1 \in (\varphi_{i-1}(x_i) - \alpha_i - n_i, \varphi_{i-1}(x_i) + 1),$$

we have $\mu_{\mathrm{dom}}^{i-1} \preceq \mu_{\mathrm{dom}}^{i}$ and $\mu_{\mathrm{dom}}^{i-1} \neq \mu_{\mathrm{dom}}^{i}$. \Box

COROLLARY 3.7. – If μ is minuscule, then all extended semi-modules for μ are cyclic.

Proof. – Let (A, φ) be such an extended semi-module. Let μ' be the type of A. Then $\mu'_{dom} \leq \mu$, thus $\mu'_{dom} = \mu$. Hence the assertion follows from the preceding lemma. \Box

LEMMA 3.8. – There are only finitely many extended semi-modules (A, φ) for each μ .

Proof. – Let μ' be the type of the semi-module A. As $\mu'_{dom} \leq \mu$, there are only finitely many possible types and corresponding normalized semi-modules. For fixed A, the third condition for extended semi-modules determines all but finitely many values of φ . For the remaining values we have $0 \leq \varphi(a) \leq \max\{n \mid a + m - nh \in A\}$. Thus for each A there are only finitely many possible functions φ such that (A, φ) is an extended semi-module for μ . \Box

4. The decomposition of the affine Deligne–Lusztig variety

Let $M \in X_{\mu}(b)^0$ be a lattice in N. In this section we associate to M an extended semimodule for μ . This leads to a paving of $X_{\mu}(b)^0$ by finitely many locally closed subschemes. For minuscule μ , this decomposition of the set of lattices is the same as the one constructed by de Jong and Oort in [2], compare also [10, Section 5.1].

Let m and h be as in Section 2. Let $v \in N$ and recall that $te_i = e_{i+h}$. Then we can write $v = \sum_{i \in \mathbb{Z}} \alpha_i e_i$ with $\alpha_i \in \overline{k}$ and $\alpha_i = 0$ for small i. Let

$$I: N \setminus \{0\} \to \mathbb{Z},$$
$$v \mapsto \min\{i \mid \alpha_i \neq 0\}.$$

For a lattice $M \in X_{\mu}(b)^0$ we consider the set

$$A = A(M) = \{I(v) \mid v \in M \setminus \{0\}\}$$

Then A(M) is bounded below and $h + A(M) \subset A(M)$. As $b\sigma(M) \subset M$, we have $m + A(M) \subset A(M)$, thus A(M) is a semi-module for m, h. We have

$$\operatorname{vol}(M) = \left| \mathbb{N} \setminus (A \cap \mathbb{N}) \right| - \left| A \setminus (\mathbb{N} \cap A) \right| = 0.$$

This implies that $\sum_{a \in B} a = \sum_{i=0}^{h-1} i$, thus A is normalized. Let further

$$\begin{split} \varphi &= \varphi(M) : \mathbb{Z} \to \mathbb{N} \cup \{-\infty\}, \\ a &\mapsto \begin{cases} \max\{n \mid \exists v \in M \text{ with } I(v) = a, t^{-n} b \sigma(v) \in M\} & \text{if } a \in A(M), \\ -\infty & \text{else.} \end{cases} \end{split}$$

Note that by the definition of A(M), the set on the right-hand side is nonempty. As $b\sigma(M) \subset M$, the values of φ are indeed in $\mathbb{N} \cup \{-\infty\}$.

LEMMA 4.1. – Let
$$M \in X_{\mu}(b)^0$$
. Then $(A(M), \varphi(M))$ is an extended semi-module for μ .

Proof. – We already saw that A(M) is a normalized semi-module. We have to check the conditions on φ . The first condition holds by definition. Let $v \in M$ with I(v) = a be realizing the maximum for $\varphi(a)$. Then $tv \in M$ with I(tv) = a + h implies that $\varphi(a + h) \ge \varphi(a) + 1$, which shows (2). Let $v \in M$ with I(v) = a and $t^{-\varphi(a)}b\sigma(v) \in M$. Then $I(t^{-\varphi(a)}b\sigma(v)) = a + m - \varphi(a)h \in A(M)$, whence the first part of (3). Let $b \in A$ for all $b \ge a$. Let $n_0 = \max\{n \mid a + m - nh \in A\}$. Let $v' \in M$ with $I(v') = a + m - n_0h$ and let $v = (b\sigma)^{-1}(t^{n_0}v') \in N$. Then I(v) = a, thus $v = \sum_{b \ge a} \alpha_b e_b$ for some $\alpha_b \in \overline{k}$. As $b \in A$ for all $b \ge a$, we also have $e_b \in M$ for all such b. Thus $v \in M$ with $t^{-n_0}b\sigma(v) = v' \in M$. Hence $\varphi(a) = n_0$. It remains to show (4). For $a \in \mathbb{Z}$ and $\varphi_0 \in \mathbb{N}$ let

$$\widetilde{V}_{a,\varphi_0} = \left\{ v \in M \mid v = 0 \text{ or } I(v) \geqslant a, \ t^{-\varphi_0} b \sigma(v) \in M \right\}$$

and $V_{a,\varphi_0} = \tilde{V}_{a,\varphi_0}/\tilde{V}_{a,\varphi_0+1}$. Then V_{a_0,φ_0} is a \overline{k} -vector space of dimension $|\{a \ge a_0 \mid \varphi(a) = \varphi_0\}|$. We construct the sequences by inductively sorting all elements $a \in A$ with $\varphi(a) \le \varphi_0$ for some φ_0 : For $\varphi_0 = \min\{\varphi(a) \mid a \in A\}$ we take each element a with this value of φ as the first element of a sequence. (At the end we will see that we did not construct more than h sequences.) We now describe the induction step from φ_0 to $\varphi_0 + 1$: If v_1, \ldots, v_i is a basis of V_{a,φ_0} for some a, then the tv_j are linearly independent in V_{a+h,φ_0+1} . Thus dim $V_{a,\varphi_0} \le \dim V_{a+h,\varphi_0+1}$ for every a. Hence there are enough elements $a \in A$ with $\varphi(a) = \varphi_0 + 1$ to prolong all existing sequences such that conditions (a) and (b) are satisfied. We take the $a \in A$ with $\varphi(a) = \varphi_0 + 1$ that are not already in some sequence as first elements of new sequences. Inductively, this constructs sequences with properties (a) and (b). To show (c), let $a < b_0$. Then

$$\left|\left\{i \mid \mu_{i} = n\right\}\right| = \dim_{\overline{k}} V_{a,n} - \dim_{\overline{k}} V_{a-h,n-1}$$
$$= \left|\left\{a_{0}^{l} \mid \varphi(a_{0}^{l}) = n\right\}\right|.$$

This also shows that we constructed exactly h sequences. \Box

For each extended semi-module (A, φ) for μ let

$$\mathcal{S}_{A,\varphi} = \{ M \subset N \text{ lattice } | A(M) = A, \varphi(M) = \varphi \} \subset X.$$

LEMMA 4.2. – The sets $S_{A,\varphi}$ are contained in $X_{\mu}(b)^0$. They define a decomposition of $X_{\mu}(b)^0$ into finitely many disjoint locally closed subschemes. Especially, dim $X_{\mu}(b)^0 = \max{\dim S_{A,\varphi}}$.

4° SÉRIE – TOME 39 – 2006 – N° 3

518

Proof. – The last property in the definition of an extended semi-module shows that (A, φ) determines μ . Thus $S_{A,\varphi} \subseteq X_{\mu}(b)^0$. Using Lemmas 3.8 and 4.1 it only remains to show that the subschemes are locally closed. The condition that $a \in A(M)$ is equivalent to $\dim(M \cap \langle e_a, e_{a+1}, \ldots \rangle)/(M \cap \langle e_{a+1}, e_{a+2}, \ldots \rangle) = 1$. This is clearly locally closed. If a is sufficiently large, it is contained in all extended semi-modules for μ and if a is sufficiently small, it is not contained in any extended semi-module for μ . Thus fixing A is an intersection of finitely many locally closed conditions on $X_{\mu}(b)^0$, hence locally closed. Similarly, it is enough to show that $\varphi(a) < n$ for some $a \in A$ and $n \in \mathbb{N}$ is an open condition on $\{M \in X \mid b\sigma(M) \subset M, A(M) = A\} \subset X$. But this condition is equivalent to

$$\left(\langle e_i \mid i \ge a \rangle \cap M \cap t^n(b\sigma)^{-1}(M)\right) / \langle e_i \mid i \ge a+1 \rangle = (0),$$

which is an open condition. \Box

Let (A, φ) be an extended semi-module for μ . Let

(4.1)
$$\mathcal{V}(A,\varphi) = \{(a,b) \in A \times A \mid b > a, \ \varphi(a) > \varphi(b) > \varphi(a-h)\}.$$

Theorem 4.3. -

 (1) Let A and φ be as above. There exists a nonempty open subscheme U(A, φ) ⊆ A^{V(A,φ)} and a morphism U(A, φ) → S_{A,φ} that induces a bijection between the set of k-valued points of U(A, φ) and S_{A,φ}. Especially, dim(S_{A,φ}) = |V(A, φ)|.
(2) If (A, φ) is a cyclic extended semi-module, then U(A, φ) = A^{V(A,φ)}.

Proof. – We denote the coordinates of a point x of $\mathbb{A}^{\mathcal{V}(A,\varphi)}$ by $x_{a,b}$ with $(a,b) \in \mathcal{V}(A,\varphi)$. To define a morphism $\mathbb{A}^{\mathcal{V}(A,\varphi)} \to X$, we describe the image M(x) of a point $x \in \mathbb{A}^{\mathcal{V}(A,\varphi)}(R)$ where R is a \overline{k} -algebra. For each $a \in A$ we define an element $v(a) \in N_R = N \otimes_{\overline{k}} R$ of the form $v(a) = \sum_{b \geqslant a} \alpha_b e_b$ with $\alpha_a = 1$. The R[t]-module $M(x) \subset N_R$ will then be generated by the v(a). We want the v(a) to satisfy the following relations: For $a \in h + A$ we want

(4.2)
$$v(a) = tv(a-h) + \sum_{(a,b)\in\mathcal{V}(A,\varphi)} x_{a,b}v(b).$$

Let $y = \max\{b \in B\}$. If a = y we want

(4.3)
$$v(a) = e_a + \sum_{(a,b)\in\mathcal{V}(A,\varphi)} x_{a,b}v(b).$$

For all other elements $a \in B$, we want the following equation to hold: Let $a' \in A$ be minimal with $a' + m - \varphi(a')h = a$. Then $v' = t^{-\varphi(a')}b\sigma(v(a')) \in N_R$ with I(v') = a. Let

(4.4)
$$v(a) = v' + \sum_{(a,b) \in \mathcal{V}(A,\varphi)} x_{a,b}v(b).$$

CLAIM 1. – For every $x \in \mathbb{A}^{\mathcal{V}(A,\varphi)}(R)$ there are uniquely determined $v(a) \in N_R$ for all $a \in A$ satisfying (4.2) to (4.4).

We set

$$v(a) = \sum_{j \in \mathbb{N}} \alpha_{a,j} e_{a+j}$$

with $\alpha_{a,j} \in R$ and $\alpha_{a,0} = 1$ for all a. We solve the equations by induction on j. Assume that the $\alpha_{a,j}$ are determined for $j \leq j_0$ and such that the equations for v(a) hold up to summands of the form $\beta_j e_j$ with $j > a + j_0$. To determine the α_{a,j_0+1} , we write $a \equiv y + im \pmod{h}$ and proceed by induction on $i \in \{0, \dots, h-1\}$. For i = 0 and a = y, the coefficient α_{a,j_0+1} is the uniquely determined element such that (4.3) holds up to summands of the form $\beta_j e_j$ with $j > j_0 + 1$. Note that by induction on j and as b > a, the coefficient of e_{y+j_0+1} on the right-hand side of the equation is determined. For a = y + nh with n > 0, the coefficients are similarly defined by (4.2). For i > 0 and $a \in A$ minimal in this congruence class, the coefficient is determined by (4.4). Here, the coefficient of e_{a+j_0+1} on the right-hand side of each equation is determined by and j. For larger a in this congruence class we use again (4.2). By passing to the limit on j, we obtain the uniquely defined $v(a) \in N_R$ solving the equations.

CLAIM 2. – Let $M(x) = \langle v(a) | a \in A \rangle_{R[t]}$. Then at each specialization of x to a \overline{k} -valued point y we have A = A(M(y)) and $\varphi(M(y))(a) \ge \varphi(a)$ for all a.

From the definition of M we immediately obtain $A \subseteq A(M(y))$. To show equality consider an element $v = \sum_a \alpha_a v(a) \in M(y) = M$. Write $v = \sum_{i \in \mathbb{Z}} b_i e_i$ with $b_i \in \overline{k}$. Let $i_0 = \min\{I(\alpha_a v(a))\}$. If $b_{i_0} \neq 0$, then $I(v) = i_0 \in A$. Otherwise we consider $\sum_{a|I(\alpha_a v(a))=i_0} \alpha_a v(a)$. Note that $I(v(a)) \equiv i_0 \pmod{h}$ for all a occurring in the sum. Then (4.2) shows that this sum can be written as a sum of v(b) with $b > i_0$. Thus we may replace i_0 by a larger number. As $i \in A$ for all sufficiently large i, this shows that $I(v) \in A$, so A(M) = A.

Let $x \in \mathbb{A}^{\mathcal{V}(A,\varphi)}(\overline{k})$ and let M = M(x). We show that $t^{-\varphi(a)}b\sigma(v(a)) \in M$ for all a. This means that $\varphi(M)(a) \ge \varphi(a)$ for all a. Consider the elements $a' \in A$ that are minimal with $a' + m - \varphi(a')h = a$ for some $a \in B \setminus \{y\}$. For these elements, the assertion follows from (4.4). If a is minimal with $a + m - \varphi(a)h = y$, then $I(t^{-\varphi(a)}b\sigma(v(a))) = y$. As all e_i with $i \ge y$ are in M, this element is also contained in M. If $\varphi(a) = \varphi(a - h) + 1$ then v(a) = tv(a - h) and the assertion holds for a - h if and only if it holds for h. From this, we obtain the claim for all $a \in A$ with $\varphi(a) = \max\{n \mid a + m - nh \in A\}$. Especially, it follows for all sufficiently large elements of A. It remains to prove the claim for the finitely many elements $a \in A$ with $\max\{n \mid a + m - nh \in A\} > \varphi(a)$. We use decreasing induction on a: Let a be in this set, and assume that we know the assertion for all a' > a. From (4.2) we obtain that

$$t^{-\varphi(a)}b\sigma(v(a)) = t^{-\varphi(a)-1}b\sigma(tv(a))$$

= $t^{-\varphi(a)-1}b\sigma\left(v(a+h) - \sum_{b>a+h,\varphi(a+h)>\varphi(b)\geqslant\varphi(a)+1} x_{a+h,b}v(b)\right).$

By induction, the right-hand side is in M and Claim 2 is shown.

As all μ_i are nonnegative, we constructed a morphism from $\mathbb{A}^{\mathcal{V}(A,\varphi)}$ to the subscheme X_A of X defined by $X_A(\overline{k}) = \{M \mid A(M) = A, b\sigma(M) \subseteq M\}$.

CLAIM 3. – There is a nonempty open subscheme $U(A, \varphi)$ of $\mathbb{A}^{\mathcal{V}(A, \varphi)}$ that is mapped to $\mathcal{S}_{A, \varphi}$. If (A, φ) is cyclic, then $U(A, \varphi) = \mathbb{A}^{\mathcal{V}(A, \varphi)}$.

In general we do not have $\varphi(M)(a) = \varphi(a)$ for all a. The proof of Lemma 4.2 shows that $\varphi(M)(a) \leq \varphi(a)$ is an open condition on X_A , and thus on $\mathbb{A}^{\mathcal{V}(A,\varphi)}$. Let $U(A,\varphi)$ be the corresponding open subscheme, which is then mapped to $\mathcal{S}_{A,\varphi}$. We have to show that it is nonempty, thus to construct a point in $\mathbb{A}^{\mathcal{V}(A,\varphi)}$ where the corresponding function $\varphi(M)$ is equal to φ . If $\varphi(a) = \max\{n \mid a + m - nh \in A\}$, then $\varphi(M)(a) = \varphi(a)$. Especially, the two functions are equal for all a if (A,φ) is cyclic. In this case $U(A,\varphi) = \mathbb{A}^{\mathcal{V}(A,\varphi)}$. If $\varphi(a) + 1 = \varphi(a + h)$ and if $\varphi(M)(a + h) = \varphi(a + h)$, then $\varphi(M)(a + h) - 1 \geq \varphi(M)(a) \geq \varphi(a)$ implies that $\varphi(M)(a) = \varphi(a)$. Thus it is enough to find a point where $\varphi(M)(a) = \varphi(a)$ for all $a \in A$ with

4° SÉRIE – TOME 39 – 2006 – N° 3

 $\varphi(a+h) > \varphi(a) + 1$. For each such a let b_a be the successor in a decomposition of (A, φ) into sequences. Then $(a+h, b_a) \in \mathcal{V}(A, \varphi)$. Let $x_{a+h, b_a} = 1$ for these pairs and choose all other coefficients to be 0. Then for this point and a as before we have that $\varphi(M)(a) = \varphi(b_a) - 1 = \varphi(a)$. Thus $U(A, \varphi)$ is nonempty.

CLAIM 4. – The map $U(A, \varphi) \rightarrow S_{A,\varphi}$ defines a bijection on \overline{k} -valued points.

More precisely, we have to show that for each $M \in S_{A,\varphi}$ there is exactly one $x \in U(A,\varphi)(\overline{k})$ such that M contains a set of elements v(a) for $a \in A$ with I(v(a)) = a and satisfying (4.2) to (4.4) for this x. The argument is similar as the construction of v(a) for given x: By induction on j we will show the following assertion: There exist $x^j = (x_{a,b}^j) \in U(A,\varphi)(\overline{k})$ and $v_j(a) \in M$ for all a with $t^{-\varphi(a)}b\sigma(v_j(a)) \in M$ and which satisfy Eqs. (4.2) to (4.4) for x^j up to summands of the form $\beta_n e_n$ with n > a + j. Furthermore the $x_{a,b}^j$ with $b - a \leq j$ and the coefficients of e_n in $v_j(a)$ for $n \leq a + j$ will be chosen independently of j and only depending on M.

For j = 0 choose any $x^0 \in U(A, \varphi)(\overline{k})$ and $v_0(a) \in M$ with $I(v_0(a)) = a$, first coefficient 1 and $t^{-\varphi(a)}b\sigma(v_0(a)) \in M$. The existence of these $v_0(a)$ follows from $M \in X_{\mu}(b)$. Assume that the assertion is true for some j_0 . For $n \leq j_0$ let $x_{a,a+n}^{j_0+1} = x_{a,a+n}^{j_0}$. We proceed again by induction on *i* to define the coefficients for $a \equiv y + im \pmod{h}$. Let a = y. Choose the coefficients $x_{y,y+n}^{j_0+1}$ with $n > j_0$ such that

$$v_{j_0+1}(y) = e_y + \sum_{(y,y+n) \in \mathcal{V}(A,\varphi)} x_{y,y+n}^{j_0+1} v_{j_0}(y+n)$$

satisfies $t^{-\varphi(y)}b\sigma(v_{j_0+1}(y)) \in M$. The definition of $\varphi = \varphi(M)$ shows that such coefficients exist and from $\varphi(y+n) < \varphi(y)$ it follows that they are unique. For the other elements v(a) we proceed similarly: For those with $a - h \notin A$ we use Eq. (4.4), on the right-hand side with the values from the induction hypothesis, to define the new $v_{j_0+1}(a)$. For $a \in h + A$ we use (4.2). As we know that $t^{-\varphi(a-h)-1}b\sigma(tv_{j_0}(a-h)) \in M$, it is sufficient to consider the b > a with $\varphi(a-h) < \varphi(b) < \varphi(a)$. At each step the coefficient of e_{a+j_0+1} of the right-hand side is already defined by the induction hypothesis. It only depends on the $x_{a,a+n}^{j_0}$ and the coefficients of e_{b+n} of $v_{j_0}(b)$ with $n \leq j_0$, hence only on M. The coefficients of x^{j_0+1} are given by requiring that $t^{-\varphi(a)}b\sigma(v_{i_n+1}(a)) \in M$. \Box

5. Combinatorics

In this section we estimate $|\mathcal{V}(A,\varphi)|$ to determine the dimension of the affine Deligne–Lusztig variety $X_{\mu}(b)$.

Remark 5.1. – For cyclic extended semi-modules we have $\varphi(a+h) = \varphi(a) + 1$ for all $a \in A$. Thus

$$\mathcal{V}(A,\varphi) = \left\{ (b_i, b) \mid b_i \in B, \ b \in A, \ b > b_i, \ \varphi(b) < \varphi(b_i) \right\}$$

where $B = A \setminus (h + A)$.

PROPOSITION 5.2. – Let (A, φ) be the cyclic extended semi-module associated to the normalized semi-module A of type μ . Then $|\mathcal{V}(A, \varphi)| = d(b, \mu)$.

Proof. – Recall that by b_0 we denote the minimal element of A or B. Let b_i be as in the definition of the type of A and let $b_h = b_0$. First we show that

$$\mathcal{V}(A, \varphi) \to \mathbb{Z},$$

 $(b_i, b) \mapsto b - b_i + b_i$

induces a bijection between $\mathcal{V}(A, \varphi)$ and $\{a \notin A \mid a > b_h\}$. Let $b \in A$ for some $b > b_i$. Then $b - b_i + b_{i+1} \notin A$ if and only if $(b_i, b) \in \mathcal{V}(A, \varphi)$. Let $b_{i_0} = \max\{b_i \in B\}$. We have $b \in A$ for all $b \ge b_{i_0}$. Thus for every $b > b_h$ with $b \notin A$, there is an element $(b_i, b - b_h + b_i) \in \mathcal{V}(A, \varphi)$ for some $h > i \ge i_0$. Hence $\{a \notin A \mid a > b_h\}$ is in the image of the map. To show that it is injective and that its image is contained in $\{a \notin A \mid a > b_h\}$, it is enough to show that $(b_i, b) \in \mathcal{V}(A, \varphi)$ implies that $b - b_i + b_j \notin A$ for all $j \in \{i + 1, \dots, h\}$. Indeed, this ensures that $(b_j, b - b_i + b_j) \notin \mathcal{V}(A, \varphi)$ for some l and that $b - b_i + b_h \notin A$. We write $b = b_l + \alpha h$ for some l and α . Recall that $\varphi(b_i) = \mu_{i+1}$. As $(b_i, b_l + \alpha h) \in \mathcal{V}(A, \varphi)$, we have $\mu_{l+1} + \alpha < \mu_{i+1}$. Especially, l < i. This implies $\mu_{l+1} + \dots + \mu_{l+\beta} + \alpha < \mu_{i+1} + \dots + \mu_{i+\beta}$ for all $\beta \leqslant h - i$.

It remains to count the elements of $\{a \notin A \mid a > b_0\}$. As $h + A \subseteq A$, we have

$$|\{a \notin A \mid a > b_0\}| = \left(\sum_{i=0}^{h-1} b_i - b_0 - i\right) \cdot \frac{1}{h}.$$

From the construction of A from its type we obtain

$$= \left(\sum_{i=0}^{h-1} \sum_{j=1}^{i} (m-\mu_j h) - i\right) \cdot \frac{1}{h}$$
$$= \left(\sum_{i=0}^{h-1} \sum_{j=1}^{i} \frac{m}{h} - \mu_j\right) - \frac{h-1}{2}$$
$$= d(b,\mu). \qquad \Box$$

THEOREM 5.3. – Let (A, φ) be an extended semi-module for μ . Then $|\mathcal{V}(A, \varphi)| \leq d(b, \mu)$.

Proof of Theorem 5.3 for cyclic extended semi-modules. – We write $B = \{b_0, \ldots, b_{h-1}\}$ as in the definition of the type μ' of A. As the extended semi-module is assumed to be cyclic, μ' is a permutation of μ . Using Remark 5.1 we see

$$\begin{aligned} \mathcal{V}(A,\varphi) &| = \left| \left\{ (b_i, a) \in B \times A \mid a > b_i, \ \varphi(a) < \varphi(b_i) \right\} \right| \\ &= \sum_{\{(b_i, b_j) \in B \times B \mid b_j > b_i, \mu'_{j+1} < \mu'_{i+1}\}} \mu'_{i+1} - \mu'_{j+1} \\ &+ \left| \left\{ (b_i, b_j + \alpha h) \mid b_j < b_i < b_j + \alpha h, \ \mu'_{i+1} > \mu'_{j+1} + \alpha \right\} \right|. \end{aligned}$$

We refer to these two summands as S_1 and S_2 .

Let $(\tilde{b}_0, \tilde{\mu}_1), \ldots, (\tilde{b}_{h-1}, \tilde{\mu}_h)$ be the set of pairs $(b_0, \mu'_1), \ldots, (b_{h-1}, \mu'_h)$, but ordered by the size of b_i . That is, $\tilde{b}_i < \tilde{b}_{i+1}$ for all *i*. Let

$$f: B \to B,$$

$$b_i \mapsto b_{i+1} = b_i + m - \mu'_{i+1}h$$

where we identify b_h with b_0 . This defines a permutation of B. From the ordering of the b_i we obtain $\sum_{i=0}^{i_0} f(\tilde{b}_i) \ge \sum_{i=0}^{i_0} \tilde{b}_i$ for all i_0 . As $f(\tilde{b}_i) = \tilde{b}_i + m - \tilde{\mu}_{i+1}h$, this is equivalent to $\sum_{i=1}^{i_0+1} \tilde{\mu}_i \le (i_0+1)\frac{m}{h}$ for all i_0 . We thus have $\nu \preceq \tilde{\mu} \preceq \mu$.

4° SÉRIE – TOME 39 – 2006 – N° 3

Recall the interpretation of $d(b, \mu)$ from Remark 2.1. We show that S_1 is equal to the number of lattice points above μ and on or below $\tilde{\mu}$. The second summand S_2 will be less or equal to the number of lattice points above $\tilde{\mu}$ and below ν . Then the theorem follows for cyclic extended semi-modules.

We have $S_1 = \sum_{i < j} \max{\{\tilde{\mu}_{i+1} - \tilde{\mu}_{j+1}, 0\}}$. Consider this sum for any permutation $\tilde{\mu}$ of μ . If we interchange two entries $\tilde{\mu}_i$ and $\tilde{\mu}_{i+1}$ with $\tilde{\mu}_i > \tilde{\mu}_{i+1}$, the sum is lessened by the difference of these two values. There are also exactly $\tilde{\mu}_i - \tilde{\mu}_{i+1}$ lattice points on or below $\tilde{\mu}$ and above the polygon corresponding to the permuted vector. If $\tilde{\mu} = \mu$, both S_1 and the number of lattice points above μ and on or below $\tilde{\mu}$ are 0. Thus by induction S_1 is equal to the claimed number of lattice points.

The last step is to estimate S_2 . It is enough to construct a decreasing sequence (with respect to \preceq) of $\psi^i \in \mathbb{Q}^h$ for i = 0, ..., h - 1 with $\psi^0 = \tilde{\mu}$ and $\psi^{h-1} = \nu$ such that the number of lattice points above ψ^i and on or below ψ^{i+1} is greater or equal to the number of pairs $(\tilde{b}_{i+1}, \tilde{b}_j + \alpha h)$ contributing to S_2 . Note that the ψ^i will no longer be lattice polygons. Let $f_i : B \to B$ be defined as follows: For j > i let $f_i(\tilde{b}_j) = f(\tilde{b}_j)$. Let $\{f_i(\tilde{b}_j) \mid 0 \leq j \leq i\}$ be the set of $f(\tilde{b}_j)$, but sorted increasingly. Let $\psi^i = (\psi^i_i)$ be such that $f_i(\tilde{b}_j) = \tilde{b}_j + m - \psi^i_{i+1}h$, i.e.

$$\psi_{j+1}^i = \frac{\tilde{b}_j + m - f_i(\tilde{b}_j)}{h} = \frac{m}{h} - \frac{f_i(\tilde{b}_j) - \tilde{b}_j}{h}.$$

Similarly as for $\nu \leq \tilde{\mu}$ one can show that

$$\nu \preceq \psi^{i+1} \preceq \psi^i \preceq \tilde{\mu}$$

for all *i*. As $f_0 = f$ and $f_{h-1} = id$, we have $\psi^0 = \tilde{\mu}$ and $\psi^{h-1} = \nu$. It remains to count the lattice points between ψ^i and ψ^{i+1} . To pass from f_i to f_{i+1} we have to interchange the value $f(\tilde{b}_{i+1})$ with all larger $f_i(\tilde{b}_j)$ with $j \leq i$. Thus to pass from the polygon associated to ψ^i to the polygon of ψ^{i+1} we have to change the value at j by $(f_i(\tilde{b}_j) - f(\tilde{b}_{i+1}))/h$, and that for all $j \leq i$ with $f_i(\tilde{b}_j) > f(\tilde{b}_{i+1})$. Thus there are at least

$$\sum_{j\leqslant i, f_i(\tilde{b}_j)>f(\tilde{b}_{i+1})} \left\lfloor \frac{f_i(\tilde{b}_j) - f(\tilde{b}_{i+1})}{h} \right\rfloor = \sum_{j\leqslant i, f(\tilde{b}_j)>f(\tilde{b}_{i+1})} \left\lfloor \frac{f(\tilde{b}_j) - f(\tilde{b}_{i+1})}{h} \right\rfloor$$

lattice points above ψ^i and on or below ψ^{i+1} . For fixed *i* and j < i + 1, the set of pairs $(\tilde{b}_{i+1}, \tilde{b}_j + \alpha h)$ contributing to S_2 is in bijection with $\{\alpha \ge 1 \mid f(\tilde{b}_j) - \alpha h > f(\tilde{b}_{i+1})\}$. The cardinality of this set is at most $\lfloor \frac{f(\tilde{b}_j) - f(\tilde{b}_{i+1})}{h} \rfloor$ which proves that S_2 is not greater than the number of lattice points between $\tilde{\mu}$ and ν . \Box

Example 5.4. – We give an example of a cyclic semi-module (A, φ) where the type of A is not dominant but where $|\mathcal{V}(A,\varphi)| = d(b,\mu)$. Let m = 4, h = 5, and $\mu = (0,0,1,1,2)$. Let (A,φ) be the cyclic extended semi-module associated to the normalized semi-module of type (0,0,1,2,1). Note that A is the same semi-module as in Example 3.5. Then the dimension of the corresponding subscheme is

$$|\mathcal{V}(A,\varphi)| = |\{(-1,2), (5,6), (5,7)\}| = d(b,\mu).$$

Proof of Theorem 5.3. – Let (A, φ) be an extended semi-module for μ . Let φ_i and μ^i be the sequences constructed in the proof of Lemma 3.6. By induction on i we show that

 $|\mathcal{V}(A,\varphi_i)| \leq d(b,\mu^i)$. For i = 0, the extended semi-module (A,φ_0) is cyclic, hence the assertion is already shown.

We use the notation of the proof of Lemma 3.6. The description of the difference between μ^i and μ^{i-1} given there shows that

$$d(b,\mu^{i}) - d(b,\mu^{i-1}) = \sum_{l=1}^{h} \sum_{j=1}^{l} (\mu_{\text{dom},j}^{i-1} - \mu_{\text{dom},j}^{i})$$

= $\left(\left| \left\{ \mu_{j}^{i-1} \in (\varphi_{i-1}(x_{i}) - \alpha_{i} - n_{i}, \varphi_{i-1}(x_{i}) + 1) \right\} \right| - 1 \right)$
 $\times \min\{\alpha_{i}, n_{i} + 1\}.$

We denote this difference by Δ . To show that $|\mathcal{V}(A,\varphi_i)| - |\mathcal{V}(A,\varphi_{i-1})| \leq \Delta$ we use the decomposition into sequences a_j^l of the extended semi-module (A,φ_{i-1}) . Using the definition of $\mathcal{V}(A,\varphi)$ and the description of the difference between φ_i and φ_{i-1} from the proof of Lemma 3.6 one obtains

$$\left|\mathcal{V}(a,\varphi_{i})\right| - \left|\mathcal{V}(a,\varphi_{i-1})\right| = S_{1} + S_{2} + S_{3}$$

where

Here we used that $a \leq x_i$ implies that $\varphi_{i-1}(a+h) = \varphi_{i-1}(a) + 1$. For each sequence a_j^l of the extended semi-module (A, φ_{i-1}) we use $S_{1,l}, S_{2,l}$, and $S_{3,l}$ for the contributions of pairs with $b \in \{a_j^l\}$ to the three summads. Furthermore we write $S^l = S_{1,l} + S_{2,l} + S_{3,l}$. We show the following assertions: If $\varphi_{i-1}(a_0^l) \notin (\varphi_{i-1}(x_i) - \alpha_i - n_i, \varphi_{i-1}(x_i) + 1)$ or if $a_0^l = x_i - n_i h$, then $S^l = 0$. Otherwise, $S^l \leq \min\{\alpha_i, n_i + 1\}$. Then the theorem follows from property (4c) of extended semi-modules.

To determine the S^l , we consider the following cases:

 $\begin{array}{ll} \textit{Case } 1.- & \varphi_{i-1}(a_0^l) \geqslant \varphi_{i-1}(x_i) + 1. \text{ In this case it is easy to see that } S_{1,l} = S_{2,l} = S_{3,l} = 0. \\ \textit{Case } 2.- & a_0^l > x_i. \text{ This implies that } S_{2,l} = 0. \text{ If } \varphi_{i-1}(a_0^l) \leqslant \varphi_{i-1}(x_i) - n_i - \alpha_i, \text{ then } S_{1,l} + S_{3,l} = \alpha_i - \alpha_i = 0. \text{ Let now } \varphi_{i-1}(a_0^l) \in (\varphi_{i-1}(x_i) - \alpha_i - n_i, \varphi_{i-1}(x_i) + 1). \text{ Then } \end{array}$

$$S_{1,l} + S_{3,l} \le \left| \left\{ a_j^l \mid \varphi_{i-1}(x_i) + 1 > \varphi_{i-1}(a_j^l) \ge \max \left\{ \varphi_{i-1}(x_i) - \alpha_i + 1, \ \varphi_{i-1}(x_i) - n_i \right\} \right\} \right|.$$

As $\varphi_{i-1}(a_{j+1}^l) = \varphi_{i-1}(a_j^l) + 1$ for all j, the right-hand side is less or equal to $\min\{\alpha_i, n_i + 1\}$.

Case 3. $a_0^l = x_i - n_i h$. This sequence starts with $x_i - n_i h, \ldots, x_i, x_i + h$. (Recall that the sequences $\{a_j^l\}$ for φ_{i-1} are of this easy form with stepwidth h as long as $a_j^l \leq x_i < x_{i-1}$.) Note that within one sequence $a_j^l > a_{j'}^l$ implies $\varphi_{i-1}(a_j^l) > \varphi_{i-1}(a_{j'}^l)$. Hence this special sequence does not make any contribution, as in S^l we only consider pairs where both elements are in the sequence starting with $x_i - n_i h$.

Case 4. – $a_0^l < x_i$, but not congruent to x_i modulo h. Again $a_{j+1}^l = a_j^l + h$ if $a_j^l \leq x_i$. We first assume that $\varphi_{i-1}(a_0^l) \leq \varphi_{i-1}(x_i) - n_i - \alpha_i$. Then $S_{2,l} = 0$. Assume that $b = a_j^l$ contributes

4° SÉRIE – TOME 39 – 2006 – N° 3

to $S_{1,l}$. Then $j \ge n_i + 1$ and $a_j^l > x_i + h$. If $a_0^l < x_i - n_i h$, then $[x_i - n_i h, x_i + h]$ contains $n_i + 1$ elements of the sequence. Thus in all cases $a_{j-n_i-1}^l > x_i - n_i h$. This element then leads to a contribution to $S_{3,l}$, as $\varphi_{i-1}(a_{j-n_i-1}^l) = \varphi_{i-1}(a_j^l) - n_i - 1$. In the other direction, if a_j^l contributes to $S_{3,l}$, then $a_{j+n_i+1}^l$ contributes to $S_{1,l}$. Thus $S^l = 0$. We now assume that $\varphi_{i-1}(a_0^l) \in (\varphi_{i-1}(x_i) - \alpha_i - n_i, \varphi_{i-1}(x_i) + 1)$. Let n be maximal with $a_n^l = a_0^l + nh < x_i$. Then we have

$$\begin{split} S_{1,l} &= \left| \left\{ a_j^l \mid j > n+1, \ \varphi_{i-1}(x_i) \geqslant \varphi_{i-1}\left(a_0^l\right) + j > \varphi_{i-1}(x_i) - \alpha_i \right\} \right|, \\ S_{2,l} &= \left| \left\{ a_j^l \mid 0 \leqslant j \leqslant \min\{n, n_i\}, \ \varphi_{i-1}(x_i) \geqslant \varphi_{i-1}\left(a_0^l\right) + j > \varphi_{i-1}(x_i) - \alpha_i \right\} \right|, \\ S_{3,l} &= - \left| \left\{ a_j^l \mid j \geqslant \max\{n - n_i + 1, 0\}, \ \varphi_{i-1}(x_i) - n_i > \varphi_{i-1}\left(a_0^l\right) + j \right\} \right| \\ &= - \left| \left\{ a_j^l \mid j > \max\{n + 1, n_i\}, \ \varphi_{i-1}(x_i) \geqslant \varphi_{i-1}\left(a_0^l\right) + j \right\} \right|. \end{split}$$

Thus

$$S^{l} \leq S_{1,l} + S_{2,l} \leq \left\{ j \mid \varphi_{i-1}(x_{i}) \geq \varphi_{i-1}(a_{0}^{l}) + j > \varphi_{i-1}(x_{i}) - \alpha_{i} \right\} = \alpha_{i}.$$

If $n+1 \ge n_i$, then $S_{1,l}+S_{3,l} \le 0$. Thus $S^l \le S_{2,l} \le n_i + 1$. If $n_i > n+1$ then $S_{1,l}+S_{3,l} \le n_i - n - 1$ and $S_{2,l} \le n+1$. Hence in both cases $S^l \le \min\{\alpha_i, n_i + 1\}$. \Box

Example 5.5. – Example 3.5 describes a noncyclic extended semi-module (A, φ) for $\mu = (0, 0, 0, 2, 2)$ such that

$$|\mathcal{V}(A,\varphi)| = |\{(5,6), (5,7), (4,6), (4,7)\}| = d(b,\mu).$$

Proof of Theorem 1.1. – Lemma 4.2 and Theorem 4.3 imply that $\dim X_{\mu}(b)^{0} = \max |\mathcal{V}(A,\varphi)|$. In Proposition 5.2 we give a pair with $|\mathcal{V}(A,\varphi)| = d(b,\mu)$. Theorem 5.3 shows that the maximum is at most $d(b,\mu)$. Together we obtain $\dim X_{\mu}(b) = d(b,\mu)$. \Box

6. Irreducible components

COROLLARY 6.1. – Let $G = GL_h$, let b be superbasic and $\nu \leq \mu$. Then the action of J(F) on the set of irreducible components of $X_\mu(b)$ has only finitely many orbits.

Proof. – It is enough to consider the intersection of the orbits with the set of irreducible components of $X_{\mu}(b)^0$. Theorem 4.3 implies that each $S_{A,\varphi}$ is irreducible. Thus the corollary follows from Lemma 3.8. \Box

Example 6.2. – We give two examples to show that even for superbasic b, the irreducible components of $X_{\mu}(b)$ are in general not permuted transitively by J(F). The description of J(F) in Section 2 implies that A(gM) = A(M) and $\varphi(gM) = \varphi(M)$ for each $g \in J(F)$ with $v_t(\det(g)) = 0$. First we consider the example m = 4, h = 5, and $\mu = (0, 0, 1, 1, 2)$. It is enough to find two extended semi-modules for μ leading to subschemes of dimension $d(b, \mu) = 3$. Indeed, the subschemes corresponding to different extended semi-module are disjoint and lead to irreducible components in different J(F)-orbits. One such extended semi-module is the cyclic extended semi-module considered in Proposition 5.2. A second extended semi-module (A, φ) is given in Example 5.4. Here, A is of type (0, 0, 1, 2, 1), hence different from the semi-module considered before.

For the second example let m = 4, h = 5, and $\mu = (0, 0, 0, 2, 2)$. Here the two extended semi-modules for μ leading to subschemes of dimension $d(b, \mu) = 4$ are the ones considered

in Proposition 5.2 and Examples 3.5 and 5.5. The corresponding semi-modules are different as they are of type (0,0,0,2,2) and (0,0,1,2,1).

Acknowledgements

I am grateful to M. Rapoport for his encouragement and helpful comments. I thank R. Kottwitz and Ngô B.-C. for their interest in my work. This work was completed during a stay at the Université Paris-Sud at Orsay which was supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD). I want to thank the Université Paris-Sud for its hospitality.

REFERENCES

- [1] GÖRTZ U., HAINES TH.J., KOTTWITZ R.E., REUMAN D.C., Dimensions of some affine Deligne-Lusztig varieties, Ann. Scient. Éc. Norm. Sup. 39 (3) (2006), math.AG/0504443.
- [2] DE JONG A.J., OORT F., Purity of the stratification by Newton polygons, J. Amer. Math. Soc. 13 (2000) 209–241.
- [3] KOTTWITZ R.E., Isocrystals with additional structure, Comp. Math. 56 (1985) 201-220.
- [4] KOTTWITZ R.E., Dimensions of Newton strata in the adjoint quotient of reductive groups, math.AG/0601196.
- [5] KOTTWITZ R.E., RAPOPORT M., On the existence of *F*-crystals, *Comment. Math. Helv.* **78** (2003) 153–184.
- [6] RAPOPORT M., A positivity property of the Satake isomorphism, *Manuscripta Math.* 101 (2) (2000) 153–166.
- [7] RAPOPORT M., A guide to the reduction modulo p of Shimura varieties, Astérisque 298 (2005) 271– 318.
- [8] REUMAN D.C., Determining whether certain affine Deligne–Lusztig sets are empty, *PhD thesis*, Chicago 2002, math.RT/0211434.
- [9] REUMAN D.C., Formulas for the dimensions of some affine Deligne–Lusztig varieties, *Michigan Math. J.* 52 (2004) 435–451.
- [10] VIEHMANN E., Moduli spaces of *p*-divisible groups, math.AG/0502320.

(Manuscrit reçu le 3 novembre 2005; accepté, après révision, le 6 avril 2006.)

Eva VIEHMANN Mathematisches Institut der Universität Bonn, Beringstrasse 1, 53115 Bonn, Germany E-mail: viehmann@math.uni-bonn.de

526