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To Paul J. Cohen and Simon Kochen on their seventieth birthdays.
Their work on this subject in the 1960s has cast a long shadow.

ABSTRACT. – The main results of this paper are a Cell Decomposition Theorem for Henselian valued
fields with analytic structure in an analytic Denef–Pas language, and its application to analytic motivic
integrals and analytic integrals over Fq((t)) of big enough characteristic. To accomplish this, we introduce
a general framework for Henselian valued fields K with analytic structure, and we investigate the structure
of analytic functions in one variable, defined on annuli over K. We also prove that, after parameterization,
definable analytic functions are given by terms. The results in this paper pave the way for a theory of
analytic motivic integration and analytic motivic constructible functions in the line of R. Cluckers and
F. Loeser [Fonctions constructible et intégration motivique I, Comptes rendus de l’Académie des Sciences
339 (2004) 411–416].
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RÉSUMÉ. – Dans cet article nous établissons une décomposition cellulaire pour des corps valués
henseliens munis d’une structure analytique induite par un langage de Denef–Pas analytique. En particulier,
nous appliquons cet énoncé à l’étude des intégrales analytiques motiviques et des intégrales analytiques sur
Fq((t)) de caractéristique assez grande. Pour cela, il est nécessaire d’introduire une définition générale
des corps valués henséliens K avec structure analytique. On examine alors la structure des fonctions
analytiques en une variable définies sur des anneaux sur K et l’on établit que, dans ce contexte, les
fonctions définissables sont exactement données par des termes après paramétrisation. Plus généralement,
les résultats de cet article préparent le chemin pour définir une théorie de l’intégration analytique motivique
et des fonctions analytiques motiviques constructibles dans l’esprit de R. Cluckers et F. Loeser [Fonctions
constructible et intégration motivique I, Comptes rendus de l’Académie des Sciences 339 (2004) 411–416].

© 2006 Elsevier Masson SAS

1. Introduction

The main results of this paper are a Denef–Pas Cell Decomposition Theorem for Henselian
valued fields with analytic structure, Theorem 7.4, and its application to analytic motivic
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integrals 3 and analytic integrals over Fq((t)) of big enough characteristic. In Section 2 we
introduce a framework for Henselian valued fields K with analytic structure, both strictly
convergent and separated, 4 that generalizes [2,19,21,32,34], and that works in all characteristics.
An analytic structure is induced by rings of power series over a Noetherian ring A that is
complete and separated with respect to the I-adic topology for some ideal I of A. This framework
facilitates the use of standard techniques from the theory of analytic rings in a more general
model theoretic setting.

Another necessary ingredient for cell decomposition is an analysis of analytic functions in one
variable, defined on annuli over K . This is carried out in Section 3. Theorem 3.9 relates such
functions piecewise to a (strong) unit times a quotient of polynomials. This result is extended
to functions in one variable given by terms in Theorem 5.1. The results of this section extend
the analysis of the ring of analytic functions on an affinoid subdomain of K , carried out in [24,
Sections 2.1 and 2.2], in the case that K is algebraically closed and complete, in three directions:

(i) K not necessarily algebraically closed,
(ii) the case of quasi-affinoid subdomains of K and

(iii) the case that K is not complete but carries an analytic structure. This analysis will be
pursued further in the forthcoming paper [5].

We also prove a fundamental structure result on definable analytic functions, namely, that any
definable function is given, after parameterization using auxiliary sorts, by terms in a somewhat
bigger language, cf. Theorem 7.5. This structure result is new also in the algebraic case, and is
used in [6] to prove a change of variables formula for motivic integrals.

In Section 8 we apply our results to study analytic motivic integrals in the sense that we
uniformly interpolate analytic p-adic and Fp((t)) integrals for p big enough and for boundedly
ramified p-adic field extensions for any fixed p. These results for Fp((t)) and the uniformity are
completely new. For fixed p-adic fields these integrals are calculated in [18], and in [4] the relative
case over a parameter space is treated. The results for the fields Fp((t)) with p big are new, even
for fixed p, but they also follow in fact in a classical way from uniformity for p-adic fields,
cf. the algebraic case in [9]. More generally, the results in this paper pave the way for a theory of
analytic motivic integration and analytic motivic constructible functions along the lines of [6–8],
in particular, for calculating relative motivic integrals over a parameter space. Another approach
to analytic motivic integration, based on entire models of rigid varieties and the theory of Néron
models instead of cell decomposition, is developed by Sebag and Loeser in [35], and by Sebag
in [42]. This alternative approach is pursued in [41] for the study of generating power series and
in [37] for the study of the monodromy conjecture. In [6], apart from cell decomposition, also a
dimension theory is used; in the analytic case this can be developed along the lines of work by
Çelikler [3].

1.1. Cell decomposition is a technique of breaking definable sets into finitely many definable
pieces each of which is particularly simple in a chosen coordinate direction. For example, in the
real case, Fubini’s Theorem often reduces the computation of an integral over a complicated set
to an iterated integral over the region between two graphs, on which the integrand is of a simple
form with respect to this coordinate, cf. the Preparation Theorem and its use for integration by
Lion and Rolin in [28].

In [11], Cohen reproved Tarski’s real quantifier elimination using his real cell decomposition
for definable sets. In the same paper, he gave a cell decomposition for some Henselian fields,

3 Motivic here stands for the idea of giving a geometric meaning to p-adic integrals, uniform in p.
4 The term “separated” usually means that the (intended) domains of the power series considered are Cartesian products

of the valuation ring and the maximal ideal.
4e SÉRIE – TOME 39 – 2006 – N◦ 4



ANALYTIC CELL DECOMPOSITION AND ANALYTIC MOTIVIC INTEGRATION 537
e.g. p-adic fields, extending results of Ax and Kochen [1]. A cell over a real field is a set given
by conditions of the form f(x) < y < g(x) or y = f(x), where f, g are definable. That quantifier
elimination follows from cell decomposition is fairly clear; the other implication a bit more
complicated. A cell over a Henselian field is specified by simple conditions on the order and
angular component of y − c(x), where c is definable (see below for definitions). This reflects
the idea that for many Henselian fields, a statement about the field can be reduced to statements
about the value group and the residue field.

Denef [14] refined Cohen’s techniques to reprove Macintyre’s quantifier elimination for p-adic
fields and to obtain a p-adic integration technique which he used to prove the rationality of
certain p-adic Poincaré series [12]. Pas [38,39], and Macintyre [36] extended this method to
study uniform properties of p-adic integrals. Denef and van den Dries [18] extended the Ax–
Kochen–Cohen–Macintyre p-adic quantifier elimination to the analytic category based on strictly
convergent power series. (See also [19].) These ideas were extended to the algebraically closed
analytic category using separated power series by the second and third authors, see [29,33]. The
first author [4], using work of Haskell, Macpherson, and van den Dries [21], obtained an analytic
variant of the p-adic cell decomposition and an application to p-adic analytic integrals.

In this paper, we extend the ideas of quantifier elimination and cell decomposition to a wider
class of Henselian fields with analytic structure, cf. Theorems 4.2 and 7.4.

1.2. Let us elaborate on the application to analytic motivic integrals. We repeat that the
contribution here is the uniformity and the ability of working relatively over a parameter space
(which is immediate from cell decomposition but not written out in this paper). Let A be the
class of all fields Qp for all primes p together with all their finite field extensions and let B be
the class of all the fields Fq((t)) with q running over all prime powers. For each fixed prime p
and integer n > 0 let Ap,n be the subset of A consisting of all finite field extensions of Qp with
degree of ramification fixed by ordp(p) = n. For K ∈A∪B write K◦ for the valuation ring, K̃

for the residue field, πK for a uniformizer of K◦, and qK for �K̃ .
Denote by Z�t�〈x1, . . . , xn〉 the ring of strictly convergent power series over Z�t� (consisting

of all
∑

i∈Nn ai(t)xi with ai(t) ∈ Z�t� such that for each m � 0 there exists n′ such that ai(t)
belongs to (tm) for each i with i1 + · · ·+ in > n′).

The purpose of these strictly convergent power series is to provide analytic functions in a
uniform way, as follows. To each f(x) =

∑
i∈Nn ai(t)xi in Z�t�〈x1, . . . , xn〉, ai(t) ∈ Z�t�, we

associate for each K ∈A∪B the K-analytic function

fK : (K◦)n → K◦: x �→
∑

i∈Nn

ai(πK)xi.

Fix f ∈Z�t�〈x1, . . . , xn〉. As K varies in A∪B, one has a family of numbers

aK :=
∫

(K◦)n

∣∣fK(x)
∣∣|dx|,(1.1)

with |dx| the normalized Haar measure on Kn and |y| = q−ordy
K , and one would like to

understand the dependence on K in a geometric way (see [25] for a context of this question).
This is done using VarZ, the collection of isomorphism classes of algebraic varieties over Z
(i.e. reduced separated schemes of finite type over Z), and, FormZ, the collection of equivalence
classes of formulas in the language of rings 5 with coefficients in Z. For each finite field k, we

5 Two formulas are equivalent in this language if they have the same R-rational points for every ring R.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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consider the ring morphisms

Countk :Q
[
VarZ,

1
A1

Z

,

{
1

1−Ai
Z

}
i<0

]
→Q

which sends Y ∈VarZ to �Y (k), the number of k-rational points on Y , and,

Countk :Q
[
FormZ,

1
A1

Z

,

{
1

1−Ai
Z

}
i<0

]
→Q

which sends ϕ ∈ FormZ to �ϕ(k), the number of k-rational points on ϕ, and where we also write
A�

Z for the isomorphism class of the formula x1 = x1 ∧ · · · ∧ x� = x� (which has the set R� as
R-rational points for any ring R), � � 0.

Using the work established in this paper, as well as results of Denef and Loeser [16], we
establish Theorem 8.2, which is a generalization of the following.

THEOREM 1.2. – (i) There exists a (non-unique) element

X ∈Q
[
VarZ,

1
A1

Z

,

{
1

1−Ai
Z

}
i<0

]

and a number N such that for each field K ∈A∪B with Char K̃ > N , one has

aK = Count
K̃

(X).

In particular, if Char K̃ > N , then aK only depends on K̃ .
(ii) For fixed prime p and n > 0, there exists a (non-unique) element

Xp,n ∈Q
[
FormZ,

1
A1

Z

,

{
1

1−Ai
Z

}
i<0

]
such that for each field K ∈Ap,n one has

aK = Count
K̃

(Xp,n).

Note that (i) treats the case of big residue characteristic, while (ii) can be used for any
fixed “small” residue characteristic. As one expects, for small residue characteristic, one get
less information than in case (i), namely, in case (ii), only bounded ramification is allowed and
formulas are used instead of varieties.

To prove Theorems 1.2 and 8.2 we calculate the aK by inductively integrating variable by
variable, in a uniform way, using analytic cell decomposition. By such decomposition, one
can partition the domain of integration uniformly in K ∈ A ∪ B, for big enough residue field
characteristic, and prepare the integrand on the pieces in such a way that the integral with respect
to a special variable becomes easy.

There is possibly an alternative approach to prove Theorems 1.2 and 8.2 by using analytic
embedded resolutions of f = 0 over (a ring of finite type over) Z�t�, if such a resolution exists.
We do not pursue this approach.

We comment on the non-uniqueness of X and Xp,n in Theorem 1.2. By analogy to [6,16] and
using the results of this paper, one could associate unique objects, a motivic integral, to the data
4e SÉRIE – TOME 39 – 2006 – N◦ 4
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used to define aK . Such objects would live in some quotient of Q[FormZ, 1
A1

Z

,{ 1
1−Ai

Z

}i<0], and

the morphisms Countk could factor through this quotient (at least for char k big enough). To
establish uniqueness in some ring is beyond the scope of the present paper.

More generally, we consider

bK(s) :=
∫

(K◦)n

∣∣f1K(x)
∣∣s∣∣f2K(x)

∣∣|dx|,(1.3)

and similar integrals, when K varies over A ∪ B, where f1, f2 are in Z�t�〈x1, . . . , xn〉, and
s � 0 is a real variable. In the generalization Theorem 8.2 of Theorem 1.2, we prove the
rationality of bK(s) in qs

K for K ∈ B of characteristic big enough and with qK the number
of elements in the residue field of K . For each fixed K ∈ A this rationality was proved by
Denef and van den Dries in [18]. Here we thus prove uniformity, and hence rationality, results
for the fields Fq((t)) of big enough characteristic. Similarly as in the p-adic case, such integrals
describe the generating power series with coefficients Nm obtained by counting points modulo
tm in Fq�t�/(tm) satisfying analytic equations modulo tm, cf. the work of Igusa and Denef,
hence, we obtain uniform rationality results for these generating power series.

2. Analytic structures

Analytic structures, introduced in [19] (cf. [21,34]), are a framework for the model theory of
analytic functions. This section contains an extensive elaboration of those ideas.

Model theory provides a convenient means to analyze algebraic properties that depend on
parameters, and analytic structures are a way to extend model-theoretic techniques to the analytic
setting. In particular, a cell decomposition for a family of functions of several variables is a
partition of the domain into finitely many simple sets on each of which the behavior of the
functions has a simple dependence on the value of the last variable. By assigning the other
variables fixed values in a possibly non-standard field extension, the compactness theorem
reduces the problem of cell decomposition for polynomial functions of several variables to that
of obtaining a cell decomposition for polynomial functions of just one variable, at the expense
of providing a uniform cell decomposition for all models of the theory. By expressing a power
series as the product of a unit and a polynomial in the last variable, Weierstrass Preparation is
used to reduce analytic questions to algebraic ones. An analytic structure provides a convenient
framework for dealing with the parameters that arise in applying Weierstrass Preparation.

To make use of the Weierstrass data, the definition of a model-theoretic structure must be
extended so that compositional and algebraic identities in the power series ring are preserved
when the power series are interpreted as functions on the underlying field. In the case of
polynomial rings, the interpretation of addition and multiplication in a model of the theory
of rings already provides a natural homomorphism from the polynomial ring into the ring of
functions on the underlying structure. Furthermore, if the underlying field is complete, the valued
field structure also already provides a natural homomorphism from the ring of convergent power
series into the ring of functions (that preserves not only algebraic, but compositional identities
as well). But the fields over which we work may not be complete since we must work uniformly
in all models of a given theory. Thus, to apply the Weierstrass techniques, our models must
come equipped with a distinguished homomorphism from the ring of power series to the ring
of functions. This is essentially the definition of analytic structure in Definition 2.7 and in [19].
(Note that, rather than a distinguished homomorphism, one could employ instead a first-order
axiom scheme in which each power series identity is coded into an axiom, but that obscures
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



540 R. CLUCKERS, L. LIPSHITZ AND Z. ROBINSON
the difference between the algebraic and analytic situations, where topological completeness, in
some form, comes into play.)

As in [19,21,34], in using Weierstrass techniques, one often introduces new parameters for
certain ratios. Without a natural means of adjoining elements of a (possibly non-standard) model
to the given coefficient ring of the power series ring, one is prevented from specializing the
parameters, which complicates some computations. However, since the proof of the Weierstrass
Division Theorem relies on completeness in the coefficient ring, adjoining elements of an
arbitrary model to the coefficient ring is problematic. The methods of [32] were developed to
analyze the commutative algebra of rings of separated power series, which are filtered unions
of complete rings. Those ideas are applied in this section to show how to extend the coefficient
ring (Theorem 2.13 and Definition 2.15) and ground field (Theorem 2.18) of a given analytic
structure, which is how the present treatment of analytic structures differs from the previous
ones. (Indeed, with minor modifications to the proofs, much of the theory of [32] applies to the
rings Sm,n(σ,K) introduced in Definition 2.15, and, although we prefer to give a self-contained
treatment in this paper, would simplify the proofs of the results of Section 3.)

Finally, let K be a separated analytic A-structure as in Definition 2.7, so the power series
in a ring Sm,n(A) are interpreted as analytic functions on K in such a way as to preserve the
algebraic and compositional identities of Sm,n(A) and an extended power series ring Sm,n(σ,K)
is obtained from Sm,n(A), as in Definition 2.15, by adjoining coefficients from the field K . It is
important to note that, although the extended power series rings Sm,n(σ,K) are much larger than
the rings Sm,n(A), the structure K has essentially the same first-order diagram in the extended
language. Thus, although it is easier to work with the extended power series rings Sm,n(σ,K),
they have the same model theory as the smaller rings Sm,n(A), which, in fact, is the point of
introducing the extension.

DEFINITION 2.1. – Let E be a Noetherian ring that is complete and separated for the I-adic
topology, where I is a fixed ideal of E. Let (ξ1, . . . , ξm) be variables, m � 0. The ring of strictly
convergent power series in ξ over E (cf. [2, Section 1.4]) is

Tm(E) = E〈ξ〉 :=
{ ∑

ν∈Nm

aνξν : lim
|ν|→∞

aν = 0
}

.

Let (ρ1, . . . , ρn) be variables, n � 0. The ring

Sm,n(E) := E〈ξ〉�ρ�

is a ring of separated power series over E (cf. [32, Section 2]).

Remark 2.2. – (i) If the formal power series ring E�ρ� is given the ideal-adic topology for the
ideal generated by I and (ρ), then Sm,n(E) is isomorphic to E�ρ�〈ξ〉. Note that Sm,0 = Tm and
Tm+n(E) is contained in Sm,n(E).

(ii) Observe that E〈ξ〉 is the completion of the polynomial ring E[ξ] in the I · E[ξ]-adic
topology and E〈ξ〉�ρ� is the completion of the polynomial ring E[ξ, ρ] in the J -adic topology,
where J is the ideal of E[ξ, ρ] generated by ρ and the elements of I .

(iii) The example of A = Z�t� and I = (t) is the one used in the introduction to put a strictly
convergent analytic structure on the p-adic fields and on the fields Fq((t)).

The Weierstrass Division Theorem (cf. [32, Theorems 2.3.2 and 2.3.8]) provides a key to the
basic structure of the power series rings Sm,n(E).
4e SÉRIE – TOME 39 – 2006 – N◦ 4



ANALYTIC CELL DECOMPOSITION AND ANALYTIC MOTIVIC INTEGRATION 541
DEFINITION 2.3. – Let f ∈ Sm,n(E). The power series f is regular in ξm of degree d if f is
congruent, modulo the ideal I + (ρ), to a monic polynomial in ξm of degree d, and f is regular
in ρn of degree d if f is congruent, modulo the ideal I + (ρ1, . . . , ρn−1) to ρd

n · g(ξ, ρ) for some
unit g of Sm,n(E).

PROPOSITION 2.4 (Weierstrass Division). – Let f, g ∈ Sm,n(E).
(i) Suppose that f is regular in ξm of degree d. Then there exist uniquely determined elements

q ∈ Sm,n(E) and r ∈ Sm−1,n(E)[ξm] of degree at most d − 1 such that g = qf + r. If
g ∈ J · Sm,n for some ideal J of Sm−1,n, then q, r ∈ J · Sm,n.

(ii) Suppose that f is regular in ρn of degree d. Then there exist uniquely determined elements
q ∈ Sm,n(E) and r ∈ Sm,n−1(E)[ρn] of degree at most d − 1 such that g = qf + r. If
g ∈ J · Sm,n for some ideal J of Sm,n−1, then q, r ∈ J · Sm,n.

Remark 2.5. – By taking n = 0 in Proposition 2.4(i), one obtains a Weierstrass Division
Theorem for the Tm(E).

Dividing ξd
m (respectively, ρd

n) by an element f ∈ Sm,n regular in ξm (respectively, ρn) of
degree d, as in [32, Corollary 2.3.3], we obtain the following corollary.

COROLLARY 2.6 (Weierstrass Preparation). – Let f ∈ Sm,n(E).
(i) If f is regular in ξm of degree d, then there exist: a unique unit u of Sm,n and a unique

monic polynomial P ∈ Sm−1,n[ξm] of degree d such that f = u · P .
(ii) If f is regular in ρn of degree d, then there exist: a unique unit u of Sm,n and a unique

monic polynomial P ∈ Sm,n−1[ρn] of degree d such that f = u · P ; in addition, P is
regular in ρn of degree d.

Let the ring E and the ideal I be as in Definition 2.1. If K is a field containing E that is
complete in a rank 1 valuation and I is contained in the maximal ideal K◦◦ of the valuation ring
K◦, then Tm(E) (respectively, Sm,n(E)) may be interpreted as a ring of analytic functions
on the polydisc (K◦)m (respectively, (K◦)m × (K◦◦)n), exactly as in [32]. The following
definition permits an extension to more general valued fields K , for example, to ultraproducts of
complete fields. In this more general setting, analytic properties usually derived employing the
completeness of the domain can often be derived instead from Weierstrass Division (which relies
on completeness in the coefficient ring).

DEFINITION 2.7 (Cf. [19] and [34]). – Let A be a Noetherian ring that is complete and
separated with respect to the I-adic topology for a fixed ideal I of A. Let (K,ord,Γ) be a
valued field. A separated analytic A-structure on K is a collection of homomorphisms σm,n

from Sm,n(A) into the ring of K◦-valued functions on (K◦)m × (K◦◦)n for each m,n ∈ N

such that:
(i) (0) 	= I ⊂ σ−1

0 (K◦◦), with σ0 := σ0,0,
(ii) σm,n(ξi) = the i-th coordinate function on (K◦)m × (K◦◦)n, i = 1, . . . ,m, and

σm,n(ρj) = the (m + j)-th coordinate function on (K◦)m × (K◦◦)n, j = 1, . . . , n,
(iii) σm,n+1 extends σm,n, where we identify in the obvious way functions on

(K◦)m × (K◦◦)n with functions on (K◦)m × (K◦◦)n+1 that do not depend on the last
coordinate, and σm+1,n extends σm,n similarly.

A collection of homomorphisms σm from Tm(A) = Sm,0(A) into the ring of K◦-valued func-
tions on (K◦)m is called a strictly convergent analytic A-structure on K if the homomorphisms
σm,0 := σm satisfy the above three conditions (with n = 0).

In any case, we call A the coefficient ring of the analytic structure.

Here are some typical examples of valued fields with strictly convergent analytic A-struc-
ture. Take A := Z�t�, where t is one variable, equipped with the (t)-adic topology. Then
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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(C((t)),ordt,Z) carries a unique analytic A-structure determined by σ0(t) = t. For each prime
p ∈ N, the valued field of p-adic numbers (Qp,ordp,Z) carries a unique analytic A-structure
determined by σ0(t) = p. Similarly, σ0(t) = p determines a unique separated analytic structure
on the non-discretely valued field Cp, the completion of the algebraic closure of Qp, which yields
a larger family of analytic functions than the corresponding strictly convergent analytic A-struc-
ture. The fields Fp((t)) carry unique analytic A-structures determined by σ0(t) = t. The latter
(standard) analytic A-structures induce an analytic A-structure on any non-principal ultraproduct
of the p-adic fields Qp, or Cp, or Fp((t)). Note that such fields carry analytic A-structure even
though they are not complete.

By definition, analytic A-structures preserve the ring operations on power series, thus they
preserve the Weierstrass Division data. It follows that analytic A-structures also preserve the
operation of composition.

PROPOSITION 2.8. – Analytic A-structures preserve composition. More precisely, if
f ∈ Sm,n(A), α1, . . . , αm ∈ SM,N (A), β1, . . . , βn ∈ ISM,N (A) + (ρ), where SM,N (A) con-
tains power series in the variables (ξ, ρ) and I is the fixed ideal of A, then g := f(α,β) is in
SM,N (A) and σ(g) = (σ(f))(σ(α), σ(β)).

Proof. – By the Weierstrass Division Theorem, there are elements qi ∈ Sm+M,n+N (A) such
that

f(η,λ) = g(ξ, ρ) +
m∑

i=1

(
ηi − αi(ξ, ρ)

)
· qi +

n∑
j=1

(
λj − βj(ξ, ρ)

)
· qm+j .

Let (x, y) ∈ (K◦)M × (K◦◦)N and put ai := σ(αi)(x, y) and bj := σ(βj)(x, y) for
i = 1, . . . ,m, j = 1, . . . , n. Clearly, b ∈ (K◦◦)n. By plugging (a,x, b, y) into the above equa-
tion, the proposition follows. �

Next we show that the image of a power series is the zero function if, and only if, the image
of each of its coefficients is zero. This employs parameterized Weierstrass Division which relies
on the strong Noetherian property of Lemma 2.9 (cf. [18, Lemmas 1.4 and 4.12]). We refer to
this as a strong Noetherian property because, implicit in Lemma 2.9 are the facts that not only
are all the fμ,ν expressed as linear combinations of finitely many, but also that for “small” fμ,ν

the coefficients in these linear combinations are also “small”.

LEMMA 2.9 [32, Lemma 3.1.6]. – Let F ∈ Sm+M,n+N (E) and write

F =
∑

fμ,ν(ξ, ρ)ημλν

with the fμ,ν ∈ Sm,n(E). Then there are: d ∈ N and units Gμ,ν of Sm+M,n+N (E) such that

F =
∑

|μ|+|ν|�d

fμ,ν(ξ, ρ)ημλνGμ,ν(ξ, η, ρ,λ).

PROPOSITION 2.10. – The image of a power series is the zero function if, and only if, the
image of each of its coefficients is zero. More precisely:

(i) Let σ be a separated analytic A-structure on the valued field K . Then kerσm,n =
kerσ0 · Sm,n(A).

(ii) Let σ be a strictly convergent analytic A-structure on the valued field K . Then kerσm =
kerσ0 · Tm(A).
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Proof. – (ii) The ring σ0(A) is a Noetherian ring that is complete and separated in the
σ0(I)-adic topology. The map σ induces a homomorphism πm :Tm(A) → Tm(σ0(A)), and
kerπm = kerσ0 · Tm(A). Thus, the homomorphism σm factors through Tm(σ0(A)), yielding
a strictly convergent σ0(A)-analytic structure σ̄ on K◦. Hence, there is no loss in generality
to assume that kerσ0 = (0). Let f ∈ Tm(A) \ {0}; we must show that σm(f) is not the zero
function.

Observe that if f ∈ Tm−1[ξm] is monic in ξm then σm(f) is not the zero function. Indeed, write
f = ξd

m +
∑d−1

i=0 ξi
mai(ξ′), where ξ′ = (ξ1, . . . , ξm−1). Let x ∈ (K◦)m−1; then σm(f)(x, ξm) ∈

K◦[ξm] is monic of degree d. By Definition 2.7(i), K is a non-trivially valued hence infinite
field; thus σm(f) is not the zero function.

Now let f =
∑

fμξμ be any non-zero element of Tm. By Lemma 2.9, there are d ∈ N and
units gμ of Tm such that

f =
∑
|μ|�d

fμξμgμ.

Let ν be the lexicographically largest index such that

ordσ(fν) = min
|μ|�d

ordσ(fμ).

Let ημ be new variables and put

F := ξν +
∑
|μ|�d
μ�=ν

ημξμg−1
ν gμ.

Since the above sum is finite,

σ(f) = σ(fνgν)σ(F )(ξ, yμ),

where the yμ := σ(fμ)
σ(fν) ∈ K◦. Since gν is a unit and σ(fν) 	= 0, to show that σ(f) is not the zero

function, it suffices to show that σ(F )(ξ, yμ) is not the zero function.
By the choice of ν, there is a polynomial change of variables ϕ, involving only the ξ, such that

F ◦ ϕ is regular in ξm of some degree d. By Proposition 2.8, it is enough to show that σ(F ◦ ϕ)
is not the zero function, which follows from Corollary 2.6(i).

(i) As above, we may assume that kerσ0 = (0). Let f(ξ, ρ) be a nonzero element of Sm,n,
let a be a nonzero element of the ideal I of A and put g := f(ξ, a · ρ). By Proposition 2.8, to
show that σ(f) is not the zero function, it suffices to show that σ(g) is not the zero function.
Since kerσ0 = (0) and K◦ is an integral domain, so is A. Since a is a nonzero element of I ,
g is a nonzero element of Tm+n. It is then a consequence of part (ii) that σ(g) is not the zero
function. �

Next, we discuss how to extend the coefficient ring of a given analytic structure.

DEFINITION 2.11. – Let A and E be Noetherian rings that are complete and separated for
the I-adic, respectively, J -adic, topologies, where I and J are fixed ideals of A, respectively,
of E. Let K be a valued field with analytic A-structure {σm,n} and analytic E-structure {τm,n}.
Suppose E is an A-algebra via the homomorphism ϕ :A→ E, and that I ⊂ ϕ−1(J). Note that ϕ
extends coefficient-wise to a homomorphism ϕ :Sm,n(A) → Sm,n(E). The analytic structures
σ and τ are called ϕ-compatible (or compatible when ϕ is understood) if, for all m and n,
σm,n = τm,n ◦ϕ.
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It can be particularly useful to extend the coefficient ring of an analytic A-structure by
adjoining finitely many parameters from the domain K . The coefficient rings of analytic
structures are complete, and Lemma 2.12 permits us to define the appropriate completion of
a finitely generated A-subalgebra of K◦.

LEMMA–DEFINITION 2.12. – (i) Let K be a valued field with separated analytic A-structure
{σm,n} and let E be a finitely generated σ0(A)-subalgebra of K◦, say, generated by a1, . . . , am.
Then E is Noetherian. Let b1, . . . , bn generate the ideal E ∩K◦◦. The subset Eσ of K

Eσ :=
{
σ(f)(a, b): f ∈ Sm,n(A)

}
is independent of the choices of a and b. Moreover, Eσ is a Noetherian ring that is complete and
separated with respect to the J -adic topology, where J = (Eσ ∩K◦◦). Moreover, J is generated
by bj , j = 1, . . . , n.

(ii) Let K be a valued field with strictly convergent analytic A-structure {σm} and E be a
finitely generated σ0(A)-subalgebra of K◦, say, generated by a1, . . . , am. Then E is Noetherian.
The subset Eσ of K

Eσ :=
{
σ(f)(a): f ∈ Tm(A)

}
is independent of the choice of a. Moreover, Eσ is a Noetherian ring that is complete and
separated with respect to the J -adic topology, where J = σ0(I) ·Eσ .

Proof. – (i) Let E be generated by some tuple a′ and E ∩ K◦◦ by b′. For some polynomials
pi, qj,� ∈ A[ξ],

a′
i = σ(pi)(a), i = 1, . . . ,m′ and b′j =

n∑
�=1

σ(qj,�)(a)b�, j = 1, . . . , n′.

That Eσ is independent of the choice of a now follows from Proposition 2.8.
To prove the remainder of part (i), observe that the ideal J of Eσ is generated by b1, . . . , bn.

Indeed, let f ∈ Sm,n and write

f = f0(ξ) +
r∑

�=1

e�g�(ξ) +
n∑

j=1

ρjhj(ξ, ρ),

where f0 ∈ A[ξ] is a polynomial, the e� generate the ideal I of A, g� ∈ Sm,0 and hj ∈ Sm,n.
Note that ordσ0(e�),ordσ(ρj)(b) = ord bj > 0 and that σ0(e�) and the σ(ρj)(b) = bj belong to
the ideal generated by b. Thus, ordσ(f)(a, b) > 0 implies that ordσ(f0)(a) > 0. Since f0 is a
polynomial, σ(f0)(a) ∈ E, and it follows that σ(f0)(a) must also belong to the ideal generated
by b.

Now consider the A-algebra homomorphism

εa,b :Sm,n(A) →Eσ: f �→ σ(f)(a, b).

Since εa,b is clearly surjective and Sm,n(A) is Noetherian, Eσ is Noetherian. By the above
observation, the non-trivial ideal J is generated by the images of the ρj under εa,b. Since Sm,n

is complete in the (ρ)-adic topology, it follows from the Artin–Rees Theorem that the finitely
generated Sm,n-module Eσ is complete and separated in the J -adic topology, as desired.

(ii) The proof is similar to part (i). �
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Theorem 2.13, below, gives a basic example of extending the coefficient ring of an A-analytic
structure to obtain a compatible analytic structure.

THEOREM 2.13. –
(i) Let K be a valued field with separated analytic A-structure {σm,n}. Let E ⊂ K◦ be

a finitely generated A-subalgebra of K◦ and let Eσ be as in Definition 2.12(i). Then
σ induces a unique analytic Eσ-structure τ on K◦ such that σ and τ are compatible.
Moreover, each τm,n is injective.

(ii) The analogous statement holds for K a valued field with strictly convergent analytic
A-structure {σm}.

Proof. – (i) Let f ∈ SM,N (Eσ). By Lemma 2.12, J is generated by the σ(ρj)(b), so there is
some F ∈ Sm+M,n+N (A), F =

∑
fμ,ν(ξ, ρ)ημλν , such that

f =
∑

σ(fμ,ν)(a, b)ημλν .

Once the required homomorphisms τ are shown to exist, it follows by the Weierstrass Division
Theorem as in the proof of Proposition 2.8, that

τm,n(f)(η,λ) = σm+M,n+N (F )(a, η, b, λ),(2.14)

i.e., that τm,n is uniquely determined by the conditions of Definition 2.11.
It remains to show that τm,n is well-defined by the assignment of Eq. (2.14). For that, it

suffices to show for any G ∈ Sm+M,n+N (A), G =
∑

gμ,ν(ξ, ρ)ημλν , that if
∑

gμ,ν(a, b)ημλν

is the zero power series of SM,N (Eσ), then σm+M,n+N (G)(a, η, b, λ) is the zero function. By
Lemma 2.9, there are: d ∈ N and power series Hμ,ν ∈ Sm+M,n+N (A) such that

G =
∑

|(μ,ν)|�d

gμ,νHμ,ν .

Then

σ(G)(a, η, b, λ) =
∑

|(μ,ν)|�d

σ(gμ,ν)(a, b)σ(Hμ,ν)(a, η, b, λ) = 0,

as desired. Since Eσ is a subring of K◦, the injectivity of τ is a consequence of Proposition 2.10.
This proves part (i).

(ii) The proof of part (ii) is similar. �
For our purposes, it is useful to work with the ring of all separated (or strictly convergent)

power series with parameters from K .

DEFINITION 2.15. – (i) Let K be a valued field with separated analytic A-structure {σm,n}.
Let F(σ,K) be the collection of all finitely generated A-subalgebras E ⊂ K◦. Then F(σ,K)
and {Eσ}E∈F(σ,K) form direct systems of A-algebras in a natural way, where Eσ is as in
Definition 2.12(i). Put

S◦
m,n(σ,K) := lim−−−−−−→

E∈F(σ,K)

Eσ〈ξ〉�ρ�,

which is a K◦-algebra. The rings of separated power series with parameters from K are then
defined to be

Sm,n(σ,K) := K ⊗K◦ S◦
m,n(σ,K).
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(ii) Let K be a valued field with separated analytic A-structure {σm,n}. Using the notation of
(i) we define the strictly convergent power series with parameters from K to be

Tm(σ,K) := Sm,0(σ,K).

(iii) Let K be a valued field with strictly convergent analytic A-structure {σ′
m}. The rings

Tm(σ′,K) of strictly convergent power series with parameters from K are defined similarly
using Lemma 2.12(ii). Using the same notation for the rings of strictly convergent power series
with parameters from K arising from a separated analytic structure on K and from a strictly
convergent analytic structure on K should not lead to confusion.

Remark 2.16. – The rings S◦
m,n(σ,K) (respectively, T ◦

m(σ,K)) inherit Weierstrass Division,
Theorem 2.4, and Weierstrass Preparation, Corollary 2.6, since they are direct unions of the rings
Sm,n(Eσ) (respectively, T ◦

m(Eσ)) to which those results apply.

Just as it can be useful to extend the coefficient ring of an analytic structure, it is also useful
to be able to extend the domain of an analytic structure. This requires the following proposition,
which is proved exactly as [31, Lemma 3.3].

PROPOSITION 2.17. –
(i) Let K be a valued field with separated analytic A-structure; then K◦ is a Henselian

valuation ring.
(ii) Let K be a valued field with strictly convergent analytic A-structure such that ord(K◦◦)

has a minimal element γ, and γ = minord(σ0(I)). Then K◦ is a Henselian valuation
ring.

The following theorem permits us to work over any finite algebraic extension, or over the
algebraic closure, of the domain of an analytic A-structure.

THEOREM 2.18. –
(i) Let K be a valued field with separated analytic A-structure σ. Then there is a unique

extension of σ to a separated analytic A-structure τ on Kalg , the algebraic closure of K .
(ii) Let K be a valued field with strictly convergent analytic A-structure such that ord(K◦◦)

has a minimal element γ, and γ = minord(σ0(I)). Then there is a unique extension of σ
to a strictly convergent analytic A-structure τ on Kalg .

(iii) Let K be as in part (ii); then there is a unique extension of σ to a separated analytic
A-structure τ on Kalg .

Proof. – Let α ∈K◦
alg and let P (t) = td + a1t

d−1 + · · ·+ ad be the minimal polynomial for α
over K . Since by Proposition 2.17(i), K◦ is Henselian, the coefficients ai lie in K◦; moreover,
if α ∈K◦◦

alg , then the ai lie in K◦◦. Now use Weierstrass division. �
Remark 2.19. – Let K be a valued field with analytic A-structure that satisfies the conditions

of either Theorem 2.18(i) or (ii), and let L be an extension of K contained in Kalg . Then the
arguments of Theorem 2.18 show that

S◦
m,n(τ,L) = L◦ ⊗K◦ S◦

m,n(σ,K) and Sm,n(τ,L) = L⊗K Sm,n(σ,K).

Since the base change is faithfully flat, Remark 2.19 yields the following corollary.

COROLLARY 2.20. – Let K and L be as in Remark 2.19; then:
(i) S◦

m,n(τ,L) (respectively, Sm,n(τ,L)) is faithfully flat over S◦
m,n(σ,K) (respectively, over

Sm,n(σ,K)), and
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(ii) if L is finite over K , then Sm,n(τ,L) is finite over Sm,n(σ,K).
Similar statements hold for Tm.

3. Rational analytic functions in one variable

In this section, we develop the basis of a theory of analytic functions on a K-annulus (an
irreducible R-domain in K◦), when K carries a separated A-analytic structure, as it is needed
for the proof of the cell decomposition of this paper. In particular, we show that given an analytic
function f on a K-annulus, there is a partition of the annulus into finitely many annuli U such
that f |U is a rational function times a (very) strong unit (see Theorem 3.9). All the same results
hold (with the same proofs) in the “standard” case where K is a complete non-Archimedean
valued field and Sm,n(σ,K) is replaced by Sm,n(E,K) (with the notation of [32]). Hence, the
results in this section also extend the affinoid results of [24, Sections 2.1 and 2.2], to the case that
K is not algebraically closed and to the quasi-affinoid case (i.e., allowing strict as well as weak
inequalities).

The results of this section require K to carry a separated A-analytic structure. Note, however,
by Theorem 2.18(iii), in the setting of this paper, a strictly convergent A-analytic structure on K
can be extended uniquely to a separated A-analytic structure on Kalg .

A subsequent paper will give a complete treatment of the analytic geometry of the one-
dimensional unit ball over Kalg , when K carries either a strictly convergent or separated
analytic structure. This will include the analogue of the classical Mittag-Leffler Theorem
(cf. [24, Theorems 2.2.6 and 2.2.9]) over coefficient fields K that may be neither complete
nor algebraically closed, both in the affinoid and quasi-affinoid setting. This will allow the
exploration of more cell decompositions.

DEFINITION 3.1. – Let K be a Henselian valued field (with separated A-analytic structure)
and let x be one variable.

(a) A K-annulus formula is a formula φ of the form

∣∣p0(x)
∣∣�0ε0 ∧

L∧
i=1

εi �i

∣∣pi(x)
∣∣,

where the pi ∈ K◦[x] are monic and irreducible, the εi are in the divisible closure√
|K| \ {0} of |K| \ {0}, and �i ∈ {<,�}. 6 Define �i by {�i,�i} = {<,�}. We

require further that the “holes” {x ∈Kalg : |pi(x)|�iεi}, i = 1, . . . ,L, all are contained in
the disc {x ∈ Kalg : |p0(x)|�0ε0} and that the holes corresponding to different indices i
are disjoint 7 .

(b) The corresponding K-annulus is

Uφ :=
{
x ∈ Kalg : φ(x)

}
(If K1 ⊃ Kalg then φ also defines an annulus in K1. We shall also refer to this as Uφ. No
confusion will result.)

(c) a K-annulus formula φ, and the corresponding K-annulus Uφ, is called linear if the pi are
all linear. (If K = Kalg then all K-annulus formulas are linear.)

6 Alternatively, we could require that εi ∈ |K◦| \ {0} and allow the pi to be powers of irreducible monic polynomials.
7 To give an example of a “hole”, look at the K-annulus formula |x| � 1 ∧ 1/2 < |x|, for which the hole is the ball

|x| � 1/2 around 0.
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(d) a K-annulus formula φ, and the corresponding K-annulus Uφ, is called closed (respec-
tively open) if all the �i are � (respectively <).

LEMMA 3.2. –
(i) Let p ∈ K[x] be irreducible and let � ∈ {<,�}. Then for every δ ∈

√
|K \ {0}| there is

an ε ∈
√

|K \ {0}| such that for every x ∈ Kalg , |p(x)|�ε if, and only if, for some zero
α of p, |x− α|�δ.

(ii) A K-annulus is a finite union of isomorphic (and linear) Kalg -annuli.
(iii) Any two K-discs (i.e. L = 0 in Definition 3.1) U1 and U2 are either disjoint or one is

contained in the other.
(iv) For any two K-annuli U1 and U2, if U1 ∩ U2 	= ∅ then U1 ∩U2 is a K-annulus.
(v) The complement of a K-annulus is a finite union of K-annuli.

(vi) Every set of the form

U =

{
x ∈K◦

alg :
∣∣p0(x)

∣∣�0 ε0 ∧
s∧

i=1

εi �i

∣∣pi(x)
∣∣}

with the pi irreducible over K is defined by a K-annulus formula.

Proof. – Exercise. �
DEFINITION 3.3. – Let φ be a K-annulus formula as in Definition 3.1(a). Define the ring

of K-valued functions OK(φ) on Uφ by

OK(φ) := Sm+1,n(σ,K)/
(
pl0
0 (x)− a0z0, p

l1
1 (x)z1 − a1, . . . , p

lL
L (x)zL − aL

)
,

where ai ∈ K◦, |ai| = εli
i , m + n = L + 1, {z0, . . . , zL} is the set {ξ2, . . . , ξm+1, ρ1, . . . , ρn}

and x is ξ1 and zi is a ξ or ρ variable depending, respectively, on whether �i is � or <. Observe
that each f ∈ OK(φ) defines a function Uφ → Kalg via the analytic structure on K , which by
Theorem 2.18 extends uniquely to Kalg .

Remark 3.4. – Let φ be a K-annulus formula and write Uφ =
⋃̇
Ui with the Ui isomorphic

(linear) Kalg -annuli given by Lemma 3.2(ii). Then one can prove

OK(φ) ↪→Kalg ⊗K OK(φ) =
⊕

i

OKalg
(Ui).

This result is not needed here.

DEFINITION 3.5. – Let f be a unit in OK(φ). Suppose that there is some � ∈ N and c ∈ K

such that |f �(x)| = |c| for all x ∈ Uφ. Suppose also that there exists a polynomial P (ξ) ∈ K̃[ξ]
such that P ((1

cf �(x))∼) = 0 for all x ∈ Uφ, where ∼ :K◦ → K̃ is the natural projection. Then
call f a strong unit. Call f a very strong unit if moreover |f(x)|= 1 and (f(x))∼ = 1 in OK(φ).

LEMMA 3.6 (Normalization). –
(i) Let φ be a closed K-annulus formula. Then there is an inclusion

S1,0(σ,K) ↪→OK(φ),

which is a finite ring extension.
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(ii) Let φ be an open K-annulus formula. Then there is an inclusion

S0,1(σ,K) ↪→OK(φ),

which is a finite ring extension.

Proof. – Apply a suitable Weierstrass automorphism, as in the classical case. �
The following two corollaries are proved exactly as in the classical case (cf. [2, Sections 3.8

and 5.2]).

COROLLARY 3.7. – Let φ be a K-annulus formula that is either closed or open. Then
(i) the Nullstellensatz holds for OK(φ); i.e., the maximal ideals of OK(φ) are K-algebraic.

(ii) OK(φ) is an integral domain.

COROLLARY–DEFINITION 3.8. –
(i) If φ is a K-annulus formula that is either closed or open and ψ is any K-annulus formula

with Uφ ⊆Uψ then

OK(ψ) ↪→OK(φ).

(ii) If φ is a K-annulus formula that is closed or open, the ring OK(φ) depends only on Uφ

and is independent of the formula φ. Hence, we can define OK(Uφ) as OK(φ) for such φ.

Let U be a K-annulus. A K-annulus formula φ

∣∣p0(x)
∣∣�0 ε0 ∧

L∧
i=1

εi �i

∣∣pi(x)
∣∣

is called a good description of U if U = Uφ and each pi is of minimal degree. This condition
implies that if deg q < deg pi then q has no zero in the hole defined by pi; i.e., in the disc defined
by the formula |pi(x)|�iεi. If φ is a good description of Uφ, then we say that φ is a good
K-annulus formula. Observe that each K-annulus has a good description. Moreover, by
Corollary–Definition 3.8(ii), if φ is a closed or open K-annulus formula, then replacing φ by
a good description does not change the ring of analytic functions.

The main result of this section is the following.

THEOREM 3.9. – Let φ be a K-annulus formula and let f ∈OK(φ). Then there are: finitely
many K-annulus formulas φi, each either closed or open, such that φ is equivalent to the
disjunction of the φi, rational functions Ri ∈ OK(φi) and very strong units Ei ∈ OK(φi) such
that for each i,f |Uφi

= RiEi.

Proof. – By Lemma 3.11, the theorem follows from Propositions 3.14 and 3.15, below. �
The decomposition in Theorem 3.9 will be given in terms of two types of annuli, thin annuli

and Laurent annuli, defined as follows.

DEFINITION 3.10. – (i) A linear K-annulus is called thin if it is of the form{
x ∈Kalg : |x− a0|� ε and for i = 1, . . . , n, |x− ai|� ε

}
for some ε ∈

√
|K \ {0}|, ε � 1, and ai ∈ K◦.

In general, a K-annulus is called thin if it can be written as a union of isomorphic (and linear)
Kalg -annuli Ui (as in Lemma 3.2(ii)), such that each Ui is a thin Kalg -annulus.
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A K-annulus formula is called thin when it defines a thin K-annulus.
(ii) A K-annulus U of the form{

x ∈ Kalg : ε1 <
∣∣p(x)

∣∣ < ε0

}
,

where p ∈ K[x] is irreducible is called a Laurent annulus.

Note that any open K-annulus with one hole is Laurent.

LEMMA 3.11. – Every K-annulus formula is equivalent to a finite disjunction of K-annulus
formulas that are either thin or Laurent.

Proof. – Define the complexity of a K-annulus formula

∣∣p0(x)
∣∣�0 ε0 ∧

L∧
i=1

εi �i

∣∣pi(x)
∣∣

to be
∑L

i=1 deg pi. The proof is by induction on complexity. The base case is easy.
By removing thin annuli, we may assume that the remaining set is an open K-annulus. If

there is only one hole, the annulus is Laurent, and we are done. Assume that there are at least
two holes. Two closed holes are said to abut when their radii are equal to the distance between
the centers. After removing the largest possible Laurent annuli surrounding each hole, we may
assume that all holes are closed, and at least two abut. Now, removing a thin annulus lowers the
complexity. �

LEMMA 3.12. – Consider the following K-annulus formula, φ:

∣∣p0(x)
∣∣ � ε0 ∧

L∧
i=1

εi �
∣∣pi(x)

∣∣.
Suppose that φ is a good, thin K-annulus formula. Let νij ∈ N, i = 1,2, j = 1, . . . ,L. Suppose
fi ∈ K[x] satisfy deg fi < deg pj for all j such that νij > 0 and suppose that ν1j 	= ν2j for
some j. Then ∥∥∥∥ f1∏

j p
ν1j

j

+
f2∏
j p

ν2j

j

∥∥∥∥
sup

= max
{∥∥∥∥ f1∏

j p
ν1j

j

∥∥∥∥
sup

,

∥∥∥∥ f2∏
j p

ν2j

j

∥∥∥∥
sup

}
,

with ‖ · ‖sup the supremum norm on Uφ.

Proof. – This reduces easily to the linear case, which is treated in the proof of [24,
Theorem 2.2.6]. �

LEMMA 3.13. – When φ is a thin K-annulus formula, the supremum norm ‖ · ‖sup is a
valuation on OK(φ).

Proof. – Let the notation be as in the statement of Lemma 3.12. By that lemma and the
definition of OK(φ), this reduces to showing that∥∥∥∥ f1∏

p
ν1j

j

· f2∏
p

ν2j

j

∥∥∥∥
sup

=
∥∥∥∥ f1∏

p
ν1j

j

∥∥∥∥
sup

·
∥∥∥∥ f2∏

p
ν2j

j

∥∥∥∥
sup

,

which is immediate. �
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PROPOSITION 3.14. – Let φ be a thin K-annulus formula. Then for each f ∈ OK(φ) there
is a rational function R ∈OK(φ) and a very strong unit E ∈OK(φ) such that f = R ·E.

Proof. – By the Nullstellensatz, Corollary 3.7, there is a monic polynomial f0 ∈ K◦[x], with
zeros only in Uφ, and an f ′ ∈ OK(φ) such that f = f0 · f ′, and f ′ is a unit of OK(φ). Thus
we may assume that f is a unit. We may also assume that the supremum norm ‖f‖sup on Uφ

equals 1. By Lemma 3.13, this implies that ‖g‖sup = 1, where g ∈ OK(φ) satisfies gf = 1.
Thus, by Lemma 3.12 and the definition of OK(φ), there is a rational function f̂ ∈OK(φ) such
that ‖f − f̂‖sup < 1 and f̂ is a unit of OK(φ). Since f̂ is a unit, we may write f = f̂ · E. We
have ‖E − 1‖sup < 1, so E is a very strong unit. �

PROPOSITION 3.15. – Let φ be a Laurent K-annulus formula, and let f ∈OK(φ). There are
finitely many K-annulus formulas φi, each either thin or Laurent, such that Uφ =

⋃
i Uφi , and

for each i, there are rational functions Ri ∈ OK(φi) and very strong units Ei ∈ OK(φi) such
that f |Uφi

= Ri ·Ei.

Proof. – Write

f =
∑
i∈Z

ai(x)pi,

where p is the polynomial that occurs in φ and the ai are polynomials of degree less than the
degree of p, by using Euclidean division for polynomials. By Lemma 2.9, there are only finitely
many ai that can be dominant (in the sense of the proof of Proposition 2.10) on any sub-annulus
of Uφ. There is a partition of Uφ into a finite collection of thin sub-annuli and Laurent sub-
annuli such that each Laurent sub-annulus is either of lower complexity or on the Laurent sub-
annulus, each of the finitely many dominant ai is a strong unit (only the fact that it is a unit
is used). The thin sub-annuli are handled by Proposition 3.14. The Laurent sub-annuli of lower
complexity are treated by induction and the remaining Laurent sub-annuli are treated as in [30,
Theorem 3.3]. �

LEMMA 3.16. – Let

R(x) = xn0

s∏
i=1

pi(x)ni ∈K(x),

where the pi ∈ K◦[x] are monic, irreducible and mutually prime and the ni ∈ Z. Let
ε ∈

√
|K| \ {0}, let � ∈ {<,�}, and let

U :=
{
x ∈K◦

alg :
∣∣R(x)

∣∣�ε
}
.

There are finitely many K-annuli Ui, i = 1, . . . ,L, such that U =
⋃L

i=1Ui and for each i,
R(x)|Ui ∈OK(Ui).

Proof. – Induction on s. For each i, let αi ∈ K◦
alg be a zero of pi, and let ai := |αi| ∈

√
|K|.

Since pi is irreducible, ai is independent of which zero of pi is chosen. Let

dij := min
{
|α− β|: pi(α) = 0 = pj(β)

}
∈

√
|K|.

Hence dij is the smallest distance between a zero of pi and a zero of pj . We consider several
cases.

(Case 1) There are i, j with ai < aj . Choose γ ∈
√

|K| with ai < γ < aj . Let U1 :=
U ∩ {x: |x| � γ} and U2 := U ∩ {x: |x| � γ}. Then on U1, pj is a strong unit and on U2,
we have that pi = E · xdeg(pi), E a strong unit.
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(Case 2) ai = γ for all i and d12 < d13, say. Choose δ ∈
√

|K| so that d12 < δ < d13 and by
Lemma 3.2(i), choose γ′ ∈

√
|K| so that∣∣p1(x)

∣∣ � γ′ ←→
∨

α such that
p1(α)=0

|x− α|� δ.

On U3 := U ∩ {x: |p1(x)| � γ′}, p3 is a strong unit. On U4 := U ∩ {x: γ′ � |p1(x)|}, we have
that p2(x)n1 = E · p1(x)n2 , E a strong unit, for suitable n1, n2 ∈ N.

(Case 3) ai = γ for all i and dij = δ for all i 	= j. Then δ � γ. Choose γi such that

{
x: |pi(x)|< γi

}
=

⋃
α such that

pi(α)=0

{
x: |x− α| < δ

}
.

On U5i := {x: |pi(x)| < γi}, each pj with j 	= i is a strong unit. On U6i := {x: |pi(x)| = γi},
each pi is of constant size γi. On U7 := {x: |p1(x)| > γ1} there are di ∈ Q+ such that
|pi(x)| = |p1(x)|di . (For each zero αi of pi there is a zero α1 of p1 so that for all x ∈ U7 we
have |x− αi|= |x− α1|.) �

4. A-analytic languages and quantifier elimination

In this section we recall the notion of languages of Denef–Pas and we introduce the notion
of A-analytic languages, suitable for talking about valued fields with analytic A-structure.
Further, we specify the theories that we will consider, and we establish the corresponding
quantifier elimination results in equicharacteristic zero and in mixed characteristic with bounded
ramification.

For K a valued field, I an ideal of K◦, write resI :K◦ → K◦/I for the natural projection.
An angular component modulo I is a map acI :K → K◦/I such that the restriction to K×

is a multiplicative homomorphism to (K◦/I)×, the restriction to (K◦)× coincides with the
restriction to (K◦)× of resI , and such that acI(0) = 0 (for R a ring, R× is the group of units
of R). The importance of the maps acI for some applications is explained in Remark 8.3.

Fix a sequence of positive numbers (np)p, indexed by the prime numbers and write
N0 := {x ∈Z: x > 0}. We consider structures(

K,{K◦/Im}m∈N0 ,ord(K×)
)
,

where K is a Henselian valued field of characteristic zero with valuation ring K◦, additively
written valuation 8 ord :K× → ord(K×), angular component maps acm modulo Im, a constant
tK ∈K , and ideals Im of K◦ for m ∈ N0, satisfying the following properties

(I) I1 is the maximal ideal of K◦,
(II) either Im = I1 for all m ∈ N0 and tK = 1, or, ord(K×) has a minimal positive element,

Im = Im
1 for all m ∈ N0, and tK is either 1 or an element of K◦ with minimal positive

valuation such that acm(tK) = 1 for all m > 0,

8 The problem that ord is not defined globally on K is easily settled and the reader may choose a way to do so. For
example, the reader may choose a value of ord(0) in the value group and treat the cases that the argument or ord equals
zero always separately, or, the reader may add a symbol +∞ to the language LOrd that is bigger than any element of
the value group, and make the natural changes.
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(III) if the residue field K̃ of K has characteristic p > 0, then, tK 	= 1 (hence, I2 	= I1), and
the ramification is bounded by ord(p) � np.

Let K((np)p) be the class of these structures. We call the sorts Val for the valued field sort,
Resm for the m-th residue ring K◦/Im for m ∈ N0, more generally Res for the disjoint union
of the Resm, and Ord for the value group sort.

For Val we use the language LVal = (+,−,−1 , ·,0,1, t0) of fields with an extra constant
symbol t0, interpreted in K as tK . Let LOrd,0 = (+,−,�,0) be the language of ordered groups.

For Res we define the language LRes,0 as the language having the ring language and a
constant symbol tm for each sort Resm and natural projection maps πmn :Resm → Resn giving
commutative diagrams with the maps resm := resIm and resn for m � n. If I2 = I1, the tm are
interpreted as 1. If I2 	= I1, tm denotes the image under resm of an element x with acm(x) = 1
and ord(x) the minimal positive element.

Fix expansions LOrd of LOrd,0 and LRes of LRes,0
9 . To this data we associate the language

LDP = LDP(LRes,LOrd) of Denef–Pas defined as(
LVal,LRes,LOrd,{acm}m∈N0 ,ord

)
.

Fix a language LDP of Denef–Pas, an LOrd-theory TOrd, and an LRes-theory TRes. For such
data, let TDP = TDP(LDP,TRes,TOrd, (np)p) be the LDP-theory of all structures(

K,{K◦/Im}m∈N0 ,ord(K×)
)

in K((np)p) which are LDP-structures such that {K◦/Im}m∈N0 is a model of TRes, and
ord(K×) is a model of TOrd.

The sorts Resm for m ∈N0 and Ord are called auxiliary sorts, and Val is the main sort.
Now we come to the notion of A-analytic languages. Fix a Noetherian ring A that is complete

and separated for the I-adic topology for a fixed ideal I of A. Define the separated A-analytic
language

LS(A) := LDP

⋃
m,n�0

Sm,n(A)

and the strictly convergent A-analytic language

LT (A) :=LDP

⋃
m�0

Tm(A),

where Sm,n(A) and Tm(A) are as in Definition 2.1.
For TDP as before, we define the LS(A)-theory

TS(A) := TDP ∪ (IV)S

and the LT (A)-theory

TT (A) := TDP ∪ (IV)T ,

where

9 The reason that one can work with arbitrary one-sorted expansions of LOrd,0 and LRes,0 is that all results about
TS(A) and TT (A) are relative to the Ord- and Res-sorts.
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(IV)S the Val-sort is equipped with a separated analytic A-structure and each symbol f
of Sm,n(A) is considered as a function Valm+n →Val by extending f by zero outside
its domain {(x, y) ∈ Valm+n: ord(xi) � 0, ord(yj) > 0},

(IV)T the Val-sort is equipped with a strictly convergent analytic A-structure and each symbol
f of Tm(A) is considered as a function Valm → Val by extending f by zero outside its
domain {x ∈ Valm: ord(xi) � 0}. Moreover, the value group has a minimal positive
element and this is the order of some constant of T0(A).

Observe that there exist LS(A)-terms, respectively LT (A)-terms, which yield all kinds of
restricted division as considered in [29,33,34].

Write resm for the natural projection from the valuation ring to Resm, for each m > 0. Note
that each map resm is definable without Val-quantifiers, since it sends x ∈ Val to acm(x) when
ord(x) = 0, and to acm(1 + x)− 1 when ord(x) > 0.

Later on, in Theorem 7.5, we will use definitional expansions to reveal the term structure of
definable functions; these expansions are defined as follows. For each language L, write L∗ for
the expansion

L∗ := L∪
{
(·, · ,·)1/m

e , hm,e

}
m>0,e�0

,(4.1)

with m,e integers. Then, each model of TDP extends uniquely to an L∗
DP-structure, axiomatized

as follows:
(V) (·, ·, ·)1/m

e is the function Val×Res2e+1×Ord → Val sending (x, ξ, z) to the (unique)
m-th root y of x with ace+1(y) = π2e+1,e+1(ξ) and ord(y) = z, whenever ξm =
ac2e+1(x), m 	= 0 in Rese+1, and mz = ord(x), and to 0 otherwise;

(VI) hm,e is the function Valm+1×Res2e+1 → Val sending (a0, . . . , am, ξ) to the unique y
satisfying ord(y) = 0, ace+1(y) = π2e+1,e+1(ξ), and

∑m
i=0 aiy

i = 0, whenever ξ is a
unit, ord(ai) � 0, f(ξ) = 0, and

π2e+1,e+1

(
f ′(ξ)

)
	= 0,

with f(η) =
∑m

i=0 res2e+1(ai)ηi and f ′ its derivative, and to 0 otherwise.
Sometimes we will use the property, for � either zero or a prime number,
(VII)� the residue field has characteristic �.
The following result extends quantifier elimination results of van den Dries [19] and Pas in

[38,39]. Theorem 4.2 for the theory TDP can be compared with results obtained by Kuhlmann
[26]. In [26], the language for the auxiliary sorts is less explicit than in this paper.

THEOREM 4.2 (Quantifier elimination). – Let T be one of the theories TDP, TS(A), or TT (A),
and let LT be respectively LDP, LS(A), or LT (A). Then T admits elimination of quantifiers of
the valued field sort. Moreover, every LT -formula φ(x, ξ,α), with x variables of the valued
field-sort, ξ variables of the residue rings sorts and α variables of the value group sort, is
T -equivalent to a finite disjunction of formulas of the form

ψ
(
ac�f1(x), . . . ,ac�fk(x), ξ

)
∧ θ

(
ordf1(x), . . . ,ordfk(x), α

)
,(4.3)

with ψ an LRes-formula, θ an LOrd-formula, and f1, . . . , fk LT -terms.

Proof of Theorem 4.2. – If one knows the quantifier elimination statement, the statement about
the form of the formulas follows easily, cf. [19].

The quantifier elimination statement for TDP is proved together with the cell decomposition
Theorem 7.4 for TDP.
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The statement for the analytic theories follows in a nowadays standard way from the result for
TDP and the Weierstrass division as developed in Section 2, cf. the proof of Theorem 3.9 of [19]
in the strictly convergent case, and Theorem 4.2 of [34] in the separated case. �

5. Terms in one variable

The results of Section 3 have strong implications for terms in the languages LS(A) and LT (A)

in one valued field variable.
Using Theorem 3.9, Propositions 3.14 and 3.15, Lemma 3.16, and induction on the complexity

of terms, we obtain the following.

THEOREM 5.1. – Let τ(x) be an LS(A)-term of the valued field sort (cf. Section 4) in one
valued field variable x, and K be a TS(A)-model. Then there are a finite set S ⊂ K◦

alg and a
finite collection of disjoint K-annuli Ui, each open or closed, such that K◦

alg =
⋃

Ui and for
each i

τ
∣∣
Ui\S

= RiEi

∣∣
Ui\S

,

where Ri is a rational function over K and Ei ∈OK(Ui) is a very strong unit.

The analogue of Theorem 5.1 for LT (A)-models is the following:

COROLLARY 5.2. – Let τ(x) be an LT (A)-term of the valued field sort in the valued field
variable x, let n > 0 be an integer. Let K and K ′ be TT (A)-models, such that K is a submodel
of K ′. Suppose that the value group of K and of K ′ have minimal positive elements and suppose
that there exists v in A such that both these minimal elements are equal to the value of σ0(v)
(thus, K ′ is an unramified field extension of K). Then there are a finite set S ⊂ K ′ and a finite
collection of disjoint closed K-annulus formulas φi, such that

K ′ ◦ =
⋃

U ′
i and for each i τ

∣∣
U ′

i
\S

= RiEi

∣∣
U ′

i
\S

,

where U ′
i = {x ∈ K ′: φi(x)}, Ri is a rational function over K , Ei ∈ OK(Ui) is a very strong

unit, and Ei ≡ 1 mod σ0(v)n holds on U ′
i .

Proof. – Since K ′ is an unramified field extension of K , we can replace strict inequalities by
weak inequalities in the data given by Theorem 5.1, by using the element σ0(v). �

6. Definable assignments

We elaborate on the terminology of [16,6] on definable assignments and definable subassign-
ments. By some authors, definable assignments are just called “formulas”, or “definable sets”,
and definable morphisms are often called “definable functions”.

Let T be a multisorted theory formulated in some language L, where some of the sorts are
auxiliary sorts and the other sorts are main sorts. Let Mod(T ) be the category whose objects
are models of T and whose morphisms are elementary embeddings. By a T -assignment X we
mean a T -equivalence class of L-formulas ϕ, where we say that ϕ and ϕ′ are T -equivalent if
they have the same set of M-rational points for each M in Mod(T ). Knowing a T -assignment
X is equivalent to knowing the functor from Mod(T ) to the category of sets which sends
M ∈ Mod(T ) to the set ϕ(M) for any L-formula ϕ in X ; we will identify T -assignments
with these functors.
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The usual set theoretic operations can be applied to T -assignments; for example, for two
T -assignments X,Y , X ⊂ Y has the natural meaning and if X ⊂ Y call X a T -subassignment
of Y . Similarly, for X,Y ⊂ Z T -assignments, X ∪ Y , X ∩ Y , and X \ Y have the obvious
meaning. Cartesian products have the obvious meaning and notation. We refer to [6,16] for more
details on the general theory of assignments and T -assignments.

For T -assignments X,Y , a collection of functions fM :X(M) → Y (M) for each M ∈
Mod(T ) is called a T -morphism from X to Y if the functor sending M ∈ Mod(T ) to the
graph of fM is a T -assignment. A T -morphism f :X → Y such that fM is a bijection for each
M∈Mod(T ) is called a T -isomorphism.

DEFINITION 6.1. – By a T -parameterization of a T -assignment X , we mean a T -iso-
morphism f :X → Y ⊂ X × R with R a Cartesian product of auxiliary sorts, such that
π ◦ f :X → X is the identity on X , with π the projection.

Example 6.2. – If T is one of the theories TDP, TS(A), or TT (A), write Val�1 ×Res�2
n ×Ord�3 ,

for the T -assignment which sends a model(
K,{K◦/Im}m>0,ord(K×)

)
to

K�1 × (K◦/In)�2 × ord(K×)�3 ,

for any n > 0, �i � 0. We recall that, for such T , the sorts Resm and Ord are called auxiliary
sorts. For such T , the map

Val→ Val×Res1: x �→
(
x,ac1(x)

)
is an example of a T -parameterization.

7. Cell decomposition

In this section we state and prove an analytic cell decomposition theorem for T -assignments
with T one of the theories TS(A) or TT (A), see Theorem 7.4 below. Theorem 7.4 generalizes
cell decompositions of [38,39,14,4,6] and provides what is needed for the applications to
analytic integrals in the next section. Also for the theory TDP we obtain a cell decomposition,
cf. Theorem 7.4, which generalizes and refines the cell decompositions of Pas [38,39] in several
ways: in equicharacteristic zero, also angular components of higher order (i.e., modulo powers
of the maximal ideal) are allowed; we can take the centers of the cells to be L∗

DP-terms; we
can partition any definable set into cells adapted to any given definable function 10 ; in mixed
characteristic, we allow for any value group with a least positive element 11 . In [6], a notion of
cells is introduced that is more general than the one in [38]; we base the definition of cells below
on this notion of [6]. Summarizing, our cell decomposition holds for the theories introduced in
Section 4, which includes both the analytic and the algebraic cases, in equicharacteristic zero
with quite general angular components, and in mixed characteristic as long as the degree of
ramification is bounded. Crucial to the proof of analytic cell decomposition are Propositions 3.14
and 3.15, Theorem 5.1, and Corollary 5.2. The proof of the analytic cell decomposition seems to

10 The cells used by Pas are neither suitable for the partition of definable sets, nor for the preparation of definable
functions. This problem has been addressed in [6].

11 In mixed characteristic, Pas [39] allows for the integers as value group only.
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require all the work of the previous sections. As a second main result of this section, we prove the
fundamental result that L-definable functions are, after parameterization using auxiliary sorts,
given by L∗-terms, where L is either LDP, LS(A), or LT (A), see Theorem 7.5; this result is
motivated by notes of van den Dries [20].

Fix T to be TDP, TS(A), or TT (A), and let LT be respectively LDP, LS(A), or LT (A). We come
to the definition of T -cells. The usage of parameterizations in Definition 7.1 is necessary in view
of Theorem 7.4, as is shown by the example of the subset X of K2 defined by ord(z2 − y) >
ord(y), for which a parametrization is essentially given by (y, z) �→ (ac(z),ord(z), y, z). (More
generally, for such T , the following definition makes sense as well for the LT ∪K-theory T (K),
where K is the valued field of a model of T , LT ∪K is LT together with constant symbols for
the elements of K , and T (K) the theory T together with the diagram of K .)

DEFINITION 7.1. – Let C be a T -assignment, k > 0 an integer, and α :C → Ord,
ξ :C → Resk , and c : C → Val T -morphisms, such that ξ takes values in the multiplicative
units of the Resk-sort. The T -1-cell ZC,α,ξ,c with base C , order α, angular component ξ, and
center c is the T -subassignment of C ×Val defined by

y ∈C ∧ ord
(
z − c(y)

)
= α(y)∧ ack

(
z − c(y)

)
= ξ(y),

where y ∈ C and z ∈ Val. Similarly, if c is a T -morphism c :C → Val, we define the T -0-cell
ZC,c ⊂ C ×Val with base C and center c as the T -subassignment of C ×Val defined by

y ∈C ∧ z = c(y).

More generally, Z ⊂ S × Val where Z and S are T -assignments will be called a T -1-cell,
respectively a T -0-cell, if there exists a T -parameterization

λ :Z → ZC ⊂ S ×R×Val,

for some Cartesian product R of auxiliary sorts and some T -1-cell ZC = ZC,α,ξ,c, respec-
tively T -0-cell ZC = ZC,c.

We shall call the data (λ,ZC,α,ξ,c), respectively (λ,ZC,c), sometimes written for short
(λ,ZC), a T -presentation of the T -cell Z .

DEFINITION 7.2. – A T -morphism f : Z ⊂ S×Val→ R with Z a T -cell, S a T -assignment,
and R a Cartesian product of auxiliary sorts, is called T -prepared if there exist a T -presentation
λ :Z �→ ZC of Z onto a cell ZC with base C and a T -morphism g :C → R such that f = g◦π◦λ,
with π :ZC → C the projection.

Example 7.3. – Let Z be the T -cell Val\{0}. The TDP-morphism Z → Ord: x �→ ordx2 is
T -prepared since with the T -presentation

λ :Z → Ord×Res1×Val\{0}: x �→ (ordx,acx,x)

and the map

g :Ord×Res1 → Ord: (z, η) �→ 2z,

one has f = g ◦ π ◦ λ.

The following two theorems lay the technical foundations for analytic motivic integration, the
first one to calculate the integrals, the second one to prove a change of variables formula, cf. [6]
for the algebraic setting.
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THEOREM 7.4 (Cell decomposition). – Let T be TDP, TS(A), or TT (A), and let LT be
respectively LDP, LS(A), or LT (A). Let X be a T -subassignment of S ×Val and let f :X → R
be a T -morphism with R a Cartesian product of auxiliary sorts, S a T -assignment. Then there
exists a finite partition of X into T -cells Z such that each of the restrictions f |Z is T -prepared.
Moreover, this can be done in such a way that for each occurring cell Z one can choose a
presentation λ :Z → ZC onto a cell ZC with center c, such that c is given by an L∗

T -term, where
L∗
T is defined by (4.1).

The following is a fundamental result on the term-structure of definable functions. The
statement of Theorem 7.5 for fields of the form k((t)), uniform in the field k of characteristic
zero, and ideals I2 = I1 was announced in [6] and will be proved completely here.

THEOREM 7.5 (Term structure of definable morphisms). – Let T be TDP, TS(A), or TT (A),
and let LT be respectively LDP, LS(A), or LT (A). Let f :X → Y be a T -morphism. Then there
exist a T -parameterization g :X �→ X ′ and a tuple h of L∗

T -terms in variables running over X ′

and taking values in Y such that f = h ◦ g. (See (4.1) and 6.1 for the definitions.)

The following notion is only needed for the proof of quantifier elimination in the language
TDP, cf. similar proofs in [11,14,38,39].

DEFINITION 7.6. – An LDP-definable function h :X → Val, with X a Cartesian product of
sorts, is called strongly definable if for each Val-quantifier free LDP-formula ϕ(v, y), with y a
tuple of variables running over arbitrary sorts, v a Val-variable, and x running over X , there
exists a Val-quantifier free LDP-formula ψ(x, y) such that

ϕ
(
h(x), y

)
is TDP-equivalent with

ψ(x, y).

The next lemma yields L∗
DP-terms picking a specific root when Hensel’s Lemma implies that

there exists a unique such one.

LEMMA 7.7. – Let Z be a TDP-1-cell with TDP-presentation id :Z → Z = ZC,α,ξ,c with ξ
taking values in Rese+1 and such that c = 0 on C . Let x run over C , and y over Val. Let n > 0
and f(x, y) =

∑n
i=0 ai(x)yi be a polynomial in y with L∗

DP-terms ai(x) as coefficients, such
that an(x) is nowhere zero on C . Suppose that for (x, y) in Z

min
i

ordai(x)yi = ordai0(x)yi0 for some fixed i0 � 1,

and

ordf ′(x, y) � ord te0ai0(x)yi0−1,

and that there exists a TDP-morphism d :C → Val whose graph lies in Z and satisfies

f
(
x,d(x)

)
= 0.

Then, d is the unique such morphism and, after a TDP-parametrization of C , d can be given by
an L∗

DP-term. Moreover, if the ai are strongly definable, then the function d is strongly definable
(see Definition 7.6).
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�,
Proof. – The uniqueness of d follows from Hensel’s Lemma, cf. [38,39]. Consider the TDP-
parametrization

g :C →C ×Res2e+1×Ord: x �→
(
x,ac2e+1 d(x),ordd(x)

)
.

We prove that, piecewise, d can be given by a term after the TDP-parametrization g; at the end
we will glue the pieces together. Note that α(x) = ordd(x). We first prove that there exists a
Val-term b such that ord b(g(x)) = α(x). Let fIx(x, y) be the polynomial

∑
i∈Ix

ai(x)yi, with

Ix :=
{
i ∈ {0, . . . , n}: ordai(x)yi � ord t2e+1

0 ai0(x)yi0
}
.

Note that Ix only depends on x, since the valuation of y for (x, y) ∈ Z only depends on x.
We work piecewise to find b. First we work on the piece where gcd(Ix) = 1. After partitioning
further to ensure that the quotients

ai(x)yi/aj(x)yj

have constant order on Z for i, j ∈ Ix, one readily verifies that there exists an L∗
DP-term b such

that ord b(g(x)) = α(x) (for this, the constant symbol t0 is needed). Now work on the part
gcd(i ∈ Ix) = � for some � > 1. One obtains, by induction on the degree, an L∗

DP-term h such
that ∑

i∈Ix

ai(x)h
(
g(x)

)i/� = 0, ordh
(
g(x)

)
= �α(x), and ace+1h

(
g(x)

)
= ξ(x)�.

By the conditions of the lemma, � 	= 0 in Rese+1. Defining the term b(x, η, a) as (h(x, η, a), η, a)1/

one verifies that ord b(g(x)) = α(x) for all x ∈C with gcd(i ∈ Ix) = �.
Now one has d(x) = τ(g(x)) with τ the term

τ(x, η, a) := bhn,e

(
a0

ai0b
i0

,
ba1

ai0b
i0

, . . . ,
bnan

ai0b
i0

, ηac2e+1(1/b)
)

.

One can glue s pieces together using extra parameters contained in the definable subassign-
ment

A :=
{

ξ ∈ Ress
1:

∑
i

ξi = 1 ∧ (ξi = 0 ∨ ξi = 1)
}

to index the pieces, by noting that for each element a in A there exists a definable morphism
A → Val, given by an L∗

T -term, which is the characteristic function of {a}. The fact that d is
strongly definable when the ai are will be proved in the proof of Theorem 7.4. �

The following is a refinement of both Theorem 3.1 of [38] and Theorem 3.1 of [39], the
refinements being the same as the list of algebraic refinements in the introduction of Section 7.

THEOREM 7.8. – Let f(x, y) be a polynomial in y with L∗
DP-terms in x = (x1, . . . , xm) as

coefficients, x running over a TDP-assignment S. Then there exist an integer � and a finite
partition of S × Val into TDP-cells Z with presentation λ :Z → ZC such that ZC has an
L∗

DP-term c as center, and such that, if we write

f(x, y) =
∑

ai(z)
(
y − c(z)

)i
,

i
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for (x, y) ∈ Z and (z, y) = λ(x, y), then we have

ordf(x, y) � min
i

ord t�0ai(z)
(
y − c(z)

)i

for all (x, y) ∈ Z . Here, ord(x) � ord(0) always holds by convention. If one restricts to the
theory TDP ∪ (VII)0, one can take � = 0 and one can choose cells whose angular components
take values in Res1.

Proof. – The equicharacteristic 0 result induces the analogous result for big enough residue
field characteristic, leaving only finitely many residue characteristics and ramification degrees to
treat separately.

We give a proof for T = TDP ∪ (VII)p with p > 0. For T = TDP ∪ (VII)0 one can use the
same proof with e = 0, �0 = 0, and k = 1.

Let f be of degree d in y and proceed by induction on d. Let f ′(x, y) be the derivative of f
with respect to y. Applying the induction hypothesis to f ′, we find a partition of S × Val into
cells. By replacing S we may suppose that these cells have the identity mapping as presentation.

First consider a 0-cell Z = ZC,c in the partition. Then we can write f(x, y) = f(x, c(x)) =
τ(x) for some L∗

DP-term τ , for (x, y) ∈ Z , and the theorem follows.
Next consider a 1-cell Z = ZC,α,ξ,c in the partition. Write

f(x, y) =
∑

i

ai(x)
(
y − c(x)

)i

for (x, y) ∈ Z . There is some �0 such that for all (x, y) ∈ Z

ordf ′(x, y) � min
i

ord t�00 iai(x)
(
y − c(x)

)i−1
.

We may suppose that ai(x) is either identically zero or else never zero on C for each i. Put

I =
{
i: ∀x ∈Cai(x) 	= 0

}
and J =

{
(i, j) ∈ I × I: i > j

}
.

We may suppose that J is non-empty since the case J = ∅ is trivial. Put Θ := {< , >,=}J . For
θ = (�ij) ∈Θ, put

Cθ =
{
x ∈C: ∀(i, j) ∈ J iα(x) + ordai(x)�ijjα(x) + ordaj(x)

}
.

Ignoring the Cθ which are empty, this gives a partition of C and hence a partition of Z
into cells Zθ = ZCθ,α|Cθ

,ξ|Cθ
,c|Cθ

. Fix θ ∈ Θ. We may suppose that Z = Zθ . The case that
orda0(x) < iα(x) + ordai(x) for all i � 1 and all x ∈ C follows trivially. Hence, we may
suppose that there exists i0 > 0 such that

i0α(x) + ordai0(x) � iα(x) + ordai(x)

for all x ∈C and all i. Put e := �0 + ord i0. Let ξ take values in Resk . By either enlarging e and
�0 or enlarging k, we may suppose that k = e + 1. Define the subassignments Bi ⊂ Z by

B1 :=
{
(x, y) ∈ Z: ∀z

(
ord(z − y) > α(x) + ord te0

→ ordf(x, z) � i0α(x) + ord t2e
0 ai0(x)

)}
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and B2 := Z \ B1. If Bi is nonempty, it is equal to the cell ZCi,α|Ci
,ξ|Ci

,c|Ci
for some

TDP-definable assignment Ci ⊂ C . Moreover, the Bi can be described without using new
Val-quantifiers, by using the maps acm for big enough m. On B1 the theorem holds with � = 2e.
On B2, by Lemma 7.7, there exists a unique definable function d :C2 → Val such that, for each
x in C2, (x,d(x)) lies in B2 and f(x,d(x)) = 0. Again by Lemma 7.7, we may suppose that
d(x) is given by an L∗

DP-term. Let D be the TDP-definable assignment {j ∈Ord: j > 0}. For

C ′
2 := C2 ×D ×

(
Res1 \{0}

)
,

β :C ′
2 →Ord: (x, j, z) �→ α(x) + e + j,

η :C ′
2 → Res1 \{0}: (x, j, z) �→ z,

d′ :C ′
2 → Val: (x, j, z) �→ d(x),

consider the cell ZC′
2,β,η,d′ and its projection π to C2 × Val. One checks that B2 is the disjoint

union of the 1-cell π(ZC′
2,β,η,d′), with presentation π−1, and the 0-cell ZC2,d. Moreover, if

one writes f(x, y) =
∑

bi(z)(y − d′(z))i for (z, y) in ZC′
2,β,η,d′ and (x, y) = π(z, y), one has

ordf(x, y) = ord b1(z)(y − d′(z)), which can be seen using a Taylor expansion of f around d′.
This finishes the proof. �

Remark 7.9. – (i) By Theorem 7.8, one can probably add arbitrary angular components
modulo Ij for a collection of non-zero ideals Ijj∈J to LDP, TS(A), or TT (A). When one enlarges
the language LRes to the full induced language (which can be richer in the analytic than in the
algebraic case), one can probably obtain a form of quantifier elimination and cell decomposition.
Most likely, one also gets a similar term structure result (even without introducing new (·, ·, ·)1/m

j

or hm,j for the new ideals). This should follow from Theorem 7.8.
(ii) Similar proofs should hold to show that, if one restricts to the theory T ∪ (VII)0 in

Theorem 7.5, one can take for h in Theorem 7.5 a tuple of L

T -terms, with L


T the language

L
 := L
⋃

m>0

{
(·, · ,·)1/m

0 , hm,0

}
.

Proof of Theorems 7.4 and 4.2 for TDP. – First suppose that X = X0 = Valm+1 and that
f = f0 is the map

f0 :Valm+1 →Res�
n ×Ord�: x �→

(
acn

(
gi(x, t)

)
,ord

(
gi(x, t)

))
i
,(7.10)

with gi(x1, . . . , xm, t) polynomials over Z, m � 0, �,n > 0, i = 1, . . . , �. By Theorem 7.8, the
result for � = 1 follows rather immediately. It is from this partial result for � = 1 that one deduces
the final statement of Lemma 7.7 in the same way as this is proved in [38,39]. We will not recall
this proof of the final statement of Lemma 7.7.

By induction on �, we may suppose that the result holds for G1 := (acn gi,ord gi)�−1
i=1 and

for G2 := (acn g�,ordg�). This gives us two finite partitions {Zij} such that Gi is prepared
on Zij for each j and i = 1,2. Choose Z1 := Z1j and Z2 := Z2j′ . It is enough to partition
Z1 ∩ Z2 into cells such that f0 is prepared on these cells. If Z1 or Z2 is a 0-cell, this is easy,
so we may suppose that Z1 is a 1-cell with presentation λ1 :Z1 → ZC1 = ZC1,α1,ξ1,c1 and Z2

a 1-cell with presentation λ2 :Z2 → ZC2 = ZC2,α2,ξ2,c2 . We may suppose that π(Z1) = π(Z2)
with π :X → S the projection, that ξ1 and ξ2 take values in Resk , and that ZCi ⊂ Z ×R with R
a fixed product of auxiliary sorts for i = 1,2. Under these suppositions it follows from the non-
Archimedean property that Z1 ∩ Z2 is already a cell on which the function f0 is TDP-prepared,
where one can use the presentation
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λ12 :Z1 ∩Z2 → λ12(Z1 ∩Z2) ⊂ Z ×R× {0,1}:

(x, t) �→
{

(λ1(x, t),0) if α1 � α2,

(λ2(x, t),1) else,

and where we write αi for αi(λi(x, t)). Here, λ12(Z1 ∩Z2) has as center c1d0 + c2d1, where di

is the L∗
DP-term from Res1 to Val which is the characteristic function of {i} for i = 0,1.

By exploiting the proof of this partial result for general �, one can ensure that all occurring
centers are strongly definable and that there are no Val-quantifiers introduced in the process of
the cell decomposition. From this partial result for general � one deduces quantifier elimination
for TDP in the language LDP as in [38,39].

Now let f :X → R be a general T -morphism with R a Cartesian product of auxiliary sorts
and X an arbitrary T -assignment. Let f1, . . . , ft be all the polynomials in the Val-variables,
say, x1, . . . , xm+1 occurring in the formulas describing the X and f , where we may suppose
that these formulas do not contain quantifiers over the valued field sort. Apply the above case
of cell decomposition to the polynomials fi. This yields a partition of Valm+1 into cells Zi

with presentations λi :Zi → ZCi and centers ci. Write x = (x1, . . . , xm+1) for the Val-variables,
ξ = (ξj) for the Res-variables and z = (zj) for the Ord-variables on ZCi . If Zi is a 1-cell, we
may suppose that for (x, ξ, z) in ZCi we have ord(xm+1 − ci) = z1 and acn(xm+1 − ci) = ξ1,
by changing the presentation of Zi if necessary (that is, by adding more Ord-variables and Res-
variables). By changing the presentation as before if necessary, we may also assume that

ordfj(x) = zkj , acnfj(x) = ξlj ,

for (x, ξ, z) in the 1-cell ZCi , where the indices kj and lj only depend on j and i.
Since the condition f(x) = 0 is equivalent to acn(f(x)) = 0, we may suppose that, in the

formulas describing X and f the only terms involving Val-variables are of the forms ordfj(x)
and acn fj(x). Combining this with the above description of ordfj(x) and acnfj(x), one sees
that the value of f only depends on variables running over the bases of the cells. Hence, f is
TDP-prepared on these cells. �

Proof of Theorem 7.4 for TS(A) and TT (A). – Let M be a model of T , a a Val-tuple of M, Ma

the LT -substructure of M generated by a, Ka the valued field of Ma, LT (Ka) the language
LT together with constant symbols for the elements of Ka, and T (Ka) the LT (Ka)-theory of
all models of T containing the structure Ma. Let LDP(Ka) be the language LDP together with
constant symbols for the elements of Ka and TDP(Ka) the LDP(Ka)-theory of all TDP-models
containing the structure Ma.

First we prove some special cases of Theorem 7.4 for the theory T (Ka). Suppose first that
X = Val and that f is the map

f :X →Res�
n ×Ord�: x �→

(
acn

(
gi(x)

)
,ord

(
gi(x)

))
i
,

with the gi LT (Ka)-terms in the variable x for i = 1, . . . , �. In the case that T is TS(A), apply
Theorem 5.1 to the terms gi and to the terms gi(x−1). In the case that T is TT (A), there is
a LT -term which presents a valued field element with minimal positive valuation by (IV)T ,
hence we can apply Corollary 5.2 to the terms gi and to the terms gi(x−1). In this way we find a
finite partition of X0 := {x ∈Val: ord(x) � 0} into LDP(Ka)-T (Ka)-assignments Xj given by
Ka-annulus formulas ϕj , rational functions hij(x) with coefficients in Ka, a polynomial F (x)
over Ka, and very strong units Uij ∈OKa(φj), such that for all i, j and all x ∈ Xj

F (x) = 0∨ gi(x) = Uij(x)hij(x),
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where we mean by an LDP(Ka)-T (Ka)-assignment a T (Ka)-assignment which can be defined
by an LDP(Ka)-formula. If I1 	= I2, the separated analytic structure collapses to a strictly
convergent analytic structure, and thus, by Corollary 5.2, we can even assume that acn(Uij) = 1
on Xj . Up to the transformation x �→ x−1, we can partition X1 := {x ∈ Val: ord(x) < 0}
in a similar way. Now apply Theorem 7.4 for the theory TDP(Ka) to the LDP(Ka)-T (Ka)-
assignments Xjk and the functions x ∈ Xjk �→ (ac(F (x)),acn hij(x),ordhij(x))i to refine the
partition and to finish the proof for X and f of the above form.

Next we suppose that X = Val and f is an arbitrary T (Ka)-morphism f :X →Res�
n ×Ord�.

Apply Theorem 4.2 to obtain a formula ϕ without Val-quantifiers, as in (4.3), which describes
the graph of f . Then, let g1, . . . , gr be the LT (Ka)-Val-terms occurring in ϕ. Applying the
previous case to the terms gi, the case of this f easily follows, cf. the analogous step in the proof
of Theorem 7.4 for TDP.

Next we suppose that X = Valm+1 and that f is an arbitrary T -morphism

f :X →Res�
n ×Ord�, �,m > 0.

In this case, the theorem is reduced by a compactness argument to the case m = 0, as follows.
Suppose that for every candidate T -cell decomposition of X into T -cells Ai, with L∗

T -terms
as centers, and T -prepared functions gi :Ai → Res�

n ×Ord�, this data is not the data of a cell
decomposition of X which prepares f . This is equivalent to saying that for each such candidate
cell decomposition there exists a model with valued field K (with A-analytic structure) and a ∈
Km such that either the fibers of the T -cells Ai above a (under the projection Valm+1 →Valm)
are not a T (a)-cell decomposition of Val, or the fibers of the functions gi above a do not coincide
with f on the fiber of Ai above a. Then, by compactness, there exists a model with valued field
K ′ and a′ ∈K ′m such that Val cannot be partitioned into T (Ka)-cells on which the fibers of the
functions gi above a are prepared, which contradicts the previous case for X = Val. Moreover,
this construction ensures that we can work with L∗

T -terms as centers of the cells.
Finally, the general Theorem follows from this case similarly as the general case is obtained

in the proof of Theorem 7.4 for TDP. �
Proof of Theorem 7.5. – By working componentwise it is enough to prove the theorem for

Y = Val. Let Graph(f) ⊂ X ×Val be the T -assignment which is the graph of f , and suppose it
is described by an LT -formula ϕ of the form given by the quantifier elimination Theorem 4.2; let
gj be the LT -terms occurring in this formula. Apply Theorem 7.4 for T to the terms gi. Doing
so, all occurring centers of the cells are given by L∗

T -terms. For each occurring cell Zi, let Z ′
i

be λ−1
i (Graph(ci)) ∩ Graph(f), where λi is the presentation of Zi and ci its center. Clearly

each Z ′
i is a 0-cell with presentation the restriction of λi to Z ′

i . It follows from the special form
of ϕ (as given by the application of Theorem 4.2) that the cells Z ′

i form a cell decomposition
of Graph(f) and one concludes that the restriction of f to each of finitely many pieces in a
partition of X satisfies the statement. Now the Theorem follows by gluing the pieces together
using extra parameters as in the proof of Lemma 7.7. �

8. Applications to analytic motivic integration

Let OF be the ring of integers of a number field F . Let AF be the class of all finite field
extensions of all p-adic completions of F , and BF the class of all local fields of positive
characteristic which are algebras over OF . For a fixed prime p and integer n > 0, let AF,p,n

be the subset of AF consisting of all fields with residue field of characteristic p and with degree
of ramification fixed by ordp(p) = n.
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For K ∈ AF ∪ BF write K◦ for the valuation ring, πK for a uniformizer, K̃ for the residue
field, and qK for �K̃ . By Tm(OF �t�) denote the ring of strictly convergent power series in m
variables over OF �t�. For each K in AF ∪ BF and each power series f =

∑
i∈Nm ai(t)Xi

in Tm(OF �t�) define the analytic function

fK : (K◦)m → K◦: x �→
∑

i∈Nm

ai(πK)xi,

and extend this by zero to a function Km → K .
In the terminology of Section 2, we have thus fixed the strictly convergent analytic OF �t�-

structure on all the fields K ∈AF ∪BF .
Let LF be the language LT (OF �t�) with LOrd the Presburger language LPres =

(+,−,0,1,�,{≡ modn}n) and LRes the language LRes,0 (cf. Section 4). Define the LF -theory
T F as TT (A), where A = OF �t�, together with the axiom t0 	= 1 (that is, with higher order an-
gular components, see Section 4), and axioms describing the congruence relations modulo n in
the natural way.

Let W be an LF -formula with m free valued field variables and no other free variables. (Note
that W determines a T F -assignment in the sense of Section 6, but this is not needed here.) For
each K ∈ AF ∪ BF , we obtain a set WK ⊂ Km by interpreting the formula W in the natural
way. In a similar way, a T F -morphism f from W to the valued field 12 determines a function
fK :WK →K .

Suppose now that the set WK is contained in (K◦)m for each K ∈ AF ∪ BF . Fix
T F -morphisms f1 and f2 from W to the valued field, such that the images of the fiK lie in K◦

for each K ∈AF ∪BF .
For each K ∈AF ∪BF and s � 0 a real number, we consider

aK(s) :=
∫

WK

∣∣f1K(x)
∣∣s∣∣f2K(x)

∣∣|dx|.(8.1)

It is well known by work of Denef and van den Dries [18] that, for each fixed K ∈AF , aK(s)
is a rational function in q−s

K . We prove that also for fixed K ∈ BF with big enough characteristic,
aK(s) is a rational function in q−s

K . This is known in the semialgebraic case by a ultraproduct
argument, cf. [9] or [10], but was not known before for the analytic case. In fact, we give a
geometric meaning to how the aK vary for K ∈AF , and, when the characteristic is big enough,
also for K ∈ BF .

Let VarOF
denote the collection of isomorphism classes of algebraic varieties over OF and

let FormOF
be the collection of equivalence classes of formulas 13 in the language of rings with

coefficients in OF . Define the rings

M(VarOF
) := Q

[
T,T−1,VarOF

,
1

A1
OF

,

{
1

1−Ab
OF

T a

}
(a,b)∈J

]
and

M(FormOF
) := Q

[
T,T−1,FormOF

,
1

A1
OF

,

{
1

1−Ab
OF

T a

}
(a,b)∈J

]
,

12 By this we mean an LF -formula ϕ such that the set described by ϕ in any model M of T F is the graph of a function
from the M-rational points on W to the valued field of M, cf. Section 6.

13 Two formulas are equivalent in this language if they have the same R-rational points for every ring R over OF .
4e SÉRIE – TOME 39 – 2006 – N◦ 4



ANALYTIC CELL DECOMPOSITION AND ANALYTIC MOTIVIC INTEGRATION 565
with J = {(a, b) ∈ Z2: a � 0, b < 0}, and where we write A�
OF

for the isomorphism class of
the formula x1 = x1 ∧ · · · ∧ x� = x� (which has the set R� as R-rational points for any ring R
over OF ), � � 0.

For each finite field k over OF with qk elements, we write Countk for the ring morphisms

Countk :M(VarOF
)→Q

[
q−s
k , qs

k,

{
1

1− q−as+b
k

}
(a,b)∈J

]
and

Countk :M(FormOF
)→Q

[
q−s
k , qs

k,

{
1

1− q−as+b
k

}
(a,b)∈J

]
which send T to q−s

k , Y ∈ VarOF
to the number of k-rational points on Y and ϕ ∈ FormOF

to
the number of k-rational points on ϕ.

We prove the following generalization of Theorem 1.2:

THEOREM 8.2. – (i) There exist a (non-unique) element X ∈M(VarOF
) and a number N

such that for each K ∈AF ∪BF with Char K̃ > N one has

aK(s) = Count
K̃

(X).

In particular, for K ∈AF ∪BF with Char K̃ big enough, aK(s) only depends on K̃ .
(ii) For fixed prime p and n > 0 there exists a (non-unique) element Xp,n ∈M(FormOF

) such
that for each K ∈AF,p,n one has

aK(s) = Count
K̃

(Xp,n).

Proof of Theorem 8.2. – The Cell Decomposition Theorem 7.4 together with the Quantifier
Elimination Theorem 4.2 translates the calculation of the aK(s) in a nowadays standard way
into calculations of the form∑

i

Count
K̃

(ϕi)
∑

z∈Si⊂Zm

q
−αi(z)−sβi(z)
K

with αi, βi :Si → N Presburger functions on the Presburger sets Si, and the ϕi Lring-for-
mulas 14 . One such expression works for K ∈ AF ∪ BF with residue field characteristic big
enough, and one needs another such expression for each class AF,p,n. Using Lemma 3.2 of [13]
on the summation of such Presburger functions and their exponentials, it follows that there exist
a number N0 and objects X0, Xp,n of M(FormOF

) such that
(i) for each K ∈AF ∪BF with Char K̃ > N0 one has

aK(s) = Count
K̃

(X0),

(ii) for each K ∈AF,p,n one has

aK(s) = Count
K̃

(Xp,n).

14 Here, we use that, for any LRes-formula ϕ, there exists an Lring-formula ψ, such that for all K ∈ AF ∪ BF the

number of K◦/(πm
K K◦)-rational points on ϕ is the same as the number of K̃-rational points on ψ. For this, use the

definable bijection K◦/(πm
K K◦) → K̃m.
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By Theorem 6.4.1 of [17], one can associate virtual motives Yi to the isomorphism classes of the
formulas ϕi occurring in X0. Since each Yi belongs to the image of the natural ring morphism
from (a certain localisation of) the Grothendieck ring of varieties over F into a ring of virtual
motives (cf. Theorem 6.4.1 of [17]), there exist N1 and Ai ∈M(VarOF

) such that the number
of k-points on Yi is equal to Countk(Ai) for all finite fields k of characteristic > N1. One then
easily finds X ∈M(VarOF

) for which the theorem holds for N = max(N0,N1). �
Remark 8.3. – The extension of the Denef–Pas cell decomposition to the theory TDP

which allows for I2 	= I1, i.e., which allows for higher order angular components acn also in
equicharacteristic zero, gives a new view on the foundational work by Denef and Loeser on
geometric motivic integration [15] and subsequent work. More precisely, using acn to define a
broader but analogous class of semialgebraic sets than in [15], stable sets, cylinders, and weakly
stable sets would be semialgebraic, which is not the case in [15].

To illustrate this, consider the arc space L(A1
Q) of the affine line, π2 :L(A1

Q) →L1(A1
Q) ∼=

A2
Q its natural projection on the arcs modulo t2, and a constructible subset X of L1(A1

Q). Then
in general, the cylinder π−1

2 (X) is not a semialgebraic subset of L(A1
Q) in the sense of [15], but

with ac2 one can solve this problem, by slightly generalizing the definition of semialgebraic sets
in [15].
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