Ann. Scient. Ec. Norm. Sup.,
4¢ série, t. 39, 2006, p. 245 a 300.

CRYSTALLINE BOUNDEDNESS PRINCIPLE

BY ADRIAN VASIU

ABSTRACT. — We prove that an F-crystal (M, ¢) over an algebraically closed field k of characteristic
p > 0 is determined by (M, ¢) mod p", where n > 1 depends only on the rank of M and on the greatest
Hodge slope of (M, ¢). We also extend this result to triples (M, ¢, G), where G is a flat, closed subgroup
scheme of GLjs whose generic fibre is connected and has a Lie algebra normalized by ¢. We get two
purity results. If € is an F'-crystal over a reduced Fj,-scheme S, then each stratum of the Newton polygon
stratification of .S defined by €, is an affine S-scheme (a weaker result was known before for S noetherian).
The locally closed subscheme of the Mumford scheme Aqg,1,~,, defined by the isomorphism class of a
principally quasi-polarized p-divisible group over k of height 2d, is an affine Ag4,1, v, -scheme.
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RESUME. — Nous prouvons qu'un F-cristal (M, ) défini sur un corps k algébriquement clos de
caractéristique p > 0 est déterminé par (M, ) mod p™, oun > 1 dépend seulement du rang de M et de la
plus grande pente de Hodge de (M, o). On étend ce résultat aux triplets (M, p, G), od G est un sous-groupe
fermé et plat de GL s dont la fibre générique est connexe et a une algebre de Lie normalisée par ¢. Nous
obtenons deux résultats de pureté. Si € est un F-cristal sur un F-schéma réduit .S, alors chaque strate de
la stratification du polygone de Newton de S défini par € est un S-schéma affine (un résultat moins général
était déja connu pour S noethérien). Le sous-schéma localement fermé du schéma de Mumford Ag 1, Ng
défini par la classe d’isomorphisme d’un groupe p-divisible principalement quasi polarisé sur k de hauteur
2d estun Ag,1, N, -schéma affine.
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1. Introduction

Let p € N be a prime. Let k be a perfect field of characteristic p. Let k be an algebraic closure
of k. Let W (k) be the Witt ring of k. Let B(k) := W(k)[zl)] be the field of fractions of W (k).
Let 0 := o}, be the Frobenius automorphism of &k, W(k), and B(k). A group scheme H over
Spec(W (k)) is called integral if H is flat over Spec(W (k)) and Hp(y) is connected (i.e. if the
scheme H is integral). Let Lie(HB(k)) be the Lie algebra over B(k) of Hp). If H is smooth
over Spec(W (k)), let Lie( H) be the Lie algebra over W (k) of H.If O is a free module of finite
rank over some commutative Z-algebra R, let GLo be the group scheme over Spec(R) of linear
automorphisms of O.

Let (r,d) € N x (N U{0}), with r > d. Let D be a p-divisible group over Spec(k) of height
r and dimension d. It is well known that if d € {0, 1, — 1, r}, then:

(%) D is uniquely determined up to isomorphism by its p-torsion subgroup scheme D|p).

But (x) does not hold if 2 < d <7 — 2. In 1963 Manin published an analogue of () for
2 < d < r — 2 but unfortunately he separated it into three parts (see [28, p. 44, 3.6, and 3.8] and
below). Only recently, this paper and [36] contain explicit analogues of (x) for 2 < d < r — 2.
The two main reasons for this delay in the literature are: (i) the widely spread opinion, which
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goes back more than 40 years, that p-divisible groups involve an infinite process, and (ii) the
classification results of [28, p. 44] were rarely used. Our point of view is that F'-crystals in locally
free sheaves of finite rank over many Spec(k)-schemes Y involve a bounded infinite process. In
this paper we give meaning to this point of view for the case Y = Spec(k). We start with few
definitions.

1.1. DEFINITIONS. —

(a) By a latticed F-isocrystal with a group over k we mean a triple (M, ¢, G), where M is
a free W (k)-module of finite rank, where ¢ is a o-linear automorphism of M [%}, and where
G is an integral, closed subgroup scheme of GL, such that the Lie subalgebra Lie(G B(k)) of

End(M [%]) is normalized by ¢. Here we denote also by ¢ the o-linear (algebra) automorphism
of End(M[3]) that takes e € End(M[}]) into g o e 0 p~! € End(M[}]). If G = GLyy, then

often we do not mention G and we omit “with a group”.

(b) By an isomorphism between two latticed F-isocrystals with a group (M, p1,G1) and
(Ms, p2,Go) over k we mean a W (k)-linear isomorphism f: M; == M, such that ps o f =
f o1 and the isomorphism GLj;, = GLjy, induced by f, takes G; onto G's.

The pair (M[%}, ) is called an F'-isocrystal over k. If we have pM C (M) C M, then the

pair (M, ) is called a Dieudonné module over k. For ¢’ € G(B(k)) let ¢’ be the o-linear
automorphism of M[%} that takes = € M[%] into ¢'(p(x)) € M[%] The triple (M, ¢'p, G) is
also a latticed F'-isocrystal with a group over k.

Often there exists a “good” class M of motives over k that has the following property. The
crystalline realization of any motive M in M is naturally identified with (M, garp) for some

gm € G(W (k)) and moreover G gy, is the identity component of the subgroup of GL 1y that

fixes some tensors of the tensor algebra of M [%] & Hom(M [%] , B(k)) which do not depend on
M and which are (expected to be) crystalline realizations of motives over k that are intrinsically
associated to M. For instance, see [40, §5 and §6] for contexts that pertain to classes of H 1
motives of abelian varieties over Spec(k) which are associated to k-valued points of a (fixed)
good integral model of a Shimura variety of Hodge type. The paper [40] and many previous
ones (like [25]) deal with particular cases of such triples (M, @, G)’s: the pair (M, ) is a
Dieudonné module over k, the group scheme G is reductive, and there exists a semisimple
element s, € G(B(k)) whose eigenvalues are 1 and p and such that os_ ' is a o-linear
automorphism of M. Any good classification of the triples (M, gy, G) up to isomorphisms
defined by elements of G(W (k)), is often an important tool toward the classification of motives
in M.

Classically, one approaches the classification of all triples (M, g, G) with g € G(W (k)), up
to isomorphisms defined by elements of G(W (k)), in two steps. The first step aims to classify
(M[%] ,9%,G B(r))’s up to isomorphisms defined by elements of G/(B(k)). The second step aims
to use the first step in order to study (M, gp, G)’s.

A systematic and general approach to the first step was started in [24], which works in the
context in which the group Gpy) is reductive, k = k, and the pair (M[%], GB(r)) has a Q,
structure (Mq,,, Gq, ) with respect to which ¢ becomes g, (11, ® o) for some g, € G(B(k));
thus, in order to classify (M [%],ggp,G B(k))’S up to isomorphisms defined by elements of
G(B(k)), one only has to describe the image G, of the set {gg, | g € G(W (k))} in the set
B(Gq,) of o-conjugacy classes of elements of Gq,(B(k)) = G(B(k)). Even if k = k, in
general such Q,, structures do not exist (for instance, they do not exist if the group G'p) is
commutative and (Lie(G (1)), ) has non-zero slopes).

One can define two natural equivalence relations I, and R, on the set underlying the group
G(W (k)) as follows. A pair (g1, g2) € G(W (k))? belongs to I, (respectively to R,,) if and only
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CRYSTALLINE BOUNDEDNESS PRINCIPLE 247

if there exists g12 € G(W (k)) (respectively g12 € G(B(k))) such that g1291 ¢ = g2g12. The set
of isomorphism classes of (M, gy, G)’s (up to isomorphisms defined by elements of G(W (k)))
is in natural bijection to the quotient set G(W (k))/I,. The quotient set G(W(k))/R, is a
more general version of the above type of sets G,. In general, the natural surjective map
G(W(k))/I, - G(W(k))/R, is not an injection and some of its fibres have the same
cardinality as k. In general, one can not “recover” (M, go, G) and its reductions modulo powers
of p from the equivalence class [g] € G(W (k))/I, and from the triple (M[Il)],ggp, GBx)). The
last two sentences explain why in this paper, for the study of the quotient set G(W (k))/I,, and of
(reductions modulo powers of p of) (M, g¢, G)’s, we can not appeal to the results of [24,37], etc.
In addition, the language of latticed F'-isocrystals is more general and more suited for reductions
modulo powers of p, for endomorphisms, for deformations, and for functorial purposes than the
language of either o-conjugacy classes or equivalence classes of I,.

If g1, g2, g12 € G(W (k)) satisfy g1291© = gapg12, it is of interest to keep track of the greatest
number 112 € N U {0} such that g12 and 1,7 are congruent mod p™'2. As the relation I, is not
suitable for this purpose, it will not be used outside this introduction.

The set {(M,gp,G) | g € G(W(k))} is in natural bijection to G(W (k)). Any set of the
form {(M,g¢,G) | g € G(W(k))} will be called a family of latticed F-isocrystals with a
group over k. This paper is a starting point for general classifications of families of latticed
F-isocrystals with a group over k. The fact that such classifications are achievable is supported
by the following universal principle.

1.2. MAIN THEOREM A (Crystalline Boundedness Principle). — Suppose k = k. Let
(M,p,G) be a latticed F-isocrystal with a group over k. Then there exists a number
Ngam € N U {0} that is effectively bounded from above and that has the property that for any
pair (g, gn,...) € G(W (k))? such that gy, . is congruent mod p™== to 1y, there exist isomor-
phisms between (M, g, G) and (M, g, g, G) which are elements of G(W (k)).

Thus the equivalence class [g] € G(W (k))/I, depends only on g mod p™==; this supports
our bounded infinite process point of view. If G = GLj; and (M, ¢) is a Dieudonné module
over k, then Main Theorem A is a direct consequence of [28, p. 44, 3.6, and 3.8]. By a classical
theorem of Dieudonné (see [7, Thms. 3 and 5], [28, §2], [5, Ch. IV, §4], or [14, Ch. III, §6])),
the category of p-divisible groups over Spec(k) is anti-equivalent to the category of Dieudonné
modules over k. Thus we get a new proof of the following result which in essence is due to
Manin and which is also contained in [36].

1.3. COROLLARY. —There exists a smallest number T(r,d) € N U {0} such that any
p-divisible group D over Spec(k) of height v and dimension d, is uniquely determined up to
isomorphism by its pT "D _torsion subgroup scheme D[pT(“d)]. Upper bounds of T(r,d) are

effectively computable in terms of r.
1.4. On the proof of Main Theorem A

The proof of Main Theorem A (see 3.1) relies on what we call the stairs method. The method
is rooted on the simple fact that for any ¢ € N and every y, z € End (M), the two automorphisms
1 + ply and 1y + p’z of M commute mod p?'. To outline the method, we assume in this
paragraph that G is smooth over Spec(W (k)). Let m € N U {0} be the smallest number for
which there exists a W (k)-submodule E of Lie(G) that contains p"*(Lie(G)) and that has a
W (k)-basis {eq,ez,...,e,} such that for [ € {1,...,v} we have p(e;) = p™er (), where 7 is
a permutation of the set {1,...,v} and where n;’s are integers that have the following stairs
property. For any cycle (l1,...,l,) of m, the integers n;,,...,n;, are either all non-negative or
all non-positive. The existence of m is implied by Dieudonné’s classification of F'-isocrystals
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over k (see [28, §2]). In general, the W (k)-submodule F is not a Lie subalgebra of Lie(G).
For any g € G(W (k)) congruent mod p*™* to 1y, there exists € € E such that the elements
g and 157 + p™*té of GLj (W (k)) are congruent mod p?™+17¢. Due to this and the stairs
property, for p > 3 there exists an isomorphism between (M, g, G) and (M, ¢, G) which is an
element go € G(W (k)) congruent mod p™** to 157 (see 3.1.1). If p = 2, then a slight variant
of this holds. Exponential maps (see 2.6) substitute from many points of view the classical
Verschiebung maps of Dieudonné modules; for instance, one can choose go to be an infinite

product of exponential elements of the form > .- p1<r:!+1> e', where e € E. See 2.2 to 2.4 for
the o-linear preliminaries that are necessary for the estimates which give us the effectiveness
part of Main Theorem A. These estimates provide inductively upper bounds of m in terms of
dim(G g(x)) and of the s-number and the h-number of the latticed F-isocrystal (Lie(G), ) over

k (see 2.2.1(e) for these two non-negative integers which do not change if ¢ is replaced by g¢).

1.5. Complements, examples, and applications

See 3.2 for interpretations and variants of Main Theorem A in terms of reductions modulo
powers of p; in particular, see 3.2.4 for the passage from Main Theorem A to Corollary 1.3.
In 3.3 we improve (in many cases of interest) the upper bounds (of 1,y €tc.) we obtain in 3.1.1
to 3.1.5.

In Section 4 we include four examples. It is well known that if the p-divisible group D is
ordinary, then D is uniquely determined up to isomorphism by D[p] and moreover D has a
unique lift to Spec(W (k)) (called the canonical lift) that has the property that any endomorphism
of D lifts to it. Example 2 identifies the type of latticed F-isocrystals with a group over k to which
the last two facts generalize naturally (see 4.3.1 and 4.3.2). Example 4 shows that if r = 2d,
d > 3, and the slopes of the Newton polygon of D are é and 9=1 then D is uniquely determined
up to isomorphism by D[p?] (see 4.5).

In Section 5 we list four direct applications of Main Theorem A and of 3.2. First we present the
homomorphism form of Main Theorem A (see 5.1.1). Second we define transcendental degrees
of definition for many classes of latticed F-isocrystals with a group over k (see 5.2). When the
transcendental degrees of definition are 0, we also define (finite) fields of definition. In particular,
Theorem 5.2.3 (when combined with Lemma 3.2.2) implies that it is possible to build up an atlas
and a list of tables of isomorphism classes of p-divisible groups (endowed with certain extra
structures) over Spec(k) that are definable over the spectrum of a fixed finite field F ., which
are similar in nature to the atlas of finite groups (see [3]) and to the list of tables of elliptic curves
over Spec(Q) (see [4]).

Let N € N\ {1,2} be relatively prime to p. Let A4 1 n be the smooth, quasi-projective
Mumford moduli scheme over Spec(F,,) that parametrizes isomorphism classes of principally
polarized abelian schemes with level-V structure and of relative dimension d over Spec(F),)-
schemes (see [33, Thms. 7.9 and 7.10]). Third we apply the principally quasi-polarized version of
Corollary 1.3 (see 3.2.5) to get a new type of stratification of A4 1 . Here the word stratification
is used in a wide sense (see 2.1.1) which allows the number of strata to be infinite. The strata
we get are defined by isomorphism classes of principally quasi-polarized p-divisible groups
of height 2d over spectra of algebraically closed fields of characteristic p; they are regular
and equidimensional (see 5.3.1 and 5.3.2). Moreover, this new type of stratification of A4 1 n
satisfies the purity property we define in 2.1.1, i.e. its strata are affine Ay ; n-schemes (see 5.3.1
and 5.3.2). Variants of 1.3, 3.2.5, 3.2.6, and 5.3.2 but without its purity property part, are also
contained in [36].

Fourth we get a new proof (see 5.4) of the “Katz open part” of the Grothendieck—Katz
specialization theorem for Newton polygons (see [22, 2.3.1 and 2.3.2]).

4° SERIE — TOME 39 — 2006 — N° 2



CRYSTALLINE BOUNDEDNESS PRINCIPLE 249

The main goal of Section 6 is to prove the following result (see 6.1 and 6.2).

1.6. MAIN THEOREM B. — Let € be an F-crystal in locally free sheaves of finite rank over a
reduced Spec(F)-scheme S. Then the Newton polygon stratification of S defined by € satisfies
the purity property (i.e. each stratum of it is an affine S-scheme).

A variant of Main Theorem B was obtained first in [10, 4.1], for the particular case when S
is locally noetherian. The fact that the variant is a weaker form of Main Theorem B is explained
in 6.3(a). The main new idea of Section 6 is: Newton polygons are encoded in the existence of
suitable morphisms between different evaluations of F'-crystals (viewed without connections) at
Witt schemes of (effectively computable) finite lengths. The proof of Main Theorem B combines
this new idea with the results of Katz (see [22, 2.6 and 2.7]) on isogenies between F'-crystals of
constant Newton polygons over spectra of (perfections of) complete, discrete valuation rings that
are of the form k[[z]].

2. Preliminaries

See 2.1 for our main notations and conventions. See 2.2 for few definitions and simple
properties that pertain to latticed F'-isocrystals with a group over k. In particular, in 2.2.2 we
define Dieudonné—Fontaine torsions and volumes of latticed F'-isocrystals. Inequalities and
estimates on such torsions are gathered in 2.3 and 2.4 (respectively); they are essential for
examples and for the effectiveness part of 1.2. In 2.5 we apply [42] to get Z,, structures for many
classes of latticed F-isocrystals with a group over k. In 2.6 and 2.7 we include group scheme
theoretical properties that are needed in Sections 3 and 4. In 2.8 we present complements on
the categories M (W, (S)) we will introduce in 2.1. In 2.9 we recall two results of commutative
algebra. Sections 2.8 and 2.9 are not used before 5.4. For Newton polygons of F'-isocrystals over
k we refer to [22, 1.3].

2.1. Notations and conventions

By w we denote an arbitrary variable. If ¢ € N, let F« be the field with p? elements. If I is
a commutative F,-algebra, let W (R) be the Witt ring of R and let IV, (R) be the ring of Witt
vectors of length ¢ with coefficients in R. We identify R = W7 (R). Let ®g be the canonical
Frobenius endomorphism of either W(R) or W,(R); we have ®; = o}, = 0. Let R??") be R
but viewed as an R-algebra via the g-th power Frobenius endomorphism ®%: R — R. If R is
reduced, let RPe'f .= ind limgen R®") be the perfection of R.

Let M(W,(R)) be the abelian category whose objects are W, (R)-modules endowed with
® i-linear endomorphisms and whose morphisms are W, (R)-linear maps that respect the ® -
linear endomorphisms. We identify M (W, (R)) with a full subcategory of M (W,41(R)) and
thus we can define M(W(R)) :=J,en M(Wy(R)).

If S is a Spec(F,)-scheme, in a similar way we define W,(S), @5, M(W,(S)), and
MW (S)). We view W, (S) as a scheme and by a W, (S)-module we mean a quasi-coherent
module over the structure ring sheaf Oy, () of W,(S). The formal scheme W () is used only
as a notation. If S = Spec(R), then we identify canonically M(W,(R)) = M(W,(S)) and
MW (R)) = M(W(S)). If t € {1,...,q} and *(g) is a morphism of M(W,(S)), let *(¢)
be the morphism of M (W;(S)) that is the tensorization of *(q) with W;(S). Let S*°P be the
topological space underlying S. All crystals over S (i.e. all crystals on Berthelot’s crystalline
site CRIS(S/Spec(Zy))) are in locally free sheaves of finite rank. An F-crystal € over S
comprises from a crystal 9t over S and an isogeny ®E(9M) — M of crystals over S; let
he € N'U {0} be the smallest number such that p"¢ annihilates the cokernel of this isogeny. We
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identify an F'-crystal (respectively an F-isocrystal) over Spec(k) with a latticed F-isocrystal
(M, ) over k that has the property that (M) C M (respectively with an F-isocrystal over
k as defined in Section 1). The pulls back of F'-crystals € and €, over S to an S-scheme 51
(respectively to an affine S-scheme Spec(R;)) are denoted by €g, and €.g, (respectively by
Cgr, and C,R,).

Let (M, ,G) be a latticed F'-isocrystal with a group over k. We refer to M as its W (k)-
module. Let 73, € N U {0} be the rank of M. If f; and f are two Z-endomorphisms of either
M or M [%], let f1fo:= f1 0 fo. TWwo Z-endomorphisms of M are said to be congruent mod p?
if their reductions mod p? coincide. Let M* := Hom(M, W (k)). Let

T(M):= @ M @wu M
t,ueNU{0}

We denote also by ¢ the o-linear automorphism of 7 (M )[%] that takes f € M *[%] into
ofpteM *[1—17] and that acts on 7 (M )[%] in the natural tensor product way. The canonical

identification End (M [}]) = M[2] @) M*[}] is compatible with the ¢ actions (see 1.1(a) for
the action of ¢ on End(M [%} ). If O is either a free W (k)-submodule or a B(k)-vector subspace
of T(M )[%} such that (M) C M, then we denote also by ¢ the o-linear endomorphism of O

induced by . The W (k)-span of tensors vy, ..., v, € T(M)[%] is denoted by (v1,...,vy). The
latticed F-isocrystal (M™*, ) over k is called the dual of (M, ). We emphasize that the pair
(M*, ) involves no Tate twist. A bilinear form on M is called perfect if it defines naturally a
W (k)-linear isomorphism M = M*.

Let éB(k) be a connected subgroup of GLM[%] . As @ is a o-linear automorphism of M[%} , the
group {pgp 1| g€ ég(k)(B(k))} is the group of B(k)-valued points of the unique connected
subgroup of GLM[%] that has @(Lie(ég(k))) as its Lie algebra (see [1, Ch. II, 7.1] for the

uniqueness part). So as ¢ normalizes Lie(G p(x) ), for g € G(B(k)) we have pgp~! € G(B(k));
in what follows this fact is used without any extra comment.

In this paragraph we assume @(M) C M. We also refer to (M, p,G) as an F-crystal with
a group over k. The Hodge slopes of (M, ) (see [22, 1.2]) are the non-negative integers
hi,...,hr,, such that the torsion W (k)-module M/o(M) is isomorphic to @7, W (k)/(p").
If O is a W(k)-submodule of M such that ¢(O) C O, we denote also by ¢ the o-linear
endomorphism of M /O induced by ¢. We refer to the triple (M /p?M,p, Gy, (x)) as the
reduction mod p? of (M, p,G). If G = GLyy, then often we do not mention G' and Gy, (x)
and we omit “with a group”. The reduction (M /p?M, ) mod p? of (M, ) is an object of

MW, (k).
If a,b € Z with b > a, let S(a,b) := {a,a + 1,...,b}. If I € N, if x is a small letter,
and if (*1,...,%) is an [-tuple which is either an element of Z' or an ordered W (k)-basis

of some W (k)-module, then we define x; for any ¢ € Z via the rule: x; := *,, where u €
{1,...,1}N(t+1Z). If z € R, let [x] be the greatest integer of the interval (—oo, x].

2.1.1. Conventions on stratifications
Let K be a field. By a stratification S of a reduced Spec(K)-scheme X (in potentially an
infinite number of strata), we mean that:
(i) for any field L that is either K or an algebraically closed field that contains K, a set Sy,
of disjoint reduced, locally closed subschemes of X, is given such that each point of X,
with values in an algebraic closure of L factors through some element of Sy ;
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(i) if 419: L1 — Lo is an embedding between two fields as in (a), then the reduced scheme of
the pull back to Lo of any member of Sy, , is an element of Sy, ; so we have a natural pull
back injective map S(i12):Sr, — Si,.

If the inductive limit of all maps S(i12) exists (respectively does not exist) in the category of
sets, then we say that the stratification S has a class which is (respectively is not) a set. Each
element of some set Sy, is referred as a stratum of S. We say S satisfies the purity property if
for any field L as in (a), every element of Sy, is an affine X -scheme.! Thus S satisfies the
purity property if and only if each stratum of it is an affine X -scheme. If all maps S(i12)’s are
bijections, then we identify S with Si and we say S is of finite type.

2.2. Definitions and simple properties

In this section we introduce few notions and simple properties that pertain naturally to latticed
F-isocrystals.

2.2.1. Complements to 1.1
(a) A morphism (respectively an isogeny) between two latticed F-isocrystals (M, 1) and
(Mz, @2) over k is a W (k)-linear map (respectively isomorphism) f: Mi[5] — Ma[;]
such that fo1 = @of and f(M;) C My. If f is an isogeny, then by its degree we mean p',
where [ is the length of the artinian W (k)-module Ms/ f (M ).
(b) By a latticed F'-isocrystal with a group and an emphasized family of tensors over k we

mean a quadruple

(Ma ®, G7 (ta)aej)v

where (M, p,G) is a latticed F-isocrystal with a group over k, where J is a set of
indices, and where t,, € 7 (M) is a tensor that is fixed by both ¢ and G, such that G ()
is the subgroup of GL 1y that fixes ¢, for all « € J. If (M1, p1,G1, (t10)acy) and

(Ma, 92, Ga, (taq)acs) are two latticed F'-isocrystals with a group and an emphasized
family of tensors (indexed by the same set 7) over k, by an isomorphism between them
we mean an isomorphism f: (M, ¢1,G1) == (Ma, p2, G2) such that the W (k)-linear
isomorphism 7 (M;) =5 T (M>) induced by f, takes t1, into to, for all « € J.

(c) By aprincipal bilinear quasi-polarized latticed F-isocrystal with a group over k we mean

a quadruple (M, ¢, G, A\yr), where (M, o, G) is a latticed F-isocrystal with a group over
k and where Apr: M @y M — W (k) is a perfect bilinear form with the properties
that the W (k)-span of A\ is normalized by G and that there exists ¢ € Z such that we
have A\ (p(z), ¢(v)) = p°o(An(z,y)) for all z, y € M. We refer to A\ps as a principal
bilinear quasi-polarization of (M, ¢, G), (M, ), and (M [%]7 ©). Let G° be the Zariski
closure in GLj of the identity component of the subgroup of G () that fixes Ay We
refer to (M, o, G°) as the latticed F-isocrystal with a group over k of (M, o, G, A\ar). The
quotient group G g(x)/ G%( k) is either trivial or isomorphic to G,.

By an isomorphism between two principal bilinear quasi-polarized latticed F'-isocrystals
with a group (M1, p1,G1, Ay, ) and (Ma, w2, G, A\pg,) over k we mean an isomorphism
f:(My,01,G1) = (Ma, p2,G3) such that we have Ay, (x,y) = A, (f(2), f(y)) for all x,
y € M. We speak also about principal bilinear quasi-polarized latticed F'-isocrystals with a
group and an emphasized family of tensors over k and about isomorphisms between them;
notation (M, ¢, G, (ta)acss Am)-

! This is a more practical, refined, and general definition than any other one that relies on codimension 1 statements on
complements. See Remark 6.3(a) below.
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If the form A,y is alternating, we drop the word bilinear (i.e. we speak about principal quasi-
polarized latticed F-isocrystals with a group over k, etc.).

(d) We say the W -condition holds for the latticed F-isocrystal with a group (M, ¢, G) over k
if there exists a direct sum decomposition M = EB?:Q fl(M ), where a, b € Z with b > a,
such that M = @?za @(p~F(M)) and the cocharacter i : G,,, — GL); defined by the
property that 8 € G,,,(W(k)) acts on F ‘(M) through p as the multiplication by 3¢,
factors through G. In such a case we also refer to (M, ¢, G) as a p-divisible object with a
group over k. We refer to the factorization p1: Gy, — G of p as a Hodge cocharacter of
(M, ¢,G). For i € S(a,b) let F*(M) := @;_, F7(M). We refer to the decreasing and
exhaustive filtration (F*(M));ecs(a,p) of M as alift of (M, ¢,G). If G = GLjs, we also
refer to (M, o) as a p-divisible object over k.

Here “W” stands to honor [42, p. 512] while the notion “p-divisible object” is a natural
extrapolation of the terminology “object” introduced in [11, §2].

(e) By the shifting number (to be abbreviated as the s-number) of a latticed F'-isocrystal
(M,¢) over k we mean the smallest number s € N U {0} such that p(p°M) C M
(equivalently such that (M) C p~°M). By the greatest Hodge slope (to be abbreviated
as the h-number) of (M, ) we mean the greatest Hodge slope h of (M,p°yp), i.e. the
unique number 4 € NU{0} such that we have p"~*M C (M) and p" 5= M ¢ o(M).

We have s = 0 if and only if (A, ¢) is an F'-crystal over k; in this case h is the number Az,
defined in 2.1. We have s = 0 and h € {0, 1} if and only if (M, ¢) is a Dieudonné module over k.

Let s* and h* be the s-number and the h-number (respectively) of (M*,¢). We have
O(M*) = p(M)* Cp*~h"M* but o(M*) ¢ p*~ "1 M*. Thus s* = max{0,h — s}. As (M, )
is the dual of (M™*, ), we also have s = max{0,h* — s*}. So if s =0, then s* = h and
h* € S(0,h). If s > 0, then s = h* — s* and thus h* = s + s* = max(s, h).

If s =0, then the s-number and the h-number of (End(M),¢) = (M, ) ® (M*, ) are at
most s + s* = h and h + h* < 2h (respectively).

2.2.2. DEFINITIONS. —

(a) Let (M, ) be a p-divisible object (M, ) over k. We say (M, ¢) is a cyclic Dieudonné—
Fontaine p-divisible object over k if there exists a W (k)-basis {e1,...,e;,, } of M such
that for ¢ € S(1, 7)) we have an identity p(e;) = p™ie;+1, where nq, ..., n,,, are integers
that are either all non-negative or all non-positive. We refer to {e1, ..., e,,, } as a standard
W (k)-basis of (M, ).

We say (M, ) is an elementary Dieudonné—Fontaine p-divisible object over k if it is a
cyclic Dieudonné-Fontaine p-divisible object over k that is not the direct sum of two or
more non-trivial cyclic Dieudonné—Fontaine p-divisible objects over k.

We say (M, ) is an elementary Dieudonné p-divisible object over k if there exists a
W (k)-basis {e1,...,er,, } of M such that for i € S(2,75;) we have an identity ¢(e;) =
e;+1 and moreover p(e1) = p™ ey for some integer 1y that is relatively prime to rpy.

We say (M, ) is a Dieudonné—Fontaine (respectively a Dieudonné) p-divisible object
over k if it is a direct sum of elementary Dieudonné—Fontaine (respectively of elementary
Dieudonné) p-divisible objects over k.

(b) By the Dieudonné—Fontaine torsion (respectively volume) of a latticed F'-isocrystal
(M, ) over k we mean the smallest number

T(M,p) e NU{0}

(respectively V(M,p) € N U {0}) such that there exists a Dieudonné—Fontaine
p-divisible object (M;j,p1) over k for which we have an isogeny
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(M, 01) — (M @w ) W (k), p®oy,) with the property that pT(M#) \f C f(My) (re-
spectively that M/ f (M) has length V (M, ¢)). By replacing Dieudonné-Fontaine with
Dieudonné, in a similar way we define the Dieudonné torsion T (M, ) € N U {0} and
the Dieudonné volume V (M, p) € NU {0} of (M, p).

2.2.2.1. Remarks. —(a) Any (elementary) Dieudonné p-divisible object over k is also an
(elementary) Dieudonné—Fontaine p-divisible object over k. Moreover, any Dieudonné—Fontaine
p-divisible object over k is definable over F,.

(b) The existence of V1 (M, ) (and thus also of V(M,p), T (M, ), and T(M,p)) is
equivalent to Dieudonné’s classification of F-isocrystals over k. This and the fact that suitable
reductions (modulo powers of p) of p-divisible objects over k are studied systematically for the
first time in [14,15], explains our terminology.

(c) Classically one works only with Dieudonné p-divisible objects (as they are uniquely
determined by their Newton polygons) and with Dieudonné volumes (as they keep track of
degrees of isogenies); see [7,28,6,10], etc. But working with Dieudonné-Fontaine p-divisible
objects and torsions one can get considerable improvements for many practical calculations or
upper bounds (like the ones we will encounter in Section 3).

2.2.3. LEMMA. — Let K be an algebraically closed field that contains k. Let (M, ) be a
Dieudonné—Fontaine p-divisible object over k with the property that (M) C M. Let h be the

h-number of (M, ), let epr := max{ryy, [%]}, let k1 be the composite field of k and F -y,
and let m € N. We have the following two properties:

(a) For any endomorphism frey+m of (M @w ) Whepn+m(K), o ® 0k ), the reduction
fm mod P of frey+m is the scalar extension of an endomorphism of (M ®yy (1)
Win(k1),p ® og, ). If (M, @) is a Dieudonné p-divisible object over k, then the previous
sentence holds with ey; being substituted by ;.

(b) Each endomorphism of (M Qw k) W(K),p ® o) is the scalar extension of an
endomorphism of (M @y sy W(k1), 0 ® o).

Proof. — We write (M, @) = @f 1(M;, @) as a direct sum of elementary Dieudonné-Fontaine
p-divisible objects over k. Let {e(z) . eS’}l } be a standard W (k)-basis of (M;,¢). We
check that (a) holds. Let ig € S(1,s) and let jo € S(1,7as,,). We write fheM+m(6§i°) ®1)=

Sy Z;Ml ;z) ® @;3”, where all ﬂ;i‘}i)’s belong t0 Whe,, +m(K). Let ra;, , = l.cm.

{rMiO,rM }; it is a divisor of rj!. If ¢ = 4g, then "My ="M, <Tm < en If i # 1ig, then
2
T

TM;, + rar, <y and thus we have T My, <, o TM; < [%] <epm.

As fheM-ﬁ-m(@TMmi (6%0)) & 1) = (<,0 ® UK) M107 (fheM-‘rm( 5‘30) ® 1))’ we have an equality

mio?)

(1) p"e B =p

(LOL) M,
CT

o (ﬁj(zgz)) € WheM-i-m(K)

. ) (igd) /. .
where mg-zol) € N U {0} is such that ¢ "o (e (10)) pmfuo e%‘” and where q;ZOZ) e NU{0}
(Zol) (i01)

are at most hTMiUi and

; 409
is such that " Mios (egz)) =ph N (Z) . The numbers m; *" and g;

so at most he M- Let s(m) € S(0, he M + m) be the umque number such that we can write

ﬂj(z‘;z) o) ﬂ(z‘ﬂ) with B(W) € Gy, (Whep+m (K)). From (1) we easily get that

ot :=min{hep +m, m(“”) + S(W)} equals to  min{hen +m, gD 4 gliod)

J JoJ }
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TM;qi o 5(i0d 5(ioi .o h _¢liod) >(ioi h —_¢li0d)
and that o5, (ﬂ;é;z)) and ﬁ](-é(;-l) coincide mod p ™+ %ios . Thus ﬁ;;gl) mod p M T o

.. _ 4 (ig1) (ig%)
belongs to W, >(FprMi(J , ) and therefore ﬂ%‘;” mod p"“ "™ tios Tioi belongs to

(igi
e +m tjoj

o o . . (io?) _ 4(i0?) (i01)
heMer,t;g}nH;;%n(Fp i) As o —mg < =%+ s %0, we  get  that
Bl mod hentm=m?Y plongs to %% it (F rar, ;) and thus also to
JoJj p g heM—i-m—mi.;O” p ioi

hear-+m—mGo?) (k1). So due to the inequality m < heps +m — m%“i), we have fm(egf)") ®1)e
M ®w (1) Win (k1) for any pair (io,jo) € S(1,s) x S(1,7a,, ). Thus fp, is the scalar extension
of an endomorphism of (M @y 1y Win (K1), ® o, ).

If (M, ) is a Dieudonné p-divisible object over k, then the Hodge slopes of (M;,,¢) are
0,...,0, and some integer in S(0, h); thus m%ol) < h% < hrpg, < hrpy. A similar argument
0
shows that qy“) < hry. Thus in the previous paragraph we can substitute ep; by 77. So ()
holds.

Part (b) follows from (a) by taking m — oco. O

2.2.4. Deviations of tuples

Let/ € N.Let 7 = (ny,...,n;) € Z.

(a) Suppose Zizlni is non-negative (respectively is non-positive). Let P(7) be the set
of pairs (¢,u), where t € S(1,1) and u € S(¢t,I +t — 1) have the property that
all sums Y. n; with v € S(¢,u) are non-positive (respectively are non-negative).
By the non-negative (respectively the non-positive) sign deviation of 7 we mean the
non-negative integer max{0,— Y ", n; | (t,u) € P(7)} (respectively max{0,> ;" , n; |
(t,u) € P(T)}).

(b) If 22:1 n; 1s non-negative (respectively is non-positive), then by the non-negative
(respectively the non-positive) value deviation of 7 we mean the absolute value of the
sum of all non-positive (respectively of all non-negative) entries of 7. As a convention,
this sum is 0 if 7 has no non-positive (respectively no non-negative) entries.

(c) If Zi’:l n; is positive (respectively is negative), then by the sign deviation S7 of 7 we
mean its non-negative (respectively its non-positive) sign deviation. If Zﬁzl n; = 0, then
by the sign deviation St of 7 we mean the smaller of its non-negative and non-positive
sign deviations. We also use this definition with (sign, S) replaced by (value, W).

Samples: S(-1,1,—-1,-1,1,1,0,—-1) =1+ 1 =2, W(-1,1,—-1,-1,1,1,0,—1) = 3,

S(1,1,-2,1,3)=W(1,1,-2,1,3) =2,and S(—-1,1,—-1) =W(-1,1,-1) = 1.

2.3. Inequalities

Let (M,y) be a latticed F-isocrystal over k. Obviously V(M,¢) < Vi (M,p) and
T(M, ) < T4+ (M, ). Moreover we have

T(M, ) < V(M, ) < T(M,p)ry

and the same inequalities hold with (T, V') being replaced with (T}, V).

2.3.1. LEMMA.—Let 7 = (ny,...,Npy,) € Z™. Suppose there exists a W (k)-basis
{e1,...,ery } of M such that for i € S(1,7) we have @(e;) = p™ie;r1. Then we have the
following sequence of three inequalities

2) T(M,p) <ST<WT < ||+ [n2f + -+ [npy|.
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Proof. — The second and the third inequalities follow from their very definitions.

We check the first inequality of (2) only in the case when :fl n; > 0 and at least one entry
n; is negative, as in all other cases the first inequality of (2) is checked in the same way. We
perform the following type of operation.

Let w € N U {0} be the greatest number such that there exists ¢t € S(1,rp) with the
property that n;_,; := Z n; is non-positive for all v € S(0,u); we have n;1 > 0,

i=t—v
Ng—yu—1 > 0, and Zi:tfufl n; > 0. Forv € S(0,u) we replace e;_,, by &;_,, :=p~ ™ vtes_,,.
Up to a cyclic rearrangement of 7, we can assume t —u=1; so t =1+ v and n,,, =
ng = Ng—y—1 > 0. The rps-tuple (€1,...,Eu+1,€u42,.-,6r,,) is mapped by ¢ into the
u—+1

rar-tuple (ég,...,éu+17eu+27p”u+26u+37...7p"’“1v1*16TM,pZi:0 "i¢1). We have Zl 0 Ni =
Zzzt_u_lm > 0. So if for all i € S(u + 2,7y — 1) we have n; > 0, then the pair
((€1,.--yCut1;Cut2,---s€ry ), ) is a cyclic Dieudonné-Fontaine p-divisible object over k and
we are done as by their very definitions, we have —n;_,, ; € S(0,S7) and thus pST annihilates
the quotient W (k)-module M/(€1,...,Ey+1,€ut2,--.,Ery, ); if this is not the case, we next deal
with the inoperated entries 7,42, ..., N,

We repeat the operation as follows. Let u; € N U {0} be the greatest number such that
there exists t1 € S(u + 2,7as) with the property that ny, _,, 4, 1= Z:;thvl n; is non-positive
for all vy € S(0,u1); we have 74,41 > 0, 14y 4,1 > 0, and S'- t1—u,—1Mi > 0. Due
to the “greatest” property of w we have t; — u; > u + 2. For v; € S(0,u1) we replace
€ty—v, DY € —y, :=p "1-vrtriey _,, and we repeat the operation for the inoperated entries
Myt 2> Mt 3y -+ Mty —ug—1»> Tty +1s Nty 42, - - -, Ny, - By induction on the number of remaining
inoperated entries (they do not have to be indexed by a set of consecutive numbers in S(1,7,/)),
we get that the first inequality of (2) holds. O

2.3.2. Example. —1f for i € S(1,75) we have n; € {—1,0,1}, then from (2) we get

3) T(M,p) gWT:min{nﬂrﬁ},
where n~ (respectively n™) is the number of 4’s such that n; = —1 (respectively such that
We now consider the case when 7 > 3 and (ni,na,...,n.,,) = (1,1,...,1,—1). So

(M,¢) has a unique slope ™

But T(M,p) <1, cf. (3). Thus T(M,p) = 1. In fact ({eq,...,pe,,,),p) is an elementary
Dieudonné-Fontaine p-divisible object over & whose Hodge slopes are 0, 0, 1,...,1. It is easy
to see that T (M, ) =rp — 2550 T (M, ) > T(M, ) for rpr > 3.

HU=2 2 that is positive. As (M) ¢ M, we have T(M,p) > 1

2.4. Estimates

Let (M, ¢) be a latticed F-isocrystal over k. Let s and h be the s-number and the h-number
(respectively) of (M, ). Let H be the set of slopes of (M[%], ©). If o € H, we write o = §=,
where (a4, bq) € Z x N with g.c.d.(aq,ba) = 1.

2.4.1. LEMMA. — Suppose k = k. Let (a,b,c) € N x (N U{0}) x (N U{0}). There exists a

smallest number
d(a,b,c) e NU{0}

(respectively d(a,b,c) € N U{0}) such that for any latticed F-isocrystal € over k of rank a,
s-number b, and h-number ¢, we have an inequality T(€) < d(a,b,c) (respectively T, (€) <
dy(a,b,c)). In particular, for any element g € GLj (W (k)) we have T(M, gp) < d(rpr, s, h).
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Moreover upper bounds of d(a,b,c) (respectively of di(a,b,c)) are effectively computable in
terms of a, b, and c.

Proof. — As T(€) < T4 (€), it suffices to prove the lemma for dy(a,b,c). To ease the
notations, we will assume that (rpz, s, h) = (a,b, ¢) and that (M, ¢) = €. We have

4) T, (M, ) < s(max{bs | @ € H} — 1) + T4 (M,p°p).

To check this inequality we first remark that if O is a W (k)-submodule of M such that the pair
(O, p°¢) is an elementary Dieudonné p-divisible object over k and if {eq, ..., e, } is a standard
W (k)-basis of (O,p°p) such that we have (p°p)(e;) = e;41 for all i € S(1,70 — 1), then
the following pair (O',¢) := ((p"0* *e1,p 05 %%¢y,...,p%€rp_1,6ry ), ) is an elementary
Dieudonné p-divisible object over k. As (O[z%]’ ) is a simple F-isocrystal over k whose unique
slope belongs to H, we have ro < max{b, | @ € H}. From this and the fact that O/O’ is
annihilated by p*("o~1 we easily get that (4) holds.

Thus it suffices to prove the existence of a number d(a,b,c) that has all the required
properties under the extra assumption b = s = 0; as s = 0, we have H C [0, h]. We will use
an induction on a = rj;. The case a = 1 is trivial. To accomplish for a > 2 the inductive passage
from a — 1 =7y — 1 to a =)y, we consider two disjoint cases.

Case 1. Suppose the F-isocrystal (M [%]7 ) over k is not simple. Let o € H. We consider
a short exact sequence 0 — (Mi,¢) — (M,p) — (Mz,¢) — 0 such that the F-isocrystal
(Mg[%], ) over k is simple of a.. For ¢ € S(1, 2), the h-number of (M;, @) is at most h and we
have r)s, < a = r)s. By induction, there exists d; € N U {0} that has upper bounds effectively
computable in terms of 77, and ¢ = h and such that there exists a W (k)-submodule O; of
M, with the properties that ro, = 7y, that p%M; C O;, and that (O, ) is a Dieudonné
p-divisible object over k. The map o — 1y () : W (k) — W (k) is onto. This implies that
pra My C (¢P — palyy, )(My). Let € Oq be such that ¢’ (z) = p®x and @P>~1(x) €
O \ pOs. If & € M maps into x, then there exists y € M; such that @b« (y) — p®e(y) is
pe[pbe (%) — pe(F)] € pPeM;. Thus z := —y + p>Z € M maps into p®x and we have
@ (2) = p®(z). By choosing z to belong to a standard W (k)-basis of (O, ), we get that the
monomorphism iz : (p® Oz, @) — (Ma, @) lifts to a monomorphism js : (p*Og,¢) — (M, p).
As (O1 + ja(p® O3), ¢) is a Dieudonné p-divisible object over k and as p?+92+4 annihilates
M/O1 + ja(p*=O2), we get

) T, (M,p) <dy+dos+an <dy+da+ hby <dy +da+ hryy.

Case 2. Suppose the F-isocrystal (M[%], ) over k is simple of slope «. Thus a = rp; = b,.
Let {e1,...,e4} C M be a B(k)-basis of M[-] such that e; € M \ pM, for i € S(1,a — 1)

1

P
we have p(e;) = e;41, and p(e,) = pPe;. For t € S(1,a), let My := (e1,...,e:) and M; :=
Mt[%] N M. We have M7 = M7 and M, = M.

2.4.1.1. CLAIM. — There exists a strictly increasing sequence (Ct)ics(1,a) 0f non-negative
integers that depends only on a = rp; and ¢ = h, that is effectively computable, and that has
the property that for any t € S(1,a) we have inclusions
(©6) P (My) € M, C M.

To check this claim we use induction on t € S(1,a). Taking ¢; := 0, (6) holds for t = 1.
Suppose there exists a number r € S(1,a — 1) such that (6) holds for ¢ € S(1,7). We now check
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that (6) holds for t = r 4 1. Thus we have to show that there exists an effectively computable
natural number ¢, 1 which is at least ¢, + 1 and for which we have

(7) erp1 = pler) € p' eI M + M,

We write e,+1 = p(e,) =p"z, + y,, where x,. € M \ pM, n,, € NU{0}, and y, € Mr. By
our initial induction (on ranks), we can speak about an effectively computable number d,. € N
that is at least max{d (r,0,1) |l € S(0,h)}. Let

) Cra1:=¢Cp +d,. +rlah.

We show that the assumption n, > ¢, leads to a contradiction. Let Mg :=0. Lete, € JT/fT
be such that we have a direct sum decomposition MT = MT_l @ (é,). Based on (6) (applied
with ¢t = r), we can write e, = y,_1 + l.€,., where y,_1 € Mr,l and [, € W (k) \ p¢ T W (k).
Let w, == o (l,) " (yr — o(yr—1)) € MT[%] We have ¢(é,) = w, + o(l,) " p™rx,. € M. As

Ny > Cpy1 > ¢, We have o(1.) " Lpnra, € pr=¢" M C M; thus w, € M, = Mr[l—lj] NM.Letn,
be the o-linear endomorphism of ]\7,4 that acts on Mr_l as  does and that takes €, into w;;
thus 7,-(e,.) = y,.. The difference ¢ (&,) — n,-(é,) is o (1) "*p"™rax, € p"~¢ M. Thus ¢ restricted
to Mr and 7, when viewed as maps from J\Al/7 to M, coincide mod p™~°". From this and the
inequality n, — ¢, > h + 1, we get that the pair (Mr, 7)) is an F-crystal over k whose h-number
is at most h. . _ .

Let O, be a W(k)-submodule of M, such that pT+Mrne) Np o C O, and (Or,my) is a
Dieudonné p-divisible object over k. Let t,. € S(0, T+(]\A/[/,,, 7r)) be the smallest number such
that p're; € O, \ pO,.. We consider a direct sum decomposition (O,,n,) = (Oy1,1,) ® -+ ®
(Ors,.,my) into elementary Dieudonné p-divisible objects over k; we can assume that the
indices are such that the component e;,; € O, ; of ptre; € O, with respect to this direct sum
decomposition of O, is not divisible inside O, 1 by p (i.e. we have e 1 & pO,.1). Let u, € [0, h]
be the unique slope of (O, 1,7,).

The element p™'?®e; = ¢™%(ey) is congruent mod p™ ¢ to 7 '%(e;). As we have

pT+en) N C O, we get that 77'%(e11) — p'%@eyq € plrtrr—er=T+(Mrm) ) - thus

nr(er ) — prieyy € pr e T+ (Men) O, 40 As (O,.1,7,) is an elementary Dieudonné
p-divisible object over k whose rank divides rla and as e; 1 € O,.1 \ pO,.1, there exists z, €
O,.1\pO; 1 such that 77;"!“(61,1) = p"'atrz  Thus p"'@ur z, —p”“ael,l S p"T_CT_TJr(M“”T)OM.
As d,. > T, (M,,n,) and n, > ¢.41, from (8) we get n,. — ¢, — T4 (M,,n,.) = rlha+ 1. As
h > max{u,, a}, we have rlah + 1 > max{rlau,,rlaa}. Thus

9) ny — ¢, — T (M, n,) > max{rlau,,rlaa}.

From (9) and the relations p™®%r z, — p™%¢; | € prr=er=T+(Mem) O 1 and 2, €11 € O, \
pOr. 1, we get that rlau, = rlac. Thus oo = u, and therefore a = ro, , < r. This contradicts the
fact that » € S(1,a — 1). Thus n,. < ¢,4+1 and so (7) holds. Thus (6) holds for t =7+ 1. As ¢, 41
depends only on r, a, h, ¢, and d, and as (by induction) ¢, and d,- depend only on r, a, and h,
we get that ¢, depends only on a and ¢ = h. This ends our second induction on ¢ € S(1,a).
Thus the claim holds. .

We have p¢eM = p¢eM, C M, C M, cf. (6). As (M,, ) is an elementary Dieudonné
p-divisible object over k, we get T (M, ) < ¢,. This ends case 2.
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The above two cases imply that T (M, ) has upper bounds that are effectively computable
in terms of a = rj; and ¢ = h. Thus the number d (a, 0, ¢) exists and has effectively computable
upper bounds in terms of a and c. This ends the initial induction (on ranks a) and so it also ends
the proof of Lemma 2.4.1. O

2.4.2. An interpretation

The estimates of the proof of 2.4.1.1 are different from the ones of [22, §I]. It seems to us
that loc. cit. can be used in order to improve these estimates. Accordingly, we now make the
connection between loc. cit. [10, §2], and 2.4.1.1. We situate ourselves in the context of case 2
of 2.4.1. Let O(«) be the Z,-algebra of endomorphisms of the unique elementary Dieudonné
p-divisible object over & of slope «. It is known that O(«) is an order of the central division
algebra over Q, whose invariant is the image of the non-negative rational number « in Q/Z, cf.
[5, Ch. IV, §3]. There exists a W (k)-submodule M of M that contains p_[_(”/f_l)a]M and such
that the pair (]\7 ,¢) is an a-divisible F-crystal over k (i.e. for all n € N we can write ¢™ as plnal
times a o™-linear endomorphism ¢,, of 1\7), cf. [22, pp. 151-152]. As we have ryra € NU {0},
all slopes of (M, ¢y, ) are 0. Thus ¢, (M ) = M. Triples of the form (]\NJ L0, Qr,, ) are easily
classified. Their isomorphism classes are in one-to-one correspondence to isomorphism classes
of torsion free O(«)-modules which by inverting p become free O(«) [%]—modules of rank 1, see
[10, 2.4 and 2.5]. It is easy to see that under this correspondence, Claim 2.4.1.1 is equivalent to
the following well known result.

2.4.2.1. CLAIM. — There exists a smallest number N(«) € N which has effectively com-
putable upper bounds and for which the following property holds: for any element x € O(a) \
pO(av), the length of the artinian Z,-module O(c)/O(a)z is at most N («).

2.5. Standard Z, structures

Let (M,¢,G, (ta)acy) be a latticed F-isocrystal with a group and an emphasized family
of tensors over k such that the W-condition holds for (M, y,G) (see 2.2.1(b) and (d)). Let
M= EBS:G Fi(M), (F'"(M));e8(ap)» and p: Gy, — G be as in 2.2.1(d). Each tensor ¢, €
T (M) is fixed by both  and . Let pican : G,y — GL)s be the inverse of the canonical split
cocharacter of (M, (F*(M));cs(ap),®) defined in [42, p. 512]. Let M = @"_, Fi,.(M) be
the direct sum decomposition such that the cocharacter jic,, acts on fgan(M ) via the —i-th
power of the identity character of G,,,. We have F'*(M) = @;:b f‘gan(M ) foralli € S(a,b) and
M = EB;’:& @(p~iFi (M)), cf. loc. cit. The cocharacter jicay fixes each ¢, (cf. the functorial
aspects of [42, p. 513]) and so it factors through G. As M = @?Za @(p~'Fi (M)), the resulting
cocharacter fica, : G, — G is also a Hodge cocharacter of (M, ¢, G) in the sense of 2.2.1(d).

Let og := pu(p). We have oo(M) = ap(@?:ap_iﬁi(M)) = M. Thus o¢ is a o-linear
automorphism of M and so also of 7(M). For a € J we have og(ta) = to. Let Mz, =
{m € M | og(m) = m}. We now assume k = k. So Mz, is a free Z,-module such that we
have M = Mz, ®z, W (k) and t, € T(Mz,) for all o € J. Let Gq, be the subgroup of
GLMZ,,[%] that fixes t,, for all « € 7 its pullback to Spec(B(k)) is Gp(x). Let Gz, be the
Zariski closure of Gq, in GL Mz, - As G is the Zariski closure of Gp(;) in GLjs, we get
that G is the pullback to Spec(W (k)) of G'z,. If moreover we have a principal bilinear quasi-
polarization Aps : M @y i) M — W (k) of (M, ¢, G), then Ay is also the extension to W (k) of
a perfect bilinear form A Mz, ON Mz,.
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2.6. Exponentials

Let H = Spec(A) be an integral, affine group scheme of finite type over Spec(W (k)). Let
O be a free W (k)-module of finite rank such that we have a closed embedding homomorphism
H — GLo; one constructs O as a W (k)-submodule of A (cf. [6, vol. I, Exp. VIg, 11.11.1]). If
p =3, let Eg :=pEnd(O).If p= 2, let Eo be the sum of p? End(O) and of the set of nilpotent
elements of p End(O). Let

exp: Fo — GLo (W(k:))

be the exponential map that takes = € Eo into Y ;- 7;—:, here 2° := 1,.

Let [ € N. Here are the well known properties of the map exp we will often use.

(a) If p> 3 and = € p' End(O), then exp(z) is congruent mod p? to 1o + .

(b) Ifp=2,1>2,and z € p' End(O), then exp(z) is congruent mod p? to 1o +z + é and

is congruent mod p?~! to 1o + .

(c) If x € Lie(Hp(x)) N Eo, then exp(z) € H(W (k)).

To check (c) it is enough to show that exp(x) € H(B(k)). It suffices to check this under the
extra assumption that the transcendental degree of k is countable. Fixing an embedding W (k) —
C, we can view H(C) as a Lie subgroup of GL¢ (C); so the relation exp(z) € H(B(k)) follows
easily from [20, Ch. II, §1, 3].

2.6.1. LEMMA. — Suppose H is smooth over Spec(W (k)). Let | € N. Let g € H(W (k)) be
congruent mod p! to 1o. Then for any i € S(1,1) there exists z;; € Lie(H) such that g is
congruent mod p'tt to 19 +plzi7l.

Proof. — We use induction on ¢. The case ¢ = 1 is trivial. Let z; ; be the reduction mod p of
z1,1. The passage from i to 7 + 1 goes as follows. We first consider the case when either p > 3
orp=2andi+1<I Let gy :=gexp(—pz,) € HW(k));itis congruent mod p'*! to
(1o +p'z1.1) (1o — p'21,) (cf. 2.6(a) and (b)) and so also to 1o. By replacing g; with g1, the
role of the pair (i+1,1) is replaced by the one of the pair (i, +1). As 1o +p'21; and exp(p'z1,)
are congruent mod p*t1+! (cf. 2.6(a) and (b)), by induction we get that g; = g1 exp(plzlyl) is
congruent mod pi* ! to (1o + p!*12; 141) (1o +p'21 ) and so also to 1o +p' (21,1 + pzig+1)-
Thus as z;11,; we can take the sum zq ; + pz; 141.

Letnow p=2and i+ 1=1> 2. We have Zil € Lie(Hg), cf. [1, Ch. 11, 3.1, 3.5, Lemma 3
of 3.19]. Thus there exists Z;; € Lie(H) that is congruent mod 2 to zlz,l. But 1o — 212171 is
congruent mod 22! to exp(—2'21 ;) exp(—22171%; ), cf. 2.6(b). The existence of z; 1 is now
argued as in the previous paragraph but working with g1 := g exp(—2'21 ;) exp(—2%-12; ) €
H(W (k)). This ends the induction. O

2.6.2. LEMMA. — Suppose H is smooth over Spec(W (k)). Let 1 € N. If z; € Lie(H ), then the
reduction mod p?' of 1o + p'z; belongs to H(Wy(k)).

Proof. — We can assume p = 2 (cf. 2.6(a) and (c) applied with x = plz) and [ > 2 (as H is
smooth). By replacing 1o + 2'z; with (1o + 2'2;) exp(—2'2;), we can assume (cf. 2.6(b)) that
2z € 2!=! Lie(H). But this case is obvious (as H is smooth). O

2.7. Dilatations

In this section we study an arbitrary integral, closed subgroup scheme G = Spec(R¢) of
GLjy. Let W (k)*" be the strict henselization of W (k). If a: Spec(W (k)*") — G is a morphism,
then the Néron measure of the defect of smoothness 6(a) € N U {0} of G at a is the length of
the torsion part of the coherent Ogpec(w (k)sn)-module a* (g spec(w (x)))- Here Qa/ spec(w (x))
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is the coherent O¢-module of relative differentials of G with respect to Spec(W (k)). As G
is a group scheme, the value of §(a) does not depend on @ and so we denote it by 6(G). We
have 6(G) € N if and only if G is not smooth over Spec(W (k)), cf. [2, 3.3, Lemma 1]. Let
S(G) be the Zariski closure in G, of all special fibres of W (k)s"-valued points of G. It is a
reduced subgroup of Gj. We write S(G) = Spec(Rg/Ja), where Jg is the ideal of R¢ that
defines S(G).

By the canonical dilatation of G we mean the affine G-scheme G; = Spec(R¢, ), where
R, is the Rg-subalgebra of Rg[%] generated by %, with « € Jg. The Spec(W (k))-scheme
(G is integral and has a canonical group scheme structure with respect to which the morphism
G1 — G is a homomorphism of group schemes over Spec(W (k)), cf. [2, 3.2, p. 63 and (d) of
p. 64]. The morphism G; — G has the following universal property (cf. [2, 3.2, Prop. 1]): any
morphism Y — G of flat Spec(W (k))-schemes whose special fibre factors through the closed
embedding S(G) — Gy, factors uniquely through G; — G. Either §(G1) = 0 (i.e. G is smooth
over Spec(W (k))) or (cf. [2, 3.3, Prop. 5]) we have 0 < §(G1) < 6(G).

By using at most 0(G) canonical dilatations, we get the existence of a unique smooth, affine
group scheme G’ over Spec(W (k)) that is endowed with a homomorphism G’ — G whose
fibre over Spec(B(k)) is an isomorphism and that has the following universal property (cf.
[2, 7.1, Thm. 5]): any morphism Y — G of Spec(W (k))-schemes with Y smooth, factors
uniquely through G’ — G. In particular, we can identify G'(W (k)*®) with G(W (k)*"). The
homomorphism G’ — G is called the group smoothening of G. Let

n(G) € S(0,6(G))

be the smallest number of canonical dilatations one has to perform in order to construct G’. We
have n(G) = 0 if and only if G is smooth over Spec(W (k)).

The closed embedding ig:G — GLj; gets replaced by a canonical homomorphism
igr: G — GLy that factors through ic. We identify Lie(G”) with a W (k)-lattice of Lie(G p(x))
contained in End(M). Let dgy € N U {0} be the smallest number such that we have
pm (Lie(Gpky) NEnd(M)) C Lie(G') C Lie(G p(x)) N End(M).

We fix a closed embedding homomorphism G’ — GLj;/, where M’ is a free W (k)-module
of finite rank (see beginning of 2.6). Let g € G'(W (k)) = G(W (k)).

2.7.1. DEFINITION. — Let n € IN. We say g is congruent mod p” to 1,/ (respectively to 1,;)
if and only if the image of g in G'(W,,(k)) (respectively in G(W,,(k))) is the identity element.

2.7.2. LEMMA. — We have the following three properties:

(a) If g is congruent mod p™ to 1y, then g is also congruent mod p™ to 1.

(b) If g is congruent mod p" ™) 10 1y, then g is also congruent mod p" to 1.
(c) We have an inequality dgy, < n(G).

Proof. — Part (a) is trivial. We write G’ = Spec(R¢g-) and GLj; = Spec(Ryy). Let I, Ig,,
Igs, and Ip; be the ideals of Rg, Rg,, Rg/, and R (respectively) that define the identity
sections. We have I, = Ig[%] NRg, and Igr = Ig[%] NReg.

We check (b). Let m,:Rg — W(k) be the homomorphism that defines g; we have
my(Ig) C p"t™ W (k). Let my,: Rg, — W (k) be the homomorphism through which m,
factors. We have my,(Ig,) C p" ™ =1W (k), cf. the very definition of R, . Part (b) follows
from a repeated application of this fact to the sequence of n(G) dilatations performed to
construct G’. The cokernel of the cotangent map (computed at W (k)-valued identity elements)
I/Ig — Ig, /1%, is annihilated by p, cf. the very definition of R¢,. By applying this
repeatedly, we get that the cokernel of the cotangent map I//I3, — Ig/ /1%, is annihilated
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by p™(©). Taking duals we get that the cokernel of the W (k)-linear Lie monomorphism
Lie(G') = Lie(Gp(x)) N Lie(GLyy) is also annihilated by p™(©). As Lie(GLyy) is the Lie
algebra associated to End (M), we get that (¢) holds. O

2.8. Complements on M (W,(S))

Let ¢ € N and let [ € S(0,¢). Let f:S5; — S be a morphism of Spec(F,)-schemes. Let
fq:W4(S1) — W,(S) be the natural morphism of Spec(Z/p?Z)-schemes defined by f. Let € be
an F-crystal over S. In this section we include four complements on the category M (W, (S5)).

2.8.1. Pullbacks

Let fo: M(W,(S)) — M(Wy(S1)) be the natural pullback functor. So if S = Spec(R) and
S1 = Spec(R;) are affine and if h: (O, p0) — (O, p0) is a morphism of M(W,(S)), then
[y (R) is the morphism

h @ lw,(ry): (O ®w,(r) We(R1),00 @ ®r,) — (0" @w,(r) We(R1), 00 @ R, ).

In general W,(S) xw, ., (s) Wq+1(S1) is not Wy(S1). Thus, in general the restriction of
fiy1 to M(Wy(S)) and fy do not coincide as functors from M (W, (S)) to M(W,(S1)) and
therefore the sequence of functors (f,),en does not define a pullback functor from M (W (5))
to M (W (S1)). If the Frobenius endomorphism of Og, is surjective, then regardless of what .S
is we have W, (S) xw,,,(s) Wqs1(S1) = W,y (S1) and thus the sequence of functors (f)sen
does define a pullback functor f*: M(W(S)) — M(W(S1)).

If u is an object (or a morphism) of M(W,(S)), then by its pullback to an object (or a
morphism) of M(W,(S1)) we mean f;(u). If t € N and if f;,,(u) is an object (or a morphism)
of M(W,(S1)), then we have f;,,(u) = fy(u).If S is the spectrum of a perfect field, we also
speak simply of the pullback of u via f, to be often denoted as f*(u) (instead of either f; (u) or

gt ().

If S is integral, if kg is the field of fractions of .S, and if u is a morphism of M (W, (5)),
then we say Coker(u) is generically annihilated by p' if the pullback of u to a morphism of
M(W,(ks)) = M(W,(Spec(ks))) has a cokernel annihilated by p'.

2.8.2. The evaluation functor E

Let 6,(S) be the canonical divided power structure of the ideal sheaf of Oy, (g) that defines
the closed embedding S — W, (). The evaluation of the F'-crystal € at the thickening (S —
Wy(S),64(5)) is a triple (Fy, o7,,VF,), where F, is a locally free Oy, (s)-module of finite
rank, where ¢ Fy : Fy — Fq is a ®g-linear endomorphism, and where V Fy is an integrable and
topologically nilpotent connection on F, that satisfies certain axioms. In this paper, connections
as Vr, will play no role; on the other hand, we will often use the following object

E(Q:§ Wq(s)> = (fanO.Fq)
of M(W,(S)). A morphism v: € — &; of F-crystals over S defines naturally a morphism
E(v; Wy(9)) :E(€;W,(S)) = E(€1; Wy (9)).

The association v — E(v; W, (S)) defines a Z,-linear (evaluation) functor from the category of
F-crystals over S into the category M (W, (.5)).

To ease notations, let E(€;W,(51)) := E(Cs,;W,(S1)) and, in the case when S; =
Spec(R;) is affine, let E(€; W, (R1)) := E(&; W, (S1)).
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The functorial morphism f : (S1 — Wy(51),04(S1)) — (S — W,(S),d,(5)) gives birth to
a canonical isomorphism (to be viewed as an identity)

(10) Criq: o (B(EWy(S))) = E(€W,(S1)).

If e: S5 — S is another morphism of Spec(F,)-schemes, then we have identities
(11) (foe)y=eyofy and ceq0e;(crq) = Croeq-

In what follows we will use without any extra comment the identities (10) and (11).

2.8.3. Inductive limits
Let V — V; be a monomorphism of commutative F,-algebras. Suppose we have an inductive
limit V3 = ind lim,ep V,, of commutative V -subalgebras of 7 indexed by the set of objects A
of a filtered, small category. For « € A, let f*:Spec(V,,) — Spec(V') be the natural morphism.
Let (O,¢0) and (O’,¢0o+) be objects of M(W,(V')) such that O and O’ are free W, (V)-
modules of finite rank. Let (O1, ¢o,) and (Of, gao/) be the pullbacks of (O, o) and (O', por)
(respectively) to objects of M (W, (V7)). We consider a morphism

uy:(01,90,) = (01, 901)

of M(W,(V1)) whose cokernel is annihilated by p'. We fix ordered W, (V)-bases B and
Bo: of O and O’ (respectively). Let B; be the matrix representation of uy with respect to
the ordered W, (V;)-basis of Oy and O] defined naturally by Bo and Bo: (respectively). As
p! Coker(u;) = 0, for 2’ € Bor we can write pla’ @ 1 = w1 (Y pep, T ® Brar), Where each
Bzar € Wy(V1). Let V,,, be the V-subalgebra of V; generated by the components of the Witt
vectors of length ¢ with coefficients in V; that are either entries of By or 3.,/ for some pair
(x,2") € Bo x Bor. As V,,, is a finitely generated V'-algebra, there exists oy € A such that
Vi, = Va,- This implies that u; is the pullback of a morphism

Uozo:.fqa ( 3900) fao ( 7900')

of M(W,(Va,)) whose cokernel is annihilated by p'. Here are four special cases of interest.

(a) If V is a field and V; is an algebraic closure of V, then as V,’s we can take the finite field
extensions of V' that are contained in V.

(b) If V7 is a local ring of an integral domain V, then as V,,’s we can take the V-algebras of
global functions of open, affine subschemes of Spec(V') that contain Spec(V7).

(c) We consider the case when V' is a discrete valuation ring that is an N-2 ring in the sense
of [29, (31.A)], when V] is a faithfully flat V' -algebra that is also a discrete valuation ring, and
when each V,, is a V-algebra of finite type. The flat morphism f®°: Spec(V,,,) — Spec(V') has
quasi-sections, cf. [18, Ch. IV, Cor. (17.16.2)]. In other words, there exist a finite field extension
k of k and a V -subalgebra V of k such that: (i) V is a local, faithfully flat V-algebra of finite
type whose field of fractions is k, and (ii) we have a morphism f°:Spec(V) — Spec(Va,)
such that f = f*o fo‘O is the natural morphism Spcc(V) — Spec(V). As V is an N-2 ring,
its normalization in k is a finite V-algebra and so a Dedekind domain. This implies that we can
assume V is a discrete valuation ring. For future use, we recall that any excellent ring is a Nagata
ring (cf. [29, (34.A)]) and so also an N-2 ring (cf. [29, (31.A)]). Let

@: f3(0.00) = [ (£ (0,00)) = [3(0's00) = f** (£3°(O' p0r))
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be the pullback of 4, to a morphism of M (W, (V)); its cokernel is annihilated by p'.

If V is the local ring of an integral Spec(F,)-scheme U, then V is a local ring of the
normalization of U in IE:N So from (b) we get that there exists an open subscheme U of this last
normalization that has V' as a local ring and that has the property that @ extends to a morphism
of M(W,(U)) whose cokernel is annihilated by p'.

(d) If V is reduced and V; = VP, we can take A =N and V,, = V") (n € N).

2.8.4. Hom schemes
Let Oy and O3 be two objects of M (W, (5)) such that their underlying Oy, (S)-modules are
locally free of finite ranks. We consider the functor

Hom(O;,0,):Sch® — SET

from the category Sch® of S-schemes to the category SET of sets, with the property that
Hom(O,02)(51) is the set underlying the Z /p?Z-module of morphisms of M (W, (S;)) that
are between f;(O1) and fy(Oz); here f:.51 — S'is as in the beginning of 2.8.

2.8.4.1. LEMMA. — The functor Hom(O1, O3) is representable by an affine S-scheme which
locally is of finite presentation.

Proof. — Localizing, we can assume that S = Spec(R) is affine and that O; = (O1,¢0,)
and Oy = (O2,¢0,) are such that O, and O, are free W, (R)-modules. For i € {1,2} let
r; be the rank of O;. Let Hom(O1,O3) be the affine space (of relative dimension gri72)
over Spec(R) with the property that for any commutative R-algebra Ry, Hom(O1,02)(R1)
is the set of W, (R;)-linear maps x:01 ®@w,r) Wy(R1) — O2 ®@w,(r) Wy(R1). We have
an identity (po, ® Pr,) oz =z o (po, ® Pr,) if and only if = belongs to the subset of
Hom(O1,02)(Ry) that is naturally identified with Hom(O1, O2)(Spec(R1)). As the relation
(po, @ Pr,) ox =20 (po, ® P, ) defines a closed subscheme of Hom(O1, Os) that is of
finite presentation, the lemma follows. O

2.9. On two results of commutative algebra

In 5.4 and Section 6 we will use the following two geometric variations of well known results
of commutative algebra.

2.9.1. LEMMA. - Let X and Y be two integral, normal, locally noetherian schemes. Let
u: X — Y be an affine morphism that is birational; let K be the field of fractions of either
X orY. Let D(X) and D(Y') be the sets of local rings of X and Y (respectively) that are
discrete valuation rings (of K). If D(Y') C D(X), then w is an isomorphism.

Proof. — Working locally in the Zariski topology of Y, we can assume X = Spec(Ry ) and
Y = Spec(Ry ) are also affine and noetherian. Thus (inside &) we have

Ry —=Rx= (] Ve () V=Ry
VeD(X) VeD(Y)

(cf. [29, (17.H)] for the two identities). So Ry = Rx. Thus « is an isomorphism. O

2.9.2. LEMMA. — Let X' = Spec(R') — X = Spec(R) be a morphism between affine
schemes which at the level of rings is defined by an integral (i.e. an ind-finite) monomorphism
R — R/. Then an open subscheme U of X is affine if and only if its pullback U' :=U x x X' to
X' is affine.
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Proof. —1t is enough to show that U is affine if U’ is affine. The morphism U’ — U is
surjective (see [29, (5.E)]). So as U’ is quasi-compact (being affine), U is also quasi-compact.
Thus X P \ U'P is the zero locus in X *°P of a finite number of elements of R. So there exists
a finitely generated Z-subalgebra Ry of R such that U is the pullback of an open subscheme Uy
of Spec(Ry) through the natural morphism Spec(R) — Spec(Ry).

Let A (respectively A’) be the set of finite subsets of R (respectively of R’). For a € A
(respectively o' € A), let R, (respectively R’ ,) be the Ry-subalgebra of R (respectively of
R’) generated by « (respectively by a’). Let X, := Spec(R,) and X/, := Spec(R.,). Let U,
and U/, be the pullbacks of Uj to X,, and X/, (respectively). As U/, is a quasi-compact, open
subscheme of X g,, it is an X ;,—scheme of finite presentation. As the scheme U’ is affine, by
applying [18, Ch. IV, (8.10.5)] to the projective limit U’ < X' = proj limy ep US, < X/, of
open embeddings of finite presentation, we get that there exists 3 € A’ such that U é, is affine.
Let 3 € A be such that R, 5 is a finite Rg-algebra. As U, 5 = Up, XX, Xpip is affine,
the scheme Uy is also affine (cf. Chevalley theorem of [16, Ch. II, (6.7.1)] applied to the finite,
surjective morphism U/gw — Up). Thus U =Up x x, X is affine. O

3. Proof of Main Theorem A and complements

In 3.1 we prove Main Theorem A stated in 1.2. See formula (18) of 3.1.3 for a concrete
expression of the number 7., mentioned in 1.2. In 3.2 we include interpretations and variants
of 1.2 in terms of reductions modulo powers of p; in particular, see 3.2.4 for the passage from
1.2 to 1.3. See 3.3 for improvements of the estimates of 3.1.1 to 3.1.5 in many particular cases of
interest. If p > 3 let g, :=1. Let g5 := 2.

3.1. Proof of 1.2

We start the proof of 1.2. Until 3.1.4 we will assume k = k. Let v := dim(G gy, ). It suffices to
prove 1.2 under the extra hypothesis v > 1. Let 6(G), n(G) € N U {0}, the group smoothening
G’ — G of G, and the closed embedding homomorphism G’ < GLj, be as in 2.7. We have
G'(W(k)) =G(W(k)).

Let m := T(Lie(G’),¢) € N U {0}. Based on Definitions 2.2.2(a) and (b), there exists a
B(k)-basis B = {ey1,...,e,} of Lie(Gp(r)) formed by elements of Lie(G”) and there exists
a permutation 7 of S(1,v), such that the following three things hold:

(a) denoting E := (eq,...,e,), we have p” Lie(G’) C E C Lie(G’);

(b) if I € S(1,v), then we have p(e;) = p"™ e, () for some n; € Z;

(c) for any cycle mg = (I1,...,lq) of , the integers n;,, ..., ny, are either all non-negative or

all non-positive.

If we have n;, > 0 for all j € S(1,q), let 7(mo) := 1. If there exists j € S(1,q) such that
ny; <0,let 7(mp) := —1. Let n € N be such that

(12) n 2 2m+ ¢, +n(G).
Let g, € G(W(k)) be congruent mod p" to 1lp;. So g, € G'(W(k)) is congruent

mod p" ™) to 1,4 (cf. 2.7.2(b)) and below we will only use this congruence.

3.1.1. CLAIM.—For any t € N there exists g € G'(W(k)) = G(W(k)) congruent
mod p" M1 16 13 and such that §ignd; "¢t € G'(W(k)) = G(W (k) is con-
gruent mod p" ™t 1o 15, Thus there exists Go € G'(W(k)) = G(W (k)) congruent
mod p™* ™) =" 1o 13, and such that §ognp = Pjo.
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If ¢t > 2 and if the element §;_; exists, then we can replace the triple (n,t, g,,) by the triple
(n+t—1, 1,§t_1gncp§;11<p*1). Thus using induction on ¢ € N, to prove the first part of the
claim we can assume that t = 1. As W (k) is p-adically complete, the second part of the claim
follows from its first part; this is so as we can take go to be an infinite product of the form
---hshahy that has the property that for all ¢ € N the element h. € G'(W(k)) = G(W (k))
is congruent mod p"~"™(@+e=1=m (5 1, and moreover heho_1 -+ ﬁlgngpﬁfl . --iz;lga’l €
G'(W(k)) = G(W(k)) is congruent mod p"~"(&)+¢ to 1. Thus to prove the claim, it suffices
to prove its first part for ¢t = 1.

For t = 1 we will use what we call the stairs method for E. Let z, € Lie(G’) be such that g,,
is congruent mod p" ™+ to 1y + p Dz, Asn —n(G) = m + 1, based on 3.1(a) we
can write

POz, = Z p“eer,
leS(1,v)

where u; € N depends only on the cycle of 7 to which [ belongs and where ¢; € W (k). We take
the wu;’s to be the maximal possible values subject to the last sentence. Thus

(13a) wyzn—n(G)—-m>=2m-+e,>e, > 1.
From (13a) and (12) we get
(13b)  min{u +uy [1,I'€ S(1,v)} 22(n—n(G)—m) >n—n(G)+e, 2n—n(G)+1.

Due to (13b), the product g = [lics,v)(Inr + p"aer) € GLay (W(k)) is congru-
2(717”(64)7"7‘) nin(G)"»l to ].M/ + ZleS(l,v) pulclel = ]-M, +
n=n(G),  The element G2 := (5") g, € GL (W (k)) is congruent mod p"~™&+1 (o
p g g g g p
(1agr + p" ™MD 2) " Y1ap + p» ™ 2,) = 15, We have g, = g PP Forie S(1,v) let
q = —min{0,n;} € N U {0}. We will choose §1 € G'(W(k)) to be a product
exp(p“ T xe;), with all x;’s in W (k). This last product makes sense, cf. 2.6(a) and
lesS(1,v)
(b) and the fact that for p=2 we have u; + q; > u; > m + 9 > €9 = 2.
For [ € S(1,v) we have u; = u,(;. Thus

(14) e e = [ exp(—p"To(z)p(er))
lesS(1,v)

= [I exp(-p 0t 0o(@)e).
lesS(1,v)

ent mod p and so also mod p

These exponential elements are well defined even if p = 2, as for p = 2 we have inequalities
W+ Gro1(1) + -1y = = €2 > 2. Thus g; 't € G'(W (k) = G(W (k)), cf. 2.6(c).

We have ¢g; '~ € G'(W(k)) = G(W (k)), cf. 2.6(c). We have to show that we can choose
the x;’s such that f]lgngogflgofl € G'(W (k)) is congruent mod p =M+ 10 1, It suffices to
show that if g,, is not congruent mod p”_"(G)Jr1 to 1,4/, then we can choose the x;’s such that
by replacing g, with g, 15190097 "0~ ' € G'(W (k)), where g, 1 € G'(W (k)) is congruent
mod p”_"(G)J’1 to 1,4/, we can also replace each u; by u; + t;, where ¢; € N depends only on
the cycle of 7 to which [ belongs.

The element §,9,03; "¢~ ' € G'(W(k)) is congruent mod p"~"(@+1 to the product
3135 0d7 L. From (13a), (13b), (14), and 2.6(a) and (b), we get that gy ¢~ is congruent
mod p"~ ™M@+ o [liesq, ol — Pt 0T 0o (2,-1 ) )ey]. A similar argument
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shows that §; is congruent mod p"~ ™)+ to [Lics(i,0)(Larr + p“*%ae;). Thus the product
a1 gﬁf)@g; 1,1 of the three elements g1, 5" 1

the following product of three elements

I e +ptrme) [ (ar+p"ce)
lesS(1,v) lesS(1,v)

x JI [t —p oot 00 (2 ))el]
lesS(1,v)

,and pg; ¢!, is congruent mod p" @+ to

and so (cf. (13b)) also to 14/ + ZleS(l,v) pUpTa; + ¢ — qu’l<l>+"”’1<l>a(xrl(l))]el.
To show that we can take each ¢; to be at least 1, it suffices to show that we can choose the x;’s
such that we have

(15) play+ o —plt ot g (2 gy) €pW(K) Vi€ S(L,v).

In other words, by denoting with T € k the reduction mod p of an arbitrary element 2z € W (k),
it suffices to show that for each cycle mg = (I1,...,l;) of m there exist solutions in & of the
following circular system of equations over k

(16) by, %, + @, —c?ljfci_l =0 withje S(1,q),

where by, :=p? and d;; := p%i-1T"-1 (here we have Iy = I, cf. end of 2.1).

If 7(mo) = 1, then q;; = qi;_, =0 and ny;_, > 0;s0 pTiz;, + ¢y — pli—1 M o(xy,_,)is
xy, + oy, —p"icio(ay, ). If 7(mg) = —1, then q;,_, = —ny,_, >0 and so we have p¥ix;, +
a, —pTi—a o(xy,_,)=p"iz, +cy,; —o(xy,_,); moreover, there exists jo € S(1,7) such

that g;, = —ny;, > 0. Thus depending on the value of 7(mo) we have:
(+) by, =1and d;; € {0,1} forall j € S(1,q), if 7(m) = 1;
(=) di; =1 and b, € {0,1} for all j € S(1,q) and moreover there exists jo € S(1,¢) such
that l_Jle =0, if 7(m) = —1.

If 7(mo) = 1, then based on (+) we can eliminate the variables z; , Z;,_,,...,Z1,, and Ty,
one by one from the system (16). The resulting equation in the variable z;, is of the form
Ty, = U, + 171197:{’:, where 4;, and ¥;, € k. This equation defines an étale k-algebra. Thus (as
k is separably closed) the system (16) has solutions in k if 7(mp) = 1.

If 7(mp) = —1, then based on (—) (and on the fact that k is perfect) the values of Ty s
Ty, e s Ty, Ty, Ty , Ty, are one by one uniquely determined and so the system (16)
has a unique solution.

This ends the proof of the first part of the claim for £ = 1 and so it also ends the proof of the
claim.

q—17°""

3.1.2. Inequalities involving s- and h-numbers

Let s;, and h/; be the s-number and the h-number (respectively) of (Lie(G’),¢). Let sz, and
hr, be the s-number and the h-number (respectively) of (Lie(G p(x)) N End(M), ). We recall
from 2.7 that dg,, € N U {0} is the smallest number such that we have inclusions

(17a) p®m (Lie(Gpxy) NEnd(M)) C Lie(G") C Lie(Gpk)) NEnd(M).

We have p*=(Lie(Gpky) NEnd(M)) C Lie(G () N End(M). Thus p=+mp(Lie(G')) C
p*rTdamp(Lie(G p(xy) N End(M)) C pm (Lie(Gp)) N End(M)) C Lie(G’). From the very
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definition of s/, we get
(17b) st < sp + dsm-

The h-numbers of (Lie(G gy) N End(M),pm@{s2523 o) and (Lie(G'), pm@x{se-s2} ) are
hr + max{sz, s} — sr and b} + max{sy,s}} — s} (respectively). From this and (17a) we
easily get that

(17¢) hy +max{sy, st} — s, <dsm + hy, +max{sy, s} } —sr.
From (17b), (17¢), and the inequalities ds;, < n(G) < 0(G) (see 2.7.2(c) and 2.7), we get
(l7d) /L<hL+dsm+SlL_8L<hL+dsm+dsm<hL+25(G)~

3.1.3. End of the proof of 1.2

As v =dim(Gpx)), G', and n(G) depend only on G and as s7, and k'’ depend only on the
family {(M, gp,G) | g € G(W (k)) = G' (W (k))} of latticed F-isocrystals with a group over k,
the number

(18) Nfam ‘= Qd(U,S/L,hi) +ép +n(G)

is not changed if ¢ gets replaced by g¢ for some g € G(W(k)). As m < d(v, sp,h}) (cf. 2.4.1),
we have ngm = 2m + €, + n(G). So from (12) applied with n = ng,y, and from 3.1.1, we get
that for any g, € G(W(k)) congruent mod p™=m to 1y, there exists an isomorphism between
(M,¢,G) and (M, gp,... 0, G) defined by an element of G'(W (k)) = G(W (k)). This property
holds even if ¢ gets replaced by gp. As n(G) < §(G), we have

(19) Nfam < 2d(v, 7, b)) + 2, + 8(G).

So based on the effectiveness part of 2.4.1 and on (17b) and (17d), to end the proof of 1.2
it is enough to show that 6(G), s, and hy, are effectively bounded from above. But §(G) is
effectively computable in terms of the ideal sheaf of Ogy,,, that defines the closed embedding
homomorphism G — GLjy, cf. [2, 3.3, Lemma 2]. As the numbers sy, and hy, are effectively
computable in terms of (Lie(G 1)), ) and End(M) and as the connected group G'g(y) is
uniquely determined by its Lie algebra (cf. [1, Ch. II, 7.1]), the numbers sy and hy are also
effectively computable in terms of the closed embedding homomorphism G < GLj,. This ends
the proof of 1.2.

3.1.4. DEFINITION. — Let (M, ¢, G) be a latticed F-isocrystal with a group over k. By the
isomorphism number (to be abbreviated as the i-number) of (M, y,G) we mean the smallest

number n € N U{0} such that for any g,, € G(W (k)) congruent mod p™ to Lar@yy W () there

exists an isomorphism between (M @ (1) W (k), ¢ ® 0%, Gw (ry) and (M @y (k) W (k), gn(p @

o) Gw (k) Which is an element of G(W (k)). If G = GLyy, we also refer to n as the i-number
of (M, ).

If (M,¢,G, ) and GO are as in 2.2.1(c), then by the i-number of (M, p, G, Ajs) we mean
the i-number of its latticed F-isocrystal with a group (M, o, G°) over k.

3.1.5. Example. — Suppose G is smooth over Spec(W (k)) and k = k. Thus n(G) = dg, = 0,
s =sp, hp = hyp, and ngay, = 2d(v, s, hr) +€p. Let m := T (Lie(G’),¢). If nis asin 3.1.4,
then we have 0 <n < 2m+ ¢, < 2d(v, s, hr) +€p (cf. 3.1.1 and 3.1.3).
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3.2. Truncations

In 3.2.1 to 3.2.7 we work in a context that pertains to Dieudonné modules and to p-divisible
groups. In particular, in 3.2.1 and 3.2.2 we define and study D-truncations that are the crystalline
analogues (with a group) over k of truncated Barsotti—Tate groups over Spec(k). In 3.2.8 we
consider reductions modulo powers of p of those F-crystals with a group (M, ¢, G) over k for
which G is smooth over Spec(W (k)). In 3.2.9 we introduce the F'-truncations that generalize
the D-truncations.

3.2.1. On D-truncations

Let (r,d) € N x (N U{0}). Let (M, ®,G) be an F-crystal with a group over k. Until 3.2.8
we assume that (M, ) is a Dieudonné module over k, that rp; = r, that d is the dimension of
the kernel of ¢ mod p, that G is smooth over Spec(W (k)), and that the W-condition holds
for (M,p,G). Let M = FO(M) & F'(M) be a direct sum decomposition such that M =
©(FO(M) & %fl(M)) and the cocharacter i: G, — GL, that fixes F°(M) and that acts via

the inverse of the identical character of G,,, on F! (M), factors through G (cf. 2.2.1(d)). The rank
of F1(M) is d. Let o := opu(p); it is a o-linear automorphism of either M and 7 (M) (cf. 2.5).
As 0 normalizes Lie(G g(x)) and End (M), it also normalizes Lie(G) = Lie(G p(x)) NEnd(M).
As G(W(k)) = G(B(k)) N GLy (W (k)), we have ooG(W (k))oy * = G(W (k).

Let ¢ € N. Let ¥: M — M be the o~ !-linear endomorphism that is the Verschiebung map
of (M,y); we have dp = ¢ = ply;. We denote also by ¥ its reduction mod p?. By the
D-truncation mod p? of (M, ¢, G) we mean the quadruple

(M/quv ®s 193 GWq(k))'

This quadruple determines (respectively is determined by) the reduction mod p? (respectively
mod p?tl) of (M,p,G). We also refer to (M/piM,p,9) as the D-truncation mod p?
of (M,¢p). If (My/p?My,p1,91,Grw,x)) is a similar D-truncation mod p?, then by an
isomorphism f: (M /p?M, ¢, 9, Gw, k) = (M1/p? M1, 01,91, Giw, k) we mean a W, (k)-
linear isomorphism f: M /p?M = M;/p?M; such that we have identities fo = ¢1f and
J¥ =11 f and the isomorphism GLys/panr = GLys, /pans, induced by f, takes Gy, (1) onto
Giw, (k)

If (Mi1,¢1,G1) is (M, gp,G) with g € G(W (k)) and if f € G(W,(k)), then we say f is an
inner isomorphism between the D-truncation mod p? of (M, ¢, G) and (M, gp,G).

3.2.2. LEMMA. — For g € G(W (k)) the following two statements are equivalent:

(a) the D-truncations mod p? of (M, ¢, Q) and (M, gp,G) are inner isomorphic;

(b) there exists an element g € G(W (k)) such that Ggog—' = g,p, where g, € G(W (k)) is
congruent mod p? to 1.

Proof. — As G is smooth over Spec(W (k)), the reduction homomorphism G(W(k)) —
G(W,(k)) is onto. Thus it suffices to check that (a) implies (b) under the extra assumptions that
the o-linear endomorphisms ¢ and g¢ coincide mod p? and that the o~ !-linear endomorphisms
¥ and ¥g~' coincide mod p?. Let g := o, 'goo € G(W(k)). Let go, € G(W,(k)) be go
mod p?. We have ¢ = oou(p~!) and g = oogop(p~'). We get that the two endomorphisms
wu(p~t) and gou(p~?t) of M coincide mod p?. Thus

(i) the element gq , fixes FO(M)/p?F°(M) and is congruent mod p4=? to Lt/pam-

We have 9 = pu(p)oy * and 99! = pu(p)gy ‘o . We get that the two endomorphisms py(p)
and pu(p)gy U of M coincide mod p?. Thus pu(p) and pu(p)go also coincide mod p? and
therefore we have an inclusion
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(1) (Lag/ponr — go,g) (FH(M)/pTFH (M) C p?™ ' FO(M) /ptFO(M).

Let F~'(End(M)) be the maximal direct summand of End(M) on which p acts via
the identity cocharacter of G,,. Thus F~(End(M)) is the Hom(F*(M), F°(M)) factor
of the following direct sum decomposition End(M) = End(F*(M)) & End(FO(M)) &
Hom(F(M), FO(M)) & Hom(F°(M), F(M)) into W (k)-submodules.

Let U Eilg be the closed subgroup scheme of GL}; defined by the rule: if A is a commutative
W (k)-algebra, then UPE(A) == Lasgyy 4 + f‘l(Enil(M)) @w () A < GLy(A). So UPE is
the maximal subgroup scheme of GL; that fixes both F°(M) and M /F°(M)j; it is smooth over
Spec(W (k)). We have Lie(U"®) = F~1(End(M)). Let U_; be the closed subgroup scheme of
U'® defined by the rule:

U_1(A):= IM@wya + (Lie(G) nE-! (End(M))) Sw (k) A

The group scheme U_; is smooth, unipotent, has connected fibres and its Lie algebra is the
direct summand Lie(G) N F~1(End(M)) of F~'(End(M)). As U_,p() is connected and
Lie(U_1) C Lie(G), the group U_;p) is a closed subgroup of G'p(x (cf. [1, Ch. II, 7.1]).
Thus U_; is a closed subgroup scheme of G. As p factors through G, we have two identities
Lie(G) N Lie(U"®) = Lie(U_,) and Lie(Gy) N Lie(U™% ) = Lie(U_1 ). Thus the intersection
U ,:=Gn UEilg has smooth fibres and has U_; as its identity component. As the group
UEilgB(k)/U_lB(k) has no non-trivial finite subgroups, we have U_;g(x) = U’_lB(k). As UEilg
is a complete intersection in GLj;, U’ ; has dimension at least equal to 1 + dim(U_1y,) at each
k-valued point. So as dim(U” ,,.) = dim(Uy,), the group Ul—lB(k) = U_1p(k) is Zariski dense in
U . ThusU_,=U", =GNU"E,

We have o, € Ker(U”8(W,(k)) — U”E(W,_1(k))), cf. (i) and (ii). As U_; = GNU"%,
in fact we have go , € Ker(U_1(W,(k)) — U_1(Wy_1(k))). Thus, up to a replacement of g by
a Ker(G(W (k)) — G(W,(k)))-multiple of it, we can assume that go € U_1 (W (k)). We write
go=1p +p?tu_y, where u_; € Lie(U_1).

Let §:= 1y + plu_y € U_1(W(k)) < G(W(k)). As we have g~ = 1)y — plu_; and
g0t =1 — p?tu_y, we get u(p~1)g  u(p) = gy . Thus we compute that Ggpg ' is
gg9o0u(p™")g~ up)ag e = Ggaogy ‘o ' = G9(00gay ) e = G99~ = Gy So as g, we
can take g. Thus (a) implies (b). Obviously (b) implies (a). O

3.2.3. COROLLARY. — Suppose k =k and (M, ) is the Dieudonné module of a p-divisible
group D over Spec(k) of height r = 3y and dimension d. Let n € N U {0} be the i-number of
(M, ). Then n is the smallest number t € N U {0, 0o} for which the following statement holds:

(x) if Dy is a p-divisible group over Spec(k) of height v and dimension d and if D1 [p'] is
isomorphic to D[p'), then D is isomorphic to D.

Proof. — The Dieudonné module of D; is isomorphic to (M, ge) for some g € GLy, (W (k));
moreover any such pair (M, gy) is isomorphic to the Dieudonné module of some p-divisible
group over Spec(k) of height r and dimension d. For g € N, the classical Dieudonné theory
achieves also a natural one-to-one and onto correspondence between the isomorphism classes of
truncated Barsotti-Tate groups of level ¢ over k and the isomorphism classes of D-truncations
mod p? of Dieudonné modules over k (see [14, pp. 153 and 160]). So () holds if and only if
for any g € GLj; (W (k)), the fact that the D-truncations mod pt of (M, ) and (M, gy) are
isomorphic implies that (M, ) and (M, gp) are isomorphic. From this and 3.2.2 (applied with
G = GLj; and ¢ = t), we get that (x) holds if and only if (M, ) and (M, gp) are isomorphic for
all elements g € GL (W (k)) congruent mod p’ to 1. Thus (x) holds if and only if t > n. O
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3.2.4. Proof of 1.3

To prove 1.3, we can assume that k = k and that (M, ¢) is the Dieudonné module of D. Let n
be the i-number of (M, ¢). Let ng,m be as in 3.1.5 for G = GLj,. We have n < ngam, cf. 3.1.5.
From 3.2.3 we get that D is uniquely determined up to isomorphism by D[p"] and so also by
D[p™=m]. Thus the number 7'(r, d) exists and we have T'(r,d) < Ngam. From 3.2.3 we also get
that T'(r,d) > n. If d € {0,r}, then T'(r,d) = ngam =n = 0. If d ¢ {0, 7}, then the s-number
and the h-number of (End(M), ) are 1 and 2 (respectively) and End (M) has rank 72. Thus for
de S(1,r — 1) we have (cf. 3.1.5)

n<T(r,d) < ngam < 2d(7’2, 1,2) +€p.
So T'(r,d) is effectively bounded from above in terms of r, cf. 2.4.1. This proves 1.3.

3.2.5. Principal quasi-polarizations

Suppose 7 = 2d = rys, k = k, and we have a principal quasi-polarization \; of (M, ). We
refer to the triple (M, @, A\pr) as a principally quasi-polarized Dieudonné module over k. Let
G :=Sp(M, ;). Let n € N U {0} be the i-number of (M, ¢, G). Let (D, Ap) be a principally
quasi-polarized p-divisible group over Spec(k) whose principally quasi-polarized Dieudonné
module is isomorphic to (M, ¢, Apr). The principally quasi-polarized Dieudonné module of any
other principally quasi-polarized p-divisible group over Spec(k) of height » = r, is of the form
(M, g, Apr) for some g € G(W (k)). So as in the proof of 3.2.3 we argue that n is the smallest
number ¢ € N U {0, co} for which the following statement holds:

(x) if (D1,Ap,) is a principally quasi-polarized p-divisible group over Spec(k) of height
r = 2d and if the principally quasi-polarized truncated Barsotti-Tate groups of level t of
(D1,Ap,) and (D, Ap) are isomorphic, then (D1, Ap, ) is isomorphic to (D, \p).

As in 3.2.4 we argue that there exists a smallest number 7'(d) € N such that any principally
quasi-polarized p-divisible group over Spec(k) of height » = 2d is uniquely determined up to
isomorphism by its principally quasi-polarized truncated Barsotti—Tate group of level T'(d). The
number 7'(d) is effectively bounded from above in terms of the relative dimension 2d? + d of
G = Sp(M, \pr) over Spec(W (k)) and so also of d itself.

From the very definition of T'(d) we get:

3.2.6. COROLLARY. — Suppose k = k. Let D be a p-divisible group over Spec(k) of
height r = 2d and dimension d. Let D' be the Cartier dual of D. Then the number of
isomorphism classes of principally quasi-polarized p-divisible groups of the form (D,\p) is
bounded from above by the finite number of distinct truncations of level T'(d) of isomorphisms
D = Dt ie. by the number of elements of the following finite set of isomorphisms
Im(Tsom(D, D) — Isom(D[p” D], Dt [pT(D)])).

3.2.7. PROPOSITION. — Suppose k = k. Let R be the normalization of k[[w]] in an algebraic
closure K of k((w)). For x € {k,K} let D, be a p-divisible group over Spec(x) of height
r and dimension d. Then Dy, is the specialization (via Spec(R)) of a p-divisible group over
Spec(K) which is isomorphic to Dy if and only if Dy[p”"?] is the specialization (via
Spec(R)) (of c)l truncated Barsotti-Tate group of level T (r,d) over Spec(K ) which is isomorphic
to D [pT (9],

Proof. — 1t suffices to check the if part. Let Gi be a truncated Barsotti—Tate group of level
T(r,d) over Spec(R) that lifts Dy [p” ">%)] and that has the property that its fibre over Spec(K)
is isomorphic to D [p”("%)]. Let Ry be a finite k[[w]]-subalgebra of R such that G is the
pullback of a truncated Barsotti-Tate group G, of level T'(r,d) over Spec(Ry). As Ry is a
complete discrete valuation ring, there exists a p-divisible group Dg%o over Spec(Ry) that lifts
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both Dy, and G, (cf. [21, 4.4(f)]). The pullback of D%, to Spec(K) is isomorphic to D¢ (cf.
1.3) and it specializes (via Spec(R)) to D. O

We have a logical variant of 3.2.7 in the principally quasi-polarized context. We next consider
F'-crystals with a group over k.

3.2.8. THEOREM. — Suppose k = k. Let (M, p,G) be an F-crystal with a group over k; so
@(M) C M. Let h be the h-number of (M, ). Let m := T(Lie(G), ¢) and let n :=2m + ¢,,.
Let g€ G(W(k)). Let t e NU {0}.

(a) Suppose G is smooth over Spec(W (k)) and there exists Ghin+t € G(Whintt(k)) which

is an isomorphism between the reductions mod p"t"*t of (M, gy) and (M, ). Then
there exists go € G(W (k)) which is an isomorphism between (M, gp,G) and (M, ¢, Q)
and whose image in G(Whyn44(k)) is congruent mod p™ =™ 10 G nis.

(b) If G = GLyy, then the images of the two reduction homomorphisms Aut(M,p) —

Aut(M/p"~™ M, ) and Aut(M/p" "M, p) — Aut(M/p"~™ T M, @) are the
same.

Proof. — Part (b) is a practical application of (a) for the case when G = GL. As G(W (k))
surjects onto G(Wp,4p++(k)), it suffices to prove (a) under the extra assumption that gy 4,4+ =
Lagjphsn+ens. So g mod p' 7+ fixes Im(o(M) — M/p" ™+t M). But p" M C ¢(M) and so
g mod p*+ fixes also the Wi, 1,4+ (k)-submodule p™ M /ph+7+t M of M /p" "+t M. Thus
g is congruent mod p™** to 1,,. So the element gy exists, cf. 3.1.1 (applied with G = G’,
M=M' and n(G)=0). O

3.2.9. On F'-truncations

One can generalize the D-truncations of 3.2.1 as follows. Let (M, p,G) be a p-divisible
object with a group over k and let (Fi(M))iES(a,b) be a lift of it (see 2.2.1(b) and (d)).
Let @;: F*(M) — M be the o-linear map defined by the rule ¢;(z) = p~ip(z), where
x € F{(M). We denote also by ¢; its reduction mod p?. By an inner isomorphism be-
tween (M/p?M, (F'(M)/pF'(M))ies(a,b): (¥i)ies(ab), Gw, (k) and a similar quadruple
(M/p"M, (F{(M)/p"F{(M))ies(a.), ((99)i)ics(ap), Gw,x))  defined by  some lift
(F{(M))ics(apy of (M,gp,G) (with g € G(W(k))), we mean an arbitrary element
feIm(G(W(k)) — G(W,(k))) that has the following two properties:

(i) it takes F*(M)/p?F(M) onto F{(M)/p?F}(M) for all i € S(a,b);

(if) we have fp; = (gp);f foralli € S(a,b).

By the F-truncation mod p? of (M, ¢, G) we mean the set F (M, ¢, G) of inner isomorphism
classes of quadruples (M/pTM, (F*(M)/p1F*(M))ies(a,b): (¥i)ies(a,b)» Gw, (k) We obtain
by allowing (F*(M));es(a,p) to run through all lifts of (M, ¢, G).

If (M, ) is a Dieudonné module over k and if G is smooth, then it is easy to see that the
D-truncations mod p? of (M, p,G) and (M, gp,G) are inner isomorphic if and only if the
F-truncations mod p? of (M, ¢, G) and (M, g, G) are inner isomorphic.

3.3. Refinements of 3.1.1

In many particular cases we can choose the W (k)-span E of 3.1.1(a) to be stable under
products and this can lead to significant improvements of the inequalities we obtained in 3.1.1 to
3.1.5. For the sake of generality, we now formalize such improvements in a relative context.

Let (M, ¢, G) be alatticed F-isocrystal with a group over k. Until Section 4 we assume k = k.
Until Section 4 we also assume that there exists an integral, closed subgroup scheme G of GL ),

which contains G and for which the following two conditions hold:
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(i) the triple (M, ¢, G1) is a latticed F-isocrystal with a group over k;
(i) there exist a B(k)-basis By := {e1,...,e,, } of Lie(G1p(;)) and a permutation 7, of
S(1,v7), that have the following four properties:
(il.a) Ey:={e1,... ey ) is a W(k)-submodule of End(M) such that E41 Fy C Ey;
(ii.b) each cycle (I1,...,1q) of 7 has the property that for j € S(1,q) we have @(e;,) =
Pl el ,,» where the integers n;,’s are either all non-negative or all non-positive;
(ii.c) if v :=dim(Gp)) (so v € S(1,v1)), then the intersection E := £y N Lie(Gp))
has {e1,...,e,} as a W(k)-basis and moreover the permutation 7; normalizes
S(1,v);
(ii.d) for any t € N and every element of G(W(k)) that has the form
Lar + 3 1es(1,00) P w161, Where all z;’s belong to W (k), we have z; € pW (k) for
alll € S(v+1,v7).
Let

1
Ey:=FE; LJ NEnd(M) = Lie(Gg(x)) N End(M).

From (ii.a) we get that 1, + F5 is a semigroup with identity contained in End(M).

3.3.1. LEMMA. — There exists a closed subgroup scheme Go of GL); that is defined by the
rule: if A is a commutative W (k)-algebra, then Go(A) is the group of invertible elements of the
semigroup with identity LMoy a + E2 Qw k) A. We have G1 = G>.

Proof. — We show that GGo is an integral, closed subgroup scheme of GLj; and that
Lie(G2p)) C Eg[%] = El[l—lj]. If 1ps € Eo, then 1y + Ey = F5 is a W(k)-subalgebra of
End(M) which as a W (k)-submodule is a direct summand; so obviously G2 is an integral,
closed subgroup scheme of GLy; and we have Lie(Gapk)) C B[] = Ei[5].

We now consider the case when 1y ¢ Fs. Let E3 := End(M) N (Eg[%] + B(k)1a); itis a
W (k)-subalgebra of End (M) that has E as a two-sided ideal. The finite W (k)-algebra E5/FE5
is isomorphic to a W (k)-subalgebra of B(k)1y; and so to W (k)1 So as W(k)-modules,
we have a direct sum decomposition E3 = Fy @ W (k)1 Let G5 be the integral, closed
subgroup scheme of GLj; of invertible elements of E3. Let = € 1M®W(k)A + E2 Qw ) A
be an element that has an invertible determinant. The inverse ! € End(M) of z belongs
to G3(A) and moreover modulo the ideal Ez @y (r) A of E3 @ (x) A it is 1y, 4. Thus
r~1le IM@wua+ E2 @w k) A. This implies that the group G5 (A) is the group of all elements
of Lm@y )4 + E2 ®w (k) A that have an invertible determinant. From this description of points
of G5, we get that G5 is an integral, closed subgroup scheme of either GLj; or G5 and that we
have Lle(GgB(k)) - EQ[%] = El[%]

If z € E1, then we have 157 + p'a € Go(W (k)) for all ¢ > 0. Thus El[%] C Lie(G2p))
and therefore we have identities Lie(G1p(x)) = El[%] = Eg[%] = Lie(Gapx))- So Gipk) =
G2B(k), cf. [1, Ch. 1L, 7.1]. Thus G1 = G2. O

3.3.2. THEOREM. — We recall that conditions 3.3(i) and (ii) hold. Let m; € N U {0} be the
smallest number such that p™ (Eq) C By C Eo. Let g € G(W (k)) N (1p + p? E1) with j € N.
If p =2 we assume that either G = G or j > 2. We have:

(a) There exists § € G(W (k)) N (1ar + p? By) which is an isomorphism between (M, gp, G)

and (M, ,G).
(b) The i-number of (M, @, G) is at most my + 1.

Proof. — To prove (a), we write g = 157 + ZleS(l,vl)pjxl(j)el’ where all z;(j)’s belong to
W (k). By inductionon ¢t € {j,j +1,...} we construct an element g € G(W (k)) such that there
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exist elements x;(¢)’s in W (k) that satisfy the identity

(20a) G- 39907 g gs e T =1u+ Y plat)er
1eS(1,v1)

If t =5 let g, := 1p,. The passage from ¢ to ¢ + 1 goes as follows. For | € S(1,v;) let
q := —min{0,n; }; we recall that n; € Z is such that p(e;) = p™e,, ) (cf. 3.3(ii.b)).
We first consider the case p > 3. Let

(20b) gir= [ exp(Ta(t+1)e)eG(W(k),
1eS(1,v)

where all Z;(t + 1)’s belong to W (k). As 71 normalizes S(1,v), we have

(20c) @ﬁ;rllga_l = H exp(—p T Mo (Z,(t+ 1)) en, 1)) € G(W(k))
1eS(1,v)

(to be compared with (14)). As EyEy C E; and p > 3, for any e € ) the element exp(p'e) =
v+ >y %ei belongs to 1,7 + p* £;. From this and the inequalities ¢; > 0 and q; + n; > 0,
we get that any exponential element of either (20b) or (20c) belongs to 1,; + p*E;. Thus, as
1ar + pEy is a semigroup contained in End (M), we get that g, 1 € 1), + p' Eq and that (cf.
also (20a)) we can write

Q0d)  Gryr (Ge- - Gigdy G e e =1+ Y pla(t+ e,
leS(1,v1)

where all z}(¢ 4+ 1)’s belong to W (k). If i > v, then z}(t + 1) € pW (k) (cf. 3.3(ii.d)).
Based on 2.6(a), from (20b), (20c), and (20d) we get that for any [ € S(1,v) the Witt vector
xj(t + 1) € W(k) is congruent mod p to the sum (to be compared with (15))

+qW;1<z>U(55ﬂ;1(l)(t +1)).

PUE (1) +a(t) —p O
As in the part of the proof of 3.1.1 that pertains to (4+) and (—), we argue that we can choose the
Zi(t+1)’s with [ € S(1, v) such that we have x}(t + 1) € pW (k) for all [ € S(1,v). Thus for all
1 € S(1,v1) we can write p'z}(t + 1) = p"Tla;(t + 1), where z;(t + 1) € W (k). This ends the
induction for p > 3.

Let now p =2. Fort > 2, we have 2t — 1 >t + 1. So the above passage from ¢ to ¢ 4+ 1 has to
be modified only if t = j = 1, cf. 2.6(b). As E1 E; C Ey, for any e € F; the element 1, + pe has
an inverse in 157 + pE; and thus (cf. 3.3.1) it is an element of G3(W (k)) = G1(W (k)). Thus,
ift=j=1and G =Gy, we can take

20e)  Ger=ly+ »_ pTUE(2)e € Go(W (k) =Gi(W (k) =G(W(k))
leS(1,v)

and we can proceed as above. This ends the induction.

The infinite product § := - - - §j 4254195 € G(W (k)) N (1ar +p E) is well defined (as W (k)
is p-adically complete). Passing to limit t — oo in (20a), we get Ggpg ¢~ = 1. Thus g is an
isomorphism between (M, gp, G) and (M, ¢, G). So (a) holds.
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We prove (b). For g € G(W(k)) < G1(W(k)), we have g — 15 € Es (cf. 3.3.1). If g is
congruent mod p™*! to 1y, then g — 1y € p™ 1 Ey C pEy. Thus g € GW (k) N (1 +
pE7). So there exists an isomorphism between (M, g, G) and (M, ¢, G) which is an element
of G(W (k)), cf. (a) applied with j = 1. So (b) follows from Definition 3.1.4. O

3.3.3. Variant

Suppose G = G and F1 E; = 0. Then 3.3.2(a) holds even if j = 0, i.e. even if we only have
g€ GW(k))N(1p + E). This is so as we have exp(z) =1 + z for any x € E' = E;. Thus the
proof of 3.3.2(a) holds even if 7 = 0 and so the proof of 3.3.2(b) can be adapted to get that the
i-number of (M, p, G) is at most m;.

3.3.4. COROLLARY. — Let m1 be as in 3.3.2. We assume that G = G1 and that all slopes of
(Lie(GBx)), ¥) are 0. Then the i-number of (M, p, G) is at most m;.

Proof. — Let Ez, := {z € Lie(Gp()) NEnd(M) | o(z) = 2}. We can assume E = F) is the
W (k)-span of Ez,. We have Ez Ez, 6 C Ez,, cf. 3.3(ii.a). Let g,,, € G(W(k)) be congruent
mod p™* to 1p,. We write g,,,, = 17 +e, with e € E (to be compared with the proof of 3.3.2(b)).
Based on 3.3.2(a), to prove the corollary it suffices to check that there exists g € G(W (k)) such
that ggm, g~ '~ € G(W(k)) N (1o + pE).

The element 1 + e = g, € G(W(k)) normalizes E5. Thus (1 + e)E C E C Fy =
(1as + €)FE5. So by reasons of length of artinian modules we get that (1,7 + ¢)E = E. Let
e’ € E be such that (1p; + e)e’ = —e. Thus (1py +e)(lpr +€') =1y +e—e=1y. So
(In +6)_1 =ly+eely+E=1y +Ezp ®z, W (k).

Let H be the group scheme over Spec(Z,) defined by the rule: if A is a commutative
Z,-algebra, then H(A) is the group of invertible elements of the semigroup with identity
IM@wuya + Bz, ®z, A contained in End(M) @y (r) A. The automorphism o of W (k) acts
naturally on H (W (k)). If w € H(W (k)), then u € G(W (k)) (cf. 3.3.1) and o(u) = ouoc ™! is
oup~t € H(W(k)). Moreover we have g,,, € H(W (k)), cf. previous paragraph.

Let G, be the image of gy, in H(k). The scheme H is an open subscheme of the affine
space over Spec(Z,) that is of relative dimension v and that is defined naturally by Ez . Thus
the group scheme H over Spec(Z,) has connected fibres and is smooth. Moreover, the special
fibre Hy, is a quasi-affine group and thus also an affine group over Spec(F,) (cf. [6, vol. I,
Exp. VIp, 11.11]). Let g € H (k) be such that §g,,, o(g) ! is the identity element of H (k), cf.
Lang theorem (see [1, Ch. V, 16.4]). Let g € H(W (k)) be an element that lifts §. The element
G9m, 29 o™ = Ggm,0(g71) € H(W (k)) < G(W(k)) has a trivial image in H (k) and thus it
belongsto 1)y +pE. O

3.3.5. Example.—Let ¢ € N be such that g.c.d.(c,7p; — ¢) = 1. We assume (M, ) is the
Dieudonné module of a p-divisible group D over Spec(k) of height r := rj, dimension d :=
r—c=r) — ¢, and (unique) slope %. Let m := T(End(M), ¢). Let E be the W (k)-subalgebra
of End(M) generated by elements of End(M) fixed by ¢. As all slopes of (End(M [%]), ©)
are 0, any W(k)-submodule O of End(M) with the property that (O,¢) is a Dieudonné—
Fontaine p-divisible object over k, is W (k)-generated by elements fixed by ¢ and so is contained
in E. Thus m € N U {0} is the smallest number such that p™ End(M) C E. As ¢ € N, we have
E # End(M) and so m > 1. The i-number n of (M, ) is at most m, cf. 3.3.4. But D is uniquely
determined up to isomorphism by D[p™] (cf. 3.2.3) and thus also by D[p™]. Using direct sums
of t € N copies of (M, ), a similar argument shows that D' is uniquely determined up to
isomorphism by D*[p™].

3.3.6. Example. — The case m = 1 of 3.3.5 also solves positively the isoclinic case of [35,
Conjecture 5.7] as one can easily check this starting from [10, 5.3 and 5.4]. For the reader’s
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convenience here is the version of the last sentence in the spirit of this paper. In this section, we
use the notations of 3.3.5 and we moreover assume that D is such that there exists a W (k)-basis
{eo,€e1,...,er—1} of M with the property that p(e;) is e;44 if i € S(0,¢ — 1) and is pe; 4 if
i € S(c,r —1). Here and below, all the lower right indices of the form ; and ; ; are mod 7. For
i,j € S(0,7 — 1) let e; ; € End(M) be such that it annihilates e/ if j’ # j and takes e; into e;.
We have o(e; ;) = p™ie;td,j+d, Where the integer n, ; is defined by the rule:

(x) itis 0 if (i,5) € S(0,¢ — 1)2 U S(c,r — 1)2, itis 1 if (i,5) € S(e,r — 1) x S(0,¢ — 1),

and itis —1if (i,5) € S(0,¢ —1) x S(e,r — 1).

We check that m = 1. Replacing D by D! if necessary, we can assume ¢ > d = r — c;
so ¢ > 5. Based on (2) and the inequality m > 1, to show that m = 1 it is enough to
show that for all pairs (i,7) € S(0,r — 1)? we have an equality S7;; = 1, where 7;; :=
(ni,j7 Ni+d,j+d> Ti+2d,j+2d) - - > ni+(r71)d,j+(r71)d)~

So it suffices to show that none of the 7; ;’s is of the form (—1,0,0,...,0,—1,...), cf.
Definitions 2.2.4(b) and (c). Thus it suffices to show that for any pair (i, jo) € S(0,c — 1) x
S(c,r—1), the first non-zero number of the sequence 1,4 jo+d; - - - , Nig+rd, jo+rd 1S 1. We write
Jo =c+do, with dg € S(0,d —1). As dp € S(0,c— 1), we can assume 7, +4,jo+d = Nig-+d,do
is 0. Thus (i1, j1) := (io + d,do) € S(0,c — 1)? and we have i; > ji.

We have to show that the first non-zero number of the sequence n;, j, 7, +d,ji+d>--->
Ny 4 (r—1)d,ji+(r—1)d 18 1. We can assume 1, 44, j, +a # 1. As i1 > j1 we have nj, a5, +a # —1.
Thus 1, 1+d,j,+a = 0. If iy +d < ¢ — 1, let (in,j2) := (i1 + d,j1 + d) € S(0,c — 1) if
i1 + d > c, then from (x) and the equality n;, 4, +4 = 0 we get j; + d > ¢ and thus we have
(i2,72) == (i1 +2d — r,j1 + 2d — r) € S(0,c — 1)%. We conclude that (i, j2) € S(0,c — 1)?
and iy > jo. We have n;, j, = 0. We have to show that the first non-zero number of the

SEQUENCE My oy -« - s Myt (r—1)d,jo+(r—1)d 18 1. As in this way we cannot construct indefinitely
pairs (i, j.) € S(0,c —1)? with 4, > j,, (here u € N), we get that the first non-zero number of
the sequence 7, j,, -+« Njy 4 (r—1)d,jot+(r—1)d 1S 1.

So S7;; =1 and m = 1. Thus for ¢t € N, D" is uniquely determined up to isomorphism
by D*[p] (cf. end of 3.3.5). This was predicted by [35, Conjecture 5.7].

3.3.7. Example. — We assume that all slopes of (End (M), o) are 0 and that G; = GL ;. Thus
3.3(i) holds. Let Eyz, be the Z,-subalgebra of End()/) formed by elements fixed by ¢. Let
E\ = FEz, ®z, W(k) C End(M); we have v, = r2, and B = End(M). We also assume that
p > 3 and that G = Sp(M, A\ps) (respectively and that G = SO(M, Aps)), where Ay is a perfect
alternating (respectively perfect symmetric) bilinear form on M which is a principal (respectively
a principal bilinear) quasi-polarization of (M, ¢). As p > 3, we have a direct sum decomposition
End(M) = Lie(G) @ Lie(G)=*, where Lie(G)* is the perpendicular of Lie(G) with respect to
the trace form on End(M). As ¢ normalizes Lie(G)[z—lj], it also normalizes Lie(G)L[%]. Thus
E, has a W(k)-basis By = {eq, ..., ey, | that is the disjoint union of a Z,-basis {e,...,e,} of
Eiz, N Lie(G) and of a Z)-basis {€y41, ..., } of E1z, N Lie(G)*. Let 7y := Lg(1,0,)-

Properties 3.3(ii.a) to (ii.c) hold, cf. constructions. We check that 3.3(ii.d) holds. Let g €
G(W (k)) be of the form 1as + 31 g(1,01) plwzie;, where all z;’s belong to W (k). The involution
of End(M) defined by \js fixes Lie(G)* and acts as —1 on Lie(G). Thus the product
(Lar = 202y prmer + 20 L  praver) (Iar + X0 51,00y Proier) is 1 (as g € G(W(K))) and
belongs to 15 + 2(2;’;U+1ptxlel) +p!TrE;. As p >3, for [ € S(v + 1,v1) we have ; €
pW (k). So 3.3(ii.d) holds. Thus 3.3(ii) holds. So 3.3.2 applies. In particular, the i-number of
(M, ¢, Q) is at most my + 1, where m; € N U {0} is the smallest number such that we have
p™ End(M) C By = Eiz, ®7, W(k) (cf. 3.3.2(b)).
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4. Four examples

In this section we include four examples that pertain to Sections 3.1 to 3.3. Let ¢, € {1, 2} be
as before 3.1. Let (M, ¢, G) be a p-divisible object with a group over k. Let n € N U {0} be the
i-number of (M, p,G), cf. 3.1.4. In this section we will assume that k = k and that G
is a reductive group scheme over Spec(W(k)). Thus the group scheme G is smooth over
Spec(W (k)) and its fibres are connected and have trivial unipotent radicals. As G is smooth over
Spec(W (k)), with the notations of 2.7 we have G = G’ and n(G) = 0. Let M = @f:a Fi(M),
(F'(M))ies(ap)» and pt: G, — G be as in 2.2.1(d). Let by, € S(0,b— a) be the smallest number
such that we have a direct sum decomposition

br

Lie(G):= @ F'(Lie(G))

i=—br,

with the property that 3 € G,,, (W (k)) acts on F(Lie(G)) through  as the multiplication with
7. As the group scheme (3 is reductive, both W (k)-modules F** (Lie(G)) and F~* (Lie(G))
are non-zero. As in 2.5, we have a o-linear automorphism o := pu(p) of M. As ¢ = oou(p™!),
the s-number of (Lie(G), ) is br. If by, < 1, we say (M, ¢, G) is a Shimura p-divisible object
over k. Let f_; € N U {0} be the rank of F'~1(Lie(@)).

In Sections 4.1-4.5 we will consider four unrelated situations.

4.1. Example 1

In this section we assume that by, = 1 and that all slopes of (Lie(G), ) are 0. Let f € N be
the smallest number such that there exists a filtration

O:€o§51§§€f:L1e(G)

by W (k)-submodules that are direct summands, with the property that for any number i €
S(1, f), the quotient W (k)-module &;/&;—1 is a maximal direct summand of Lie(G)/&;—4
normalized by . For i € S(2,f) we choose z; € & \ (£i—1 + p&;) such that we have
po(x;) — pr; € -1 \ p€i—1 and the images of 1, ..., 2,1, and z; in

Lie(G)/(F° (Lie(G)) + F! (Lie(G)) + pLie(G)) = F~1(Lie(G)) /pF ™! (Lie(G))

are k-linearly independent. The possibility of making such choices is implied by the maximal
property of £;/&;_1. By reasons of ranks we get f —1 < f_1. By induction on j € S(1, f) we get
¢ normalizes &1 + pa + -+ - +p?~1E;. Taking j = f, we getthat E := & +pEa + - +p/ 71
has a W (k)-basis formed by elements fixed by ¢. Thus (E, ¢) is a Dieudonné p-divisible object
over k. As p/~1 annihilates Lie(G)/E we get T(Lie(G),¢) < f — 1. Thus (cf. 3.1.5 for the first
inequality)

n < 2T (Lie(G), ) + &, <2(f — 1) +ep <2f_1 +&p.

Often 3.3.4 provides (respectively 3.3.2(b) and 3.3.7 applied with G; = GLj; provide) better
upper bounds of n. For instance, if G = GL, (respectively if p > 3 and G = Sp(M, \ps) with
A as a principal quasi-polarization of (M, ¢)) we get n < T(Lie(G), ) < f—1 (respectively
n < T(Lie(G),p) + 1 < fo1 + 1). If (M, ) is the Dieudonné module of a supersingular
p-divisible group over Spec(k) of height 2d and if G = GL), (respectively and if p > 3 and
G = Sp(M, \yr)), then f_; is d? (respectively is @). Thus we have the following concrete
application of 3.2.3 (respectively of 3.2.5):
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4.1.1. PROPOSITION. — Let d € N. If p > 2 (respectively if p > 3), then any (respectively
any principally quasi-polarized) supersingular p-divisible group of height r = 2d over Spec(k)
is uniquely determined up to isomorphism by its truncated (respectively its principally quasi-

polarized truncated) Barsotti-Tate group of level d* (respectively of level d2;- d 1 1).
4.2. Root decompositions

The image of p is either trivial or a closed G.,, subgroup of GG and thus its centralizer in G is a
reductive group scheme which has a maximal torus (cf. [6, vol. 11, Exp. XIX, 2.8 and 6.1]). Thus
there exists a maximal torus 7" of G through which g factors. We have Lie(T') C FY(Lie(G)). It
is easy to check that there exists g € G(W (k)) such that g normalizes Lie(T'). Accordingly, for
the next three examples (i.e. until Section 5) we will assume that we have p(Lie(T)) = Lie(T).

Let
Lie(G) = Lie(T @ gy
=2

be the root decomposition relative to T'. So @ is a root system of characters of T" and each g., is
a free W (k)-module of rank 1 on which T acts via the character .

Let A be a basis of @ such that €D .8, C PLr, Fi(Lie(G)). Let @ and &~ be
the sets of positive and negative (respectlvely) roots of ® with respect to A. Let C be the
unique Borel subgroup scheme of G which contains 7' and for which we have Lie(C) =
Lie(T) @, cq+ 8-> cf. [6, vol. I, Exp. XXII, 5.5.1]. As Lie(C)[;] is generated by the B(k)-
vector subspace €D ca gy[%] of the Lie algebra @fio ﬁi(Lie(G))[%], we have an inclusion
Lie(C) C @Y%, Fi(Lie(G)).

As p factors through T, for any root v € @ there exists an integer n(vy) € S(—br,br) such
that we have g, C Fr)(Lie(G)). As ¢ = oou(p™?) and oo(Lie(T)) = ¢(Lie(T)) = Lie(T),
there exists a permutation II of ® such that we have

(21) oo(g,) = gri(y) and @(gv):Pn(ng(w), Yy € ®.

If v € T (respectively if ¥ € 7), then n(y) € S(0,br) (respectively then n(y) € S(—byr,0));
this is a consequence of the inclusion Lie(C) C @?io Fi(Lie(@)).

As Lie(T) is normalized by ¢, it has a W (k)-basis formed by elements fixed by . Let
o := (y1,...,7) be a cycle of II. For j € S(1,1) let y,, € g, \ {O} be such that (cf. (21))
we have ¢(y,,) =p™09)y,  (with 341 := 1), where m(v1),...,m(,) are integers that are
either all positive or all negative. Let By := {yy,, ...,y }.

Let E be a W(k)-submodule of Lie(G) that contains Lie(T"), that satisfies the identity
B[] = Lie(G)[3], and that is maximal subject to the property that it has a W (k)-basis B which
is the union of a Z,-basis of {x € Lie(T) | ¢(x) = x} and of subsets B3y that are associated as
above to some cycle Iy of II. Let 7 be the permutation of B which fixes BN Lie(T") and which
for v € ® takes the element of g, N B into the element of gry(,) N B.

4.3. Example 2

It is not difficult to check that there exists an element g € G(W (k)) which normalizes T'
and which has the property that g takes Lie(C) into Lie(C'). Accordingly, in this section
we assume that there exists a Borel subgroup C of G which contains 7" and which has the
property that ¢(Lie(C)) C Lie(C'). So if we have g, C Lie(C'), then n(y) > 0. Thus we have
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Lie(C) C @?io Fi(Lie(G)). Thus, not to introduce extra notations, we can assume that C' = C';
so ¢(Lie(C)) C Lie(C).

The last inclusion implies that IT normalizes both ®* and ®~. As we have n(y) > 0ify € ®*
and n(v) < 0if v € ®~, for any cycle ITp = (71, . ..,7:) of II we can choose the above elements
Yy, € 9, to be generators of g, . Thus, due to the maximal property of £, we have E = Lie(G)
(i.e. for any v € @ the intersection B N g~ is a W (k)-basis of g,). Thus T(Lie(G),¢) =0, i.e.
(Lie(G), ) = (E, ) is a Dieudonné—Fontaine p-divisible object over k. We have n < ¢, cf.
315. Thusn<lifp>3andn < 2ifp=2.

4.3.1. PROPOSITION. — We recall that G is a reductive group scheme, that T is a maximal
torus of G through which p: G,, — G factors and whose Lie algebra is normalized by , and
that we have ¢(Lie(C)) C Lie(C) for some Borel subgroup scheme C of G that contains T.
Then the i-number n of (M, ¢, Q) is at most 1.

Proof. — We know that n < 1 if p > 3. Thus we can assume p = 2 (but as the below arguments
work for all primes, we will keep the notation p instead of 2). Let ®(0) := ® U {0}, n(0) := 0,
and G(0) :=T. For v € ® let G(y) be the unique G, subgroup scheme of G that is normalized
by T and such that Lie(G (7)) = g5, cf. [6, vol. III, Exp. XXII, 1.1]. If « € g, is such that z” # 0,
then the torus T acts on (xP) via the p-th power of the character ~y. The reduction Z mod p of P
belongs to g, mod p, cf. [1, Ch. I, 3.1, 3.5, Lemma 3 of 3.19]. From the last two sentences we
get that 77 = 0. This implies that for each v € ® we have a bijection exp,, : g, = G(7)(W(k))

which maps z € g into exp,, (z) = > .7 ”1”—, (we emphasize that g is not included in the domain
of the exponential map of 2.6 defined for O = M).

Let g1 € G(W(k)) be congruent mod p to 1. Let I; € Lie(G) be such that g; is congruent
mod p? to 1 + ply. We show that there exists g € G(W (k)) congruent mod p to 1, and such
that gg1 09 tp~! € G(W (k)) is congruent mod p? to 1,;.

We take g to be a product [ .4 g] (taken in any order), where g| € G(v)(W
is congruent mod p!'*tmax{0=n(M} o 1,,. Let 19 € Lie(T) be such that ¢9 € G(0)(W
is congruent mod p? to 1ps + plf. The element pglp~! = aogloy* € G(0)(B(k)) N
GLy (W (k) = G(0)(W (k)) is congruent mod p? to 1y + poo(l?). For v € @ let z] €
pttmaxt0.=nMig and 17 € g, be such that g] = exp. (z7) is congruent mod p?+max{0.=n(n)}
to 1y + ptt0ax{0:=n(M}Y ¢f. 2.6.1 and 2.6.2. Based on (21) we have

—~ o~
=y

~
~ —

0gi e = exppyy) (p Oy (27)) € G(TI()) (W (k).

So if n(vy) > 0 (respectively if n(7y) < 0), then from 2.6(b) (respectively from the very definition
of 17) we get that pg] o=t = expnm(p1+ma"{07”(7)}00(33¥)) is congruent mod p? to 1y
(respectively to 157 4+ poo(1])). Thus by replacing g; with the following product

—1
ggwg‘l@‘l:( 11 9?)91( 11 ng¢‘1> € G(W(k))
YEP(0) Y€2(0)

of elements congruent mod p to 1,y, the role of /; gets replaced by the one of

he=h+ > G+ 3  [H-co@)]+ > o)

v€P,n(y)>0 v€®(0),n(v)=0 v€P,n(v)<0

By writing all elements defining I, as linear combinations of elements of the W (k)-basis B of
E =Lie(G), as in the part of 3.1.1 that involves (+) and (—) we argue that we can choose the
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17°s and so also the g]’s, such that we have I; € pLie(G); here v € ®(0). Thus ggipg~ ¢!
is congruent mod p? to 1. So if n = 2, then the i-number of (M, p, G) is at most 1 and this
contradicts the definition of n. Asn <2, wegetn<1. O

4.3.2. PROPOSITION. — We continue to work under the hypotheses of 4.3.1. Let Ey :=
{e € Lie(G) | p(e) = e}. We have:
(a) The cocharacter :G,, — G is the unique Hodge cocharacter of (M,¢,G) that
centralizes E.
(b) The lift (Fi(M))ieg(mb) is the unique lift of (M, p, G) such that for any e € Eq and every
i € S(a,b) we have e(F*(M)) C F'(M).

Proof. — As ¢ = oop(p~'), we have n(y) = 0 if and only if g, C FO(Lie(@)). So as II
normalizes ® and ®~ and as n(y) > 0 (respectively n(y) < 0) if v € &+ (respectively if
v € &), we easily get that Ey C F°(Lie(G)). Thus  centralizes Ey and for e € E we have
e(Fi(M)) C Fi(M) for all i € S(a,b); thus e(Fi(M)) C Fi(M) for all i € S(a,b).

Let 111 be another Hodge cocharacter of (M, ¢, G) that centralizes Ey. As o(Lie(T)) =
Lie(T), Lie(T) is W (k)-generated by elements of Ey N Lie(T). Thus p; centralizes Lie(T)
and therefore it factors through 7". So p and p; commute. So to show that p = py it is enough
to show that i, = i1y As @~ (M) = (oou(p~1)) (M) = @°_, p~"F'(M), for i € S(a,b)
we have ((p~ip) ' (M)) N M = > ,_gp'F*~'(M). This identity implies that the filtration
(F'(M)/pF*(M));es(ap) of M/pM is uniquely determined by (M, o). Thus both cocharacters
pu and puqy, act on Fi(M)/F™*Y (M) + pF'(M) = F'(M)/pF'(M) via the —i-th power of
the identity character of G,,,. So as py, and 1 commute, by decreasing induction on ¢ € S(a, b)
we get that F*(M)/pF(M) is the maximal k-vector subspace of M /pM on which both
and 1k act via the —i-th power of the identity character of G,,,. This implies ux = p1%. Thus
= 1. So (a) holds.

Let (F{(M))ics(ap) be another lift of (M,p,G) such that for any e € Ey and i €
S(a,b), we have e(Fj(M)) C F{(M). The inverse of the canonical split cocharacter of
(M, (F{(M));ies(ap): ®) fixes all elements of Ey (cf. the functorial aspects of [42, p. 513]),
factors through G (cf. 2.5), and thus it is p (cf. (a)). Thus for i € S(a,b) we have F'(M) =
@’_, F/(M) = Fj(M).So (b) holds. O

If g € G(W(k)), then the Newton polygon of (M, gy) is above the Newton polygon of
(M, ) (cf. [37, Thm. 4.2]). Thus Proposition 4.3.1 generalizes the well known fact that an
ordinary p-divisible group D over Spec(k) is uniquely determined up to isomorphism by D|[p].
Proposition 4.3.2 generalizes the well known fact that the canonical lift of D is the unique lift
of D to Spec(W (k)) with the property that any endomorphism of D lifts to it. The last two
sentences motivate the next definition.

4.3.3. DEFINITION. — We refer to (M, ¢, G) of 4.3.1 as an ordinary p-divisible object with
a reductive group over k and to either (F"(M));cs(ap) o (M, (F*(M))ies(ap): %, G) as the
canonical lift of (M, ¢, Q).

4.4. Example 3

Let ¢ € N. We assume that by, = 1 and that there exists a direct sum decomposition M =

@;_, M; in W(k)-modules of rank 2 such that G = [[;_, GLy;, and we have @(Mi[%]) =
Mi+1[%] for i € S(1,c), where M1 := M;. We have rj; = 2¢. As by, =1 and G = GL3,
we have f_; € S(1,¢). For ¢ € S(1,c¢) we have cp(End(Ml)[%}) = End(MiH)[%]. Thus the
permutation 7 of /3 has at most two cycles formed by elements of 53\ Lie(T") (equivalently the
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permutation IT of ® has at most two cycles). If we have one such cycle, then its length is 2¢. If
we have two such cycles, then their length is c.

Let € € {1,2}. Let [ = ec be such that we have a cycle (y1,...,y;) of m formed by elements
of B\ Lie(T). For i € S(1,1) let s; € N U {0} be such that e, := p~ %y, generates g,, for
some ; € ®. Let (n1,...,n;) := (n(n),...,n(n)) € Z!; we have ¢(e;) = p™ie;r1 (cf. (21)).
As by, =1, for i € S(1,1) we have n; € {—1,0,1}. The number n (respectively n_) of those
1 € 5(1,1) such that n; = 1 (respectively n; = —1), is at most f_;. Moreover ny +n_ =¢ef_; <
ec=1.Thus ng :=min{ny,n_} < 5f1.

We have T({e1,...,e;),¢) < ng and there exist numbers a; € S(0,ng) such that ({(p**eq,...,
p™e;), ) is a Dieudonné—Fontaine p-divisible object over k, cf. (3) and the proof of (2). Based
on the maximal property of E, we can assume (p*eq,...,p%e;) C (y1,...,y) (i.e. s; < a; for
all i € S(1,1)). If I = ¢, then the set {n4,n_} (and so also ng) does not depend on the choice
of the cycle (y1,...,v;). Thus we can choose F such that p™® Lie(G) C E. So any element of
G(W (k)) congruent mod p™*1! to 1), belongs to 15, + pE. As Lie(T) C E, E is a W (k)-
subalgebra of [[;_, End(}/;) and so also of End(A). Thus (cf. 3.3.2(b) applied with G = Gy
and with m; € 5(0,n¢)) we have

£

n<ng+1=min{ny,n_}+1< 5

foi+1<ce+1.

4.5. Example 4

Let d € N\ {1,2}. Let D be a p-divisible group over Spec(k) of height r = 2d, dimension d,
and slopes é and %. Let (M, o) be the Dieudonné module of D; we have ry; = r. It is easy
to see that we have a short exact sequence

0—Dys—D—D;—0
of p-divisible groups over Spec(k), where the slopes of D; and D are % and % (respectively).
This short exact sequence is different from the classical slope filtration of D (see [41, §3])
which is a short exact sequence 0 — Dy — D — Dy — 0. As Dy and D, are uniquely
determined up to isomorphisms (see [5, Ch. IV, §8]), there exist a W (k)-basis {e1,...,e,}
of M and elements z1,...,24 € {(e1,...,eq) such that ¢, takes the r-tuple (eq,...,e,) into
(ea,pes,...,peq,pe1,eqra + Ta, ... e + g, peqr1 + pr1). Let

My :={e1,...,eq) and Msy:={e4qq1,...,€r).

The pairs (M1, o) and (M /My, pg) are the Dieudonné modules of D; and D (respectively).
Let ¢ be the o-linear endomorphism of M that takes (e1,. .., e, ) into (€2, pes, . .., peq, Pe1, €dt2,
coserypeqt). Let G := GLyy.

Let P, and P, be the maximal parabolic subgroup schemes of G that normalize M; and
M (respectively). Let U; and Us be the unipotent radicals of P; and P, (respectively). Let
ug € Uy (W (k)) be the unique element such that ¢y = ugp. As T we take the maximal torus of G
that normalizes (e;) for all i € S(1,7). Let L1 = GLs, Xgpec(w (k)) GLaz, be the unique Levi
subgroup scheme of either P; or P, such that T' < L4, cf. [6, vol. III, Exp. XXVI, 1.12(ii)]. We
have natural identifications Lie(L;) = End(M;) @ End(Mz), Lie(U1) = Hom(Mz, M;), and
Lie(Us) = Hom(M7y, Ms). The triples (M, g, P1) and (M, o, U;) are latticed F-isocrystals
with a group over k.

As U; is commutative we have (Lie(U;), ) = (Lie(Uy), o). We easily get that Lie(Uy)

j )

has a W (k)-basis {ez(:j) | 1 <,5 < d} such that @0(6(])) =p"i el(i)l, where each d-tuple

i
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(ngj),néj), e ,nfij)) iseither (1,1,...,1,1,—1) or some d-tuple of the form (1,1,...,1,0,1,...,
1,0). As S(1,1,...,1,—1)=1and S(1,1,...,1,0,1,...,1,0) = 0, from (2) applied to all pairs
((egj), e e&”),gp) we get T(Lie(U1), o) < 1. As Lie(Uy) is a W (k)-submodule of End(M)
whose product with itself is the zero W (k)-submodule, the i-numbers of (M, o, U;) and
(M,p,Uy) are at most 1 (cf. 3.3.3). A similar argument shows that both T (Lie(Uz), ) and
the i-number of (M, ¢, Us) are at most 1.

4.5.1. PROPOSITION. — The p-divisible group D is uniquely determined up to isomorphism
by D[p”].

Proof. —Let t € N'\ {1}. Let g; € G be congruent mod pt to 1,;. We will show thatif ¢ > 3,
then there exists g € G(W (k)) such that gg;p0g ¢y " € G(W(k)) is congruent mod p'*!
to 157. The product morphism Uz Xspec(w (k) L1 Xspec(w (k)) U1 — G is an open embedding
around the identity section, cf. [6, vol. III, Exp. XXII, 4.1.2]. Thus we can write g; = ualiu,
where the elements uy € Uy (W (k)), 1 € L1 (W (k)), and ug € U2(W (k)) are all congruent
mod p' to 1ps. As the i-number of (M, g, U ) is at most 1, to show the existence of g we
can replace ug by any other element of Uy (W (k)) that is congruent mod p to ug. Thus we can
assume u1 = 1,/.

For i € {1,2} let E; be the W (k)-span of the Z,-algebra of endomorphisms of (}M;, ).
Let E := E; @ E>. We have pLie(L;) C E (cf. 3.3.6 applied to both D; and D) and thus
Iy € Li(W(k)) N (1as + p'~E). There exists I, € Ly (W (k)) congruent mod p*~! to 1, and
such that Iy1;¢l; ' = ¢, cf. 3.3.2(a) applied with j =t — 1 to (M, ¢, L;) and E. So, as L,
normalizes both U; and Uy, by replacing g; o with l~1 gtapOZf 1wy with l~1qu~f1, and ug with the
element I11yugly M7 € Uy (W (k)) congruent mod p'~? to ug, we can assume [, is congruent
mod p'*! to 1. This implies that g; and uy are congruent mod p'*?!.

As T(Lie(Us), ) < 1, from 3.3.2(a) applied in a way similar to the one of the previous
paragraph we deduce the existence of @y € Uz(W (k)) congruent mod p'~! to 1), and such
that tous iy L= ©. As g, and us are congruent mod it the element

gt = lagepoliy 'y | = Uagruopiy o~ lug T = lagruouy iy ug T € G(W(K))
is congruent mod p'*! to the commutator of @ous and ug. A simple matrix computation
of this commutator shows that for ¢ > 3 we can write g; = u5lbu}, where uj € Uy (W (k))
and I} € L1(W (k)) are congruent mod p'~! to 1, and where u), € Us(W (k)) is congruent
mod p?~2 and so also mod p'*! to 1, (here is the only place where we need t # 2).

Repeating twice the above part that allowed us to assume that u; and [; are congruent
mod p'™! to 1,7, we get that for ¢ > 3 we can assume g, is congruent mod p'*! to u} and
thus also to 1j;. This ends the argument for the existence of g.

Thus for ¢t > 3 we have t + 1 # n; so n < 3. So the proposition follows from 3.2.3. 0O

4.5.2. Notations for d =3

Let d be 3. For a € W (k) let ,, be the o-linear endomorphism of M that takes (eq,...,eg)
into (eq, pes, pe1, es, e + aeq, pey). The slopes of (M, ¢,,) are % and % For (i,7) € {1,2,3} x
{4,5,6} let U;; be the unique G, subgroup scheme of U; that is normalized by 7', that fixes
e;jr for 7' € {4,5,6} \ {j}, and that takes e; into e; + (e;). Let n, € U1(W (k)) be the unique
element such that ¢, = ny .

4.5.3. PROPOSITION. — Suppose d = 3. Let oy, g € W (k) \ {0} be such that the F ,3-vector
subspace of k generated by ay mod p is different from the F s -vector subspace of k generated
by as mod p. Then (M, ¢, ) and (M, ., ) are not isomorphic.
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Proof. — We show that the assumption that there exists g; € G(W (k)) which is an isomor-
phism between (M, ¢,,) and (M, ¢, ) leads to a contradiction. As Lie(Pl)[%} is the maximal
direct summand of End(M [%]) normalized by ¢, and such that all slopes of (Lie(Pl)[]lj], Pa)
are non-negative, the element g; € G(W(k)) normalizes Lie(P;) and so also P;. Thus
g1 € PL(W (k)). We write g1 = uyly, where u; € Uy (W (k)) and Iy € L1 (W (k)). We have
U1l M0, 17 11 = Ny @ui1 9~ ol1. As urling, Iy and ng,puie~" belong to U (W (k)), the
actions of /1 and l; on both M; and M /M; are equal. So as [1¢ and ¢l; both normalize the
direct supplement Mp[2] of My[2] in M[3], we get l1p = @l1; so we also have uilinq, I} =
Naypu1p~ L. As I = ply, a simple computation shows that [ takes e; (respectively eg) into
aiey +biea +cyes (respectively pages +pbses + ceeg), where a1, by, c1 € W (F s ) (respectively
ag, bg € W(Fp3) and cg € Gy, (W (F)3))). As Uy = H?Zl H?:4 U;;, there exist unique ele-
ments u;; € Uy;(W (k)) such that we have uy = [[>_, H?:4 u;;j. We call u;; as the component
of uy in U;;(W (k)). Both g1 mod p and I mod p normalize the kernel of ¢,,’s mod p, i.e. they
normalize (eg, €3, €5) mod p. So u; mod p also normalizes (ez, e3, eg) mod p. If (4, 5) # (1,6),
then u;; mod p normalizes (e2, e3,es) mod p. Thus w16 mod p normalizes (e, e3, e6) mod p
and therefore it is 17/,17. As Uss fixes both (e, e3, e6) and M/(ea, e3, €6), ¢(u3s) mod p is
La1/par- Thus the component of nq,@uip~" in Uyg(W(k)) is congruent mod p to nq,. The
component of llnallfl in Uig(W(k)) is Moy, where ag := alalcgl € W(k). So a3 mod p
belongs to the F s -vector subspace of k generated by ov; mod p. The component of uyl1n, 7 !
in Uy6(W (k)) is congruent mod p to ng,. As ulllnallfl = Na,urp~ L, we get that n,, and
N, are congruent mod p. So a; mod p belongs to the F,s-vector subspace of k generated by
o1 mod p. This contradicts our hypothesis. Thus g; does not exist. O

4.5.4. Remark. —The set of isomorphism classes of p-divisible groups over Spec(k) of
height 6 and dimension 3 has the same cardinality as k, cf. 4.5.3, 1.3, and the classical Dieudonné
theory. But the set of isomorphism classes of p-torsion subgroup schemes of such p-divisible
groups over Spec(k) is finite (see [26]; to be compared with [34, §1]). Based on this, 4.5.1, and
3.2.3, we get that the set of those elements « € G, (W (k)) for which the i-number of (M, ¢,,)
is either 2 or 3, has the same cardinality as k. Let \j; be the perfect alternating form on M
defined by the rule: if 1 <1 < j <6, then A\ys(es,e;) € {0,1} and we have Aps(e;,e;) =1 if
and only if (¢,7) € {(1,6),(3,5),(2,4)}. The form Ay, is a principal quasi-polarization of any
(M, ¢a).

From 4.1.1 and 4.5.1 we easily get that 7(6,3) < 9.

5. Four direct applications
In this section we continue to assume that k = k.
5.1. The homomorphism form of 1.2

Let (Mj, 1) and (Ms, ps) be two F-crystals over k. Let (M, ) := (M1, p1) @ (Ma, v2).
For i € {1,2}, let h; be the h-number of (M;,¢;). Let his := max{hy, ha}, let myg :=
T(End(M), ), let v12 :=maz + hia, let g, € {1,2} be as before 3.1, and let nqg := mi2 + €.
The h-number of (M, @) is his.

5.1.1. THEOREM. — We endow (N U {0})? with the lexicographic order. We have:

(a) For all t € N U {0}, the images defined via restrictions of the two groups
Hom((My,¢1), (Mz,p2)) and Hom((My /p™2 T2 My, 1), (M /p™12 412t My, )
in the group Hom((M; /p™2 Tt My, 1), (Ms /p™2 Tt My, 03)), coincide.
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(b) We fix a quadruple (r1,79,c1,c2) € (N U{0})*. There exists a smallest pair

(v,1) == (0(r1, 72, €1, 02), (11,7, ¢1, ¢2)) € (N U{0})?

with the properties that n € S(0,v+ ¢, —max{ci1, c2}) and that for any t € NU{0} and
Sorevery two F-crystals (M, p1) and (Ma, p2) over k which satisfy (rar, , a1y, b1, he) =
(r1,7m2,c1,02), the images defined via restrictions of the two  groups
Hom((Mi, 1), (Ma,2)) and Hom((M /p" TV My, 1), (M2 /p" " Ma, ¢2)) in the
group Hom((My/p" Tt My, p1), (Ms/p" T Ms, ps)), coincide. The number v (and so
also n) has upper bounds that depend only on r1, ro, and max{cy, ca}.

(c) Letry, o € N. There exists a smallest pair

(v,n) == (v(r1,72),n(r1,r2)) € (NU {0})2

with the properties that n € S(0,v + €, — 1) and that for any t € N U {0} and for every
two p-divisible groups Dy and Do over Spec(k) of heights r1 and ra, a homomorphism
Dy [p"tt] — Do[p™™t] lifts to a homomorphism Dy — Dy if and only if it lifts to a
homomorphism D1[p" Tt — Do[p" ], The number v (and so also n) has upper
bounds that depend only on r1 and r».

Proof. — Let e1a € Hom((My/pt2tor2tt My o), (My/p™M2 o2t My o). Let
g € Aut(M/p™2tv12+ M ) be such that it takes zo € My /p"12 12T M, into a9 and it takes
x1 € My /p™12 T2 M into 21 + e12(1 ). Let § € Aut(M, ) be such that it lifts the reduction
mod p™2tt of g, cf. 3.2.8(b). Let é12: M7 — Ms be the W (k)-linear map such that we have
g(x1) — é12(x1) € My for all 21 € M;. We have é12 € Hom((My,¢1), (Ma,2)) and more-
over eq3 and €15 have the same image in Hom((M; /p" 2t My, 1), (Ma/p™2 T My, p5)). This
proves (a).

We know that m12 has an upper bound b12 € N which is effectively computable in terms of
2h12 = 2max{cy,co} and 3, = (rpr, +7a1,)% = (11 +72)% (cf. 2.4.1 and end of 2.2.1(e)) and
that we have v < mjs + his (cf. (a)). From this (b) follows.

To prove (c), for i € {1,2} we take (M;, ;) to be the Dieudonné module of D;. We have
hio € {0,1}. If hyo =0, then hy = he = 0 and so both D; and D- are étale p-divisible groups;
in such a case any homomorphism Dy [p" ] — Dy[p™**] lifts to a homomorphism Dy — Ds.
Thus we can assume that h12 = 1. Based on 3.2.3, the proofs of (a) and (b) can be adapted to the
context of p-divisible groups; thus (c) follows from the particular case of (b) when max{cy,ca}
ishio=1. O

5.1.2. Remark. —If v1,n1 € N are such that v; > v and ny; > n, then the homomorphisms
parts of 5.1.1(b) and (c) continue to hold if we replace (v,n) with (v1,n1).

5.2. Transcendental degrees of definition

For simplicity, in this section we work in a context without principal bilinear quasi-
polarizations (but we emphasize that all of 5.2 can be adapted to the context of 2.2.1(c)).
Let (M, p,G, (to)acys) be a latticed F-isocrystal with a group and an emphasized family of
tensors over k such that the 1 -condition holds for (M, ¢, G). Let (F*(M));cs(a.p) be a lift of
(M, p,G).

Let p := pean:Gm — G be the inverse of the canonical split cocharacter of
(M, (F'(M));ies(ap):®) (see 2.5). Let (Mz,,Gz,) be the Z,, structure of (M,G) that is de-
fined as in 2.5 by the o-linear automorphism o := ppu(p): M == M; thus oy fixes Mz, and
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normalizes G(W (k)) and moreover we have t, € 7(Mz,) forall « € J. Let n € N U {0} be
the i-number of (M, ¢, G).

5.2.1. FACT. — Let k1 be the smallest subfield of k with the property that iy, (1) is the
pullback of a cocharacter pyw, (k,): Gm — Gz, Xspec(z,) SPec(Wn(k1)). Then the field ki
is finitely generated and its transcendental degree t(ky) is at most nr3,. Thus if t(ky) = 0, then
k1 is a finite field.

Proof. — Let B be a W (k)-basis of M such that ;1 normalizes the W (k)-spans of elements of B.
Let By be a Z,-basis of Mz, ; we also view it as a W (k)-basis of M. Let B € M, xr,, (W (k))
be the change of coordinates matrix that changes B;-coordinates into B-coordinates. Let Ry
be the F-subalgebra of %k generated by the coordinates of the Witt vectors of length n with
coefficients in k that are entries of B mod p™. Obviously ki is a subfield of the field of
fractions of Ry. As R; is generated by nr3, elements, k; is finitely generated and we have
dim(Spec(Ry)) < nr3,. Thus t(k1) < nr3,. O

Until 5.3 we take G to be smooth over Spec(W (k)). Thus for any [ € IN there exists a
cocharacter (1,11 of Gz, Xspec(z,) Spec(Wyii (k™)) that lifts the pullback [iyw, (gperty 1O

Spec(Wn(kferf)) of p11w, (k,)» cf. [6, vol. II, Exp. IX, 3.6]. We can assume that f1; 5,141 lifts
11,n+1, cf. loc. cit. From [6, vol. II, Exp. IX, 7.1] we get that there exists a unique cocharacter
t1: G — Gz, XSpec(z,) Spec(W(kIferf)) that lifts all i1 ,,4’s.

The cocharacter piyy (1) :G,, — G is of the form g"uggl for some g,, € G(W(k)) con-
gruent mod p" to 1, cf. [6, vol. II, Exp. IX, 3.6] and the fact that we have G(W (k)) =
proj limyen G(Wiy1(k)). Let gy, := g;, 'o0gnog - € G(W(k)); it is congruent mod p™ to 1y;.
The element g, ! € G(W (k)) defines an isomorphism between (M, UOMlW(k)(%), G, (ta)acs)
and (M, gnp, G, (ta)acs). Moreover (M, p, G, (ta)acs) and (M, gne, G, (to)acs) are iso-
morphic under an isomorphism defined by an element of G(W (k)), cf. the very definition of n.
We conclude that:

() the quadruple (M,p,G,(to)acy) is isomorphic to (M, Ogulw(k)(%),G, (ta)acs):

thus (M, 0, G, (ta)acy) is definable over kP™ and moreover its isomorphism class is
uniquely determined by the triple (Mz,,, (to)aes, B, (k1))-
This motivates the following definitions.

5.2.2. DEFINITIONS. —

(a) We say ky (respectively ¢(k;)) is the field (respectively the transcendental degree) of
definition of (M,p,G) or of (M,p,G,(ta)acy) With respect to the lift (F*(M));cs(a,b)
of (M,p,G). By the transcendental degree of definition td € N U {0} of (M,¢,G) or of
(M, ¢,G, (to)acs) we mean the smallest number we get by considering transcendental degrees
of definition of (M, ¢, G) with respect to (arbitrary) lifts of it.

(b) If td = 0, then by the field of definition of (M, p, G) or of (M, ¢, G, (to)aecs) We mean the
finite field that has the smallest number of elements and that is the field of definition of (M, ¢, G)
with respect to some lift of it.

If td = 0 we do not stop to study when the field of definition of (M, ¢, G) is contained in all
fields of definition of (M, ¢, G) with respect to (arbitrary) lifts of (M, ¢, G).

5.2.3. THEOREM (Atlas Principle). — We recall that k = k, that G is smooth over Spec(W (k)),
and that the W -condition holds for (M, ¢, G). Let g € N. Let Z(q) € N U {0, 00} be the num-
ber of isomorphism classes of latticed F-isocrystals with a group and an emphasized family of
tensors over k that have the form (M, gp, G, (to)acy) for some g € G(W (k)), that have tran-
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scendental degrees of definition 0, and that have ¥ ,q as their fields of definition. Then we have
Z(q) e NU{0}.

Proof. — We check that the number Ny, € N U {00} of isomorphism classes of pairs of the
form (Mz,,, (ta)acs) that are obtained by replacing ¢ with some g and by considering some
lift of (M, g, G), is finite. The “difference” between two such pairs is measured by a torsor ©
of G'z, in the flat topology of Spec(Z,). So © is smooth over Spec(Z,). Thus © is a trivial
torsor if and only if @Fp is a trivial torsor. As the set Hl(Fp7 Gpp) is finite (cf. [38, Ch. III, §4,
4.2 and 4.3]), the number of isomorphism classes of torsors of Gy, is finite. From the last two
sentences we get that Ny, € N.

Let m € N. We check that the number N (p,m,q,Gz,) € N U {0,00} of cocharacters of
Gz, Xspec(z,) Spec(Wy, (Fpa)) that over Spec(W,,(k)) are G (W, (k))-conjugate to piw,, (1),
is also finite. Based on the infinitesimal liftings of [6, vol. II, Exp. IX, 3.6] and on the fact that
the group Gz, (W, (Fp)) is finite, it is enough to prove that the number N (u,1,q,Gz,) is
finite. It suffices to prove that N(u,1,q, GL sz) € N. The number of maximal split tori of
GLwm, @5, F,, is finite and each such torus has precisely (b —a+ 1)"™ cocharacters that act
on Mz, ®z, Fpq via those —i-th powers of the identity character of G, that satisty i € S(a,b).
Thus N (u, 1, g, GLMZ,,) eN.

Let ngay, be as in 3.1.5; we have ng,p, > n. Based on 5.2 (x), we get that Z(qg) is bounded
from above by a sum of Ny, numbers of the form N (i, nfam,q,Gz,) and in particular that
Z(q) < NeorN (4, Mtam ¢, GLiar, ). Thus Z(q) e NU{0}. O

5.3. Groupoids and stratifications

Main Theorem A has many reformulations in terms of (stacks of) groupoids. Not to increase
the length of the paper, we postpone to future work the introduction of Shimura (stacks of)
groupoids that parametrize isomorphism classes of Shimura p-divisible objects we defined in
the beginning of Section 4. Presently, this Shimura context is the most general context to which
we can extend the classical deformation theories of p-divisible groups (see [30, Chs. 4 and 5],
[21, Chs. 3 and 4], [11, 7.1], [8, Main Thm. of Introd.], [9, Main Thm. 1], and [12, §7]). Here,
as an anticipation of the numerous possibilities offered by 1.2, we work only with (principally
quasi-polarized) p-divisible groups. However, we point out that based on 3.2.2, by using [40, 5.4]
as a substitute for the deformation theory of [21, 4.8], the below proof of 5.3.1 can be adapted
to contexts that involve arbitrary Shimura varieties of Hodge type and thus involve (principally
quasi-polarized) Dieudonné modules equipped with smooth groups as in 3.2 (like the context of
[40, §5]).

Let S be a reduced Spec(F),)-scheme. Let D be a p-divisible group over S of height r and
relative dimension d. For i € {1,2} let D; be the pullback of D to S13 := S Xgpec(r,) S Via
the i-th projection p;:S12 — S. For [ € N, let I; be the affine S13-scheme that parametrizes
isomorphisms between D [p'] and Dy[p']; it is of finite presentation. The morphism 4; : I; — Sy
of S-schemes is a Spec(F),)-groupoid that acts on S in the sense of [6, vol. I, Exp. V] and [31,
Appendix A].

5.3.1. BASIC THEOREM. —

(a) There exists a number | € N effectively bounded from above only in terms of r and such
that for any algebraically closed field K of characteristic p, the pullbacks of D through
two K-valued points y1 and ys of S are isomorphic if and only if the K -valued point of
S1o defined by the pair (y1,y2) factors through i;: I} — Sa.

(b) Suppose S is smooth over Spec(Fy,) of dimension d(r — d) and D is a versal deformation
at each maximal point of S. Then there exists a stratification S(D) of S in reduced,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



286 A. VASIU

locally closed subschemes such that two points y1 and ys as in (a) factor through the
same stratum if and only if yi (D) is isomorphic to y5(D). The strata of S(D) are regular
and equidimensional.

(c) The stratification S(D) of (b) satisfies the purity property.

(d) Let g € N and let K be as in (a). Then for any stratum Sy of the stratification S(D) of (b)
that is a subscheme of Sk, there exists a regular scheme Sylq| that is finite, flat over Sy
and such that the pullback of D[p?] to Splq] is constant, i.e. is the pullback to Sy|q] of a
truncated Barsotti-Tate group of level q over Spec(K).

Proof. — Part (a) follows from 1.3: as [ we can take any integer greater that T'(r, d). For the rest
of the proof we will assume that S is smooth over Spec(F,,) of dimension d(r — d) and that D
is a versal deformation at each maximal point of .S. We first construct the strata of S(D) that are
subschemes of Sk. Let y; € S(K) = Sk (K). Let

S(y1)'P == (p2 o i)k ((p1oit) 5 (y1)) € SEP.

As I is a Spec(F,,)-scheme of finite type, S(y;)'°P is a constructible subset of SioP (cf. [18,
Ch. 1V, (1.8.4) and (1.8.5)]). Let S(y1) be the Zariski closure of S(y;)'P in Sk it is a reduced,
closed subscheme of Sy . We identify a maximal point of S(y;)*P with a K-valued point
of Sk. We say S(y1)t°P is regular at a maximal point of it, if there exists a regular, open
subscheme of S(y;) which contains this point and whose topological space is contained in
S(y1)¥P. As S(y;)'P is a dense, constructible subset of S(y;)'°P, there exists a regular, open,
dense subscheme W (i) of S(y1) such that W (y;)*P C S(y)tP.

A point y3 € S(K) = Sk (K) belongs to S(y;)*P if and only if y;(D) and y3(D) are
isomorphic. Let now y> € S(K) = Sk (K) be a maximal point of S(y1)"P. Let i12:y5(D) —
Y5 (D) be an isomorphism, cf. (a). We have S(y2)"P = S(y1)'P. For i € {1, 2} let I,,, be the
spectrum of the completion of the local ring of Sk at y;. We denote also by y; the factorization
of y; through I,,. Let I, X5, S(y1)*P be the pullback of S(y;)"P to a constructible subset of
I ;?p. Due to the versal property of D and the fact that S is smooth over Spec(F,,) of dimension
d(r — d), the local schemes I,,, and I, have dimension d(r — d) and moreover there exists a
unique isomorphism

Ilgifyl RS Iy2

such that the following two things hold (cf. [21, 4.8]; see [9, 2.4.4] for the equivalence of the
categories of p-divisible groups over I; and over the formal completion of I; along v;):
(i) we have 12 0 y1 =12 : Spec(K) — I,,;

(i) there exists an isomorphism I7,(Dr,,) = D, that lifts 712.

Due to (ii) the local geometries of S(y;)™P at y; and yo are the same. In other words, I12
induces via restriction an isomorphism J;5”: I, X s, S(y1)*°P = I, X5, S(y1)'°P between
constructible subsets. Any commutative F,-algebra of finite type is excellent, cf. [29, (34.A) and
(34.B)]. So the morphism I,,, — Sk is regular. From the last two sentences we get (cf. [29, (33)]
for the regular part of (iv)) that:

(iii) the dimensions of S(y1)P at y; and y» are the same;

(iv) if S(y1)'°P is regular at yo, then S(y; )P is also regular at y;.

By taking y» to be a maximal point of W (y;)*P and y; to be an arbitrary maximal point of
S(y1)tP, from (iii) we get that S(y;)*°P is equidimensional and from (iv) we get that S (1 )*°P is
regular at all its maximal points. So S(y; ) is also equidimensional. As S(y)*°P is a constructible
subset of S(y1)'°P, from the last two sentences we get that S(yy )'°P is the underlying topological
space of an equidimensional, regular, open subscheme S (1) of S(y1). Thus S(y; ) is a reduced,
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locally closed subscheme of Sk . Let
J12 : Iyl XSk S(yl) - Iy2 XSk S(yl)

be the isomorphism of reduced schemes defined by 715 (or J{;’P).

Let Sk (D) be the set of reduced, locally closed subschemes of Sk that are of the form S(y;)
for some y; € S(K) = Sk (K). Standard Galois descent shows that there exists a set Sg, (D) of
reduced, locally closed subschemes of S whose pullbacks to Sﬁ are the elements of Sﬁ(D).

If L is an algebraically closed field that contains K and if y¥ is the L-valued point of S defined
by y1, then by the very definitions S(y) = S(y1) 1. So we have natural pullback injective maps
Sk (D) < Sp(D) and S, (D) — SL(D). So Sk, (D) and Sk (D)’s define a stratification S(D)
of S in the sense of 2.1.1. So as each S(y;) is a regular and equidimensional Spec(K')-scheme,
(b) holds.

Let v, n € N be as in 5.1.1(c) for r; =7y :=r. Let o := max{q,l,n}. For m € {f,n + v} let
L,.(y1) be the S(y;)-scheme that parametrizes isomorphisms between Dg,,,) and the pullback

of 4§ (D) through the natural morphism S(y;) — Spec(K). We consider the natural truncation
morphism T4, , : L1, (y1) — L (y1) of S(y1)-schemes.

Let I ,(y1) be the minimal reduced, closed subscheme of Ij(y1)rea through which the
reduced morphism defined by T, factors. As nn > [, from (a) we get that Ifm,(yl) is in fact
an S(y1)-scheme. The resulting morphism

Mo (y1) : Law(y1) — S(y1)

is surjective, cf. the definition of S(y; ). To prove (c) and (d), it suffices to show that S(y;) is an
affine S(y1)-scheme and that I; , (y1) is a regular scheme that is finite, flat over S(y1). It suffices
to check this under the extra assumption that S is affine. So the schemes S, S(y1), I (y1), and
I; ., (y1) are also affine.

We check that the surjective morphism m, ,(y1) : I » (y1) — S(y1) is quasi-finite above any
point Ygen of S(y1) of codimension 0. Let Fe, and Igey, be the fibres over ygen of I ,,(y1) and
Iit0(y1) (respectively). We show that the assumption that Fi,, is not of dimension 0 leads to
a contradiction. This assumption implies that the image of Iy, in Fye, contains an open, dense
subscheme of Fy.,, of positive dimension. We get the existence of an algebraically closed field L
that contains the residue field of ygen and such that the number of automorphisms of y; (D), [p"]
that lift to automorphisms of y; (D), [p"**] is infinite. From this and 5.1.1(c) we get that the
image of Aut(y;(D)r) = Aut(y; (D)) in Aut(y;(D)r[p"]) is infinite. But Aut(y; (D)) is a
Z,-algebra of finite rank and so this image is finite. Contradiction.

So Fyen has dimension 0. Thus there exists an open, dense subscheme U (y1) of S(y1) such
that the reduced Spec(K)-scheme of finite type Ir,. (y1) X5,y U(y1) is regular as well as (cf.
[18, Ch. IV, (9.6.1) and (11.1.1)] and the surjectivity of ms, ,,) finite, flat over U(y; ). From (ii)
and constructions we get the existence of an isomorphism of .Sk -schemes

Kio: Ly, Xs Liw(y1) == Iy, X5 Lo (y1)

such that we have (11y2 X5 Miaw(y1)) 0 K12 = Ji2 Xs(y,) M0 (y1). In particular, we get:
(v) the morphism mj, ,, (1) is finite and flat above an open subscheme of .S (y; ) that contains
yy if and only if it is so above an open subscheme of S(y;) that contains ys.
As in the above part that pertains to local geometries, the existence of such isomorphisms K2
of Sk-schemes implies that I, ,(y1) is regular and equidimensional. From (v) and the existence
of U(y1) we get that I, ,(y1) is a finite, flat S(y;)-scheme. From this and the fact that I, ,,(y1)
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is a regular subscheme of I;(y;), we get that (d) holds for 72 (and so also for ¢ < 72) and that
I;.,(y1) is the normalization of S(y;) in the ring of fractions of Iy ,(y1). As I ,(y1) is affine
and my, ,,(y1) is a finite, surjective morphism, from the Chevalley theorem of [16, Ch. IL, (6.7.1)]
we get that S(y;) is affine. So (c) holds. O

5.3.2. Ultimate stratifications

Let N >3 and A1 n be asin 1.5. Let (A, A 4) be the universal principally polarized abelian
scheme over 4,4 1,y. We have:

(a) There exists a stratification Sqn of Aqi1,n defined by the following property: two

geometric points Y1 and yo of Aq1,n with values in the same algebraically closed field
K, factor through the same stratum of Sy n if and only if the principally quasi-polarized
p-divisible groups of yi (A, A 4) and y5(A, A 4), are isomorphic.

(b) The stratification Sq N of Aq1,N satisfies the purity property and its strata are regular

and equidimensional.

(c) Let g € N. Let K be as in (i). Then for any stratum Sy of the stratification Sq N that is

a subscheme of Ay N . there exists a regular scheme So[q] that is finite, flat over Sy
and such that the pullback to Sy|q] of the principally quasi-polarized truncated Barsotti—
Tate group of level q of (A, A 4) is constant, i.e. it is the pullback to Sy[q| of a principally
quasi-polarized truncated Barsotti-Tate group of level q over Spec(K).

The proofs of (a) to (c) are the same as those of 5.3.1(b) to (d), cf. 3.2.5. We only have to
add that the use of [21, 4.8] in the proof of 5.3.1(b) has to be substituted by the well known fact
that the formal deformation spaces of a principally polarized abelian variety over Spec(K) and
of its principally quasi-polarized p-divisible group, are naturally identified (cf. the Serre—Tate
deformation theory of [23, Ch. 1]).

Let Schif:i be the category of reduced Spec(F,)-schemes endowed with the étale topology.
Let Ag,1 be the moduli stack over Schfe’zi of principally polarized abelian schemes of relative
dimension d (see [13, Ch. 1, §4, p. 17 and 4.3]). The stratification Sq y descends to a stratification
Sg of Ay 1. As we did not formalize stratifications of stacks, we describe S, directly as follows.

We fix a principally quasi-polarized p-divisible group 7 := (D, Ap) over Spec(k) of height
r = 2d. The objects of A4 1 are principally polarized abelian schemes over reduced Spec(Fy,)-
schemes. The substack Ag1(7) of Ag; associated to 7 is the full subcategory of Ay 1
whose objects are principally polarized abelian schemes over reduced Spec(F,,)-schemes with
the property that all principally quasi-polarized p-divisible groups obtained from them via
pullbacks through points with values in the same algebraically closed field K that contains k,
are isomorphic to 7 X gpec(r) Spec(K).

We refer to Sy (respectively to Sy ) as the ultimate stratification of Ag, (respectively of
Adg,n).

Let Ag1(T )k := Aa1(T) X g 7y Schig and Agy = Aga xg
red
F:ﬁ

the full subcategory of Sch, formed by reduced Spec(k)-schemes. The pullback of Ag 1 (7 )
via the 1-morphism -Ad,LNk — Ad71k is the stratum of Sy y that is a subscheme of Ad717Nk and
that corresponds naturally to 7. Using this it can be easily checked that Ag 1 (7 )y, is a separated,
algebraic stack over Schfed in the similar sense as of [13, Ch. I, §4, 4.6 and 4.8] but worked out
using only reduced Spec(k)-schemes.

The following proposition, to which we refer as the integral Manin problem for Siegel modular
varieties (see [28, p. 76] and [39, p. 98] for the original Manin problem), implies that Ag 1 (7") is
a non-empty category.

r, Sch’ ,, where Sch” , is

red
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5.3.3. PROPOSITION. — Let Spec(C) be a local, complete scheme whose residue field is k = k.
Then any principally quasi-polarized p-divisible group T/, over Spec(C') that lifts T, is the one
of a principally polarized abelian scheme over Spec(C).

Proof. — We first show that 7 is associated to a principally polarized abelian variety (A, \4)
over Spec(k). Let (M, ¢, Apr) be the principally quasi-polarized Dieudonné module of 7. Let

A be an abelian variety A over Spec(k) whose F-isocrystal is (M[%], ©), cf. [39, p. 98]. Based
on [32, §23, Cor. 1], up to an isogeny, we can choose A such ~that it has a principal polarization
A7 The principally quasi-polarized Dieudonné module of (A, A7) is of the form (M, p, A
where M is a certain W (k)-lattice of M|[-].

1
P

2

5.3.3.1. LEMMA. — If \1 and Ay are two principal quasi-polarizations of (M[%}, ©), then the

triples (M[Il)], ©, A1) and (M[%}7 ©, \a) are isomorphic.

Proof. — 1t suffices to prove the lemma under the assumption that there exists a € [0, %] naQ
such that all slopes of (M [%], ) are o and 1 — «, cf. Dieudonné’s classification of F-isocrystals
over k (see [28, §2]) and [39, p. 98]. Let i € {1,2}.

We first consider the case when o # %; soa#1—a. Let M[ll)] = M, ® M;_,, be the
direct sum decomposition that is normalized by ¢ and such that for 8 € {a, 1 — «} all slopes of
(Mg, ) are 3. We have \;(Mg, M) = 0 and the bilinear form \; 5: Mg @px) M1-5 — B(k)
induced naturally by A;, is non-degenerate. But \; 1_, is determined by \;,. Thus A; is
uniquely determined by the isomorphism j; : (Ma, ) == (M{_,,plu;__¢) defined naturally
by \i o via the rule j;(z)(y) = \i(z,y) = Nio(x,y), where x € M, and y € M;_,. Let
f12 = jfljg :(Ma, ) = (My, ). The automorphism ey := fio @ 17, of (M[%},gp) =
(Mey, ) ® (Mi_q, ) takes Ag into Ay, ie. for z,y € M[%] we have an identity As(z,y) =
A1 (e12(2), e12(y)).

Let now o be 3. As a = £, the F-isocrystal (M[%],go) over k is a direct sum of simple
F-isocrystals over k of rank 2. Using the standard argument that shows that any two non-
degenerate, symmetric, bilinear forms on an even dimensional complex vector space are
isomorphic, we get that both (M [%},gp,)\l) and (M [%],g@,/\z) are direct sums of principally
quasi-polarized F-isocrystals over k of rank 2. Thus we can assume 7, = 2 (i.e. d = 1). But in
this case the lemma is trivial (for instance, cf. [27, pp. 35-36]). O

(SIS

Based on the lemma, it suffices to prove the proposition under the extra hypothesis that
A=A ;- From the classical Dieudonné theory we get directly the next property.

5.3.3.2. THE ISOGENY PROPERTY. — There exists a unique principally polarized abelian
variety (A, Aa) over Spec(k) that is Z[%}-imgenous to (A, A7) and whose principally quasi-
polarized Dieudonné module is identifiable under this Z[%]—isogeny with (M, o, ).

So T is the principally quasi-polarized p-divisible group of (A, \4). From the Serre-Tate
deformation theory (see [23, Ch. 1]) and the Grothendieck algebraization theorem (see [17,
Ch. III, Thm. (5.4.5)]), we easily get the existence of a principally polarized abelian scheme

over Spec(C') whose principally quasi-polarized p-divisible group is 7. O

5.3.4. Remarks. — (a) If d > 2, then the stratification S; x has a class which is not a set (for
d > 3 this follows from 4.5.4).

(b) Let g € N. Let Sq v 4 be the stratification of A4 1,y defined by the rule: two geometric
points y; and yo of A4 1 n with values in the same algebraically closed field, factor through
the same stratum of S; x4 if and only if the principally quasi-polarized truncated Barsotti—Tate
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groups of level ¢ of y; (A, A\4) and y5(A, A4), are isomorphic. The strata of Sy y 4 are regular
and equidimensional (one argues this in a way similar to the proof of 5.3.1; instead of [21,
4.8] one has to use a principal quasi-polarized version of [21, 4.7 and 4.8] and the Serre—Tate
deformation theory). For ¢ > T'(d) we have Sq n,q = Sa . cf. 3.2.5. The case ¢ = 1 was first
studied by Ekedahl and Oort, cf. [34, §1]. The strata of Sy n 1 are quasi-affine, cf. [34, 1.2]. As
each stratum of Sy 4 is a locally closed subscheme of a stratum of Sy n.1, the strata of Sy n 4
are also quasi-affine. For 1 < ¢ < T'(d), we do not know when the stratification Sy n 4 satisfies
the purity property.

(c) The existence of the ultimate stratifications Sq and Sy, -, though of foundation, is only a
first step toward the solution of the below Main Problem. Due to the importance of Main Problem,
we will state a general form of it, even if in this paper we do not formalize specializations of
latticed F'-isocrystals with a group (such specializations are standard for p-divisible groups; see
also 3.2.7). To be short, we state Main Problem only in a context that involves tensors but no
principal bilinear quasi-polarizations.

MAIN PROBLEM. —Let (M, p,G,(ty)acy) be a latticed F-isocrystal with a group and
an emphasized family of tensors over k such that the W-condition holds for (M, p,G) (see
2.2.1(b) and (d)). List using families all isomorphism classes of (M, g, G, (to)acs)’s (Where
g € G(W(k))) and decide which such classes specialize to which other.

5.4. On the specialization theorem

Let S be an integral Spec(F,)-scheme. We take k to be an algebraic closure of the field of
fractions kg of S. Let € be an F'-crystal over S. Let he € N U {0} be as in 2.1; the h-number of
any pullback of € via a geometric point of .S is at most h¢. Let A/ be the Newton polygon of €.
Let

U*P := {x € §'P | 2*(€) has Newton polygon \'}.

We recall that Grothendieck proved that for any geometric point y of S' the Newton polygon of
y*(€) is above N (see [19, Appendice]) and that Katz added that moreover there exists an open
subscheme U of S such that the notations match, i.e. UP is the topological space underlying U
(see [22, 2.3.1 and 2.3.2]).

We give another proof of the existence of U using Grothendieck’s result. This result implies
that if 2 € U*°P, then all points of the spectrum of the local ring of x in S belong to U°P. To
show the existence of U, it is enough to show that there exists a non-empty open subscheme U’
of S such that U'*°P C U'°P, The argument for this goes as follows. The existence of such open
subschemes U’ implies that U'P is an ind-constructible subset of S*°P, cf. [18, Ch. IV, (9.2.1)
and (9.2.3)]. Based on this and the above part that pertains to = € U'*P, from [18, Ch. IV, Thm.
(1.10.1)] we get that each point of U*°P is an interior point of U*°P, Thus U'°P is an open subset
of S*°P and therefore U exists.

Let €y be a Dieudonné-Fontaine p-divisible object over F,, of Newton polygon A. Let hg
be the h-number of €y and let ry be the rank of €. Let i: €y — € be an isogeny. Let
1 € N be such that p' annihilates Coker(4). Let v := max{v(rg,70,ho,b) | b € S(0,h¢)} and
n := max{1,n(ro, 7o, ho,b) | b € S(0, he)} be defined using the numbers of 5.1.1(b).

Let i(n + v + [) be the reduction of i mod p"T¥*!; it is a morphism of M (W, ,41(k))
whose cokernel is annihilated by p'. From 2.8.3 (see 2.8.3(a) applied with (Vi,V,q) =
(k. ks,n+wv+1)), we get that there exists a finite field extension k7 of kg such that i(n +v +1)

is the pullback of a morphism i(n +v + 1), of M(W;4041(kz)) whose cokernel is annihilated

by p. Let S be the normalization of S in kg (the notations match, i.e. k:g is the field of fractions
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of S) The continuous map Stop _, Gtop is proper, cf. the going-up theorem of [29, (5.E)]. So
if there exists an open, dense subscheme U’ of S with the property that U'top maps into P,
then we can take U’ to be the complement in S of the image of S*P \ U’*P in S*P. Thus it
suffices to consider the case when k:g = kg. Let U’ be an open subscheme of S such that we have
a morphism

iv(n+v+1): (¢o7 Wi ot (U’ )) —>E(€; Wn+v+l(U/))

of M(W,,4,+1(U")) that extends i(n + v + )5, and that has a cokernel annihilated by p', cf.
2.8.3(b). For an arbitrary geometric point z:Spec(K) — U’, the reduction mod p"*! of the
pullback morphism z* (i (n 4 v +1)) lifts to amorphism i, : €ox — 2*(€) of F-crystals over K
(cf. 5.1.1(b), 5.1.2, and the definitions of v and n). As the cokernel of the reduction mod p"+* of
i, is annihilated by p' and as n > 1 (by reasons of ranks) the morphism i is injective and thus
an isogeny. Thus z*(€) has Newton polygon N. So U’*°P C U*°P. This ends the argument for
the existence of U’ and so also of U.

6. Proof of Main Theorem B

Let S be a reduced Spec(F,)-scheme. Let € be an F-crystal over S. Let S(€) be the Newton
polygon stratification of S defined by €, cf. [22, 2.3.1 and 2.3.2]. The stratification S(&) is of
finite type and locally in the Zariski topology of .S has a finite number of strata. The main goal of
this Section is to prove Main Theorem B stated in 1.6, i.e. to prove that S(€) satisfies the purity
property (see 6.2). In 6.1 we capture the very essence of Main Theorem B for the case when S is
an integral, locally noetherian scheme. In 6.3 we include two remarks on the connection between
6.1 and a result of de Jong and Oort and on Newton polygon stratifications defined by certain
reductions modulo powers of p of F-crystals. We will use the notations of 2.8.2.

6.1. THEOREM. — Suppose S is integral and locally noetherian. Let U be the maximal open
subscheme of S with the property that the Newton polygons of pullbacks of € through geometric
points of U are all equal (see 5.4). Then U is an affine S-scheme.

Proof. — 1t suffices to prove this under the extra assumptions that S = Spec(R) is affine and
that the underlying R-module of E(&;W;(S)) is free. Let Ry be the R-algebra of global
functions of U. We have to show that U is affine, i.e. the natural and functorial morphism
fu :U — Spec(Ry) is an isomorphism. This statement is local in the faithfully flat topology of
S and thus we can assume that S is local. Let R be the completion of R and let S = Spec(R )
As S is a faithfully flat S-scheme, to show that U is affine (i.e. fy is an isomorphism)
it suffices to show that U xg S is affine (ie. fu Xg S = [« .5 1s an isomorphism). Let

Sy = Spec(Ry),. S = Spec(R ) be the irreducible components of the reduced scheme of S
(here ] e N); they are spectra of local, complete, integral, noetherian F -algebras The scheme
U xg S is affine if and only if the irreducible components U X g Sl, ., UXg S of the reduced
scheme of U x5 SAare all affine (cf. [16, Ch. II, Cor. (6.7.3)]). So to prove the theorem we can
assume R = R = R;. As R is a local, complete ring, it is also excellent (cf. [29, (34.B)]). Thus
the normalization S™ of .S is a finite S-scheme. So S™ is a semilocal, complete, integral, normal
scheme. This implies that S™ is local. But U is affine if and only if U x g S™ is affine, cf. 2.9.2.
Thus to prove the Theorem, we can also assume S is normal; so S = S™.

We emphasize that for the rest of the proof we will only use the fact that S is an integral,
normal, excellent, affine scheme (but not necessarily local and thus not necessarily complete).
We group the main steps into distinct (and numbered) sections.
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6.1.1. Notations and two operations

Let kg, k, he, N, €, hg, 70, v, and n be as in 5.4. So N is the Newton polygon of pullbacks
of € via geometric points of U, € is a Dieudonné—Fontaine p-divisible object over F), that has
Newton polygon N, g is the rank of &g, etc. Let go := ro!. Below all pullbacks to Spec(k) of
F-crystals are via the natural dominant morphisms Spec(k) — Spec(F),) and Spec(k) — S.

We consider the followmg two replacement operatlons (R1) and (R2) of the triple (S, U, €)
by a new triple (S U @) For both operations Sisan integral, normal, affine S-scheme of finite
type, Cis €, and

(R1) either (S,U) is the normalization of (S,U) in a finite field extension of ks

(R2) or U is an open subscheme ofS and U :=U is U x5 S.

The scheme S is also excellent, cf. [29, (34.B)]. Moreover, U is affine if and only if U is affine
(in connection with (R1), cf. 2.9.2). So in what follows we will often perform one of these two
operations in order to simplify the setting and to eventually end up with a situation where in fact
we have U = S. By performing (R1), we can assume that R is an F 4, -algebra (i.e. Fe0 — R).

Let V be a local ring of U that is a discrete valuation ring. Let Vo be a complete
discrete valuation ring that is a faithfully flat V-algebra, and that has an algebraically closed
residue field ky. Let V4 := VP'. We fix an isomorphism V5 =5 ko[[w]] and we view it
as an identification under which Vo and V; become ks-algebras. Let &, be the Frobenius
endomorphism of W (k3)[[w]] that takes w into w? and is compatible with o, .

6.1.2. KEY LEMMA. — There exists a number | € N that is greater than max{hor, he }, that
depends only on &y and he but not on 'V, and such that there exists an isogeny iy, : oy, — Cy,
of F-crystals over Spec(V}) whose cokernel is annihilated by p'.

Proof. — We first show by induction on 1y € N that there exists a number l~c € N that does not
depend on V' but only on € and h¢ and such that we have an isogeny 7; : €cy, — €y, whose
cokernel is annihilated by ptc, where € is an F-crystal over Spec(kz) and where the role of €y,
is that of the pullback to Spec(V7) of an arbitrary F-crystal over Spec(V3) of constant Newton
polygon which depends only on .

Let o, be the smallest slope of N. Let [; := —[—ay(ro — 1)]. Theorem [22, 2.6.1] says
that there exists an isogeny 4} : €' — €y, where @’ is an ay-divisible F-crystal over Spec(V42).
The o -divisibility means that if (M’ ', V') is the evaluation of € at the thickening defined
by the closed embedding Spec(Vz) — Spec(W (k2)[[w]]), then for all v € N the ®Y-linear
endomorphism (¢')" of M’ is divisible by pl“®1]. We can choose ¢’ and i} such that Coker(zl)ls
annihilated by pll cf. [22, p. 153]. If « is the only slope of NV, then €’ is the pullback of an
F-crystal over Spec(kz) (cf. [22, proof of 2.7.1]); so we can take lc to be 15 and 7 to be i1. In
particular, le exists if 7o = 1.

We now consider the case when N has at least two slopes. From [22, proof of 2.6.2] we get
that we have a unique short exact sequence

0—-¢ —¢—¢,—0

of F-crystals over Spec(V2) with the property that the Newton polygons of the pullbacks of €
(respectively of €) via geometric points of Spec(V2) have all slopes equal to «; (respectively
have all slopes greater than ;). As Vj is perfect, loc. cit. also proves that this short exact
sequence has a unique splitting after we pull it back to Spec(V;). Thus we have a unique direct
sum decomposition €y, = &}, @ €4, of F-crystals over Spec(V;). Using this decomposition
and the fact that both F-crystals ¢} and &, over Spec(V2) have ranks smaller than o, by
induction we get the existence of I¢. This ends the induction.
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Let [; := max{d(ro,0,¢) | ¢ € S(0, he + Ic)} with d(ro,0,¢)’s as in 2.4.1. The h-number of
Cc is at most he + I So from 2.4.1 (applied over ko) we get that there exists a Dieudonné—
Fontaine p-divisible object €{, over F,, for which we have an isogeny s : %Vl — Ccv, whose

cokernel is annihilated by p[f. As the number of isomorphism classes of Dieudonné—Fontaine
p-divisible objects over F,, that have N as their Newton polygons is finite, there exists a number
[nr € N such that we have an isogeny i3 : €oy, — %Vl whose cokernel is annihilated by p'V .

As iy, we can take the composite isogeny i1 o2 0 3. Thus as [ we can take any integer greater
than max{hor¢, he,lc +1f +ix}. O

6.1.3. The open subscheme U
With [ as in 6.1.2, let m := 8l + n + v + 1. We continue the proof of Theorem 6.1 by
considering (see 2.8.2) the evaluation morphism

E<iV1 ; Wm+2v(‘/1)) : E(CO; Wm+2v(V1)) - E(€7 Wm+2v(‘/1))

of M(Wp,420(V1)). We apply 2.8.3(c) (with ¢ = m + 2v) to this morphism. We get that there
exist a finite field extension kg of kg and an open, affine subscheme U‘~/ of the normalization

of U in kg,v, such that U;; has a local ring V which is a discrete valuation ring and which
dominates V' and moreover we have a morphism

iv,, (m +2v) :E(Q‘,O; Wmﬁv(U‘;)) — E(Q; Wm+2U(U‘~/))

of M(Wipn420(Us)) whose cokernel is annihilated by p. See 2.1 for iv,, (m+v).

Let m € {m,m + v}. Let I; be the set of morphisms €o/p" €y — € /p" €, that are
reductions mod p™ of morphisms €o,/p™ TV €o — €1 /p™ €. Any morphism in I, lifts
to a morphism €y — €, cf. 5.1.1(b), 5.1.2, and the definitions of v and n < m; thus Iz
is a finite set. Let J;5 := {i € I | p' Coker(i) = 0}. Based on the case 2.8.3(a) of 2.8.3, by
performing (R1) we can assume that J;5 is the set of pullbacks of a set of morphisms L., of
M (W, (ks)) whose cokernels are annihilated by p'. The pullback of iy, (m -+ v) to a morphism

of M(Wy40(ks,v)) is also the pullback of a morphism in L, 4,. As V = V N kg, inside

Winto(ksv) we have Wi1 (V) = Wi (V) N Wi 40 (kg). This implies that the pullback
of iy, (m + v) to a morphism of M(Wopio(V)) is in fact the pullback of a morphism of
M(W,,+,(V)) whose cokernel is generically annihilated by p' (in the sense of 2.8.1). From
the case 2.8.3(b) of 2.8.3 (applied with (V1, V) replaced by (V, R)), we get the existence of an

open subscheme Uy, of U that has V' as a local ring and such that we have a morphism
Z'UV (m + ’U) : E(@O; Wm+v(UV)) — E(@, Werv(Uv))

of M(W,,+.,(Uy)) whose cokernel is generically annihilated by p.
For i € J,, let V(i) be the set of all those discrete valuation rings V' of U such that the pullback
of iy, (m) to a morphism of M(Wh, (k)) is i. Let U; := Uy ¢y(;) Uv - Let

iv, (m) : E(Co; Wi (Us)) — E(& Wy (U;))
be the morphism of M (W,,,(U;)) which is obtained by gluing together the morphisms i, (m)’s

with V' € V(7). We have:
(@) if Up := U, ;. Ui, then U*P\ U,°P has codimension at least 2 in Ut°P;

(b) for any i € .J,,,, the cokernel of i, (m) is generically annihilated by p.
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6.1.4. Gluing morphisms
We now modify the morphisms iy, (m)’s (i € J,,) so that they glue together to define a
morphism

iy, (m) :E(@o; Wm(UO)) — E((’:; Wm(UO))

of M(W,,(Up)) whose cokernel is generically annihilated by p®.. If there exists i € .J,,, such
that U; = Uy, then iy, (m) = iy, (m) has a cokernel generically annihilated by p'.

We now assume that for all ¢ € J,,, we have Uy # U;. The pullback of iy, (m) to a morphism of
MW, (k) is i € Jp,. Let f; : € — €4 be a morphism such that its reduction mod p™ is 4, cf.
5.1.1(b), 5.1.2, and the fact that .J,,, C I,,,. Asm >l and i € J,,,, the cokernel of f; is annihilated
by p! and so f; is an isogeny.

Let fo € {p'f; |i € Jm}. We have:

(a) the image of fj lies inside the intersection of the images of all f;’s (i € J,,,);

(b) the cokernel of f; is annihilated by p?.

Let s;:€or — Coi be the isogeny such that we have fy = f; o s;, cf. (a). So Coker(s;) is
annihilated by p?, cf. (b). We know that s; is the pullback of an isogeny Cor,qo — CoF 40 » Cf.
2.2.3(b) applied to &y. So as F,«0 — R, we get that the reduction mod p™ of s; is the pullback
of a (constant) morphism

Su; (m) : E(Q:(J; Wm(Uz)) - E(QO; Wm(Uz))

of M(W,,(U;)) whose cokernel is annihilated by p?'. If iy, € .J,,, then the pullbacks of
iy, (m) o sy, (m) and iy, (m) o sy, (m) to morphisms of M(W,,(k)) are the reduction of
Jo mod p™ and thus they coincide. This implies that the pullbacks of iy, (m) o su;, (m) and
iv,, (m)osy,, (m) to morphisms of M(W,,(U;, NUi,)) coincide. Thus the morphisms iz, (m) o
sy, (m) indexed by i € J,, glue together to define a morphism iy, (m): E(Cy; Wy, (Up)) —
E(¢;W,,(Up)) of M(W,,,(Up)) whose cokernel is generically annihilated by p3' = p'p?!, cf.
6.1.3(b) and the fact that p* annihilates Coker(sy;, (m)).

It is easy to see that by performing (R1) we can assume p3' annihilates Coker (i, (m)) but
this will not be used in what follows.

6.1.5. LEMMA. — By performing (R2), we can assume that iy, (m) extends to a morphism
ig(m):E(&o; Wi (5)) = E(& Wi (5)) of M(Win (5))-

Proof. —Let S’ be the affine S-scheme of finite type that parametrizes morphisms between
the two objects E(€o; W,,,(S)) and E(&;W,,(S)) of M(W,,(S5)), cf. 2.8.4.1. Let Uy — 5’
be the open embedding of S-schemes that defines iy, (m). Let U’ be the normalization of the
Zariski closure of Uy in S’. As S is an excellent scheme, the S-scheme U’ is integral, normal,
affine, and of finite type. As Uy is an open subscheme of both U and U’ and due to 6.1.3(a), the
affine morphism U’ x g U — U between integral, normal, noetherian schemes is birational and
has the property that any discrete valuation ring of U is also a local ring of U’ x g U. Thus the
morphism U’ x g U — U is an isomorphism, cf. 2.9.1. So U is an open subscheme of U’. So by
performing (R2) (with S = U"), we can assume U’ = S. Thus we can speak about the morphism
is(m) :E(Co; Wi (S5)) = E(&; Wy, (S)) of M(W,,(5)) that extends iy, (m). O

6.1.6. Duals

Let &() be the Tate twist of € by (1), i.e. € tensored with the pullback to S of the F'-crystal
(Zy,p'1z,) over F,. As for modules, let €* be the dual of € (one could call it a latticed
F-isocrystal over S). We also define the Tate twist €*(1) of €* by (I); it is an F-crystal over
S (as | > he). In a similar way we define €(1). As | > ho, €§(I) is a Dieudonné—Fontaine
p-divisible object over F;, with non-negative slopes.
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We repeat the constructions we performed for ¢y and € (like the ones through which we got
I, Uy, is(m), etc.) in the context of €(1) and €*(I). So by enlarging ! and by performing (R1)
and (R2), we can assume there exists a morphism

i5(m) B (€5 (1) Wn(S)) — B(C" (1) Win(S))

of M(W,,,(S)) whose cokernel is generically annihilated by p*' and which is the analogue of
is(m). As | > he, we think of E(€*(1); W,,,(S)) to be a “twisted dual” of E(&; W,,,(.5)) in the
sense that there exists a morphism

js(m — 1) E(€;Wh_i(S)) — E(Co; Win—i(9))

which at the level of Oy, |, (g)-modules is the dual of i (m — ). Thus the pullback of js(m —1)
to an object of M(W,,,_;(k)) has a cokernel annihilated by p®. By performing (R;) we can
assume Coker(jg(m — 1)) is generically annihilated by p3!, cf. 2.8.3(a).

6.1.7. End of the proof of Theorem 6.1

We will use the existence of the morphisms ig(m) and i§(m) to show that the assumption
U +# S leads to a contradiction. Let y: Spec(k;) — S be a geometric point that does not factor
through U. Let

cs(m—1):=js(m —1) oig(m —1): E(Co; Win—i(S5)) — E(Co; Wn—1(5))-

We check that Coker(cg (m —1)) is annihilated by p™. Let c5(m — ) gen and cg(m — 21)gen be
the morphisms of M (W,,,_;(k)) and M(W,,,_o;(k)) (respectively) that are the natural pullbacks
of cs(m—1) and cg(m —21) (respectively). As c¢g(m — 21)gen is the composite of two morphisms
of M(W,,—2(k)) whose cokernels are annihilated by p3!, Coker(cg(m — 2[)gen) is annihilated
by p. As cs(m — 20)gen lifts to cg(m — I)gen and as | > hor, cs(m — 21)gen is the pullback
of a morphism of M(W,,_o;(Fpa0)) (cf. 2.2.3(a) applied with (K, k) replaced by (k,F))). So
as Fpao — R, we get that Coker(cg(m — 21)) itself is annihilated by p%. Thus p™ annihilates
Coker(cs(m —1)).

As the endomorphism y*(cg(m — 1)) = y*(js(m — 1)) o y*(is(m — 1)) of M(Wp,_i(k))
has a cokernel annihilated by p”', we get that p”’ annihilates Coker(y*(is(m — 1))). Let
fy:Cok, — y*(€) be a morphism that lifts y*(ig(m — [ — v)), cf. 5.1.1(b) and 5.1.2. As
m—v—1=T4+n+1>7+1 (cf. the definition of m in 6.1.3) and as p’' annihilates
Coker(y*(is(m — 1 —v))) (by reasons of ranks) the morphism f;, is injective and so an isogeny.
So y*(€) has Newton polygon . So y factors through U. This contradicts the choice of 3. Thus
the existence of the morphisms ig(m) and ¢&(m) implies that U = S. As U =5, U is affine.
This ends the proof of Theorem 6.1. O

6.2. Proof of Main Theorem B

We prove 1.6. Let U be a reduced, locally closed subscheme of S that is a stratum of S(&). We
have to show that U is an affine S-scheme. It suffices to check this under the extra assumptions
that S = Spec(R) is affine, that U is an open, dense subscheme of .S, and that the underlying
R-module of E(&; W1(S5)) is free. We will show that U is an affine scheme. It suffices to check
this under the extra assumption that R is normal and perfect, cf. 2.9.2 applied with X and X’
replaced by S and by the normalization of Spec(RP°™f) (respectively).

Let AV be the Newton polygon of pullbacks of €;; via geometric points of U. Let &g, hg, g, v,
and n be associated to N and h¢ as in 5.4 (this makes sense even if R is not an integral domain;
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see 2.1 for he). So €y = (Mo, ¢o) is a Dieudonné-Fontaine p-divisible object over F,, that has
rank rg, has h-number hg, and has Newton polygon .

Let 72 be the maximum between 2 + he¢ + 2max{d(r3,s,c) | s € S(0, h¢), ¢ € S(0,2he)}
and n. If (M, ) is an F'-crystal over an algebraically closed field K of characteristic p of rank
ro and h-number at most h¢, then (End(M), ) is a latticed F'-isocrystal over K whose rank
is 7’(2), whose s-number is at most h¢, and whose A-number is at most 2h¢ (see end of 2.2.1(e)).
Thus from 3.2.8(a) (applied with G = GL,;) and 2.4.1 we get:

(i) any F'-crystal over K whose rank is 7y and whose h- number is at most he, is uniquely
determined up to isomorphism by its reduction mod p”.

We consider quadruples of the form (k, &, M ,P), where:

° k is an algebraically closed field of characterlstlc D,

e @ is the Frobenius endomorphism of W (k)[[w]] that is compatible with oy, and that takes

g)vmto wP, _

e M is a free W (k)[[w]]-module of rank r( equipped with a ®-linear endomorphism ¢,
which have the property that the Newton polygons and the h-numbers of extensions of
(M, @) via W (k)-homomorphisms W (k)[[w]] — W (K that are compatible with the Frobenius
endomorphisms and that involve algebraically closed fields K of characteristic p, are A/ and
respectively are at most hg.

We consider the unique W (k)-monomorphism W (k)[[w]] <— W (k[[w]]P**f) that lifts the
natural inclusion k[[w]] < k[[w]]P*"f and that is compatible with the Frobenius endomorphisms
® and Dy uppess» cf- [22, p. 145]; it maps w into (w,0,0,...) € W (k[[w]]Pert).

The results [22, 2.6.1, 2.6.2, 2.7.1, and 2.7.4] hold as well in the context of pairs of the form
(1\7 , ) that are not endowed with connections (one only has to disregard all details of loc. cit.
that pertain to connections). So as in the proof of 6.1.2 we argue that there exists a number [ € N
which has the properties that [ > max{hor2, he} and that for any quadruple (k, o, M, ) as
above, there exists a monomorphism

(MO ®Zp W(]';_[[w]]perf) , o &® (I)]::[[w]]perf) — (M ®W(/~¢)[[w]] W(I%[[W]]perf) 5 QZJ ® (I)I’%[[w]]perf>

whose cokernel is annihilated by p’. Let m := 8] + i +v + 1 and 7 := m + 2v.

Let (O,¢0) := proj lim;en E(€; W(S)). As the underlying R-module of the object
E(¢;W1(S)) is free, O is a free W(R)-module of rank ry. Moreover ¢ is a ®pg-linear
endomorphism of O. As R is perfect, the W;(R)-module of differentials Qyy,(g) is trivial.
So the connection on O induced by € is trivial. From this and [22, p. 145] we get that
the pair (O, o) determines € up to isomorphism. Let B = {ey,...,e.,} be a W(R)-basis
of O. Let B € M,,x,(W(R)) be the matrix representation of o with respect to B. Let
By € Myysro (Wi (R)) be B mod p™. Let R° be a finitely generated F,-subalgebra of R
which contains the components of the Witt vectors of length m with coefficients in R that are
entries of By,; $0 By, € My xry (Wi (R)). Let SO := Spec(RP).

Let ¢, be a ®p-linear endomorphism of O whose matrix representation with respect to 3
is a matrix B’ € My, xro(W(R®)) C Myyxro(W(R)) that lifts By;. Let € be the F—crystal
over S that corresponds to the pair (O, ¢,), cf. the above part that refers to [22, p. 145]. A
B' € M,y xry(W(RP)), loc. cit. also implies that & is the pullback to S of an F'-crystal €’ over
Spec(R°Pf). As B and B’ are congruent mod p™, we can identify ¢/p™¢€ with ¢ /p™ €.
It is easy to see that due to this identification and to (1), the two Newton polygon stratifications
S(€) and S(¢%) of S coincide. Thus to prove that U is affine we can assume that B = B/,
R =R and ¢ = ¢’. As R = R°P*'! there exists a unique open subscheme U° of S° such
that we have U = U° x g0 S.
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To prove that U is affine, it suffices to show that U? is affine. The scheme U is affine if
and only if its intersection with any irreducible component C° of S is affine, cf. [16, Ch. II,
Cor. (6.7.3)]. Thus by replacing (S°,S) with (C°, Gt we can assume that both S° and S
are integral schemes. By replacing S° and S with their normalizations (cf. 2.9.2), we can also
assume that S° is a normal Spec(F,)-scheme of finite type.

As B, € Myyxr, (Wi (R%)), for any j € S(1,7m) and for every S°-scheme S; we can
speak about the object E(&; W;(S1)) of M(W;(S1)) whose underlying Oy, (s,)-module is
the free Oy, (s,)-module that has B as an Oy, (s,)-basis and whose underlying Frobenius
endomorphism has a matrix representation with respect to /3 which is the natural image of
By, in My xr, (Ow,(s,))- If Si is an S-scheme, then E(&; W;(S1)) is precisely the object of
M(W;(S1)) defined in 2.8.2.

Let V° be an arbitrary local ring of UY that is a discrete valuation ring. Let wg be a uniformizer
of it. Let Vi be a VV-algebra that is a complete discrete valuation ring, that has wq as a
uniformizer, and that has an algebraically closed residue field k3. So V4 is isomorphic to
ks [[wo]], with w viewed as a variable. We identify w? ~ with a uniformizer of V0 := V@),

m

So ko = képm) is the residue field of V3. Let V{ := ko[[w? " )Pert = V2P For j € S(1,1m)
let W7 := W (kg)[[wf )] be endowed with the Frobenius endomorphism ®y;0 that is compatible

1) be the W (ks)-

. i, —it1 -
with oy, and that takes wf = into wf = . Let [ WP = W (ka[[wf ’

monomorphism that lifts the canonical identification ks [[w( 7)) = Wi (ko[[w? 1)) and that takes
w? " into the Witt vector (wf ~,0,0,...) € W (ks[[wf "]]). The following two properties hold:
(ii) each f](J is compatible with Frobenius endomorphisms, and
(iii) if j < 7, the restriction of f7, | to the W (ko)-subalgebra W of W7, , is f7.

We recall that if = = (zg,21,...,27) is a Witt vector of length m, then px =
(0,zf,2%,...,2% ). Based on this and (ii) and (iii), by induction on j € S(1,7m) we get

that the image (via the natural monomorphism R’ — kg[[wg_JH) of the matrix B = B’ €
M,y scrg W(R®)) in My sr, (Wj(kjg[[wgﬂ]])), belongs to M xr, (W} /p?W})). Thus the image

of B =B’ in My, xr, (W (k2[[wf ")), belongs to My, xro (W /p™W2) and so it lifts to a
matrix B € M, xr,(W3).
Let M := @2, Wle;. Let ¢ be the Pyyo -linear endomorphism of M whose matrix

representation with respect to B is B. The extension of (J\NJ ,) via a W (ks)-homomorphism
W2 — W(K) compatible with Frobenius endomorphisms, has the h-number at most h¢ (as
m > he) and has Newton polygon A (cf. (i) and the fact that V° is a local ring of UY). So there
exists a monomorphism

(Mo @z, W (V1) 00 @ Byo) — (M @yro W (V1)@ Do)

whose cokernel is annihilated by p', cf. the choice of I (applied with k:g[[wgim]] instead of
k[[w]]). Thus there exists a morphism E(Co; W, (V) — BE(¢; Wi (VL)) of MWy (VL))
whose cokernel is annihilated by p'.

As in Sections 6.1.3 to 6.1.7 we only used evaluation functors E and pullbacks of F'-crystals
over S via geometric points of S and as for any algebraically closed field K the map S(K) —
SY(K) is bijective, the rest of the proof that U? is affine is the same as in Sections 6.1.3 to 6.1.7
(but with the role of (n,m) being replaced with the one of (72,7)). We will only add two extra
sentences.

From 2.8.3(c) (applied with g replaced by m) we get that there exist:
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(iv) an open subscheme U%O of the normalization of U° in a finite field extension kgo vo

of the field of fractions kgo of S°, a local ring VO of U%O which dominates V°, and
a morphism iU?‘,o (m) : E(Co; Wm(U%O)) — E(¢; Wm(U‘Q/O)) of M(Wm(U‘%O)) whose
cokernel is annihilated by p'.

In connection with the last two paragraphs of 6.1.3 and with Sections 6.1.4 to 6.1.7, we only
have to add an upper right index 0 to all schemes that (modulo the two operations of 6.1.1) are
about to be introduced; thus we get open subschemes U 80, Uio, and US of UV, etc. This ends the
proof of 1.6.

6.3. Remarks. — (a) Let S be an integral, locally noetherian scheme. Let € and S(€) be as in
the beginning of Section 6. Let U be the unique stratum of S(€) which is an open subscheme
of S. The open embedding U — S is an affine morphism, cf. 6.1. This implies that either U = .S
or S*P\ U'P is of pure codimension 1 in S*P. It suffices to check this statement under the
extra assumptions that (to be compared with the first paragraph of the proof of 6.1) S is also
local, complete, and normal and that S*P \ U*°P has pure codimension ¢ € N in St°P, If ¢ > 1,
then by applying 2.9.1 to the affine, birational open embedding U — S we get that U = S. Thus
c must be 1.

Thus 6.1 implies the following result of de Jong and Oort (see [10, 4.1]): if S is a local,
integral, noetherian ring and if U contains the complement in S of the closed point of S, then
either the dimension of S is at most 1 or S = U. The converse of this implication holds, provided
our scheme S is locally factorial. But in general the result of de Jong and Oort does not imply 6.1.
This is so as there exist integral, normal, noetherian, affine schemes S = Spec(R) that have a
prime Weil divisor C such that the open subscheme S \ C of S is not an affine scheme. Here is
one classical example.

Let R := k[z1,22,x3,24]/(x124 — x2x3). Let C := Spec(k[x1, x3]) be the irreducible divisor
of S defined by the equations x4 = x2 = 0. The open subscheme S \ C' of S is the union of
Spec(R[;—Q]) and Spec(R[i]) and thus its R-algebra of global functions is R[m—i] N R[;—J
But W := Spec(R[z%] N R[I—i]) is an affine S-scheme whose fibre over the point of S defined
by x1 = 29 = 23 = x4 = 0 is non-empty. Thus the natural morphism S\ C'— W is not an
isomorphism and so the scheme S\ C is not affine.

(b) Let (M, ) be an F-crystal over a perfect field k of characteristic p. It is easy to see that
[22, 1.4 and 1.5] implies the existence of a number ny € N such that for any g € GL (W (k))
the Newton polygon of (M, go) depends only on g mod p™. For instance, if k& = k we can take
ng to be the number n¢,,, of 3.1.5 for G = GLj;. One can use this (in a way similar to the first
part of 6.2) to define Newton polygon stratifications for reductions modulo adequate powers of
p of F-crystals over reduced Spec(F),)-schemes.

For instance, it can be easily checked starting from 1.3 and [21, 4.4(e)] that any truncated
Barsotti-Tate group Ggs of level T'(r,d) over a reduced Spec(F),)-scheme S which has height
and relative dimension d, defines a stratification S(Gg) of S as follows. The association Gg —
S(Gg) is uniquely determined by the following two properties:

(1) it is functorial with respect to pullbacks, and

(ii) if there exists a p-divisible group Dg over S such that Dg [pT(T’d)] is isomorphic to Gg,
then S(Gg) is the Newton polygon stratification of S defined by the F'-crystal over S that
is associated naturally to Dg.
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