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VECTOR BUNDLES ONp-ADIC CURVES AND
PARALLEL TRANSPORT

BY CHRISTOPHERDENINGER AND ANNETTE WERNER

ABSTRACT. — We define functorial isomorphisms of parallel transport along étale paths for a class of
vector bundles on a-adic curve. All bundles of degree zero whose reduction is strongly semistable belong
to this class. In particular, they give rise to representations of the algebraic fundamental group of the curve.
This may be viewed as a partial analogue of the classical Narasimhan—Seshadri theory of vector bundles on
compact Riemann surfaces.
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RESUME. — Nous définissons des isomorphismes de «transport parallel» le long des chemins étales
pour une classe de fibrés vectoriels sur une coprbdique. Tous les fibrés de degré zéro avec reduction
fortement semistable appartiennent a cette classe.

En particulier, ils donnent des représentations du groupe fondamental de la courbe. On peut voir ces
résultats comme un analogue partiel de la théorie classique de Narasimhan et Seshadri concernant les fibrés
holomorphes sur les surfaces de Riemann compactes.
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0. Introduction

On a compact Riemann surface every finite dimensional complex representation of the
fundamental group gives rise to a flat vector bundle and hence to a holomorphic vector bundle.
By a theorem of Weil, one obtains precisely the holomorphic bundles whose indecomposable
components have degree zero [34]. It was proved by Narasimhan and Seshadri [28] that unitary
representations give rise to polystable bundles of degree zero. Moreover, every stable bundle of
degree zero comes from an irreducible unitary representation.

The present paper establishes a partigddic analogue of this theory, generalized to
representations of the fundamental groupoid. The following is our main result. Recall that a
vector bundle on a smooth projective curve over a field of characterissccalled strongly
semistable if the pullbacks df by all non-negative powers of the absolute Frobenius morphism
are semistable. LeX be a smooth projective curve ov@rp and leto be the ring of integers in
C,. AmodelX of X is afinitely presented flat and proper scheme @gwith generic fibreX.

The special fibrét;, is then a union of projective curves ovet= F,,. We say that a vector bundle

E on X¢, = X ® C, has strongly semistable reduction of degree zero if the following is true:
E can be extended to a vector bundlen X, = X ® o for some model of X such that the
pullback of the special fibr&;, of £ to the normalization of each irreducible componenkgfis
strongly semistable of degree zero. We say ffidtas potentially strongly semistable reduction
of degree zero if there is a finite étale morphiamY” — X of smooth projective curves such
thata* E has strongly semistable reduction of degree zero.
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554 C. DENINGER AND A. WERNER

THEOREM. —Let E be a vector bundle oX ¢, with potentially strongly semistable reduction
of degree zero. Then there are functorial isomorphisms of “parallel transport” along étale paths
between the fibres dfc, on Xc, . In particular one obtains a representation ,, of m (X, x)
on E, for every pointz in X(C ). The parallel transport is compatible with tensor products,
duals, internal homs, pullbacks and Galois conjugation.

The theorem applies in particular to line bundles of degree zegnIn this case the-part
of the corresponding characterof(X, ) was aIready constructed by Tate using Cartier duality
for the p-divisible group of the Abelian scherrfec3€ cf. [32, 84] and [9]. His method does
not extend to bundles of higher rank.

Let us now discuss the contents of the paper in more detail. Afterwards we can sketch the
proof of the theorem.

In the first section we investigate the categdhy p consisting of finitely presented proper
Z,-morphismsr: Y — X whose generic fibre is a finite covering &f which is étale outside of
adivisorD on X. The important point is that for givemin Sx p there is an object’: )’ — X
in Sx,p lying overr with better properties, e.g. cohomologically flat of dimension zero or even
semistable. We also construct certain coveringssing the theory of the Picard functor which
are used several times.

In the second section we define and investigate categmses D and% _p involving a

divisor D on X and also an analogous categ®y:  p for a flxed model% of X. These are
defined as follows. The catego®yx, p consists of all vector bundle& on X, such that for all
n > 1 there is a covering in Sx_p with 7*& trivial modulop™. In theorem 16 it is proved that
for £ to lie in By, , it suffices thatr; &y, is trivial wherer,, is the special fibre of some.

Next, ‘BXWD consists of all bundles which are isomorphic to the generic fibre of a béhdle
in By, p for some modelk of X. These categories are additive and stable under extensions.
Finally, we defineBﬁ(C _p as the category of vector bundles &, whose pullback along lies
in By, .a*D for some finite morphisnac: Y — X between smooth projective curves which is
étale overX \ D. We obtain an additive category which is closed under extensions and contains
all line bundles of degree zero. All vector bundlesdh are semistable of degree zero.

The third section is devoted to the definition and study of certain isomorphisms of parallel
transport along étale paths i = X \ D for the bundles in the categor;isﬁxcpyD. In more

/Z,

technical terms, we construct an exasfunctor p from %ﬁ%’ p 1o the category of continuous
representations of the étale fundamental grouphi/) on C,-vector spaces. The basic idea is
this: Consider a bundI€ in By, p and for a givemm > 1 let 7: Y — X be an object 05x p
such thatr: &, is atrivial bundle or,,. Here the index: denotes reduction moduj# . Consider
pointsz andz’ in X(C,) = X(0) and choose a pointin Y = )¢, abovexz. For an étale patty
from z to 2/, i.e. an isomorphism of fibre functors, ley be the corresponding point aboxé
For a “good” coverr we have isomorphisms

Y (vy)y,

We define the parallel transpgst () : £, = &,/ as the projective limit of the mags: ,,(v) =
(vy)% o (y2)~L. This parallel transport is then extendedia. p and%g( _p- We also prove

that the functor mapping a bundi¢in ‘B p toits fibre in a pointc € U((C ) is faithful.

Using a Seifert—van Kampen theorem for étale groupoids we show that for a btindhéch
is in 9B for two disjoint divisors, one actually obtains a parallel transport along all étale paths
in X.
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The proof of the theorem above starts with a characterization of those vector bundles on a
purely one-dimensional proper scheme over a finite figldshose pullback to the normalization
of each irreducible component is strongly semistable of degree zero: These are exactly the
bundles whose pullback by a finite surjective morphism to a purely one-dimensional proper
IF,-scheme becomes trivial. For vector bundles on smooth projective curves over finite fields
this characterization is due to Lange and Stuhler [22]. Hence we have to lift finite covers in
characteristigp) to characteristic zero. The main point here is to construct a morphism of models
whose reduction factors over a given power of Frobenius. In fact our method allows us to
construct two coverings in Sx,p and in S, 5 for two disjoint divisorsD and D such that

&, and ;& are both trivial. By the above theory, one gets the parallel transport on all of
Xc,- In the case of good reduction M. Raynaud has shown us a direct proof of this fact, cf.
Theorem 20.

For Mumford curves, Faltings [17] associates a vector bundleXoto every K-rational
representation of the Schottky group and proves that every semistable vector bundle of degree
zero arises in this way. It was shown by Herz [21] that his construction is compatible with ours.

Recently Faltings has announce-adic version of non-Abelian Hodge theory [18]. He
proves an equivalence of categories between vector bundl&s pandowed with @-adic Higgs
field and a certain category of “generalized representations” which contains the representations
of m (X, z) as a full subcategory. His methods are different from ours. In particular Faltings
uses his theory of almost étale extensions. The main open problem in Faltings’ approach is to
characterize the Higgs bundles corresponding to actual representation&Xofr). He shows
that with zero Higgs field, line bundles of degree zero and their successive extensions come from
1 (X, x)-representations and suggests that perhaps all semistable vector bundles of degree zero
are obtained in this way. The main theorem of our paper shows that this is true if in addition the
bundle has potentially strongly semistable reduction.

The present preprint improves and replaces the second part of [8]. The first part of [8] will be
published as [9].

Finally we would like to draw the reader’s attention to possibly related works of Berkovich
[2, 89] on p-adic integration, of Ogus and Vologodsky on non-Abelian Hodge theory in
characteristip and of Vologodsky [33] on Hodge structures on fundamental groups.

1. Categoriesof “coverings’

In this section we introduce simplified and generalized versions of the categories of coverings
that were used in [8] to define theadic representations attached to certain vector bundles.

In the following, a variety over a field is a geometrically irreducible and geometrically
reduced separated scheme of finite type dveA curve is a one-dimensional variety. L&t
be a valuation ring with quotient fiel@ of characteristic zero. For a smooth projective cukve
over ) consider a modek of X over R, i.e. a finitely presented, flat and proper scheme over
spec R together with an isomorphistf = X ® Q. For a divisorD on X we write X \ D for
X \ supp D.

Consider the following categor§x p. Objects are finitely presented propBrmorphisms
m:Y — X whose generic fibreg : Vo — X is finite and such that

TQ Z’iTE?l(X\D) — X\ D Iisétale
We setSx = Sx ¢. In this case the generic fibre, is a finite étale covering. A morphism from

m1: Y1 — X tomy: Yo — X in Sx p is given by a morphisnyp: Yy — Vs such thatr; = w3 o ¢.
Note thaty is finitely presented and proper and thaj is finite, and étale ovek \ D.
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If such a morphism exists, we say thaf dominatesr,. If in addition ¢ induces an
isomorphism of the local rings in two generic points we say thatstrictly dominatesr.

In the case wher@,, and ), are both smooth projective curves this means thatis an
isomorphism.

It is clear that finite products and finite fibre products existSinp. Moreover, for every
morphismf: X — X’ of models overR and every divisoD’ on X', the fibre product induces a
functor f~1: Sy pr — Sx -

We frequently use the fact that any non-constant morphism of a reduced and irreducible
scheme3 to a discrete valuation ring is flat, cf. [25, Corollary 4.3.10]. Besides, note ttat if
is flat and of finite presentation ov& with irreducible and reduced generic fibre, thgers also
irreducible and reduced by [25, Proposition 4.3.8].

We define the full subcategory

Sgood C Sﬁ{ D

to consist of those objects 8k p whose structural morphisi: J — spec R is flat and satisfies
A0y = Ogpec g UNiversally and whose generic fibkg) : Vo — spec @ is smooth. In particular
Yo i1s geometrically connected and hence a smooth projective curve, which implie¥ that
irreducible and reduced.

Let S53°, denote the full subcategory afx p consisting of allr:) — X such that
\:Y — spec R is a semistable curve whose generic fip¥gis a smooth projective curve over.
Recall that\: Y — spec R is a semistable curve iff is flat and for alls € spec R the geometric
fibre )’s is reduced with only ordinary double points as singularities, see [7] or [25, Section 10.3].
Note that sincé/y, is irreducible and reduced, the schepnés irreducible and reduced as well. If
R is a discrete valuation ring, thénis normal sincé)/, is normal, see [25, Proposition 10.3.15].

THEOREM 1. — Assume that the base rirfgis a discrete valuation ring.
(1) The categonsy’ ), is a full subcategory QSgOOd

(2) The objectsy — X of S3°p, have the property thaPicg,/R exists as a semi-Abelian
scheme which is isomorphic to the identity component of the Néron model of the Abelian
variety Pic3, /¢

(3) For any discrete valuation ring?’ dominatingR setX’ = X ® g R’ and let D’ be the
inverse image oD in X’. The natural base extension funct®¢ p — Sz’ p- mapsSagg?,%d

into S§,°5, and S§°, into S35, (More generally this is true for valuation ringg and
R)

(4) For any finite number of objects;: ); — X in Sx, p there exists a finite extensia@p/Q
such that the objects; ®r R’ of Sx/ p/ are all dominated by a single object °°d
and even of%; /. Here I’ is a discrete valuation ring i)’ dominatingR.

(5) For any objectw Y — X of Sy p there exists an extension of discrete valuation rings

R’/R as in(4) such thatr @ R’ is strictly dominated by an object Sﬁ‘“’d and even of
S%/ D/

Proof. —(1) Letw:) — X be an object of3’ . By assumption the geometric fibres)bver
spec R are reduced. Together with the flatness\op) — spec R it follows from [13, 7.8.6] that
A is cohomologically flat in dimension zero. This means that the formation @) commutes
with arbitrary base changes. Sinkés proper the sheaX. (O) onspec R is coherent and hence
given by the finitely generate®-moduleI'(spec R, A, (O )) I'(Y,0). Since) is integral,
this module is torsion free, hence free, so thatO) = O, p for somer > 1. Since) is a
smooth curve, it follows that = 1. Taken together we flnd that the equatid(O) = Ogpec r
holds universally.
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(2) Since) has semistable reduction ovgsec R it follows from [3, 9.4, Theorem 1] that
Picg,/R is a smooth separatefl-scheme which is semi-Abelian. By [3, 9.7, Corollary 2] the
connected component of the Néron modePélfg,Q/Q is canonically isomorphic t@icg,/R.

(3) Note here that semistability is by definition preserved under base change.

(4) Since finite products exist ifix p assertion (4) follows from assertion (5).

(5) 1. Let us first prove the claim for the categaf§°%:'. This proof will be taken up in a
G-equivariant context in Theorem 4 below. l@tbe a finite extension field d@ such thafy has
aQ'-rational point ovetX \ D and such that the irreducible component3/gf are geometrically
irreducible. LetR’ be a discrete valuation ring i dominatingR. SetYr =Y ®r R’. Choose
an irreducible component @y containing aQ’-rational point overX \ D and letY* be its
closure inYg, with the reduced scheme structure. Thehis integral and we can pass to its
normalization)’ which is finite over)* by [14, (7.8.6)].37 is a proper, flatR'-scheme. Since
y ®pr Q' is the normalization of;, it has a()’-rational point. By Lipman’s resolution of
singularities, there is an irreducible reguii-scheme)’V together with a propeR’-morphism
YV — Y which is an isomorphism on the generic fibpe! is obtained by repeatedly blowing
up the singular locus followed by normalization. This process becomes stationary after finitely
many steps (see [24] and also [25, 8.3.44]). Hence we obtain a regular, irreducible S¢heme
which is proper and flat ovelR’, together with a proper morphispp” — X’ strictly dominating
7 ®gr R'. TheQ'-rational point in the generic fibre @f¥ induces a section " — spec R’ by
properness. Now we apply a theorem of Raynaud to deducéthig cohomologically flat in
dimensiono, see [29, Théoreme (8.2.1), (i (iv)] or [25, 9.1.24 and 9.1.32]. Thuys" — X’
lies in L.

I1. Alternatively, at least if the residue field &fis perfect the claim fosi‘fgd could be proved

by using instead of Raynaud’s theorem a theorem of Epp. Replatbygﬁ andR by R’ (of I)
we may assume that is normal and thad/y is a smooth projective curve ové}. Using [10,
Theorem 2.0], it can be shown that there are a finite exten@iasf @ and a discrete valuation
ring R’ in Q' dominatingR such that the normalizatigyi of Y ® z R’ has geometrically reduced
fibres. As in the proof of part (1) it follows that the objetty — Y @i R — X @5 R' = X/
strictly dominatingr’ = 7 ©r R': Y @ R/ — X' is in S8,

[11. We now prove that after base extension every 6bjeot Sx,p is strictly dominated by
an object ofS3” . In view of part (1) this gives a third proof for the assertion‘ﬁif%d. We
constructyV — X’ as inl. Since)V is irreducible, regular and proper and flat ot a result
of Lichtenbaum [23] implies tha)V is projective overR’. According to [26, Theorem 0.2],
there is a finite extensio@’ of @’ and a discrete valuation ring" in Qf dominatingR’ and a
semistable mode)t of YV ®x QT together with a morphisvt £ )V @ RT overspec RT.
The composition

VW er R ¥ =9z R

defines an object af3} ,,, which strictly dominates” =7 ®z RT. O

The next result is used later to prove that certain categories of vector bundles are stable under
extensions and contain all line bundles of degree zero.

As before letR be a discrete valuation ring with quotient fieldl of characteristic zero.
Consider a smooth projective curve of nonzero gekusver ) with a Q-rational pointz and a
semistable modet of X overspec R. Fix someN > 1 and define an étale coveringY — X
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by the cartesian diagram

Y % Albx/Q

l I
X LHJ Ale/Q
Herei, is the canonical immersion into the Albanese variety corresponding to the rational point

x. Note thatY” is geometrically connected and hence a smooth projective curve.

PROPOSITION 2. — In the above situation, there exist

¢ afinite extensiod)’ /@) and a discrete valuation rind?’ in @' dominatingR;
e asemistable modél of Y/ =Y ®¢ Q' overspec R/;

e a morphism

7Y X =X®rR
such that the following assertions hold

(@) The generic fibrer,,, of 7' isa’ = a ®q Q'
(b) There is a commutative diagram

PngE//R/

A

PiC%//R/

for some morphism with g(0) = 0, where0 denotes the zero section owgrec R'.

Remark— After proving the proposition, we saw that in [18] Faltings uses a similar
construction to make Higgs bundles pradic curves “small”.

Proof. —Let ); be the normalization of in the function fieldQ(Y") of Y. Then)) is a
model of Y which is equipped with a morphismn, : )y — X. According to [14, 7.8.3 (vi)]
the morphismp; is finite. We will view 7, as an object ofSx. For an extensiorR’/R as in
Theorem 1 part (5) there exists an objett)’ — X’ of S5 strictly dominatingm; ®r R'.
Changing the identification @' @z Q' with Y’ =Y ®¢ Q' if necessary, we may assume that
the generic fibre of’ iso’ = a ®¢ Q’.

( 'I;he or:_gin inAlbx,q = Picg(/Q and the pointr of X define aQ-rational pointy of Y with
i(y) =0. Let

be the corresponding immersion. By the universal property of the Albanese variety, there is
a unique morphisny : Alby/o — Albx,o which is necessarily a homomorphism such that

foiy=1.
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Applying the functorPici®Q, /¢ 1o the commutative diagram

Y L> Alby/Q

e

X L> Ale/Q

we obtain the following commutative diagram, wheffe= f ®¢g Q’:

: .0
PICY//Q/
\‘\ﬁ
Oz/* PiCOX//Q/
N=N
<0
PICX//Q/

Let N be the Néron model cﬂ’icoy,/Q, overspec R’ and let\/" be its identity component. By
Theorem 1 part (2) we know th&c}., ,z, andPic},, 5 exist as smooth and separated schemes

and thatPicg,,/R, is isomorphic to\°. By the universal property of the Néron model, the natural
map

1) Mor g/ (Pic%s V) == Morgy (Pick, o1, Picy 1)
is bijective. Hencef’ has a unique extension to a morphingicox,/R, — N. By construction,

the compositiom o N has generic fibr¢’ o N = o' *. Sinceq/ is the generic fibre of’: ' — X7,
the induced homomorphism

71'/* . Picox//R/ — Png;//R/
has generic fibre'* as well. Using the Néron property (1) it follows that N is equal to the
composition
PiC%//R/ L Png;//R/ :NO ‘—>N
In particular we get thay(0) = g(N(0)) = 0 where0 denotes the zero sections ch‘;,/R,

respectiverPicg,,/R,. Since the special fibre d?icgg,/R, is connected, it follows thag is a
morphism

g:PiCO_%//R/ *)NO :Png;//R/
with g o N = 7'* as desired. O

We fix an algebraic closur®, of Q, and consider finite extensiofls, ¢ K C Q,,. The rings

of integers will be denoted byx andoz =Z,,.
The following corollary of Theorem 1 will be used constantly.
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COROLLARY 3. - Let X be a smooth projective curve 0\@5 and D a divisoronX. LetX
be a model of{ overspecZ,.

(1) Given any finite number of objects:); — X in Sx,p (respectively given one object
m : Y1 — X in Sx p) there is a finite extensioR” of Q, and a curveX i /K with model
X, /ox and a divisorDx of X such that the following hotdVe haveX = Xx @ x K
andD =D ® K and X = X,,, Qo Zp and there is an objeck,, : V,,, — X, Of
Sagéc:f,pk and even otS’;SUKﬁDK such thatr = 7, ®,, Z, dominates allr; in Sx.p
(respectively dominates; strictly).

(2) The categorys;® , is a full subcategory Qﬁ’gOOd

(3) Any finite number of objects;:); — X in Sx p are dominated by a common object
m:Y — X of Sg°°d and even o3’ ,. Every single object; : 1 — X in Sx p is strictly

dominated by an object cﬂ‘i‘?,%d and even o83’ .

Proof. —Part (1) follows from Theorem 1, (4), (5) using noetherian descent as in [14, 88, in
particular (8.8.3) and (8.10.5)], together with [14, (17.7.8)] to descend to the cat8gony,
for someX; /ox, with divisor D; whereK; D Q, is a finite extension.

(2) Similarly as above, every objegt: Y — X of S3°}, descends to an objeet,, : Vo, —
Xoy of Sx, D, WhereK D Q, is finite such thad), . /o is flat. Since the geometric fibres of

Vor /0K andy/Z can be identified, it follows that, . : V,,, — X, iSin S¥ Dx and hence

in Sg°°d b, by Theorem 1(1). Therefore =, ®., Z, lies inS§°y' by Theorem 1(3).
Part (3) follows by combining (1) and Theorem 1(3)a

Later we will construct a canonical parallel transport for certain vector bundles. The proof that
it is well defined requires the following theorem. L& p be the following category. Objects
are finitely presented propé-equivariant morphisms : ) — X over specZ, whereG is a
finite (abstract) group which act,-linearly from the left or)y and trivially onX. Moreover the
generic flbren'— is finite and its restnctloryQ \ 7*D — X \ D is an étaleG-torsor.

A morph|sm from the -equivariant morphlsnm YV, — X to theGy-equivariant morphism
m: Yo — X in Tx p is given by a morphisny: Yy — ), with m; = w3 o ¢ together with a
homomorphismy: G; — G of groups such thap is G, -equivariant ifG, acts on)» via .

This definition generalizes the categdEx = Tx 4 used in [8, 85]. There is an obvious
forgetful functor®x p — Sx p. The full subca’tegorﬁlgOOd of Tx p consists of those objects

which are mapped to objects 6§ ood,

THEOREM 4. — For any ObjeCtTI':y — X in Sx p there are a finite groupG and a
G-equivariant morphismr’: )’ — X defining an object oti’good which admits a morphism
¢:)Y' — Y with 7 o ¢ = 7. In other words, every object aﬂ‘gD is dominated by the image
of an object It}

Proof. —Let us first show that every objegt: Y — X of Tx p is dominated by an object of
‘I%E‘j‘jjd. By noetherian descent we can assume that there is a finite exténsibé,, in Q, with
ring of integersk such thatr descends to the objetk : Vr — X in Tx,, p, . Denote byG the
group acting or)g over X such thaltx \ 7, Dx — Xk \ D is an étaleG-torsor. Now we
follow the construction in the proof of Theorem 1(5&nd consider a geometrically irreducible
component o’k containing aK’-rational point ovetX k- \ D+, whereK" is a finite extension
of K in @p. Denote byH C G the stabilizer of this component. Théh acts in a natural way

on Y*, and also ory and)". Therefore)V — X @ R/, where R’ is the ring of integers in
K', is an object ofzi"}:fDK, dominatingr .. By base-change t,, our claim follows. Hence
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it suffices to show that there is an objectof Tx p which dominatesr. By Corollary 3(1), we

may assume that we have= 7,, ® Z, With 7o, : Vo, — Xof in SgOC;fD . Let Y}, be the

smooth projective curve whose function field is the Galois closut€ @fx ) over K (X ). The
Galois groupG acts onY}; over Xx. The morphisnt}, — X is finite and overXy \ Dg
it defines a Galois covering with grou@. Consider the normalizatiop, . of Y, . in K(YY,).
By [14, (7.8.3) (vi)] the morphistd,,. — Vs, is finite. HenceY,, — Vs, — X., defines an
object ofSx, _.p,. with generic fibreVx = Y}, — Xk.

By the proof of [26, Lemma 2.4], there exists a modk|_ of Yy overox endowed with an
action of G extending the action o, together with a morph|srqzvoK Vi,e = Vor Whichis an
isomorphism on the generic fibre.

Letnw,, : ), — Xo, bethe composmonok =Tox OPoy Voo — Vor — Xog - SINCEY]
is reduced(G-equivariance of the generic fibre of _ implies G-equivariance ofr; ., cf. [12,
7.2.21].

Now put

V= y;K R0y Zp and 7T'/:7T/UK ®o g Zp:y’—de.

Then 7/:)’" — X is an object ofTx p such thaty = ¢, ®,, Z,:Y' — Y satisfies
rop=n'. O

2. Two categories of vector bundleson p-adic curves

Let Vecg be the category of vector bundles on a scheimé&or a bundleFE we gften write
E for its locally free sheaf of section@(E). Let o be the ring of integers i, = @p and set
0, =0/p"0 = Z,/p"Z,. For everyo-scheme) we set), = )Y ®, o,. Let X be as before a
smooth projective curve ovéd, and setX¢, = X ®g, Cp.

First of all, we show that vector bundles &ft:, can ' be extended to vector bundles on suitable
models. The elegant argument in the proof was communicated to us by M. Raynaud.

THEOREM 5. — For every vector bundléZ on X, and every modeX of X there exists a
modelX’ of X dominatingX such thatE' extends to a vector bundle 68 If X is smooth, then
FE can be extended to a vector bundle¥pitself.

Proof. —~We can extend” to a quasi-coherent sheaf of finite presentation ott,, see [20,
Appendix, Corollary 2 to Proposition 2]. Lef C Ox, be therth Fitting ideal of 7, wherer
is the rank ofE. SinceF is of finite presentation is quasi-coherent of finite type. Besides,
VE OX” is equal to the Fitting ideal of’, hence toOX” Therefore there exists some> 1
such tha[v"Oggu C J. By approximating the local generatorsﬁfwﬂh elements in0x modulo
p", we see that7 descends to an idedly C Ox. Let ¢: X’ — X be the blowing-up of7,.
Since J, is of finite type,y is of finite presentation, so that is a map inSx inducing an
isomorphism on the generic fibre. The base change gagt!, — X, is the blowing-up of7.
Hencey, ! (J)Ox;, is invertible. Sincep, ' (J)Ox, is therth Fitting ideal F,. (¢ F) of i F
we can apply [30, (5.4.3)] to deduce thgtF/ Ann,. = (F,.(¢5F)) is locally free of rank- on
X! . Hence it gives rise to a vector bundieon X/, with generic fibreE.
If X is smooth overZ,, then Plcx/z (0) = Pch/Q (C,), so that every line bundle of
degree( extends to a line bundle of,. Besides,X carries a line bundlgV" whose generic
fibre has rank one. Hence every line bundleXn, can be extended t&,. The general case
follows by induction on the rank off. Namely, there is an exact sequence of vector bundles
0— E; — E — Ey — 0onXc, whererk E; <tk E fori = 1,2. By hypothesisf; andE, can
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be extended t&; and&; on X,. By flat base change we have an isomorphism
Ethxu (527 51) ®0 Cp R EXt%{CP (EQ, El)

This implies thatFE is isomorphic to the generic fibre of a vector bunél®n X,. Note here
that extensions of locally free sheaves are locally free because the cohomology of affine schemes
vanishes. O

DEFINITION 6. —

(@) For a modek of X overZ, and a divisorD in X the categoryBx, p is defined to be
the full subcategory oVecgga consisting of vector bundleSon X, = X ®z, 0 with the
following property: For every: > 1 there is an object: Y — X of Sx p such thatr &,
is a trivial bundle ony,,. Herer,,,),, and&,, are the reductionsiod p™ of =, and€

(b) The full subcategorgBXCp p Of Vecx,, consists of all vector bundles oxic, which are
isomorphic to a bundle of the forgt & with € in Bx,.p for some modek of X. Herej
is the open immersion oX¢, into X,.

(c) The full subcategorgBAﬁXC)’D of Vecx,, consists of all vector bundles on X¢, such
thatag EisinBy. a-p for some finite covering.: Y — X of X by a smooth projective

curveY overQ, such that is étale overX \ D.

Remarks—

(@) ForD =0 we simply write®8 x, for Bx, p, etc.

(b) In[8, 86] a categoryB ., was defined as above, but using coverings ininstead ofSx.
It follows from Theorem 4 that both definitions give the same category. Consequently, also
the categoryB .. is the same as the one defined in [8, Definition 19].

LEMMA 7.— The categonyBx. .p consists of all vector bundles isomorphic;tt€ with £
in By, p andX a semistablenodel ofX overz,,.

Proof. —Given any modek of X, there is a semistable modglof X strictly dominatingX.
This follows from Corollary 3(3) applied te; = idx. Since the pullback of bundles daito Y
mapsBx, p to By, p by Proposition 9 below, the assertion follows:

LEMMA 8.- Letf: X — X' be a morphism of smooth, projective curves c@gr For every

modelX’ of X’ there exists a modét of X and aZ,-linear morphismf : X — ¥’ such that the
diagram

X~—X

)
X! < ) d

is commutative.

Proof. —Since f is proper, it is either surjective or maps to a closed point ofX’. In the
second case, because of properness any ndel X will do. Hence we can assume thAt
is surjective, hence finite. There is a finite extensiorof Q, in @p such thatf descends to
a morphismfk : Xx — X} of smooth, proper curves ovéf and such thaf’ descends to a
modelX] of X%.

DefineX,,. as the normalization of the reduced and irreducible sch&fpein the function

field K(Xx) of Xg, and letf,, : X, — X, be the corresponding finite morphism. Since
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fr: XKk — X} isthe normalization oK i in K (Xk), the generic_fibre ak, . can be identified
with X so that the desired diagram commutes. Base-changeédyitompletes the proof. O

PROPOSITION 9. — The categorie$ x,, p respectivelyBx. p and®B’ , are full additive
Cp
subcategories oVecy, respectiverVecXCp which are closed under tensor products, duals,
internal homs and exterior powers. For every morphignk — X’ overZ, respectivelyf : X —
X" overQ, and every divisotD’ on X', the pullback functorf* of vector bundles restricts to
an additive exact functof*: By, pr — Bx, s~ pr respectivelyf*: By, p — %ch}f*D/ and
=P
FARD L, Lo +pr- These functors commute with tensor products, duals, internal homs
Cp’ Cp>

and exterior powers.

Theproof is straightforward fof8x, p andEBXCP,D given Corollary 3(3), Lemma 8 and the
functoriality of the categorie§. For B¢, note first that given finite morphism§ < X for
1 <i < nétale overX \ D by smooth projective curveg;, there is a finite morphisri B, x
étale overX \ D by another such curvE such thaf3 factors over each;: Take the normalization
of any irreducible component &f; x x --- x x Y;,. Thus the assertions abost ®, etc. forB#
follow from those for8. Next, givenF in %&L D andf: X — X', choose a finite morphism
oY — X', étale ovetD’ such thaty * E lies in %ycfp,a/xpl. LetY be the normalization of an

irreducible component of ~!(Y”) and consider the commutative diagram:
= Y =X X Y Y

Y
: A
X f

XI

Letg:Y — Y be the upper horizontal map. By functoriality 8 we know thaty*a * E lies in
By, g-or- - Hencef Eisin B .1,

PROPOSITION 10. —

(a) Leta:Y — X be a finite morphism, étale ovéf \ D of smooth and proper curves over
Q,- Then a vector bundI& on X, lies in®%,  if and only ifa* £ lies in %85, ..

(b) Assume in addition that: Y — X is étale. For a vector bundl& on Y¢, let o, F' be the
vector bundle onXc, corresponding to the locally free sheafO(F). If F'is in %ﬁYC

thena, Fis in 8% .

Proof. —(a) This follows from the functoriality of3* in Proposition 9.
(b) ConsiderF' in %ﬁYC and choose a Galois coveringY’ — X which factors ovely’, i.e.

~ is a compositiony : Y’ 2.y 2, X. LetG be the Galois group df’ over X and letH be the
one ofY’ overY'. For everys in G the adjunction mag’ — 3, 5* F induces a map

aF — o, B8 F =~,0"F =v,0,0"F.
Note here thaty o o = «. This gives a map
Y a F — o,0%F.
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For 7 in H we haver,3* = (171)*3* = (3o 7~ 1)* = 3*. Hence we obtain a well defined map

(2) vaF— @ o.pF

oc€G mod H

Arguing locally, one sees that (2) is an isomorphism. New3*F = (o—1)*3*F belongs to
%ﬁ,, by functoriality of 8. Hencey*a, F belongs to this category as well. It follows that '
Cp

lies in %&C as was to be shown.o
P

We now prove that our categories are stable under extensions of vector bundles.

THEOREM 11. — The categorie8x,,p, Bx. ,p and 8% |, are stable under extensions,
) Cp>
e.g. if

0—FE -E—E"-0

is an exact sequence of vector bundlesXar) such thatE’” and £ are objects of the category
%ch D, thenE is also contained irﬁBXCP D-

Proof. —We give the proof fofBx. p. The case o8, p is similar. The assertion foB*
follows formally from the one fofB. Thus, letE’ und E” be in %XCP_,D. By definition, there

exist models¥’ andX” of X overZ, and vector bundle&; in Bx, p and€} in Bx, p such
that

E'~j% & and B" ~jx, &Y,
where jx. and jx. are the open immersions of the generic fibfe, into X, = X' ®z, ©
respectivelyx’” = X" @7, 0.
Applying Proposition 27 below, there exists a modiedf X overZ, together with morphisms
overZy,
X gy

restricting to the identity on the generic fibres. By functoriality= pi&; and&” = pi&y lie
in %xu D-

Reducing to cohomology and using flat base change one seg$ thatluces an isomorphism
Exty, (£7,€") ® C, == Extﬁccp (E",E'). Hence there is somie > 0 such that the extension

class we get by multiplying” with the class inExt}, (E”,E’) induced byF comes from
“p
Exty (€",&").
Hence pullback by*-multiplication onE” induces an extension

0 E' Ey E” 0
(N
0 E' E E" 0

on X¢, for which there is an exact sequence
08 —=E=E"-0
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of vector bundles o, such thatj; & ~ F; ~ E. Note here that any extension of a locally free
sheaf by another one is again locally free. The reason is that locally every such extension splits
because the coherent cohomology of affine schemes vanishes.

Let us fix somen > 1. Since&’ and £” lie in Bx, p, we find objectst’:)’ — X and
7Y — X of Sx p such thatr,*&), is trivial on V,, = V' ®7 o, andm;*&] is trivial on
y;z/ = y,/ ®Zp (U

By Corollary 3(1), there is a finite extensidt of @, with the following properties:

e X,D and X descend to a curvé&(x /K a divisor D on Xx and a modelXz/R

respectively, wher& = o .
e Thereis an objecty: Yr — X Of 8% Dk such that

T=TRr®RLy:Y=YrOr Ly — X

dominates botlx’ and=”.
e The generic fibr&x of Vi has a rational point.
Now 7 &/ and ;& are trivial bundles ory,. If »’ respectivelyr” denote their ranks the

extension:

3) 0—m& —mil, —m&El —0

gives rise to a class iixt}, (0", 0") ~ H'(Y,,0)""".
CLAIM . —There exist an objecet: 3 — X in Sy p and a morphisnp:3 — Y in Sx p, such
that the induced map;, : H(Y,,,0) — H*(3,,,0) is trivial.

Assume that the claim holds. Thet) applied to the extension (3) is trivial, which implies
thato &, = p;, 7 &, is atrivial vector bundle oi3,,. Since this argument can be done for every
n = 1itfollows that& lies in®Bx,, p, which implies thatt is contained in the catego® x. . p.
The theorem follows.

Hence it remains to prove the claim. If the genudafis zero, thert’x = P1. sinceYy was
assumed to have a rational point. Heng@'x, ©) = 1 and thereforey(Y,;,O) = 1 whereY,
is the special fibre o}’r. SinceA.Oy,, = O holds universally we havél®(Y,,0) = x and
thereforeH! ()., ©) = 0. Now [27, Corollary 3, p. 53] implies that’! ()),,, ©) = 0. In proving
the claim we can therefore assume from now on that the genig 66 nonzero. Let us first
show that it suffices to find a morphism3 — Y in Sx_p such that

pHY(Y,0) — H'(3,0)

satisfiepp* (H (Y, 0)) Cp"H*(3,0).
Namely, consider the commutative diagram

H'(Y,0)® o, _ e [gY(3,0) g, On

l l

Hl(y’"«?O) Hl(snao)

*

Pn

By assumption, the upper horizontal map is zero. Hepge= 0, if the left vertical map
HY(Y,0) ®7, On — H'(Y,,0) is surjective. SinceZ, is flat over R and therefore

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



566 C. DENINGER AND A. WERNER
0, =Z,/p"Z, is flat overR /p" R, it suffices by flat base change to prove the surjectivity of
H'(Vr,0)®r R/p"R— H' (Vg ®g R/p"R,0).

Let k& be the residue field oR. By Nakayama’s lemma, it suffices to prove surjectivity after
tensoring withk. Consider the commutative triangle

HY (YR, 0)®@r k HY(Yr ®r R/p"R,0) ®p/prr k

\/

Hl(ykao)

Both vertical maps are isomorphisms by [27, Corollary 3, p. 53] siicis one-dimensional and
hence has vanishing second cohomology. Hence the horizontal map is a fortiori surjective.

By Proposition 2 applied to the smooth projective curyeover K and its semistable model
Yr over R with N = p" there exist the following:

¢ a finite extensiork”’ of K in @p with ring of integersk’ = og-;

e an object

pr:3p — Yr =V Or R’
of 55, such that there is a commutative diagram

*
PR

- .0 : .0
PleR, /R’ PICBR/ ya:%

PngjR//R/
for some morphisng with ¢(0) = 0.
Note that the Lie algebra of a group functor coincides with the Lie algebra of its identity
component, if the latter exists (see, e.g. [16, Expdsg, Remarque 3.2]). Hence we can apply
[3, 8.4, Theorem 1], to the proper, fld'-schemes)r and 3z which as in the proof of

Theorem 1(1) are both cohomologically flat in dimensibover spec R'. Hence we obtain a
commutative diagram with horizontal isomorphisms

Lie Png;R//R/ NH Iyl(J}R/7 O)

Liep"l \L

Lie p,/ Lie Picg,R, r ——= H" (Y, 0) PR

-

LiePiC%R,/R/ NH H1(3R’a O)
SinceLie p™ is p™-multiplication, we deduce that
P (H' (YR, 0)) Cp"H' (3R, 0),
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and by flat base change that(H' (Y, 0)) C p"H*(3,0) which completes the proof.0
Note that in the following theorem and its proof we have changed our usual notation somewhat.

THEOREM 12. — o B o

(a) For any smooth projective curvg overQ, the categorny;(CP , whereXc, = X ®@p Cp,
contains all line bundle¢, of degree zero oiXc, .

(b) If X has a smooth model ovét,, then Bx, contains all line bundles of degree zero
on X(cp.

Proof. —~We may assume thaf has positive genus. By the semistable reduction theorem there
are afinite extensioi” of Q, and a smooth projective curé over K with X (K) # () together
with a semistable modé! overox such thatX = X @y @p. In particularX is cohomologically
flat of dimension zero ovesk . According to [3, 9.4, Theorem 1P,ic§€/aK is a semi-Abelian
scheme ovepy. HencePic} ,, (o) is an open subgroup dfick, x(C,) = Pic’(Xc,) the
group of isomorphism classes of line bundlesXn, of degree zero.

CLAIM . —If the class of. in Pic”(Xc, ) lies inPic% ,, (o) thenLisin B x, .

Proof of the claim. -By assumptionZ is the generic fibre of a line bundig on X, giving
rise to a class iﬂPicgg/oK(o). Note that according to [3, 8.1, Proposition 4], we h&vie(X,) =
Picx /o, (0). Now,

0n = Zp/p" Ly = lim o /p"oF
F/K
where F' runs over the finite extensions @t in @p. The ringsor/p"or are finite, hence
Pic% /. (0 /p"or) is a finite group. It follows that

Picge/aK(on) = lim Picge/UK (or/p"oF)
F/K

is a torsion group. LetZ,, = £ ®, 0, be the reductionmod p™ of £ to a line bundle on
Xn =X, ®o 0, = X ®y,, 0y,. It defines a class iPic%, ,. (0n) = Pic% ), (0,) which must

have finite order. Hence there is some> 1 such thatZ®" ~ O. By Proposition 2 applied
to Q = K,R =0k and X, X, there are a finite extensioki ¢ K’ C @p with ring of integers

R’ = ok, and an objectrg : Y — Xp = X ®,, R’ of S;}SR, together with a commutative
diagram, wherg/(0) = 0:

- .0 : .0
PIC:{R//R’ PleR//R/

e A

: .0
PIC%R//R/

Moreover we can assume thaf: = Vr' ®r K’ has aK’-rational point. For the object

T=TRr Qpr Lp:Y =Vr Qr Lp — X =X Qs Zp of S we therefore get the commutative
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diagram

Png;"/on (On)

whereG,,(0) = 0. Hence we find

i [Ln] = G (N[L,]) = G ([LEN]) = G (0) = 0.
It follows thatr £,, is a trivial bundle or)/,,. Since this construction can be done for every 1
the bundlel belongs tdB x, and thereford. is an object of8x. . O

We can now proceed with the proof of the theorem. Part (b) follows from the clair¥ for
smooth. In order to prove (a), Idt be any line bundle of degree zero ait-,. By a result of
Coleman (Theorem 4.1. in [6]), the cokernel of the inclusion map

Pic% /o, (0) = Pick, (Cp)
is torsion. Hence there exists an integér> 1 such thatL®" is the generic fibre of some line

bundlef; on X, giving rise to a class i@icg’e/ok (0). With notations as before, we have for this
N a commutative diagram

. 0 n* . 0
P1c¥ /7, Plcy /7,
S A
- 0
Png 7z,

whereG(0) = 0. Sincerg: is in Sk, , the generic fibrev of 7: ) — X is a finite étale covering

aYy =) ®z Q,— X of X by the smooth projective curvg. It suffices to show thaty L
belongs tdBy, . Under the inclusion

P (0) — Pic%(Yg, ),

.0
le/Zp
the elementi([£4]) is mapped taxg ([L]). By the claim applied td” and the paiYx:, Vr
instead ofX and X, X it follows thatag ([L]) liesinBy, as was to be shown.O

Remark— By the preceding results the categ@y. contains all unipotent vector bundles
on Xc,, i.e. all bundles obtained by successive extensions of the trivial line bundle.

More generally, the catego@ﬂx contains all successive extensions of line bundles of degree

Cp

zero.

The following insight is due to Faltings without proof in his setting @adic Higgs
bundles [18]. We give a proof below.

THEOREM 13. — Let D be a divisor on a smooth projective curvé over@p. Then every
bundle in%ﬁ(q, p is semistable of degree zero.
Cps
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Proof. —By the definition of semistability it suffices to show the assertion for every bufitle
in %XCP7D'

We may assume thél’ = £’ ®, C, for a bundle&’ in Bx,  p for a modelX of X. By
Corollary 3(3) there exists an objeet Y — X of S3%, such thatr; €] is a trivial bundle on
Y1 =Y ®o/p, wheref] = &£ ® o/p. Since the generic fibre@p of  is finite it suffices to show
that & = ¢ E' is semistable of degree zero 9i, . SettingE = 7*&’ we havel = £ ®, C,.

Besides£; =€ ® o/p is a trivial bundle or;. We have to show that' has degree zero and
that every subbundl& C F' has degredeg L < 0.

Let K be a finite extension d@,, such thafy descends to a mod@l,,, overog of its generic
fibreY,i.e.Y = Vo, ®ox Zp. SINCY,,. /0 has the same geometric fibres)agz, it is also
semistable. The scherpg is the projective limit of the semistable-schemed/sy = Y, ®,, A,
where A runs over the finitely generated normg}-subalgebras ob. Moreover)); is the
projective limit of the scheme¥,, = V4 ®4 A1, whered; = A/pA.

Consider the family),,£,L C F, & =, 03, ) wherea is some isomorphism of locally free
Oy, -sheaves. By [14, (8.5.5), (8.9.1), (8.5.2), (11.2.6)] there exists a normal finitely generated
ox-algebrad in o with quotient fieldQ(A) such that the family descends to a family

A

(Va,€a,Lgea) CEg(ay,Ea, —— (’)S}Al), where

e ), is a proper semistable curve ovér

e &4 isavector bundle o4 and&qa) =Ea ®a Q(A);

e Lg(a) is avector bundle o4y = Va @4 Q(A) which is a subbundle af4);

e «y, is an isomorphism of locally fre@yA1 -modules wher€ s, =&4 ®4 4.

We need a prime idegl of A of height one containing the maximal ide@ty) of ox.
Since A C o, the special fibre(spec A) ® ok /7x IS non-empty. Any prime ideap in A
corresponding to the generic point of an irreducible componefiak A) ® ok /7 will do,
cf. [25, Theorem 4.3.12]. Note thatD pA. SinceA is normal,A, C C,, is a discrete valuation
ring containingo . Note that in generall, ¢ o.

Let R be the strict henselization of,, in the algebraic closure a(A) in C,. ThenR is
a discrete valuation ring ¢, with quotient field@ C C, whose residue field D ox /7 iS
separably closed. LéVr,Er, Lo C £q) be the base change @Va,E4, Loa) C Ega)) Via
A C R respectivelyQ(A) C Q. The restrictiong,, of £ to the special fibré), = Vg Qg k
is trivial becausef 4, is trivial and A C R induces a mapd; — R/p — k sincep € pg. By
Riemann-Rochdeg(Eq) = x(£q) — rx(Oy,) wherer is the rank of£. By [13, 7.9.4], the
Euler characteristic of vector bundles @iy is locally constant in the fibres, which implies
degéq = x(&x) — rx(0y,) = 0. SinceE = £ ®q C,, it follows thatdeg E = 0. Similarly,
deg L = deg L¢. It remains therefore to show thdtg L < 0. Using the next result the theorem
follows. O

The proof of the following proposition is due to Raynaud. It replaces a more involved argument
in an earlier version of this paper.

PROPOSITION 14. — Let R be a discrete valuation ring with quotient fielgl and separably
closed residue field:. Let Z be a smooth projective curve ovey with a modelZ over R.

Consider a vector bundl€ on Z whose special fibr€,; is a trivial bundle onZ,. Then its
generic fibreE = &g is semistable of degree zero.

Proof. —By assumptionlet &, is a trivial line bundle. Hence we have
deg E =degdet E = x(Z,detEq) — x(Z,0)
=x(Z,det&;) — x(2,,0)=0
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since the Euler characteristics are constant in the fibres.

It suffices to show that for every exact sequetiee £, — E — E5 — 0 of vector bundles on
Z we havedeg(F>) > 0. Consider the canonical extensigh C £ of E; in E, cf. [11, (9.4.1)].
For every open subsét of Z we have

L(UF1) = {s €T(U.E) | slunz €T(U N Z,En)}.

The sheafF; is a coherent, torsion fre®z-module. LetF, = £/F; be the quotient, so that
0— F, — & — Fy; — 0 is an exact sequence of coherent sheave<onith generic fibre
0— E; — F — FEy — 0. If ris the rank ofF,, we blow up therth Fitting idealZ of F;
and get a proper morphism

<p:Z'—>Z

which is an isomorphism on the generic fibres.

If we denote byZ’ the idealy=1(Z) - Oz (which coincides with the'th Fitting ideal of
©*F2), then&y = p*Fy/ Anng,« £, (Z') is a locally free sheaf o’ by [30, (5.4.3)]. LetF be
the coherent sheaf af’ such that the sequence

0=-F—=E& —&E—0

with £’ = ¢*€ is exact. Since is an isomorphism on the generic fibre and the generic fibre of
T is Oz, the generic fibre of’ respectivelyes, is isomorphic toF respectivelyF,.

Now letC1,. .., C, be the irreducible components of the special fibfe and letC; — C; be
their normalizations. Byy; : CN'i — C; — Z' we denote the corresponding morphisms. Sifice
is locally free, the sequence

0—afF—ajf —a;jE—0

is exact orC;. Since the special fibr&. is trivial, the sheafy; &’ is isomorphic to a power of the
structure sheaD . In particular, it is a semistable sheaf of degbeen the smooth, projective

curveC; overk.
Therefore, the quotient; &, has degree: 0. By the degree formula in [3, 9.1, Proposition 5],
it follows for the line bundlgdet &), that

X(Zx (det &) ) = X(2x,0z,) > 0.

Since the Euler characteristics are constant in the fibresZpfwe deducedeg(Es) =
deg((E2)g) = degdet((€2)g) = 0. HenceE is indeed semistable.O

Remark— The indecomposable componeitsof a semistable bundl& of degree zero on
Xc, have degree zero since they are both sub- and quotient bundlEsanid hence have
deg E; <0anddeg E; > 0. If X = A is an elliptic curve ove@p the converse is true. A vector
bundleE on Ac, is semistable of degree zero if and only if it is the direct sum of indecomposable
bundles of degree zero. This follows from the splitting of the Harder—Narasimhan filtration on
bundles over elliptic curves.

By [1, Theorem 5, p. 432] every indecomposable vector bundle of degree zekg ds of the
form L ® F,. whereL is a line bundle of degree zero ahAd is an iterated extension of trivial line
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bundles. Using Theorems 11 and 12 it follows thab F;. lies in %ﬁ,@ and in the case wheré
has good reduction even i 5. . From all this one obtains:

COROLLARY 15. — Let A be an elliptic curve ove@p.
() The categoryBﬁ1C consists of all semistable bundles of degree zerelgn All of these
P

are successive extensions of line bundles of degree zero.
(b) If Ax has good reduction we have in additimwdAﬁ = %Acp.
“p

The following result makes it substantially easier to verify that a vector bundle 18s:jnp.

THEOREM 16. — Let X be a model oveZp of the smooth projective curvg& over@p. Let

k= Fp be the residue field cﬁp. A vector bundle€ on X, lies inBx, p if and only if there is
an objectr : Y — X of Sx_p such thatr; &, is a trivial bundle ony), =Y ®z, k

Remark— In particular, every vector bundion X, whose restrictior€;, to the special fibre
X, of X, is trivial lies in B, . As explained to us by Holger Brenner there exist examples of
rank two bundleg on smooth models of certain plane algebraic cut¥esuch thatt;, is trivial
and&c, is stable of degree zero. They are constructed by restricting suitable syzygy bundles
onP?,

Proof. —The necessity is clear. Consider a vector bungllen X, with 7;& trivial. We
may assume that is in S3°,. The family (X,D,&,7:Y — X) descends to a family
(X0, Do, F,m0: Vo — Xo) over ox for K a finite extension ofQ,. Here X, is a model of
Xo =%y ®., K andF is a vector bundle oX, ® ox /pox whose restriction to the special
fibre Xy ® o /p becomes trivial after pullback along ® ok /p. Moreoverr is an object of
83 p,- Lete be the ramification index of overQ, and set, /. = 0/p”0 = Z,/p"Z,. Note
that this is compatible with our earlier notatiop = Z,, /p"Z,. Let Ty/es By e €1C. bE the base
change witho,/(, Sincer . is also the base change of ® ox /p with o, . it follows that
7r1/ &1/ is trivial on ), /.. By induction it therefore suffices to prove the following assertion:

Givenv > 2 and somer:Y — X in S3°p with (), &, -1y, trivial, there exists an object
w2 — X in S¥p with M Euse trivialon Z, ..

Consider the closed |mmersmmy(l, 1y/e = Ve and set

J= Im(wyil : Oyu/e - Oyu/e)'

Herew is a prime element ing . Letr be the rank of, then we have a short exact sequence of
(Zariski-)sheaves of groups @9, /.

adj
0— M.(7) L GL.(0y,,) *% i,GL,(Oy,, ,,,.) — L.

Here adj is the adjunction map andg(A) := 1 4+ A. Observe thatf is a homomorphism,
f(A+ A= f(A)f(A") sinceAA’ =0 in M,.(J) because7? = 0. Right exactness follows
becausézL,. is formally smooth oveZ. We obtain an exact sequence of pointed sets:

Hl (yu/eer(j)) L) H1 (yy/ea GLT’(O)) L) Hl (y(y—l)/evGLr(O))'

Exactness can be checked directly. Alternatively one may identify sheaf torsors faffitie
group schemé&L,. with vector bundles and quote [19, IIl, Proposition 3.3.1] for the non-Abelian
cohomology sequence and [19, V, Proposition 3.1.3] for the isomorphism

H"(YVy/e,1xGL(0)) = H (V(y—1) e GL-(0)).
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Note here that for elementary reasons we have. GL,.(O) = 0.
Consider the clas€ of nj/e&,/e in Hl(yl,/e,GLT(O)). Via i* it is mapped to the class of

i*w;/e&,/e = w{u_l)/eé’(y_l)/e, i.e. to the trivial class irHl(y(l,_l)/e, GL,-(0)). Hencel is of
the formQ = f(A) for some classl = (Ax;) in

HY (Ve Mo(T)) = Mo (H (Vs 00 7).

Instead of recalling the argument from non-Abelian cohomology we could also have quoted
[19, VII, Théoreme 1.3.1] for this conclusion.
The exact sequence @7, /.

0—Kerw ' —0%L 7T -0

whereg is multiplication byw” ! gives a surjection:

H (Yy)e, O) 5 H (Y, )0, T)

becausg), . is one-dimensional.

Hence we havé) = fg(B) for some matrixB = (By;) with entries inHl(y,,/e, 0). If the
genus oft” is zero, the same argument as in the proof of Theorem 11 showd ta, /., O) =0
and we are done. If the genus &f is non-zero it was shown in the proof of Theorem 11
that there is a morphism:3 — ) in Sx p such thatp*: HY(),0) — H'(3,0) satisfies
p*(HY(Y,0)) C p»H'(3,0). By Corollary 3(3) we may assume that the objec — X is
even inSy°p. Arguing as in the proof of Theorem 11 (reduction step foraleem, with p and
o, replaced byv ando, /) one sees that the induced map

pl*,/e:Hl(yy/e,(’)) — H'(3,/¢,0)

is trivial. The commutative diagram

HY Y, je, My (0)) —L2 HY(D), 0, GL(0))

lﬁi/e—o lpi/e

H1(3V/8?MT<O)) & H1(3u/eaGLT(O)>

shows thap*, Q is the trivial class. Hence

v/e
,U:;/egu/e = plt/e(ﬂ.li/egu/e)

is a trivial bundle or3, /., as was to be shown.O

Remark— The proof shows that a vector bundl®n X, lies inB«_ if the special fibregy, is
trivial. In this case, for each > 1 there is a trivializing cover in Sx_, whose generic fibre is a
Galois covering ofX with solvable Galois group.

DEFINITION. — Let R be a valuation ring with quotient fiel@ and residue field:. Consider
a modelX/R of a smooth projective curv& /@) and let€ be a vector bundle of. We say that
£ has strongly semistable reduction of degree zero if the pullbaék &6 the normalizatior”
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of each irreducible component (with the reduced structure) of; is strongly semistable of
degree zero. Note here that edclis a smooth projective curve ovér

The following theorem is one of our main results.

THEOREM 17. — Let X/Z,, be a model of the smooth projective curXe!@p. Let& be a
vector bundle or¥,. Then& belongs tdB x, p for some divisorD on X if and only if € has

strongly semistable reduction of degree zero. In this ¢aseen belongs t&x, p and B, 5

for two divisorsD and D on X with disjoint support.

The proof depends on the following result which for smooth projective curves is due to Lange
and Stuhler [22, 1.9 Satz].

THEOREM 18. — Let E be a vector bundle on a purely one-dimensional proper sch&me
overF,. Then the following conditions are equivalent

(a) The pullback off' to the normalization of each irreducible component’fis strongly
semistable of degree zero.

(b) There is a finite surjective morphisg: Y — X whereY is a purely one-dimensional
proper scheme ovéf, such thatp*F is a trivial bundle

(c) Same as in{b) but with » a compositiony: Y £ ¥ = X for somes > 0 wherer is
finite étale and surjective anfl = Fr, = Fr), is theq = p"-linear Frobenius ont”.

Proof. —If (b) holds then every irreducible componefitof X is finitely dominated by an
irreducible componenD of Y. It follows that the pullback off to C' is trivialized by the
finite surjective morphisnD — C'. Since semistability can be verified after pullback to a finite
covering and since the absolute Frobenius is functorial, assertion (a) follows.

It remains to show that (a) implies (c). There are only finitely many isomorphism classes
of semistable vector bundles of degree zero on a smooth projective curve over a finite field.
It follows that there are only finitely many isomorphism classes of vector bundles X
whose pullbacks to the normalizations of the irreducible componenf§ afe semistable of
degree zero. To see this, we first assume #é reduced. LeX = | C, be the decomposition
of X into its irreducible components and let X = [[C, — X be the finite normalization
morphism. Generalizing the arguments in the proofs of [3, Chapter 9, Propositions 9 and 10] or
[25, Lemma 7.5.12] one sees the following: The cokernel of the natural injection of sheaves of
groupsGL, (Ox) — m.GL,(O%) is a skyscraper sheaf of sgtf, . y.ins i+ S, Where each set
S is finite. Using [19, IlI, Proposition 3.2.2] we obtain a non-Abelian cohomology sequence

II S:—H'(X.GL.(0)) = H'(X,7.GLy( HH C,,GL,.(0)).

zeXsins

Here we have also used [19, V, Proposition 3.1.3] and the equatlanGL,.(O) = 1 which
follows because vector bundles are locally trivial. Using [19, I, Corollaire 3.2.4], it follows that
there are only finitely many isomorphism classes of vector bundleX evhich induce given
isomorphism classes of vector bundles on the cufyes

If X is not reduced, we have to show that the map

H'(X,GL,(0)) — H'(X™,GL,(0))

has finite fibres. By devissage it suffices to show that for every idealOx with 72 = 0, the
map

¢:H'(X,GL.(0)) — H'(X',GL,(0))
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has finite fibres wheré: X’ — X is the closed subscheme &f defined by.7. As in the proof
of theorem 16, we have a non-Abelian cohomology sequence

HY (X, M(7)) L H' (X,GL,(0)) £ H' (X',GL,(0)).

It follows thaty has finite fibres.

Now, if we are given a vector bundI& as in (a) the pullbacks t@’, of all the vector
bundlesF{"E on X are semistable of degree zero. It follows that we h&YeéF = F{E
for some integers > s > 0. For the bundlel’ = F*E we therefore havé'y* E’ = E’ where
r=1t—s > 1. Now, the proof of [22, 1.4 Satz] extends without change to an arbifgischeme
(note that in [22] the proof that is finite is omitted, but this is not difficult). This shows that
there exists a finite étale and surjective morphistt” — X such thatn*E’ = 7*F3°E is a
trivial bundle. With X, the schemé&” is a purely one-dimensional propgj-scheme as well.
It follows that (7 o F$)*E = (F% om)*E = n*F3°E is a trivial bundle as was to be shown
for (c). O

Proof of Theorem 17. For a vector bundl€ in Bx, p choose a cover:Y — X in Ggo"d
such thatr; &, is a trivial bundle. Let¢;, = J, C,, be the decomposition o€, into |rredu<:|ble
components. Sinc& is irreducible andr()) is closed and contains the generic pointgfthe
map is surjective. Therefore any,, is finitely dominated by an irreducible componenfof.

As above it follows that the pullbacks 6j, to theC, are strongly semistable of degree zero.

Now assume that the vector bundfeon X, has strongly semistable reduction of degree
zero. There is a finite extensiali of Q, with ring of integersox and residue field: ~ I,
such that the family X, X, C,,, &) descends to a famil¢X ., X, ., C.0, &) With corresponding
properties. In particulaf) is a vector bundle on the special fibég = X, ,. ® x whose pullbacks
to the normalizationsf‘l,o of the irreducible components, of X, are strongly semistable of
degree zero. Using Theorem 18 we obtain a finite étale morp’msmio — X such that for
the compositionp : yo LN yo X, the pullback bundles;&, is trivial. Note that in this
statement we may replageby any integers’ > s and hence?” by any power off". Next, using
[15, IX, Théoréme 1.10] we may lift : 370 — X to a finite étale morphisri, . :ﬁK — Xop
whose special fibre i&,. After replacingK by a finite extension and performing a base extension
to the newo i, Theorem 1(5) allows us to dominatg,. by an objectr, . : Vo, — X, ofS”

By Lipman’s desingularization theorem we may assumeXhatbesides being sem|stable is also
regular, cf. [25, 10.3.25 and 10.3.26]. Replacingy Fr,, whereq = p" now denotes the order of
the new residue field it follows that under the compositign )V £y, I0 x, the pullback
wi€o is atrivial bundle.

The irreducible regular surfac®,, is proper and flat ovevx. Hence by a theorem of
Lichtenbaum [23] there exists a closed immersign — IP’{,VK overox. Let H; be the coordinate
hyperplanex; = 0 in P¥, and putA = Uf;o H;. ThenP \ A =G} ;. We observe that for
any finite setS of closed points ifPY there is a linear isomorphistic PGLy (0x) of IP’{,VK
such that its generic fibré, mapsS to P \ A. Hence we can choose a closed immersion
T: Vo <& IP’N in such a way thal’x is not contained inA. Consider the finite morphism
Fop :PY — ]PN given onA-valued points by mappinfgo: - -- :zn] to [zd:--- :2%] for any
0K~ aIgebraA Oveer_’K PR \ A this morphism is étale. Define anc-scheme), by the
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cartesian diagram:

Po
yéK K yDK

.

PN Fox PN

Thenp,, is finite andpx = p,o,, @ K:Y}, — Yk is étale ovelUx = Y N GﬁyK. Let D% be

a divisor onYx whose support i¥ \ Uk. Let py = po,. ® £: ) — Vo be the special fibre of
poy - The reduction offy is F°, i.e. thersth power of the absolute Frobenius morphism on
PY. Define a morphisni: Yy — ), over x by the commutative diagram

\

yo LG yo

0

IP’N P py

Lemma 19 below implies that induces an isomorphisi, ~= Vied. Set D = i (D).
Base extending the situation tg- = Z, we obtain an objectr’: )" 25 Y ™ X of Sx p.
Moreover & is trivialized by pullback via the composed maf LN Y, T, X since we
haver;, o iy = m o (pg 0 ix) = T 0 (F° ®, k) and &, = & @, k. In additioni;, induces an
isomorphism of)Y;, onto Y;*d. For this, note thap/jed = ()}, ®, k)4 = Yied @, k since
Yired =y, is geometrically reduced. By Corollary 3(3) there is an objecg — X of S5°p,
such thaiu factors overr': '

M:ZL\))/L»X.

The special fibre o2 is reduced. Hence the morphism, : Z, — Y, factors overiy : )y, =
yired — Y and thereforeu, factors overr), o iy. It follows that 1} &y is trivial. Applying
Theorem 16 it follows that is an object ofBx, p. Let 7:Y,, — IP’f,VK be the projective
embedding above. By the above observation on linear automorphisms, after chabgisgme
f € PGLy(0x) we can assume thajc maps the support of;. Dy to P\ A =GN - Let

Dy be a divisor oY with support equal td’x \ Yx N7 (G% ). Then we have seen that
isinB, = whereD is the base-change afi (D). By construction D is disjoint from
7% Dx and henceD is disjoint fromD. O

LEMMA 19. - LetT be anlF,-scheme and let: S — 7" be a closed immersion of a reduced
subschemé of T'. For an integerN > 1 consider the canonical diagram where the square is
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cartesian

| o

T—=T
Then the induced maip S — S’**¢ is an isomorphism.

Proof. —-We may assume thdt = spec R is affine. Then we hav8 = spec R/a for an ideala
with a = y/a and S’ = spec R/b whereb is the ideal generated by all elements with r € a.
The homomorphisni®: R/b — R/a is given byi*(r mod b) = r mod a. It is immediate that
Vb = a. Hencei:spec R/a — (spec R/b)*d = spec(R/+/b) is an isomorphism. O

The following result due to M. Raynaud improves Theorem 17 in the case of good reduction.
The proof is a modification of the argument for Theorem 17.

THEOREM 20. — LetX /Z, be a smooth model of a smooth projective cuky&, of nonzero
genus and lef be a vector bundle off,. Then& belongs toB %, if and only if & is strongly
semistable of degree zero on the smooth projective cifvever k.

Proof. —Assume that, is strongly semistable of degree zero. As in the proof of Theorem 17
we descendX, X, &) to a family (X, X, , &) for a finite extensiodk’/Q,, with residue field
k=Fg,q=p".

Since&, is strongly semistable of degree zero on the smooth projective éiyve X @ x
over x, Theorem 18 or in fact the original result in [22, 1.9 Satz] provides us with a smooth
projective curve), over x and a compositiorpg : Vo £ Vo =% X, with s > 0 andn finite
étale such that the bundig}&, is trivial. As before we may liftry to a finite étale morphism
Tor  VYor — Xop- Then), . is a smooth and proper irreducibiig -scheme. As in the proof of
Theorem 17 we can replad€ by a finite extension and hence assume that we have a section
YE Vo, (o) =Yk (K). SetB = Picg,nK/oK and consider the Albanese map

T Vor —~A=B

with 7(y) = 0. Define); by the cartesian diagram

A
Voo —== Vo

(4) j J

After reduction, they*-multiplication map onA, factors

¢*: Ag L Ao £5 Ay
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with V' the rth power of Verschiebung anfl = Fr,,. Correspondingly the reduction of diagram
(4) factors into two cartesian diagrams:

Vo ——= Vo ——=o

|1t

Ag s Ay s Ay

P
Yo —= o

|

.Ao 4>A0

By Lemma 19 the diagram

induces an isomorphistin ), — Y{red. Base extending tﬁp, respectivelyk, we can dominate
V=Y ® Z, by an objectu: 3 — X of S3°. Since3;, is reduced, the reductiom, factors

overy,’cred — Y, — Vi and hence oveF*® ® k: Y, — V5. Hencep; & is a trivial bundle and
we conclude using Theorem 160

3. Etaleparallel transport for vector bundlesin B

For vector bundles in%me,*BXCVD and %&C p we will now construct canonical
o

isomorphisms of parallel transport along étale paths between geometric poikit§ @f. We
begin by recalling some facts about the fundamental groupoid. The general reference is [15].

Let Z be a variety ove@p and choose a geometric poinin Z(C,). Let F, be the functor
from the category of finite étale coveringg of Z to the category of finite sets defined by
F. =Morz(z,_). It attaches taZ’ the set ofC,-valued points ofZ’ lying over z. The functor
F, is known to be strictly pro-representable: There is a projective sygtetﬂZi, Zi, ®ij)ier Of
pointed Galois coverings of wherel! is a directed set, and thg € Z;(C,,) are points ovet.
Moreover, fori > j the mapg,; : Z; — Z; is an epimorphism oveZ such thaw;;(z;) = z; and
such that the natural map

limMorz(Z;,Z') — F.(Z')

induced by evaluation on thg’s is a bijection for every?’.

For our purposes, we define the étale fundamental groufig{&) of Z as a topological
category, as follows: The set of objectsIdf(Z) is Z(C,). For twoC,-valued points: and z*
of Z set

(5) Morry, (z)(2,2%) = Iso(Fy, Fy-).

Such an isomorphism of fibre functors will be called an étale path (up to homotopy)froai.
Using the pro-representability & andF.-, one sees thatlory, () (2, 2*) is a pro-finite set and
as such a compact totally disconnected Hausdorff space. Moreover, composition of morphisms
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gives acontinuousmnap
Morry, (z)(2,2) x Mory, (z)(2", 2") — Mor, (zy(2, 2").
The étale fundamental group with base pairg the profinite group
m1(Z,z) = Morr, (z)(2,2) = Aut(F) whereF = F,.

There is an isomorphism of topological groups

©6) (7, 2) = (@Autz(zi))op.

?

Here the natural transformationg: F =~ F given by the family of compatible bijections
opz: F(Z;) = F(Z;) foric I is sent to the projective syste; );c; whereo; € Autz(Z;)
is uniquely determined by the relation:

Ji(zi) = UF(Zi)(Zi)~

Let Repyy, (z)(0), respectivelyRepy, ) (C,), be theo-linear, respectivelyC,-linear, cate-
gories of continuous functors frofi; (Z) into the category of free-modules of finite rank
respectively the category of finite dimensioig)-vector spaces. Here a functor between topo-
logical categories is called continuous if the induced maps between the topological spaces of
morphisms are continuous.

We now make some remarks on the functoriality f

Let a: Z; — Z, be a morphism of varieties ov&r,. There is an induced continuous functor
ay 111 (Z1) — 111 (Z3) defined as follows. On objects. is the mapx: Z;(C,) — Z»(C,). For
pointsz, 2’ of Z;(C,) it remains to define continuous maps

. Iso(F, Flr) — Iso(Fozy, Fo(zr)-

For a finite étale morphisri; — Z, consider the base change
Y1 =Y;5 Xz, Z1 — Z;. There are natural bijections

Fz(Yl) = Fa(z)(YQ) and F. (Yl) = Fa(z/)(YQ).
For~ € Iso(F,, F.) definea. (v)(Y2) as the composition:

(Y1)
(V) (Ya): Fozy(Y2) 2 F. (Y1) = Fo (Y1) 2 For)(Y2).

This defines an isomorphism, (v) of fibre functors. By construction, the map— «..(v) is
continuous. Itis clear that. defined on objects and morphisms gives a functor.
For a second morphism: Z, — Z3 of varieties overQ,, we find that

(Boa)s =PBso0a,:T1(Z1) — 11 (Z3).
Obviouslyid, = id.
Now we consider the effect of Galois conjugation on fundamental groupoids. For a stheme

over@p and an automorphism of @p overQ, set’Y =Y ®g. o Q, and writeg: Y = 7Y
for the inverse of the projection map.
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We now define a continuous functet, : I, (Z) — II;(° Z). On objectso, is defined by
mappingz € Z(C,)t0°z=0o0zo00 ' =cgozospecoin ?Z(C,).
The continuous magp.. between the spaces of morphisms

oy Iso(F,, F.r) =5 Iso(Foy, Foy)

is obtained as follows: Every finite étale cover’d is of the form?Y for a finite étale covel
of Z. Itis clear thatFv,(?Y") = F,(Y') naturally for every point of Z(C,). Defineo,(v)(Y)
as the composition:

o (VY ) 1 Fop (V) 2 F(Y) - Fo(Y)=Fopu(Y).

This defines an isomorphism of fibre functers(vy). The mapy — o.(v) is continuous. The
mapso . on objects and morphisms define a funetor It is clear that we havéo 7). = 0. o
as functors fronil, (Z2) to I1, (°72) =11, (°("Z)).

If Z is already defined over an extensidh C @p of Qp, i.e. Z =Zg ®k @p for some
variety Zx over K then for everyo € G = Gal(@p/K) the mapid xspec x spec(o™!) gives
a@p-linear isomorphisntZ = Z. This will be used to identifyZ with Z. It follows that for
suchZ the groupG k acts from the left by continuous automorphisms on the catege(y).

For a topological groulx let Reps,(0) be the category of continuous representations oh
free s-modules of finite rank. We defirReps,(C,) similarly.

All these categories are equipped with a tensor product, duals, internal homs and exterior
powers. The-categories are exact, tig,-categories are even Abelian.

LEMMA 21. - For a variety Z as above and a fixed poiat € Z(C,,) the natural forgetful
functors

Repyy, (7)(0) = Rep,, (z,.,)(0) and Repp, £(Cy) = Rep,, (7.4 (Cp)

are fully faithful.

Proof. —SinceZ is connected all objects &1, (Z) are isomorphic to each other. Faithfulness
follows. Given representationsandV’ of IT; (Z) let us writeV, = V(z) andV} = V' (z). Given
a i (Z, z0)-equivariant homomorphisnf., : V., — V/ define f.:V, — V/ for arbitrary z €
Z(C,) as follows. Choose an étale patke Mory, (7 (2, z0) and setf, = V'(y) "' o f,, 0 V(7).
This is independent of sincef., is Autry, (7 (20, 20)-equivariant. One checks that the family of
homomorphismsf.).cz(c,) defines a morphism of functors frobn to V" which inducesf., .
Hence the above forgetful functors are fullc

Consider as before a smooth projective cuK/@ver@p, a divisorD in X and a modef of
X overZ,. SetU = X \ D.

Given a bundle€ in Bx, p, we will construct a continuous functgg from II; (U) into the
category of free-modules of finite rank. By propernes§(C,) = X, (o). Hence we may view
any geometric point € X (C,) as a sectiom, : speco — X, overspeco. We write&,,, = x5€
viewed as a free-module ofrank = rank £. The reductiorX, (o) — X,(0,,) = X,,(0,,) maps
2, t0 @ morphism

To
T, :speco, — speco —— X,

and we set, =z'&=¢E,, ®, 0, viewed as a free,,-module of rank-. We have

gfpo = h—n}gwn
n
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as topologicab-modules, the topology ofi,, being the discrete one. We defipg on the set of
objectsU(C,,) of I1; (U) by settingpg (z) = &,, . It remains to define continuous maps:

pe : Mor, (v (#,2") = Iso(Fy, Fpr) — Hom, (&, , Exr)-
These in turn will be obtained as the projective limit of maps
pgvn : ISO(Fa:’ Fa:,) - Homon (ga:n ? ngn)

for n > 1. By construction each map ,, will factor over a finite quotient of the pro-finite set
Iso(F}, F,). Hence eachs ,, is continuous and therefope: will be continuous as well.

Now, givenry in Iso(Fy, F,/) and somer > 1, let us construchs ,, (7). By definition of8x, p
and by Corollary 3(3) there exists an object)y — X of Si‘fgd such thatr &, is a trivial bundle.
SetY =Y ® @p andV =Y \ 7*D. ThenV — U is a finite étale covering. Choose a point
y € V(C,) abovez and lety’ = vy € V(C,,) be the image of under the map

VWi Fe (V) — Fu (V).

Theny' lies overz’. Since the structural morphisi: J — specZ, satisfies\,. 0y = Ospec,
universally, we find\,,- Oy,, = Ogpeco,, and therefore the pullback map undgr: speco,, — Y,
is an isomorphism:

Yo DV, mrEn) = T(specon, yrmrEn) =T(specoy, zrEn) =Ex, -
We can now defingg ,,(vy) to be the composition:

pen (V) =7W)ho (yn) =y o () i€, = Ear -

Note that by constructiopg ,, factors over the finite s@so(F,(V), F, (V).

THEOREM 22. — The preceding constructions are independent of all choices and define a
continuous functopg fromII; (X \ D) into the category of free-modules of finite rank.

Proof. —We first check thapg ,, () does not depend on the choice of the pairabovez.
So let z be another point i/ (C,) over z. By Theorem 4 there are a finite grodp and

good

a G-equivariant morphisni: Y — X defining an object ofty:’p , together with a morphism
p: Y- Ywithi=ro w.In particularf/ =Y \ 7*D is a Galois covering o/ with groupG.
HereY is the generic fibre o¥. Choose pointg andz in V(Cp) abovey, respectively:. Then
the pointsyg and~Z lie above~vy, respectivelyyz. Sinceg and Z both lie abover, there is a
uniques in G with o = Z and hence witlrj, = Z, andoy,, = Z,, as well. By construction the
following diagram is commutative:

vl (vv)y,
gln ]‘—‘(y’ﬂ?ﬂ—:;,gn) w;z

iwi
g (Y97,

gxn < = F(Nn,ﬁ'; n) %N x!

Hence we have the formula:

() o (n) "t =(vi)n o ()"
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and similarly

(v2)n o (z0) = (v2)n 0 (Z5) 7

Now, Z = o o § implies thatz;, equals the composition
TV, 75E) T TV, 75 En) L2 &,

By naturality ofy we haveyz = o o yg and as befor¢yz)* = (vg)* o o*. Thus we find

*

(ve)no(zn) ™ = ()0 (Z) = (yi)n oo o (o) o (gn) ™"

Now we prove thap ,, () does not depend on the trivializing covery — X. So, letr : Yy X
be another object o$§‘f§)d such thatt &, is a trivial bundle.

By Corollary 3(3) we may assume that there is a morph}sri? — Y with 7 =7 0 . With
notations as above choose a pgjrt V(C,) abover and sety = o5 (7) whereps Y —Y'is

the induced map on the generic fibres. It follows tch@t (v9) = vy and by properness gf and

y overspec Z, thaty, = ¢(7,) and(vy), = ©((77).). One obtains the same diagram as above.
Hence we have

(v)no ()™ = (Vim0 ()~

and this implies thape ,, () does not depend on the trivializing good cover. Hepgg (v) is
well defined.

It is clear that we havey ,,(id) = id for the trivial pathid € Iso(F,, Fy). For pathsy €
Iso(F,, F,/) andy’ € Iso(F,, F,~), choosing a poiny € V(C,) overz, the pointyy lies over
2’ and hence we have

pen(¥) =)o wn)™" and pen(v)= (Y (). o ()it

This implies the equation:
@) pen(V) 0 pen(¥) = ((v 0N)W), o (y3) " = pen(y o).
We now check that the maps
pemIso(Fy, Fypr) — Hom,,, (Ez,,, &)
form a projective system with respect to the natural projections

)\n+1 : HOHIC,H_*_1 (givn+1 R gzln,+1) — HOIII(,TL_'_1 (gxn+l 5 gm’n+1) ®0n+1 On
= Hom,, (&;,,, 1)
i.e. that)\n+1 O PEn+1 = PEmn-

For a givenn > 1 chooser:Y — X in Si‘?j’jd such thatr}, , ,£,41 is a trivial bundle. Then
&y is trivial as well. Fory in V(C,,) overz and~y € Iso(Fy, F,) consider the commutative
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diagram where andb are the natural maps

n YY)n
speco, —~ Y, < speco,

Yn+1 (YY) n+1
SpeC0p41 —— Ypy1 <—— SPECOp11

It induces a commutative diagram

% (vy)*
~Ynt At

gwn+1 ~ F(yn+17ﬂ—;;+lgn+1) - 517;1_;_1

b* l/ ia* i b*
'1’5 ~g

& LV, 1) ———— &u,

n

The mapsb* are just the natural reduction maps from thg ;-module&,, ,, respectively
Exr 1 1O theo,-module&,, =&, ., @o, ., 0n, respectivelyt,, = &1, Do,y 0n. Hence

the mappe.(v) = (v);, o (y2) L is the reductionnod p™ of the mappe n41(7) = (19)51 ©
1

(y:wrl)_
Let

pe 1so(Fy, Fyr) — Hom, (€, , Exr )

be the projective limit of the mapse ,,. Using (7) it follows that together with the previously
defined magp¢ on objects, we obtain a continuous functor froln( X \ D) into the category of
free o-modules of finite rank. O

For a fixedC,-valued pointz of X \ D the continuous functops induces in particular a
continuous representation

pe:m(X\D,x)= Autnl(X\D)(m) — Auto(E;,).
In a preliminary version [8] we defined a representatignin the following way: Choose a
G-equivariant morphismr : Y — X in $5°° such thatr:&, is a trivial bundle. The choice of a
pointy € Y(C,) abovex determines a homomorphism

(X, ) 2o AntPY =GP — Aut,, T(V,, 15E0),

i.e. aleftaction ofr; (X, z) onT'(),,, 7}, ). Transporting this action t6,,,, via the isomorphism

TV, 75En) < &,

gives a representatiopg ,, of m1(X,z) on &,,. The projective limit of theps ,, defines a
representatiops : w1 (X, z) — Aut, (€, ).

PROPOSITION 23. — The representationgr and pg:m (X, x) — Aut,(E,,) agree with
each other.
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Proof. —The present construction obtaips(y) as the limit ofps ,,(v), wherepg ., (7) is the
composition
wy) ™! )i
Ep, —— F(ynaﬂjzgn) — &,
We now show thatpgs ,,(v) = pen(v). For this, note that under the map, the natural

transformationy is sent to the unique automorphisne G of Y which sendg to yy. Hence we
have

1

pen(V)=ynoo" o (yp) " = (oY) o) =(whoWn) =pen(r). O

We now turn the magt — pg into a functorp from Bx, p into Repy, (x\p)(o). Let
f:€— & beamorphism imBx, p. We claim that the family oé-module homomorphisms

feo =x3f: &, =&, forallzeU(C,)=O0blII(U)

defines a natural transformation, denotedohyfrom p¢ to pe:. So, lety € Mory, (¢ (2, 2") be
an étale path. For a given> 1 there is an object:) — X in Si‘jgd such that bothr¢&,, and
7+ &/ are trivial bundles. This follows from Corollary 3(3). Lgt be the reduction of mod p™
and setf,, =z (f). Choose a poing abovez and sety’ = vy. Then the commutative diagram

f:nn g,

Tn

&,

yiﬁl T?yi,

D (Y, m5En) PV, T )

Yo l ! l vy,
I~

n /
Ea, Ea,

F(ynvﬂ':,fn)
- >

n

shows that we havé,: o pg . (v) = pr'n(7) © fz,. In the limit we obtain thaff,, o pe(v) =
per(y) o fz,. Hencepy = (fz,) is a morphism fronmpg to pg/. It is clear that in this way we
obtain a functop = p*. The proof of the following proposition is easy:

PROPOSITION 24. — The functorp = p* :Bx, p — Repy, (x\p)(0) is o-linear and com-
mutes with tensor products, duals, internal homs and exterior powers of vector bundles. Exact
sequences of bundles are mapped to exact sequences of representdiiph¥ afD).

We now describe the effect of Galois conjugationmrConsider an automorphism of @p
over@Q,. Itinduces as-linear functoro, from Vecy, to Vecox,. Here’X = X @5 Zp and

hence(?X), = X, ®,,, 0 = °X,. The functoro,. sends the vector bundioverX, to the vector
bundle?€ = £ ®, , 0 over’X,. A morphismf:&; — & is sentto’f : °€; — ?&,. On the other
hand we have a-linear functor:

Cy i Repy, (7 (0) — Repig, e (0):

It is obtained as follows. LevMlod, be the category of free-modules of finite rank. We define
a continuousr-linear functor

o.:Mod, = Mod,
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by mapping arv-modulel" to o, (I") = °T", which isT" as a set but with the twistegtmodule

structureX -y =o' (\)y for A€o andy e T i.e. °T =T ®,, 0. We write the identity map
i o7 asqo: T — °T since it iso-linear. Ano-module homomorphisnfi:I";y — I'; is sent to

?f = f in the first description ofl" and tof ®, . 0 in the second.

On objects ofRepyy, (1) (0), i.€. on continuous functods: I1; (U) — Mod,, the functorC,,
is defined by settin€, (I') = 0. o T'o (0,) ! whereo, : I1; (U) == I1; (°U) is the isomorphism
of categories recalled above. For a morphigm — I in Repy, (¢(0), i.e. a family of
o-module homomorphismg, :I', — I, for x € U(C,) with I(v) o f, = fu o I'(~y) for all
7y € Mory, (1) (z,2") we defineC,(f): C,(I') — C,(I") as follows. Every point of U (C,) is
of the form“z = o,.(z) for some point: of U(C,). Hence we have to define arinear map

Co(f)oz:Co(L)ap = (0x o T)(x) = (04 o ') (2) = Co(I") oz

for everyz € U(C,), i.e. amap
Co(f)on: Ty — T,

In the above notation we s€t, (f)-, = o o f, oo ~!. The family(C, (f)-,) defines the desired
natural transformatio®, (f) andC, becomes a functor which is easily checked tobmear.

Moreover we haveC ., = C, o C, andC;q = id in an obvious sense.

With trivial changes we also get analogous functers: *BX%’D — %GXCP,GD and
0. Vecc, — Vecc, andC, :Repyy, (1) (Cp) — Repyy, (o) (Cp).

The proof of the following proposition is routine.

PrROPOSITION 25. — In the above situation the diagram of categories and functors is
commutativgup to canonical isomorphisms of functirs

x
Bx, p —— Repp, 1)(0)

7x

Box, op —— Repy, (o1 (0)
In particular, we have fo€ in By, p that

pog = .0 pgo(0.)

as functors fronil; (°U) to Mod,.
Remark— It also follows that ifX and D are defined ovepg, so that(°X, °D) can be
identified with(%, D) for all o € G, the functor

p:Bx, p— Repl‘h(U)(o)

commutes with the left7 x-actions on these categories defined by lettingact via o,
respectively vieC,.

The next type of functoriality will be used all the time later. LetX — X’ be a morphism
over Z, of models and leD’ be a divisor onX’. SetU’ = X’ \ D" andU = X \ a*D’. The
generic fibre ofv induces a functor

A(a) :RepHI(U,)(o) - Repl‘h(U)(o)
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as follows: For an objedf of Repyy, (/) (o) we defineA(a)(I) to be the composed functor:
A()(D): T (U) 2= 11, (U") ¥ Mod,.

For a morphismf :I'; — I's in Repy, (;+y(0) given by a family ofo-linear mapsf, : ',y —
Iy, for 2’ € U'(C,) we defineA(«)(f) to be the family of maps

A(@)(T1)a =T age) 225 Ty ey = A(a)(T2)s.

It is clear thatA(«) so defined gives a functor and that for a second mfapX’ — X" we have
Ao o) = A(a) o A(d).

PROPOSITION 26. — For a morphisma: X — X’ as above the pullback along* induces
a functor o : Bz, pr — Bx, o~pr and the following diagram of categories and functors
commutegup to canonical isomorphisiis

By p — > Repp, (y(0)

8 a*l lA(a)

B, 0 — = Repy, 1) (0)
In particular, for everye in Bz, p we have

(9) Pa*E = PE O Ok

as functors frondI; (U) to Mod,.

Proof. —Let & be a vector bundle ifBx. p.. By Proposition 9a*¢ lies in Bx, o« p. We
have (p o a*)(€) = pare and (A(a) o p)(€) = pe o a,. Commutativity of (8) on objects is
therefore equivalent to (9). On objects, relation (9) simply says(thia), = £, (), a canonical
isomorphism. Foty € Morry, (1 (w, 2) it suffices to show that for eveny > 1, we have

(10) pa*S,n(’Y) =pPEn (a*(’}/))

Let 7/: )’ — X' be an object 054, such thatr/*&, is trivial. Choose some: ) — X in

Si‘fgf[,/ covering the object: Y = )’ xx X — X of Sx -pr, SO that we get a commutative
diagram

y—tey

x5y

Lety be a pointin/(C,) abover and sety = ¢ (y), a pointinV’(C,) abovex(z). NOW, po-g »
is the composition

sy —1 *
(0 €), L TV w03 En) L2 (078,
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andpg »(a. (7)) is the composition
Ix\—1 o™ 7y *
Eateye L T(Wh, mir€,) L2200 gy
Hence, for (9) it suffices to show that the following diagram commutes:

vy
) —=(

(@*E)e, LU F(ynﬂr:,a;‘sn a*€).,,

-
é‘a(m)nél—\( / 7['/*5

ny’'n n)(M;ga(z)n

For the left square this follows from the relatigh = ¢ o y as morphisms fronspecC,, to
V' c Y'. Similarly the right square commutes because we have )y’ = ¢ o (yy). Namely,
factoring 1» as a composition: Y % Y % )’ and settingj = b(y), we havea, (v)(y') =
a.(7)(a()) = a(vg) = a(y(by)) = (a o b)(yy) = ¥ (vyy). It is an immediate consequence of
the definitions, that diagram (8) commutes for morphisms, i.e. #at)p; = p,-5 for all
f351 — &9in %%;,D’- O

We can now define a parallel transport along étale paths for the bundlb,sCLnD.

PROPOSITION 27. — Let X be a smooth, projective curve ov@ with modelsX; and X,
overZ,. Then there is a third modél; of X together with morphisms

Xy x 2 x,

restricting to the identity on the generic fibréafter their identification withX'). For any divisor
D on X we have a commutative diagram of fully faithful functors

Bx,, 0 ®Q

: &3
\

j;3o
Bxso,0 ®Q—>Bx. »

%/7
szﬂ

Bx,,, 0 ®Q

Proof. —DescendX to a smooth projective curvi i over a finite extensiok” of Q,,, and
X1, Xy to modelsXy ., X2, Of Xx Overog. Let X be the closure of the image of the
morphism

A
XK —’XK ><spch XK _’xl,ox XSpCCOK x2,oK

endowed with the reduced subscheme structureXkgt, be the normalization ok, . Then
there are natural morphisn®; ,, — X;, — X1, and Xz, — X;, — X2, restricting
to the identity on the generic fibres. Now the first claim follows by base change. It remains
to show that for any modekX of X the functorj3_ :Bx,p ® Q — Bxc,.D induced by
the canonical morphismix, : Xc, — X, is fully faithful. For bundles&; and &; on X, set
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F =Homy (&1,&). Then flat base change applied to the global sectiorfs infiplies that

Homy, (£1,E6)2Q T>HOH1XCP (j;ogl,j;ugg)

.7350
is an isomorphism. O

For every morphisny : X — X’ overZ, of models ofX restricting to the identity on generic
fibres, Proposition 26 gives a commutative diagram:

Bx: D !

(11) x /

Rep, (1) (0)
Next, note that there is a canonical functor:

(12) Repyy, (1 (0) ® Q — Repyy, (1) (Cy).

Thus we get a commutative diagram:

Bx, pQ ! Bx,pRQ

(13) \ /

Rep, (1y(Cp)

Together with Proposition 27, we obtain a functor
p=p~: Bx., 0 — Repr, 1 (Cyp).

Explicitly, it is given as follows: For an objedt of Bx,.n0 We obtain the continuous functor
p(E) = pp:11;(U) — Vecc, by setting on the one hang;(r) = £, =2*E forz e U(Cy) =
ObII; (U). On the other hand, for, 2’ € U(C,) the continuous map

PE = PE,z,x’ ZMOI"HI(U)(JJ, 3:/) - Hom(Cp (Ex, Ey)

is given by

pe(Y) =¥, o (pe(7) @0 Cp) 0 ¢y
Here we have chosen a modglof X overZ, and a bundle€ in By p together with an
isomorphismy): E — j% & in Vecx,, . Moreovery, is the fibre map:

Yo =07 (8): o 2 (753, E)e = £2, ®0 Cp = £, ©2.Q.

For a morphismf: E' — E" in Bx. p the morphismp(f) = ps:pe — ppr is given by the
family of linear mapsf, = z*(f): E, — E. forall z € U(C,).

The main properties of parallel transport for bundles of clésm p-adic curves are collected
in the next result:
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THEOREM 28. — Let X, X’ be smooth projective curves ov@ andletf: X — X’ be a
morphism between them. LBtand D’ be divisors onX and X’.
(a) The functor

p: %chvD — Rep, (1) (Cp)

is C,-linear, exact and commutes with tensor products, duals, internal homs and exterior powers.
(b) Pullback of vector bundles induces an additive and exact functor

*
7 Bx, o= Bxe, 0

which commutes with tensor products, duals, internal homs and exterior powers. The following
diagram is commutative

%Xép ,D’ $ Repnl (X"\D") ((Cp)
(14) f’*l A(f)

P
%XCP Jf*D ———= Repl‘[l(X\f*D/) (Cp)
In particular, for £ in %XCPJ*D/ we have

(15) Pi-E = PE° fs

as functors fronil; (X \ f*D’) to Vecc, .
(c) For every automorphisrm of @p overQ, the following diagram commutes

Bx., .0 —— Repyy, 17y(Cp)

(16) a*i lca

Box., oD —— Repy, (o1 (Cp)
In particular, we have fot in %X:p,D that

pop=0.0pgo (o)

as functors fromiI; (“U) to Vecc,. If X = X ®k @p and D = Dg @k Q, for some field
QpCKC @p, so that(°X, °D) is canonically identified witi X, D) over@p forall o € Gk,
the functor

Pi%XCP,D - Repnl(U) (Cp)

commutes with the lef&i-actions on these categories, defined by lettingact via o.
respectively viaC,,.

Remark— As usual, for diagrams of functors to commute means to commute up to canonical
isomorphisms.

Proof. —Assertions (a) and (c) follow from Propositions 24 and 25, respectively. Assertion (b)
follows from Proposition 26 and Lemma 80
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Assume thatX has a smooth modet overZ,. Then by Theorem 12, every line bundle of
degree zero oiX¢, lies in %ch. Hence our functop induces a homomorphism

Pic’(Xc,) — Homeont (m1 (X, 2),C).

In [9] we show that on a certain open subgroupméo(X@p) this homomorphism coincides
with the one constructed by Tate in [32, §4] using thdivisible group of the Abelian scheme

Picg’e /7, and its Cartier dual.

The Zf‘ollowing theorem gives another relation to Tate’s work [32]. A proof is contained in [9].

THEOREM 29. — Let X be a smooth, projective curve ov@p with a smooth model
overZ,. We writeExtl%XC (O, O) for the Yoneda groups of isomorphism classes of extensions

0—-0—-0O(F)—0— OfwhereE liesin®Bx, . Sincep is exact, it induces a homomorphism
Ds ZEXt;}BXCP (0,0)— ExtRepm(M)(Cp) (Cp,Cyp).
Then the following diagram commutes:

1 *
EXt%XCp (O, O) p% EXthele(Xyz)((Cp) ((Cp, (Cp)

Hl(Xa 0) ®@p C——— Hc’lt(Xv Qp) ®@p (o

wherea is the Hodge—Tate map from the Hodge—Tate decompositiéf},¢f, Q, ) ®g, Cp.
PrRopPOSITION 30. — For a fixed pointzy € U(C,) the functor “fibre inzy”
Bx.,.0 — Vecg,, Ew— By, f fao
is faithful. In particular, the evaluation map
I'(Xc,,E) — Eq,, s+ s(xo)

is injective for all bundles® in %XCP,D-

Proof. —The functorp: B x. b — Repy, 1)(Cp) is faithful because a morphism of vector
bundlesf: E — E’ is determined by the collection of linear mafys E, — E, for all C,-valued
pointsz of Uc,, cf. [11, 7.2.2.1]. Using Lemma 21 it follows that the functor “fibrezig” is
faithful as well. In particular, the map

I'(Xc,, E) =Homx, (O,E)— Homc, (Cp, Ey,) = Ey,

is injective, whereD denotes the trivial line bundle akic,. O

In order to extend the preceding results to the catemﬁ;y p we need the following result.
Y,

PrRoPOSITION 31. — Consider a Galois coveringe: Y — X between varieties ove@p.
A (continuou$ functor W :I1; (Y') — C into a (topologica) categoryC factors asWW =V o a.,
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for some(continuou$ functor V:11; (X) — C if and only if we havelW o o, = W for all
o€ G=Gal(Y/X). If ais only finite and étale but not necessarily Galois, the relation
W =V o «, already determine§” uniquely.

Proof. —The conditionW o o, = W is necessary for the existence bf sincea, o o, =
(a00), = a,. Now assume that we hav& o o, = W for all 0. It implies thatiV,,,y = W, for
ally € Y(C,). Hence we may define

V:X(Cp) =OblIl;(X) - ObC
by settingV,, = W, for an arbitraryy € Y'(C,,) with a(y) = z. We define
V' :Morp, (x (21, 22) — More(Vy,, Vi)

as follows. Lety; € Y(C,) be a point witha(y1) = x1. For any finite étale map, the natural
map

(17) H MOTHI(Y) (Y1,92) =, MOTHI(X)(3317$2)
a(y2)=z2

is a homeomorphism. Hence any étale patfrom x; to x5 has a unique lifting to an étale
path~’ from y; to some pointy, abovez,. The desired relatiof’ = V o «, forces us to set
V(y) =W (+'), a morphism fromV,,, = W,, to V,,, = W,,. We have to check that this is well
defined i.e. independent of the choiceyef Let y; be another point above, and leto € G be
the automorphism withy, = y;. Theno,(v') is the unique path abovefrom 3} to some point
y4 abovexs. Thus we have to show th&lt (') = W (o.(y")). But this follows from the relation
W oo, =W on morphisms. It is clear thaf is a functor withiW =V o «,. We have also seen
that this property determinds uniquely. The continuity assertions are clean

Remark— In particular the proposition applies to representation$Ioft”) on C,-vector
spaces. There is no analogous result if one only considers representations of the fundamental
groupm (Y,y). For example, consider a smooth surfacewith finite fundamental group and
universal coveringy:Y — X. Then a representation of the trivial group(Y,y) carries no
information whereas a representatith of II; (Y) defines a transitive set of isomorphisms
between the vector spacls, for all y in Y/(C,).

We can now define a functer: %ﬁ( p — Repyy, (U) (C,) extending the functop previously

defined onBXp .p. Thus letE be avector bundle |ﬂ3 p- Choose a ramified Galois covering

aYy — X WhICh is étale ovet/ = X \ D such thatv* E Iles in EBYC oD By Theorem 28(b)
we have

Pa*E O O0x = po*(a*E) = Pa*E

for everyo in the Galois group o/ =Y \ o*D overU. Using Proposition 31 it follows that
there is a unique functer(E) = pg : 11: (U) — Vecc, such that we have

(18) ParE = PE © Qx.

This functor is continuous. (In order to apply Proposition 31, we view canonical isomorphisms
such agr*(a*F) = (ao)* E as identifications.)
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In particular, we haver(z) = E, for all x € U(C,). For an étale patly from z; to zo in U
we have

(19) pE(Y) = pare(Y): By = (" E)y, = (" E)y, = Ey, .

Herey, € V(C,) lies abovez; and~’ is the unique path iV with .,y =~ from y; to a
point y» abovexs. For a morphismf: E — E’ of vector bundles irfB”XCwD the morphism
p(f)=ps:pEe — pr is defined to be the family of linear mags: £, — E. forallz € U(C,).

PROPOSITION 32. — The preceding constructions give a well defined functor
p: ‘ngcp,p - RepHI(U)((Cp)

which extends the previously defined fungt@m Bxc,.D-

Proof. —We first have to show that the definition pf; is independent ofv. If we are given
ramified Galois coverings of smooth projective curegsY; — X andas : Yo — X which are
étale ovellJ there is a third ones : Y3 — X coveringa; andas i.e. as = «; o m; for morphisms
m;:Ys — Y; wherei =1, 2. Now assume that] E € %Yic,,.,a:D- By the above we have

ParE = Pi © Qix

for functors p;:11;(U) — Vecc, where i = 1,2. We have to show thap; = p,. By
Theorem 28(b) we find foi = 1, 2 that

PozE = Prr(arE) = Pa;E © Tix = Pi © Qi O Tix = P © A3

The uniqueness assertion of Proposition 31 now impliesghat p,.
Next we have to check that for a morphism E — E’ in %&C p the family of maps

fo: By — E;, defines a morphism iRepy, () (Cp). We may assume that bottf £ anda* £
lie in By, o+p. Thenpa«y, i.e. the family of mapga*f),: (a*E)y — (a*E'),, defines a
morphism inRepr, (v (Cp). Using (19) we see that

fay

/
Ewl Erl

PE("/)\L ipg/ ()
fay

E,, —— E;Q
commutes for every, as desired. It is clear thatis a functor and that it extends
p:Bx. .0 — Repy, 1)) (Cp). g

THEOREM 33. — Assertions(a), (b) and (c) of Theorem28 hold for SB”XC p instead of
Bx.,,p as well. For any point;, € U(C,,) the fibre functor

%ﬁ){CP7D‘>V€cCP7 E’_)E.’E(ﬂ foIO
is faithful.
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Proof. —(a) Exactness op is clear from its definition. For two vector bundlés and Es in
%f‘xc _p choose a ramified Galois covering Y’ — X, étale overX \ D such thatn*£; and

a*FE, are in%ch,D- Then we have

Pa*(E1®E>) = Pa*E1®@a* By = Pa* By @ Par By = (IDEI o a*) & (pEQ o a*)
= (pE, ® pE,) 0 O

by Theorem 28(a). It follows that we haye;, ¢, = pr, ® pE,. It is clear that we also have
Prief = Pf ® ps, for morphismsf,, f> of vector bundles. Hengecommutes withw-products
and similarly with direct sums, duals, internal homs and exterior powers.

Let f: X — X’ be a morphism of smooth projective curves o@;r On objects, we have to

showthalp s« = pgo f. forall Ein %f'x; . Thusleto’ : Y’ — X’ be a ramified Galois covering

P
étale overX’ \ D’ with o'*E in By~ ,~ps. With notations as in the proof of Proposition 9 we
Cp
see that* f*E = g*o/* F lies in By, o f+pr- Moreover

/
Pa*f*E = Pg*a’*E = ParE © s = PE O 0, © s = pE © fr 0y

by Theorem 28(a) and the definition pf;. Now on the other handy:Y — X is a ramified
Galois covering, étale oveY \ f*D’. Hencef*E lies in EB&C -pr andpy- g is by definition

the unique functor withp,- s« = ps-g o a. It follows thatpwe haveps-p = pr o f.. Itis
immediate from the definitions that diagram (14) 8f commutes on the level of morphisms.
The proof thatp behaves functorially with respect to automorphisms is deduced similarly from
Theorem 28(c). The last assertion is proved in the same way as Propositiom30.

Remark— It is known that the fibre functor in a point is faithful on the category of stable
bundles of degree zero on a compact Riemann surface, cf. [31, Chapter 1, IV]. By an induction on
the length of the Jordan—Hadlder filtration one gets faithfulness also on the category of semistable
bundles of degree zero. The analogous assertion therefore holds on smooth projective curves
over fields that can be embedded ifitpe.g. overC,. Together with Theorem 13 one thus gets
another proof of Theorem 33(b).

We will now explain how to glue the representatignsattached to a vector bundigon X¢,
which belongs to;Bf;(Cp’ p for several divisorsD. For this we need the following Seifert-van
Kampen theorem for étale groupoids:

PROPOSITION 34. — Given open subschem&s and U, of a curveX, leti, : U; N Uz — Uy,
i9: U1 NUy — Uz and gy : Uy — Uy U Uy, jo : Us — Uy U Uy be the corresponding immersions
and consider the commutative diagram of fundamental groupoids

Hl(UlﬁUg) e Hl(Ul)

iz*l ljl*

Hl(Ug) 72 Hl(Ul UUQ)

Then for any Hausdorff topological catego€yand continuous functorg; : 11, (U;) — C and
p2: 111 (Uz) — C such thatp; o i1, = pg o i9, there is a unique continuous functprIT; (U; U
Us) — C such thatp o j1. = p1 andp o ja, = pa.

Proof. -We may assume thdf; andU, are nonempty. Let:z; — x2 be an étale path in
U; U U, with ;1 € Uy andzy € Us. Choose a point’ in U; N Uy. Then sincel/; U Us is
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connected we may write as the composition of a path : x; — 2’ with a pathy,: 2’ — z5

in Uy U Us. The homomorphisme, (U,,x,) — w1 (U U Us,x,) for v = 1,2 are known to

be surjective sinceX is a curve. We deduce that there are pafhsz; — 2z’ in U; and

Ao :x' — o in Uy such thatj,.(%,) = v,. Hence ifp exists, we haveo(y) = p(y2 - 71) =
p(72)p(71) = p2(A2)p1(71) and similarly for paths fromes to x;. For pathsy in X whose
endpoints are both i/, we havep(v) = p, (%) wherej,.(5) = ~v. Hence the functop is
uniquely determined. As for existence, it is clear how to definen objects and it remains

to check thatp given on morphisms by the above formulas is well defined. This follows from
the Seifert—van Kampen theorem for the étale fundamental group, cf. [15, IX, corollaire 5.6].
There is a subtlety here. The pushout property holds only in the category of profinite groups. But
the maps, .. : m (U1 NUs,2’) — m (U, 2") are surjective and hence the mapson =, (U,,, z’)

have the same images for= 1, 2. This common image is the quotient of a profinite group by a
closed subgroup and hence profinite. Here we used the Hausdorff assumption on (the spaces of
morphisms ofC. O

PrRoPOSITION 35. — Let D; and D5, be divisors onX and set/; = X \ D; andUs = X\ D.
For a vector bundleE’ on X¢, let pL and p% be the continuous representationsIof(U;),
respectivelfI; (Uz), onC,-vector spaces constructed before. Then there is a unique continuous
representatiorpg of II; (U; U Uz) which induces’, onII; (U,) for v = 1,2. For the induced
functor wherel = Uy U Uy

p:%ﬁ cpsD1 N sBAﬁXCWDz - RePHl(U) ((Cp)

the analogue of Theore8 holds.

Variant. For€ in Bx, p, for v =1,2 we obtain a well defined representationldf(U) on
free o-modules of finite rank.

Proof. —On objectspg is defined bypg(z) = E, as before. The assertions are a formal
consequence of Proposition 34 and Theorem 33.

Let B85 be the category of vector bundles of: = with strongly semistable reduction of
Cp P
degree zero, as defined in the introduction.
THEOREM 36. — We haveB%, . =Jp, Bx. . Every vector bundl& in B% . lies bothin
Cp P _ ~p
Bx.,.p and®B, 5 for suitable divisorsD and D with disjoint support. There is a unique

representationpg of II,(X) on finite dimensionalC,-vector spaces such thatg(z) = E,

for all z € X(C,) and such thapg is compatible with the representatiopg of II; (X \ D)
constructed earlier for thos® with E in *BXCP’D. As before one obtains an exact additive
functorp: %3(% — Repy, (x)(Cp) which commutes with tensor products, duals, internal homs

and exterior powers. Moreover, it behaves functorially with respect to morphisms of curves over
Q, and automorphisms @}, overQ,. For any pointz, € X (C,), the fibre functor

g(cp - VeC(va Ew— E.,, = fao

is faithful.

Proof. —This follows from Theorems 17 and 33 together with Proposition 35.

Remark— Arguing as in the proofs of Propositions 9 and 32 this result implies the theorem in
the introduction.
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Let Rep; (x .)(Cp) be the full subcategory oRep,, x .)(Cp) of those representations
A:m (X, z) — GL(V) which are continuous it is given the discrete topology. Equivalently
A has to factor over a finite quotient of (X, x).

PROPOSITION 37. — The categornyRep;; x ,)(C,) is contained in the essential image of
p: %&:p - Repﬂ'l (X,x) ((C,’D)

Proof. —Let \ be a representation as above. Gelbe the image oA in GL(V). Leta:: Y — X
be a Galois extension of with groupG such thato, : 71 (Y, y) — 71 (X, z) with y € Y(C,)
abovezx induces an isomorphisam (Y, y) = ker A. Define a vector bundl& on X by setting
E =Y x%V whereV is the affine space ovéd, attached td’. ThenF lies in %“XC because
o F is a trivial bundle orl” and hence lies irBpr. On S-valued points o™ a triviafization

Y:Vy =Y xV =5 a*FE

is described by mappingy,v) to the pair([y,v],y) in o*E. Here[y,v] € E,(,) is the class of
(y,v) mod G. We can now calculatgg. Fory € 71 (X, z) there is a unique étale patti in Y’
from y to oy for a uniquely determined € GG. The commutative diagram

by

(O‘*E)y ~ (VY)y =

E, 1%
/’E('Y)\L J/pa*E(“/) J/PVY ")
E, 1%

Yyo

(" E)oy ~— (Vy)oy ==

shows that if we identifyE, with V' via ¢, the automorphisnpz(y):V — V' is given by
pe(y) =1, ' oty-. Thus we have

pe(M @) =9, [y7,v] =¥, [y, 00] = v = A(7)o.

wy
Hence we haver = \ as representations af (X,z) onV = E,. O

PROPOSITION 38. — Leta:Y — X be a finite étale covering of smooth projective curves
overQ, and letE be a vector bundle iﬁ%ﬁﬂ . Then
~p

pa.r:m(X,2) — GL((1.E),)

is the representation obtained fropy, : 7 (Y,y) — GL(E,) by induction via the inclusion
a,:m(Y,y) — m (X, x). Herey is any point inY’ (C,) abovex € X(C,).

Proof. —Under the natural injection — a*a.E we may view £, as a subspace of
(o E)y = (. E),. From Theorem 33(a) we get that

Pa.E ©COx = Pa*a, E
as representations af; (Y, y) on GL((a.E),). Thusp,+a,  iS the restriction ofp,,, g to the

subgroup (vian,) m1 (Y,y) of m1 (X, x). Sincepr — pa-a. r by the exactness of, it follows
that the restriction op,, r to 71 (Y, y) leaves the subspade, of (a.FE), invariant and gives
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the representatiopg there. It remains to show thétv. F).. is the direct sum of the translates
pa.E([7])Ey for [v] running over the cosets of,m (Y,y) in 71 (X, z). There is a bijection

m (X, 2)/a.m(Y,y) = {y €Y(Cy) |aly’) =}

given by mappingdy] to the “endpoint” of the unique lifting of to an étale path i starting at
vy, cf. (17). Together with the natural isomorphism

(. E)y = @ Ey

a(y’')=z

the assertion follows. Namely, we have:

pa*E('Y)Ey :pa*a*E(/}/)Ey :pE(’yl)Ey :Ey" O

We conclude this section with some general observations on the structure of representations.
Consider a continuous representatiorG — GL,.(0) of a profinite groupG. Thenp, : G —
GL,(01), the reductiommod p of p has finite image sinc€' is compact and; is discrete. Hence
the image ofp; is contained inGL, (o /pox) for some finite extensiol” of Q,. Letp be the
prime ideal ofo - and consider the reductiops,) : G — GL,.(0(,,)) of pmod p™ where we have
seto(,,y = 0/p™0. By constructiorp(,) factors:

P(1) :G— GLT(OK/}J) C GLT(O(l)).
Extending scalars t& = o/m the modular representatiad — GL,(0x /p) becomespy, the
reduction ofpmodm. For everyn > 1 the image ofp(,,) is finite. HenceG,, = Ker p(,,) is an

open normal subgroup @. Letp,,:G/G, — GL.(0(,) be the induced representation. We
have a commutative diagram

1

Gn/Gn+1 G/Gn+1 G/Gn

jkn \[ﬁ(nﬂ) &(n)

1 —— M (p"0(n41)) — GLr(0(n41)) — GL(0¢n)) ——1

1

Here f is the homomorphisnf(A4) = 1 + A and\, is induced byp,, ). SinceG,,/Gy41 is
finite andM..(p" 0(,,11)) Abelian and annihilated by it follows thatG., /G, 1 is isomorphic to
(Z/p)°~ for some integesd,, > 0.

Thus p is built up from the modular representatign,, of the finite groupG/G in
GL1(ox/p) C GL,.(k) via successive extensions by representations of elementary Abelian
p-groups. Itis instructive to compare this fact with the proof of Theorem 16: The way a bfindle
in Bx p is built up from&;, is similar to the way a continuous representafios built up from
its residual representation, .

Let us call a representation on a freg)-module M “irreducible” if every invariant free and
cofree submodule a7 is either trivial or equal ta\/.

PROPOSITION 39. —If p(,, is “irreducible” for somen > 1, e.g. if p, is irreducible then the
representatiorc, : G — GL,.(C,) is irreducible.

Proof. —Let V' C C] be apc,-invariant subspace of dimensien# 0,7. Then'=V No" is a
p-invariante-submodule ob™ for which o” /T is o-torsionfree. Since” /T is finitely generated
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it follows from [4, Lemma 3.9] thas” /I is a frees-module of rank say. Hence we get an exact
sequence:

0—-T—o" —ot—0.

By an induction ort it follows thatI" is a freeo-module. Because df =I'® C, the rank ofl" is
equal tos. Hencel'(,,) =I' ® o(,,) is a free and cofree,,)-module of ranks and thereforey,,

is “reducible”. Note that the rank of a freg,,)-modulel’(,,, is well defined because it equals the
dimension ofl’,,y ® k overk. O

Example—Let p:G — GLo(0) be a representation for which the image of:G —
GLz(o/p?o0) contains the two commuting matric¢g?) and (7). Thenp, is “irreducible”

and hencepc, is irreducible as well. For examplg;, could be trivial and we could have
G1/G2 = G/Go = (Z/p)? with ps given byps(i,5) = ( ;7).
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