
Ann. Scient. Éc. Norm. Sup.,
4e série, t. 38, 2005, p. 553 à 597.

ass of
elong
e curve.
ndles on

s étales
tion

voir ces
t les fibrés

of the
undle.
osable
unitary
ndle of

to
that a

ism

le
true:

ion
h

VECTOR BUNDLES ONp-ADIC CURVES AND
PARALLEL TRANSPORT

BY CHRISTOPHERDENINGER AND ANNETTE WERNER

ABSTRACT. – We define functorial isomorphisms of parallel transport along étale paths for a cl
vector bundles on ap-adic curve. All bundles of degree zero whose reduction is strongly semistable b
to this class. In particular, they give rise to representations of the algebraic fundamental group of th
This may be viewed as a partial analogue of the classical Narasimhan–Seshadri theory of vector bu
compact Riemann surfaces.

 2005 Elsevier SAS

RÉSUMÉ. – Nous définissons des isomorphismes de « transport parallel » le long des chemin
pour une classe de fibrés vectoriels sur une courbep-adique. Tous les fibrés de degré zéro avec reduc
fortement semistable appartiennent à cette classe.

En particulier, ils donnent des représentations du groupe fondamental de la courbe. On peut
résultats comme un analogue partiel de la théorie classique de Narasimhan et Seshadri concernan
holomorphes sur les surfaces de Riemann compactes.

 2005 Elsevier SAS

0. Introduction

On a compact Riemann surface every finite dimensional complex representation
fundamental group gives rise to a flat vector bundle and hence to a holomorphic vector b
By a theorem of Weil, one obtains precisely the holomorphic bundles whose indecomp
components have degree zero [34]. It was proved by Narasimhan and Seshadri [28] that
representations give rise to polystable bundles of degree zero. Moreover, every stable bu
degree zero comes from an irreducible unitary representation.

The present paper establishes a partialp-adic analogue of this theory, generalized
representations of the fundamental groupoid. The following is our main result. Recall
vector bundle on a smooth projective curve over a field of characteristicp is called strongly
semistable if the pullbacks ofE by all non-negative powers of the absolute Frobenius morph
are semistable. LetX be a smooth projective curve overQp and leto be the ring of integers in
Cp. A modelX of X is a finitely presented flat and proper scheme overZp with generic fibreX .
The special fibreXk is then a union of projective curves overk = Fp. We say that a vector bund
E on XCp = X ⊗ Cp has strongly semistable reduction of degree zero if the following is
E can be extended to a vector bundleE on Xo = X ⊗ o for some modelX of X such that the
pullback of the special fibreEk of E to the normalization of each irreducible component ofXk is
strongly semistable of degree zero. We say thatE has potentially strongly semistable reduct
of degree zero if there is a finite étale morphismα :Y → X of smooth projective curves suc
thatα∗E has strongly semistable reduction of degree zero.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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THEOREM. – LetE be a vector bundle onXCp with potentially strongly semistable reductio
of degree zero. Then there are functorial isomorphisms of “parallel transport” along étale p
between the fibres ofECp on XCp . In particular one obtains a representationρE,x of π1(X,x)
on Ex for every pointx in X(Cp). The parallel transport is compatible with tensor produc
duals, internal homs, pullbacks and Galois conjugation.

The theorem applies in particular to line bundles of degree zero onXCp . In this case thep-part
of the corresponding character ofπ1(X,x) was already constructed by Tate using Cartier dua
for thep-divisible group of the Abelian schemePic0

X/Zp
cf. [32, §4] and [9]. His method doe

not extend to bundles of higher rank.
Let us now discuss the contents of the paper in more detail. Afterwards we can ske

proof of the theorem.
In the first section we investigate the categorySX,D consisting of finitely presented prop

Zp-morphismsπ :Y → X whose generic fibre is a finite covering ofX which is étale outside o
a divisorD on X . The important point is that for givenπ in SX,D there is an objectπ′ :Y ′ → X

in SX,D lying overπ with better properties, e.g. cohomologically flat of dimension zero or e
semistable. We also construct certain coveringsπ using the theory of the Picard functor whi
are used several times.

In the second section we define and investigate categoriesBXCp ,D andB
�
XCp ,D involving a

divisor D on X and also an analogous categoryBXo,D for a fixed modelX of X . These are
defined as follows. The categoryBXo,D consists of all vector bundlesE on Xo such that for all
n � 1 there is a coveringπ in SX,D with π∗E trivial modulopn. In theorem 16 it is proved tha
for E to lie in BXo,D

it suffices thatπ∗
kEk is trivial whereπk is the special fibre of someπ.

Next,BXCp ,D consists of all bundles which are isomorphic to the generic fibre of a bunE
in BXo,D for some modelX of X . These categories are additive and stable under extens
Finally, we defineB�

XCp ,D as the category of vector bundles onXCp whose pullback alongα lies
in BYCp ,α∗D for some finite morphismα :Y → X between smooth projective curves which
étale overX \D. We obtain an additive category which is closed under extensions and co
all line bundles of degree zero. All vector bundles inB� are semistable of degree zero.

The third section is devoted to the definition and study of certain isomorphisms of pa
transport along étale paths inU = X \ D for the bundles in the categoryB�

XCp ,D. In more

technical terms, we construct an exact⊗-functorρ from B
�
XCp ,D to the category of continuou

representations of the étale fundamental groupoidΠ1(U) onCp-vector spaces. The basic idea
this: Consider a bundleE in BXo,D and for a givenn � 1 let π :Y → X be an object ofSX,D

such thatπ∗
nEn is a trivial bundle onYn. Here the indexn denotes reduction modulopn. Consider

pointsx andx′ in X(Cp) = X(o) and choose a pointy in Y = YCp abovex. For an étale pathγ
from x to x′, i.e. an isomorphism of fibre functors, letγy be the corresponding point abovex′.
For a “good” coverπ we have isomorphisms

Exn

y∗
n∼←−− Γ(Yn, π∗

nEn)
(γy)∗n∼−−−→Ex′

n
.

We define the parallel transportρE(γ) :Ex
∼−→ Ex′ as the projective limit of the mapsρE,n(γ) =

(γy)∗n ◦ (y∗
n)−1. This parallel transport is then extended toBXCp ,D andB

�
XCp ,D . We also prove

that the functor mapping a bundleE in B
�
XCp ,D to its fibre in a pointx ∈ U(Cp) is faithful.

Using a Seifert–van Kampen theorem for étale groupoids we show that for a bundleE which
is in B� for two disjoint divisors, one actually obtains a parallel transport along all étale
in X .
4e SÉRIE– TOME 38 – 2005 –N◦ 4
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The proof of the theorem above starts with a characterization of those vector bundle
purely one-dimensional proper scheme over a finite fieldFq whose pullback to the normalizatio
of each irreducible component is strongly semistable of degree zero: These are exa
bundles whose pullback by a finite surjective morphism to a purely one-dimensional p
Fq-scheme becomes trivial. For vector bundles on smooth projective curves over finite
this characterization is due to Lange and Stuhler [22]. Hence we have to lift finite cov
characteristicp to characteristic zero. The main point here is to construct a morphism of m
whose reduction factors over a given power of Frobenius. In fact our method allows
construct two coveringsπ in SX,D and π̃ in S

X,D̃
for two disjoint divisorsD andD̃ such that

π∗
kEk and π̃∗

kEk are both trivial. By the above theory, one gets the parallel transport on
XCp . In the case of good reduction M. Raynaud has shown us a direct proof of this fa
Theorem 20.

For Mumford curves, Faltings [17] associates a vector bundle onX to every K-rational
representation of the Schottky group and proves that every semistable vector bundle of
zero arises in this way. It was shown by Herz [21] that his construction is compatible with

Recently Faltings has announced ap-adic version of non-Abelian Hodge theory [18]. H
proves an equivalence of categories between vector bundles onXCp endowed with ap-adic Higgs
field and a certain category of “generalized representations” which contains the represen
of π1(X,x) as a full subcategory. His methods are different from ours. In particular Fa
uses his theory of almost étale extensions. The main open problem in Faltings’ approa
characterize the Higgs bundles corresponding to actual representations ofπ1(X,x). He shows
that with zero Higgs field, line bundles of degree zero and their successive extensions com
π1(X,x)-representations and suggests that perhaps all semistable vector bundles of deg
are obtained in this way. The main theorem of our paper shows that this is true if in additi
bundle has potentially strongly semistable reduction.

The present preprint improves and replaces the second part of [8]. The first part of [8] w
published as [9].

Finally we would like to draw the reader’s attention to possibly related works of Berko
[2, §9] on p-adic integration, of Ogus and Vologodsky on non-Abelian Hodge theor
characteristicp and of Vologodsky [33] on Hodge structures on fundamental groups.

1. Categories of “coverings”

In this section we introduce simplified and generalized versions of the categories of cov
that were used in [8] to define thep-adic representations attached to certain vector bundles.

In the following, a variety over a fieldk is a geometrically irreducible and geometrica
reduced separated scheme of finite type overk. A curve is a one-dimensional variety. LetR
be a valuation ring with quotient fieldQ of characteristic zero. For a smooth projective curveX
overQ consider a modelX of X overR, i.e. a finitely presented, flat and proper scheme o
specR together with an isomorphismX = X ⊗R Q. For a divisorD on X we writeX \ D for
X \ suppD.

Consider the following categorySX,D . Objects are finitely presented properR-morphisms
π :Y → X whose generic fibreπQ :YQ →X is finite and such that

πQ :π−1
Q (X \D) → X \D is étale.

We setSX = SX,∅. In this case the generic fibreπQ is a finite étale covering. A morphism fro
π1 :Y1 → X to π2 :Y2 → X in SX,D is given by a morphismϕ :Y1 →Y2 such thatπ1 = π2 ◦ ϕ.
Note thatϕ is finitely presented and proper and thatϕQ is finite, and étale overX \D.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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If such a morphism exists, we say thatπ1 dominatesπ2. If in addition ϕQ induces an
isomorphism of the local rings in two generic points we say thatπ1 strictly dominatesπ2.
In the case whereY1Q andY2Q are both smooth projective curves this means thatϕQ is an
isomorphism.

It is clear that finite products and finite fibre products exist inSX,D . Moreover, for every
morphismf :X → X′ of models overR and every divisorD′ on X ′, the fibre product induces
functorf−1 :SX′,D′ →SX,f∗D′ .

We frequently use the fact that any non-constant morphism of a reduced and irred
schemeZ to a discrete valuation ring is flat, cf. [25, Corollary 4.3.10]. Besides, note thatZ

is flat and of finite presentation overR with irreducible and reduced generic fibre, thenZ is also
irreducible and reduced by [25, Proposition 4.3.8].

We define the full subcategory

Sgood
X,D ⊂ SX,D

to consist of those objects inSX,D whose structural morphismλ :Y → specR is flat and satisfie
λ∗OY = OspecR universally and whose generic fibreλQ :YQ → specQ is smooth. In particula
YQ is geometrically connected and hence a smooth projective curve, which implies thaY is
irreducible and reduced.

Let Sss
X,D denote the full subcategory ofSX,D consisting of all π :Y → X such that

λ :Y → specR is a semistable curve whose generic fibreYQ is a smooth projective curve overQ.
Recall thatλ :Y → specR is a semistable curve iffλ is flat and for alls ∈ specR the geometric
fibreYs is reduced with only ordinary double points as singularities, see [7] or [25, Section
Note that sinceYQ is irreducible and reduced, the schemeY is irreducible and reduced as well.
R is a discrete valuation ring, thenY is normal sinceYQ is normal, see [25, Proposition 10.3.1

THEOREM 1. – Assume that the base ringR is a discrete valuation ring.
(1) The categorySss

X,D is a full subcategory ofSgood
X,D .

(2) The objectsY → X of Sss
X,D have the property thatPic0

Y/R exists as a semi-Abelia
scheme which is isomorphic to the identity component of the Néron model of the A
varietyPic0

YQ/Q.
(3) For any discrete valuation ringR′ dominatingR setX′ = X ⊗R R′ and letD′ be the

inverse image ofD in X ′. The natural base extension functorSX,D →SX′,D′ mapsSgood
X,D

into Sgood
X′,D′ andSss

X,D into Sss
X′,D′ . (More generally this is true for valuation ringsR and

R′.)
(4) For any finite number of objectsπi :Yi → X in SX,D there exists a finite extensionQ′/Q

such that the objectsπi ⊗R R′ of SX′,D′ are all dominated by a single object ofSgood
X′,D′

and even ofSss
X′,D′ . HereR′ is a discrete valuation ring inQ′ dominatingR.

(5) For any objectπ :Y → X of SX,D there exists an extension of discrete valuation ri
R′/R as in(4) such thatπ ⊗R R′ is strictly dominated by an object ofSgood

X′,D′ and even o
Sss

X′,D′ .

Proof. –(1) Letπ :Y →X be an object ofSss
X,D . By assumption the geometric fibres ofY over

specR are reduced. Together with the flatness ofλ :Y → specR it follows from [13, 7.8.6] that
λ is cohomologically flat in dimension zero. This means that the formation ofλ∗(O) commutes
with arbitrary base changes. Sinceλ is proper the sheafλ∗(O) on specR is coherent and henc
given by the finitely generatedR-moduleΓ(specR,λ∗(O)) = Γ(Y ,O). SinceY is integral,
this module is torsion free, hence free, so thatλ∗(O) = Or

specR for somer � 1. SinceYQ is a
smooth curve, it follows thatr = 1. Taken together we find that the equationλ∗(O) = OspecR

holds universally.
4e SÉRIE– TOME 38 – 2005 –N◦ 4
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(2) SinceY has semistable reduction overspecR it follows from [3, 9.4, Theorem 1] tha
Pic0

Y/R is a smooth separatedR-scheme which is semi-Abelian. By [3, 9.7, Corollary 2] t

connected component of the Néron model ofPic0
YQ/Q is canonically isomorphic toPic0

Y/R.
(3) Note here that semistability is by definition preserved under base change.
(4) Since finite products exist inSX,D assertion (4) follows from assertion (5).
(5) I. Let us first prove the claim for the categorySgood

X,D . This proof will be taken up in a
G-equivariant context in Theorem 4 below. LetQ′ be a finite extension field ofQ such thatY has
aQ′-rational point overX \D and such that the irreducible components ofYQ′ are geometrically
irreducible. LetR′ be a discrete valuation ring inQ′ dominatingR. SetYR′ = Y ⊗R R′. Choose
an irreducible component ofYQ′ containing aQ′-rational point overX \ D and letY∗ be its
closure inYR′ with the reduced scheme structure. ThenY∗ is integral and we can pass to
normalizationỸ which is finite overY∗ by [14, (7.8.6)].Ỹ is a proper, flatR′-scheme. Since
Ỹ ⊗R′ Q′ is the normalization ofY∗

Q′ it has aQ′-rational point. By Lipman’s resolution o
singularities, there is an irreducible regularR′-schemeY∨ together with a properR′-morphism
Y∨ → Ỹ which is an isomorphism on the generic fibre.Y∨ is obtained by repeatedly blowin
up the singular locus followed by normalization. This process becomes stationary after
many steps (see [24] and also [25, 8.3.44]). Hence we obtain a regular, irreducible scheY∨,
which is proper and flat overR′, together with a proper morphismY∨ → X′ strictly dominating
π ⊗R R′. TheQ′-rational point in the generic fibre ofY∨ induces a section ofY∨ → specR′ by
properness. Now we apply a theorem of Raynaud to deduce thatY∨ is cohomologically flat in
dimension0, see [29, Théorème (8.2.1), (ii)⇒ (iv)] or [25, 9.1.24 and 9.1.32]. ThusY∨ → X′

lies inSgood
X′,D′ .

II. Alternatively, at least if the residue field ofR is perfect the claim forSgood
X,D could be proved

by using instead of Raynaud’s theorem a theorem of Epp. ReplacingY by Ỹ andR by R′ (of I)
we may assume thatY is normal and thatYQ is a smooth projective curve overQ. Using [10,
Theorem 2.0], it can be shown that there are a finite extensionQ′ of Q and a discrete valuatio
ring R′ in Q′ dominatingR such that the normalizatioñY of Y ⊗R R′ has geometrically reduce
fibres. As in the proof of part (1) it follows that the objectπ̃ : Ỹ → Y ⊗R R′ → X ⊗R R′ = X′

strictly dominatingπ′ = π ⊗R R′ :Y ⊗R R′ → X′ is in Sgood
X′,D′ .

III. We now prove that after base extension every objectπ of SX,D is strictly dominated by
an object ofSss

X,D . In view of part (1) this gives a third proof for the assertion onSgood
X,D . We

constructY∨ → X′ as inI. SinceY∨ is irreducible, regular and proper and flat overR′, a result
of Lichtenbaum [23] implies thatY∨ is projective overR′. According to [26, Theorem 0.2
there is a finite extensionQ† of Q′ and a discrete valuation ringR† in Q† dominatingR′ and a
semistable modelY† of Y∨ ⊗R′ Q† together with a morphismY† ϕ−→Y∨ ⊗R′ R† overspecR†.
The composition

Y† ϕ−→Y∨ ⊗R′ R† →X† = X⊗R R†

defines an object ofSss
X†,D† which strictly dominatesπ† = π ⊗R R†. �

The next result is used later to prove that certain categories of vector bundles are stabl
extensions and contain all line bundles of degree zero.

As before letR be a discrete valuation ring with quotient fieldQ of characteristic zero
Consider a smooth projective curve of nonzero genusX overQ with a Q-rational pointx and a
semistable modelX of X overspecR. Fix someN � 1 and define an étale coveringα :Y → X
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Hereix is the canonical immersion into the Albanese variety corresponding to the rationa
x. Note thatY is geometrically connected and hence a smooth projective curve.

PROPOSITION 2. – In the above situation, there exist
• a finite extensionQ′/Q and a discrete valuation ringR′ in Q′ dominatingR;
• a semistable modelY ′ of Y ′ = Y ⊗Q Q′ overspecR′;
• a morphism

π′ :Y ′ →X′ = X⊗R R′

such that the following assertions hold:
(a) The generic fibreπ′

Q′ of π′ is α′ = α⊗Q Q′.
(b) There is a commutative diagram

Pic0
X′/R′

π
′∗

N

Pic0
Y′/R′

Pic0
X′/R′

g

for some morphismg with g(0) = 0, where0 denotes the zero section overspecR′.

Remark. – After proving the proposition, we saw that in [18] Faltings uses a sim
construction to make Higgs bundles onp-adic curves “small”.

Proof. –Let Y1 be the normalization ofX in the function fieldQ(Y ) of Y . ThenY1 is a
model of Y which is equipped with a morphismπ1 :Y1 → X. According to [14, 7.8.3 (vi)]
the morphismπ1 is finite. We will view π1 as an object ofSX. For an extensionR′/R as in
Theorem 1 part (5) there exists an objectπ′ :Y ′ → X′ of Sss

X′ strictly dominatingπ1 ⊗R R′.
Changing the identification ofY ′ ⊗R′ Q′ with Y ′ = Y ⊗Q Q′ if necessary, we may assume th
the generic fibre ofπ′ is α′ = α⊗Q Q′.

The origin inAlbX/Q = P̂ic0
X/Q and the pointx of X define aQ-rational pointy of Y with

i(y) = 0. Let

iy :Y → AlbY/Q

be the corresponding immersion. By the universal property of the Albanese variety, th
a unique morphismf :AlbY/Q → AlbX/Q which is necessarily a homomorphism such t
f ◦ iy = i.
4e SÉRIE– TOME 38 – 2005 –N◦ 4
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Applying the functorPic0
_⊗Q′/Q′ to the commutative diagram

Y

α

iy AlbY/Q

f

AlbX/Q

N

X
ix AlbX/Q

we obtain the following commutative diagram, wheref ′ = f ⊗Q Q′:

Pic0
Y ′/Q′

Pic0
X′/Q′

f̂ ′

Pic0
X′/Q′

α
′∗

N̂=N

Let N be the Néron model ofPic0
Y ′/Q′ over specR′ and letN 0 be its identity component. B

Theorem 1 part (2) we know thatPic0
X′/R′ andPic0

Y′/R′ exist as smooth and separated sche

and thatPic0
Y′/R′ is isomorphic toN 0. By the universal property of the Néron model, the natu

map

MorR′
(
Pic0

X′/R′ ,N
) ∼−→ MorQ′

(
Pic0

X′/Q′ ,Pic0
Y ′/Q′

)
(1)

is bijective. Hencêf ′ has a unique extension to a morphismg :Pic0
X′/R′ →N . By construction,

the compositiong◦N has generic fibrêf ′ ◦N = α
′∗. Sinceα′ is the generic fibre ofπ′ :Y ′ → X′,

the induced homomorphism

π
′∗ :Pic0

X′/R′ → Pic0
Y′/R′

has generic fibreα
′∗ as well. Using the Néron property (1) it follows thatg ◦ N is equal to the

composition

Pic0
X′/R′

π
′ ∗−−→ Pic0

Y′/R′ =N 0 ↪→N .

In particular we get thatg(0) = g(N(0)) = 0 where0 denotes the zero sections ofPic0
X′/R′

respectivelyPic0
Y′/R′ . Since the special fibre ofPic0

X′/R′ is connected, it follows thatg is a
morphism

g :Pic0
X′/R′ →N 0 = Pic0

Y′/R′

with g ◦N = π
′∗ as desired. �

We fix an algebraic closureQp of Qp and consider finite extensionsQp ⊂ K ⊂ Qp. The rings
of integers will be denoted byoK andoK = Zp.

The following corollary of Theorem 1 will be used constantly.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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COROLLARY 3. – LetX be a smooth projective curve overQp andD a divisor onX . LetX
be a model ofX overspecZp.

(1) Given any finite number of objectsπi :Yi → X in SX,D (respectively given one obje
π1 :Y1 → X in SX,D) there is a finite extensionK of Qp and a curveXK/K with model
XoK

/oK and a divisorDK of XK such that the following hold: We haveX = XK ⊗K K
and D = DK ⊗ K and X = XoK

⊗oK
Zp and there is an objectπoK

:YoK
→ XoK

of
Sgood

XoK
,DK

and even ofSss
XoK

,DK
such thatπ = πoK

⊗oK
Zp dominates allπi in SX,D

(respectively dominatesπ1 strictly).
(2) The categorySss

X,D is a full subcategory ofSgood
X,D .

(3) Any finite number of objectsπi :Yi → X in SX,D are dominated by a common obje
π :Y → X of Sgood

X,D and even ofSss
X,D . Every single objectπ1 :Y1 → X in SX,D is strictly

dominated by an object ofSgood
X,D and even ofSss

X,D .

Proof. –Part (1) follows from Theorem 1, (4), (5) using noetherian descent as in [14, §
particular (8.8.3) and (8.10.5)], together with [14, (17.7.8)] to descend to the categorySX1,D1

for someX1/oK1 with divisorD1 whereK1 ⊃ Qp is a finite extension.
(2) Similarly as above, every objectπ :Y → X of Sss

X,D descends to an objectπoK
:YoK

→
XoK

of SXoK
,DK

whereK ⊃ Qp is finite such thatYoK
/oK is flat. Since the geometric fibres

YoK
/oK andY/Zp can be identified, it follows thatπoK

:YoK
→ XoK

is in Sss
XoK

,DK
and hence

in Sgood
XoK

,DK
by Theorem 1(1). Thereforeπ = πoK

⊗oK
Zp lies inSgood

X,D by Theorem 1(3).
Part (3) follows by combining (1) and Theorem 1(3).�
Later we will construct a canonical parallel transport for certain vector bundles. The proo

it is well defined requires the following theorem. LetTX,D be the following category. Objec
are finitely presented properG-equivariant morphismsπ :Y → X over specZp whereG is a
finite (abstract) group which actsZp-linearly from the left onY and trivially onX. Moreover the
generic fibreπ

Qp
is finite and its restrictionY

Qp
\ π∗D → X \D is an étaleG-torsor.

A morphism from theG1-equivariant morphismπ1 :Y1 → X to theG2-equivariant morphism
π2 :Y2 → X in TX,D is given by a morphismϕ :Y1 → Y2 with π1 = π2 ◦ ϕ together with a
homomorphismγ :G1 → G2 of groups such thatϕ is G1-equivariant ifG1 acts onY2 via γ.

This definition generalizes the categoryTX = TX,φ used in [8, §5]. There is an obviou
forgetful functorTX,D → SX,D. The full subcategoryTgood

X,D of TX,D consists of those objec

which are mapped to objects ofSgood
X,D .

THEOREM 4. – For any objectπ :Y → X in SX,D there are a finite groupG and a
G-equivariant morphismπ′ :Y ′ → X defining an object ofTgood

X,D which admits a morphism
ϕ :Y ′ → Y with π ◦ ϕ = π′. In other words, every object ofSX,D is dominated by the imag
of an object inTgood

X,D .

Proof. –Let us first show that every objectπ :Y → X of TX,D is dominated by an object o
T

good
X,D . By noetherian descent we can assume that there is a finite extensionK of Qp in Qp with

ring of integersR such thatπ descends to the objectπR :YR →XR in TXR,DK
. Denote byG the

group acting onYR overXR such thatYK \ π∗
KDK → XK \DK is an étaleG-torsor. Now we

follow the construction in the proof of Theorem 1(5)I and consider a geometrically irreducib
component ofYK′ containing aK ′-rational point overXK′ \DK′ , whereK ′ is a finite extension
of K in Qp. Denote byH ⊆ G the stabilizer of this component. ThenH acts in a natural wa

on Y∗, and also onỸ andY∨. ThereforeY∨ → X ⊗R R′, whereR′ is the ring of integers in
K ′, is an object ofTgood

X ,D dominatingπR′ . By base-change toZp, our claim follows. Hence

R′ K′
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it suffices to show that there is an objectπ′ of TX,D which dominatesπ. By Corollary 3(1), we
may assume that we haveπ = πoK

⊗ Zp with πoK
:YoK

→ XoK
in Sgood

XoK
,DK

. Let Y ′
K be the

smooth projective curve whose function field is the Galois closure ofK(YK) overK(XK). The
Galois groupG acts onY ′

K over XK . The morphismY ′
K → XK is finite and overXK \ DK

it defines a Galois covering with groupG. Consider the normalizatioñYoK
of YoK

in K(Y ′
K).

By [14, (7.8.3) (vi)] the morphism̃YoK
→YoK

is finite. HenceỸoK
→YoK

→ XoK
defines an

object ofSXoK
,DK

with generic fibreỸK = Y ′
K → XK .

By the proof of [26, Lemma 2.4], there exists a modelY ′
oK

of Y ′
K overoK endowed with an

action ofG extending the action onY ′
K together with a morphismϕoK

:Y ′
oK

→YoK
which is an

isomorphism on the generic fibre.
Let π′

oK
:Y ′

oK
→ XoK

be the compositionπ′
oK

= πoK
◦ϕoK

:Y ′
oK

→YoK
→ XoK

. SinceY ′
oK

is reduced,G-equivariance of the generic fibre ofπ′
oK

impliesG-equivariance ofπ′
oK

, cf. [12,
7.2.21].

Now put

Y ′ := Y ′
oK

⊗oK
Zp and π′ = π′

oK
⊗oK

Zp :Y ′ → X.

Then π′ :Y ′ → X is an object ofTX,D such thatϕ = ϕoK
⊗oK

Zp :Y ′ → Y satisfies
π ◦ϕ = π′. �

2. Two categories of vector bundles on p-adic curves

Let VecS be the category of vector bundles on a schemeS. For a bundleE we often write

E for its locally free sheaf of sectionsO(E). Let o be the ring of integers inCp = Q̂p and set
on = o/pno = Zp/pnZp. For everyo-schemeY we setYn = Y ⊗o on. Let X be as before a
smooth projective curve overQp and setXCp = X ⊗

Qp
Cp.

First of all, we show that vector bundles onXCp can be extended to vector bundles on suita
models. The elegant argument in the proof was communicated to us by M. Raynaud.

THEOREM 5. – For every vector bundleE on XCp and every modelX of X there exists a
modelX′ of X dominatingX such thatE extends to a vector bundle onX′

o. If X is smooth, then
E can be extended to a vector bundle onXo itself.

Proof. –We can extendE to a quasi-coherent sheafF of finite presentation onXo, see [20,
Appendix, Corollary 2 to Proposition 2]. LetJ ⊂ OXo

be therth Fitting ideal ofF , wherer
is the rank ofE. SinceF is of finite presentation,J is quasi-coherent of finite type. Beside
J · OXCp

is equal to the Fitting ideal ofE, hence toOXCp
. Therefore there exists somen � 1

such thatpnOXo
⊂J . By approximating the local generators ofJ with elements inOX modulo

pn, we see thatJ descends to an idealJ0 ⊂ OX. Let ϕ :X′ → X be the blowing-up ofJ0.
SinceJ0 is of finite type,ϕ is of finite presentation, so thatϕ is a map inSX inducing an
isomorphism on the generic fibre. The base change mapϕo :X′

o → Xo is the blowing-up ofJ .
Henceϕ−1

o (J )OX′
o

is invertible. Sinceϕ−1
o (J )OX′

o
is therth Fitting idealFr(ϕ∗

oF) of ϕ∗
oF ,

we can apply [30, (5.4.3)] to deduce thatϕ∗
oF/Annϕ∗

oF (Fr(ϕ∗
oF)) is locally free of rankr on

X′
o. Hence it gives rise to a vector bundleE onX′

o with generic fibreE.
If X is smooth overZp, then Pic0

X/Zp
(o) = Pic0

X/Qp
(Cp), so that every line bundle o

degree0 extends to a line bundle onXo. Besides,X carries a line bundleN whose generic
fibre has rank one. Hence every line bundle onXCp can be extended toXo. The general cas
follows by induction on the rank ofE. Namely, there is an exact sequence of vector bun
0 →E1 →E → E2 → 0 onXCp whererkEi < rkE for i = 1,2. By hypothesis,E1 andE2 can
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



562 C. DENINGER AND A. WERNER

chemes

y, also

a

ce
be extended toE1 andE2 onX0. By flat base change we have an isomorphism

Ext1Xo
(E2,E1)⊗o Cp

∼−→ Ext1XCp
(E2,E1).

This implies thatE is isomorphic to the generic fibre of a vector bundleE on Xo. Note here
that extensions of locally free sheaves are locally free because the cohomology of affine s
vanishes. �

DEFINITION 6. –
(a) For a modelX of X overZp and a divisorD in X the categoryBXo,D is defined to be

the full subcategory ofVecXo
consisting of vector bundlesE on Xo = X ⊗

Zp
o with the

following property: For everyn � 1 there is an objectπ :Y → X of SX,D such thatπ∗
nEn

is a trivial bundle onYn. Hereπn,Yn andEn are the reductionsmodpn of π,Y andE .
(b) The full subcategoryBXCp ,D of VecXCp

consists of all vector bundles onXCp which are
isomorphic to a bundle of the formj∗E with E in BXo,D for some modelX of X . Herej
is the open immersion ofXCp into Xo.

(c) The full subcategoryB�
XCp ,D of VecXCp

consists of all vector bundlesE on XCp such
thatα∗

Cp
E is in BYCp ,α∗D for some finite coveringα :Y →X of X by a smooth projective

curveY overQp such thatα is étale overX \D.

Remarks. –
(a) ForD = ∅ we simply writeBXo

for BXo,D, etc.
(b) In [8, §6] a categoryBXo

was defined as above, but using coverings inTX instead ofSX.
It follows from Theorem 4 that both definitions give the same category. Consequentl
the categoryBXCp

is the same as the one defined in [8, Definition 19].

LEMMA 7. – The categoryBXCp ,D consists of all vector bundles isomorphic toj∗E with E
in BXo,D andX a semistablemodel ofX overZp.

Proof. –Given any modelX of X , there is a semistable modelY of X strictly dominatingX.
This follows from Corollary 3(3) applied toπ1 = idX. Since the pullback of bundles onX to Y
mapsBXo,D to BYo,D by Proposition 9 below, the assertion follows.�

LEMMA 8. – Letf :X → X ′ be a morphism of smooth, projective curves overQp. For every

modelX′ of X ′ there exists a modelX of X and aZp-linear morphismf̃ :X → X′ such that the
diagram

X

f̃

X

f

X′ X ′

is commutative.

Proof. –Sincef is proper, it is either surjective or mapsX to a closed point ofX ′. In the
second case, because of properness any modelX of X will do. Hence we can assume thatf
is surjective, hence finite. There is a finite extensionK of Qp in Qp such thatf descends to
a morphismfK :XK → X ′

K of smooth, proper curves overK and such thatX′ descends to
modelX′

oK
of X ′

K .
DefineXoK

as the normalization of the reduced and irreducible schemeX′
oK

in the function
field K(XK) of XK , and letf̃oK

:XoK
→ X′

o be the corresponding finite morphism. Sin

K

4e SÉRIE– TOME 38 – 2005 –N◦ 4



VECTOR BUNDLES ONp-ADIC CURVES 563

ls,

o

oms

e

n

er
fK :XK → X ′
K is the normalization ofX ′

K in K(XK), the generic fibre ofXoK
can be identified

with XK so that the desired diagram commutes. Base-change withZp completes the proof. �
PROPOSITION 9. – The categoriesBXo,D respectivelyBXCp ,D andB

�
XCp ,D are full additive

subcategories ofVecXo
respectivelyVecXCp

which are closed under tensor products, dua

internal homs and exterior powers. For every morphismf :X→ X′ overZp respectivelyf :X →
X ′ overQp and every divisorD′ on X ′, the pullback functorf∗ of vector bundles restricts t
an additive exact functorf∗ :BX′

o,D′ → BXo,f∗D′ respectivelyf∗ :BX′
Cp

,D′ → BXCp ,f∗D′ and

f∗ :B�
X′

Cp
,D′ → B

�
XCp ,f∗D′ . These functors commute with tensor products, duals, internal h

and exterior powers.

Theproof is straightforward forBXo,D andBXCp ,D given Corollary 3(3), Lemma 8 and th

functoriality of the categoriesS . For B�, note first that given finite morphismsYi
αi−−→ X for

1 � i � n étale overX \ D by smooth projective curvesYi, there is a finite morphismY β−→ X
étale overX \D by another such curveY such thatβ factors over eachαi: Take the normalization
of any irreducible component ofY1 ×X · · · ×X Yn. Thus the assertions about⊕,⊗, etc. forB�

follow from those forB. Next, givenE in B
�
X′

Cp
,D′ andf :X → X ′, choose a finite morphism

α′ :Y ′ → X ′, étale overD′ such thatα
′∗E lies inBY ′

Cp
,α′∗D′ . Let Y be the normalization of a

irreducible component off−1(Y ′) and consider the commutative diagram:

Y

α

f−1(Y ′) = X ×X′ Y ′ Y ′

α′

X
f

X ′

Let g :Y → Y ′ be the upper horizontal map. By functoriality ofB we know thatg∗α
′∗E lies in

BYCp ,g∗α′∗D′ . Hencef∗E is in B
�
XCp ,f∗D′ .

PROPOSITION 10. –
(a) Let α :Y → X be a finite morphism, étale overX \D of smooth and proper curves ov

Qp. Then a vector bundleE onXCp lies inB
�
XCp ,D if and only ifα∗E lies inB

�
YCp ,α∗D.

(b) Assume in addition thatα :Y → X is étale. For a vector bundleF onYCp let α∗F be the

vector bundle onXCp corresponding to the locally free sheafα∗O(F ). If F is in B
�
YCp

thenα∗F is in B
�
XCp

.

Proof. –(a) This follows from the functoriality ofB� in Proposition 9.
(b) ConsiderF in B

�
YCp

and choose a Galois coveringγ :Y ′ → X which factors overY , i.e.

γ is a compositionγ :Y ′ β−→ Y α−→ X . Let G be the Galois group ofY ′ overX and letH be the
one ofY ′ overY . For everyσ in G the adjunction mapF → β∗β

∗F induces a map

α∗F → α∗β∗β
∗F = γ∗β

∗F = γ∗σ∗β
∗F.

Note here thatγ ◦ σ = γ. This gives a map

γ∗α∗F → σ∗β
∗F.
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For τ in H we haveτ∗β∗ = (τ−1)∗β∗ = (β ◦ τ−1)∗ = β∗. Hence we obtain a well defined ma

γ∗α∗F →
⊕

σ∈G mod H

σ∗β
∗F.(2)

Arguing locally, one sees that (2) is an isomorphism. Now,σ∗β
∗F = (σ−1)∗β∗F belongs to

B
�
Y ′

Cp

by functoriality ofB�. Henceγ∗α∗F belongs to this category as well. It follows thatα∗F

lies inB
�
XCp

as was to be shown.�
We now prove that our categories are stable under extensions of vector bundles.

THEOREM 11. – The categoriesBXo,D,BXCp ,D andB
�
XCp ,D are stable under extension

e.g. if

0 → E′ →E → E′′ → 0

is an exact sequence of vector bundles onXCp such thatE′ andE′′ are objects of the categor
BXCp ,D, thenE is also contained inBXCp ,D.

Proof. –We give the proof forBXCp ,D. The case ofBXo,D is similar. The assertion forB�

follows formally from the one forB. Thus, letE′ undE′′ be in BXCp ,D. By definition, there

exist modelsX′ andX′′ of X overZp and vector bundlesE ′
1 in BX′

o,D andE ′′
1 in BX′′

o ,D such
that

E′ � j∗X′
o
E ′
1 and E′′ � jX′′

o
E ′′
1 ,

where jX′
o

and jX′′
o

are the open immersions of the generic fibreXCp into X′
o = X′ ⊗

Zp
o

respectivelyX′′
o = X′′ ⊗

Zp
o.

Applying Proposition 27 below, there exists a modelX of X overZp together with morphism
overZp

X′ p1←− X
p2−→ X′′

restricting to the identity on the generic fibres. By functorialityE ′ = p∗1E ′
1 andE ′′ = p∗2E ′′

1 lie
in BXo,D.

Reducing to cohomology and using flat base change one sees thatj∗Xo
induces an isomorphism

Ext1Xo
(E ′′,E ′) ⊗o Cp

∼−→ Ext1XCp
(E′′,E′). Hence there is somek � 0 such that the extensio

class we get by multiplyingpk with the class inExt1XCp
(E′′,E′) induced byF comes from

Ext1Xo
(E ′′,E ′).

Hence pullback bypk-multiplication onE′′ induces an extension

0 E′ E1

�

E′′

pk�

0

0 E′ E E′′ 0

onXCp for which there is an exact sequence

0 →E ′ →E →E ′′ → 0
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of vector bundles onXo such thatj∗Xo
E � E1 � E. Note here that any extension of a locally fr

sheaf by another one is again locally free. The reason is that locally every such extensio
because the coherent cohomology of affine schemes vanishes.

Let us fix somen � 1. SinceE ′ and E ′′ lie in BXo,D, we find objectsπ′ :Y ′ → X and
π′′ :Y ′′ → X of SX,D such thatπ′∗

n E ′
n is trivial on Y ′

n = Y ′ ⊗
Zp

on and π′′∗
n E ′′

n is trivial on
Y ′′

n = Y ′′ ⊗
Zp

on.
By Corollary 3(1), there is a finite extensionK of Qp with the following properties:
• X,D and X descend to a curveXK/K a divisor DK on XK and a modelXR/R

respectively, whereR = oK .
• There is an objectπR :YR → XR of Sss

XR,DK
such that

π = πR ⊗R Zp :Y = YR ⊗R Zp → X

dominates bothπ′ andπ′′.
• The generic fibreYK of YR has a rational point.
Now π∗

nE ′
n andπ∗

nE ′′
n are trivial bundles onYn. If r′ respectivelyr′′ denote their ranks th

extension:

0 → π∗
nE ′

n → π∗
nEn → π∗

nE ′′
n → 0(3)

gives rise to a class inExt1Yn
(Or′′

,Or′
) � H1(Yn,O)r′ r′′

.

CLAIM . – There exist an objectσ :Z → X in SX,D and a morphismρ :Z →Y in SX,D , such
that the induced mapρ∗n :H1(Yn,O)→ H1(Zn,O) is trivial.

Assume that the claim holds. Thenρ∗n applied to the extension (3) is trivial, which implie
thatσ∗

nEn = ρ∗nπ∗
nEn is a trivial vector bundle onZn. Since this argument can be done for ev

n � 1 it follows thatE lies inBXo,D , which implies thatE is contained in the categoryBXCp ,D .
The theorem follows.

Hence it remains to prove the claim. If the genus ofYK is zero, thenYK
∼= P1

K sinceYK was
assumed to have a rational point. Henceχ(YK ,O) = 1 and thereforeχ(Yκ,O) = 1 whereYκ

is the special fibre ofYR. Sinceλ∗OYR
= OR holds universally we haveH0(Yκ,O) = κ and

thereforeH1(Yκ,O) = 0. Now [27, Corollary 3, p. 53] implies thatH1(Yn,O) = 0. In proving
the claim we can therefore assume from now on that the genus ofYK is nonzero. Let us firs
show that it suffices to find a morphismρ :Z→Y in SX,D such that

ρ∗ :H1(Y ,O)→ H1(Z,O)

satisfiesρ∗(H1(Y ,O)) ⊆ pnH1(Z,O).
Namely, consider the commutative diagram

H1(Y ,O)⊗
Zp

on
ρ∗⊗on H1(Z,O)⊗

Zp
on

H1(Yn,O)
ρ∗

n

H1(Zn,O)

By assumption, the upper horizontal map is zero. Henceρ∗n = 0, if the left vertical map
H1(Y ,O) ⊗

Z
on → H1(Yn,O) is surjective. SinceZp is flat over R and therefore
p
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on = Zp/pnZp is flat overR/pnR, it suffices by flat base change to prove the surjectivity of

H1(YR,O)⊗R R/pnR → H1
(
YR ⊗R R/pnR,O

)
.

Let k be the residue field ofR. By Nakayama’s lemma, it suffices to prove surjectivity a
tensoring withk. Consider the commutative triangle

H1(YR,O)⊗R k H1(YR ⊗R R/pnR,O)⊗R/pnR k

H1(Yk,O)

Both vertical maps are isomorphisms by [27, Corollary 3, p. 53] sinceYk is one-dimensional an
hence has vanishing second cohomology. Hence the horizontal map is a fortiori surjective

By Proposition 2 applied to the smooth projective curveYK overK and its semistable mod
YR overR with N = pn there exist the following:

• a finite extensionK ′ of K in Qp with ring of integersR′ = oK′ ;
• an object

ρR′ :ZR′ →YR′ = YR ⊗R R′

of Sss
YR′ such that there is a commutative diagram

Pic0
YR′/R′

ρ∗
R′

pn

Pic0
ZR′/R′

Pic0
YR′/R′

g

for some morphismg with g(0) = 0.
Note that the Lie algebra of a group functor coincides with the Lie algebra of its ide

component, if the latter exists (see, e.g. [16, ExposéVIB, Remarque 3.2]). Hence we can app
[3, 8.4, Theorem 1], to the proper, flatR′-schemesYR′ and ZR′ which as in the proof o
Theorem 1(1) are both cohomologically flat in dimension0 over specR′. Hence we obtain a
commutative diagram with horizontal isomorphisms

LiePic0
YR′/R′

∼

Liepn

Lieρ∗
R′

H1(YR′ ,O)

ρ∗
R′LiePic0

YR′/R′
∼

Lieg

H1(YR′ ,O)

LiePic0
ZR′/R′

∼
H1(ZR′ ,O)

SinceLiepn is pn-multiplication, we deduce that

ρ∗R′
(
H1(YR′ ,O)

)
⊆ pnH1(ZR′ ,O),
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and by flat base change thatρ∗(H1(Y ,O))⊂ pnH1(Z,O) which completes the proof.�
Note that in the following theorem and its proof we have changed our usual notation som

THEOREM 12. –
(a) For any smooth projective curveX overQp the categoryB�

XCp
, whereXCp = X ⊗

Qp
Cp,

contains all line bundlesL of degree zero onXCp .
(b) If X has a smooth model overZp, thenBXCp

contains all line bundles of degree ze
onXCp .

Proof. –We may assume thatX has positive genus. By the semistable reduction theorem
are a finite extensionK of Qp and a smooth projective curveX overK with X(K) �= ∅ together
with a semistable modelX overoK such thatX = X ⊗K Qp. In particularX is cohomologically
flat of dimension zero overoK . According to [3, 9.4, Theorem 1],Pic0

X/oK
is a semi-Abelian

scheme overoK . HencePic0
X/oK

(o) is an open subgroup ofPic0
X/K(Cp) = Pic0(XCp) the

group of isomorphism classes of line bundles onXCp of degree zero.

CLAIM . – If the class ofL in Pic0(XCp) lies inPic0
X/oK

(o) thenL is in BXCp
.

Proof of the claim. –By assumptionL is the generic fibre of a line bundleL on Xo giving
rise to a class inPic0

X/oK
(o). Note that according to [3, 8.1, Proposition 4], we havePic(Xo) =

PicX/oK
(o). Now,

on = Zp/pnZp = lim−→
F/K

oF /pnoF

where F runs over the finite extensions ofK in Qp. The ringsoF /pnoF are finite, hence
Pic0

X/oK
(oF /pnoF ) is a finite group. It follows that

Pic0
X/oK

(on) = lim−→
F/K

Pic0
X/oK

(
oF /pnoF

)

is a torsion group. LetLn = L ⊗o on be the reductionmodpn of L to a line bundle on
Xn = Xo ⊗o on = X ⊗oK

on. It defines a class inPic0
Xn/on

(on) = Pic0
X/oK

(on) which must
have finite order. Hence there is someN � 1 such thatL⊗N

n � O. By Proposition 2 applied
to Q = K,R = oK andX,X, there are a finite extensionK ⊂ K ′ ⊂ Qp with ring of integers
R′ = oK′ and an objectπR′ :YR′ → XR′ = X ⊗oK

R′ of Sss
XR′ together with a commutativ

diagram, whereg(0) = 0:

Pic0
XR′/R′

π∗
R′

N

Pic0
YR′/R′

Pic0
XR′/R′

g

Moreover we can assume thatYK′ = YR′ ⊗R′ K ′ has aK ′-rational point. For the objec
π = πR′ ⊗R′ Zp :Y = YR′ ⊗R′ Zp → X = X ⊗oK

Zp of S we therefore get the commutativ

X

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



568 C. DENINGER AND A. WERNER

or

e
is

es

gree
diagram

Pic0
Xn/on

(on)
π∗

n

N

Pic0
Yn/on

(on)

Pic0
Xn/on

(on)

Gn

whereGn(0) = 0. Hence we find

π∗
n[Ln] = Gn

(
N [Ln]

)
= Gn

([
L⊗N

n

])
= Gn(0) = 0.

It follows thatπ∗
nLn is a trivial bundle onYn. Since this construction can be done for everyn � 1

the bundleL belongs toBXo
and thereforeL is an object ofBXCp

. �
We can now proceed with the proof of the theorem. Part (b) follows from the claim fX

smooth. In order to prove (a), letL be any line bundle of degree zero onXCp . By a result of
Coleman (Theorem 4.1. in [6]), the cokernel of the inclusion map

Pic0
X/oK

(o) ↪→ Pic0
X/K(Cp)

is torsion. Hence there exists an integerN � 1 such thatL⊗N is the generic fibre of some lin
bundleL1 onXo giving rise to a class inPic0

X/oK
(o). With notations as before, we have for th

N a commutative diagram

Pic0
X/Zp

π∗

N

Pic0
Y/Zp

Pic0
X/Zp

G

whereG(0) = 0. SinceπR′ is in SXR′ , the generic fibreα of π :Y → X is a finite étale covering
α :Y = Y ⊗

Zp
Qp → X of X by the smooth projective curveY . It suffices to show thatα∗

Cp
L

belongs toBYCp
. Under the inclusion

Pic0
Y/Zp

(o) ↪→ Pic0(YCp),

the elementG([L1]) is mapped toα∗
Cp

([L]). By the claim applied toY and the pairYK′ ,YR′

instead ofX andX,X it follows thatα∗
Cp

([L]) lies inBYCp
as was to be shown.�

Remark. – By the preceding results the categoryBXCp
contains all unipotent vector bundl

onXCp , i.e. all bundles obtained by successive extensions of the trivial line bundle.

More generally, the categoryB�
XCp

contains all successive extensions of line bundles of de
zero.

The following insight is due to Faltings without proof in his setting ofp-adic Higgs
bundles [18]. We give a proof below.

THEOREM 13. – Let D be a divisor on a smooth projective curveX over Qp. Then every

bundle inB
�
XC ,D is semistable of degree zero.
p
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Proof. –By the definition of semistability it suffices to show the assertion for every bundE′

in BXCp ,D .
We may assume thatE′ = E ′ ⊗o Cp for a bundleE ′ in BXo,D for a modelX of X . By

Corollary 3(3) there exists an objectπ :Y → X of Sss
X,D such thatπ∗

1E ′
1 is a trivial bundle on

Y1 = Y ⊗ o/p, whereE ′
1 = E ′ ⊗ o/p. Since the generic fibreπ

Qp
of π is finite it suffices to show

thatE = π∗
Qp

E′ is semistable of degree zero onYCp . SettingE = π∗E ′ we haveE = E ⊗o Cp.
Besides,E1 = E ⊗ o/p is a trivial bundle onY1. We have to show thatE has degree zero an

that every subbundleL⊂ F has degreedegL � 0.
Let K be a finite extension ofQp such thatY descends to a modelYoK

overoK of its generic
fibre Y , i.e.Y = YoK

⊗oK
Zp. SinceYoK

/oK has the same geometric fibres asY/Zp it is also
semistable. The schemeYo is the projective limit of the semistableA-schemesYA = YoK

⊗oK
A,

where A runs over the finitely generated normaloK -subalgebras ofo. MoreoverY1 is the
projective limit of the schemesYA1 = YA ⊗A A1, whereA1 = A/pA.

Consider the family(Yo,E ,L ⊂ F,E1

α∼−→Or
Y1

) whereα is some isomorphism of locally fre
OY1 -sheaves. By [14, (8.5.5), (8.9.1), (8.5.2), (11.2.6)] there exists a normal finitely gen
oK -algebraA in o with quotient fieldQ(A) such that the family descends to a family

(
YA,EA,LQ(A) ⊂ EQ(A),EA1

αA1∼−−−→Or
YA1

)
, where

• YA is a proper semistable curve overA;
• EA is a vector bundle onYA andEQ(A) = EA ⊗A Q(A);
• LQ(A) is a vector bundle onYQ(A) = YA ⊗A Q(A) which is a subbundle ofEQ(A);
• αA1 is an isomorphism of locally freeOYA1

-modules whereEA1 = EA ⊗A A1.
We need a prime idealp of A of height one containing the maximal ideal(πK) of oK .

Since A ⊂ o, the special fibre(specA) ⊗ oK/πK is non-empty. Any prime idealp in A
corresponding to the generic point of an irreducible component of(specA) ⊗ oK/πK will do,
cf. [25, Theorem 4.3.12]. Note thatp ⊃ pA. SinceA is normal,Ap ⊂ Cp is a discrete valuatio
ring containingoK . Note that in generalAp �⊂ o.

Let R be the strict henselization ofAp in the algebraic closure ofQ(A) in Cp. ThenR is
a discrete valuation ring inCp with quotient fieldQ ⊆ Cp whose residue fieldκ ⊃ oK/πK is
separably closed. Let(YR,ER,LQ ⊂ EQ) be the base change of(YA,EA,LQ(A) ⊂ EQ(A)) via
A ⊂ R respectivelyQ(A) ⊂ Q. The restrictionEκ of ER to the special fibreYκ = YR ⊗R κ
is trivial becauseEA1 is trivial andA ⊂ R induces a mapA1 → R/p → κ sincep ∈ pR. By
Riemann–Roch,deg(EQ) = χ(EQ) − rχ(OYQ

) wherer is the rank ofE . By [13, 7.9.4], the
Euler characteristic of vector bundles onYR is locally constant in the fibres, which implie
degEQ = χ(Eκ) − rχ(OYκ) = 0. SinceE = EQ ⊗Q Cp, it follows that degE = 0. Similarly,
degL = degLQ. It remains therefore to show thatdegLQ � 0. Using the next result the theore
follows. �

The proof of the following proposition is due to Raynaud. It replaces a more involved argu
in an earlier version of this paper.

PROPOSITION 14. – Let R be a discrete valuation ring with quotient fieldQ and separably
closed residue fieldκ. Let Z be a smooth projective curve overQ with a modelZ over R.
Consider a vector bundleE on Z whose special fibreEκ is a trivial bundle onZκ. Then its
generic fibreE = EQ is semistable of degree zero.

Proof. –By assumptiondetEκ is a trivial line bundle. Hence we have

degE = degdetE = χ(Z,detEQ)− χ(Z,O)

= χ(Zκ,detEκ)− χ(Zκ,O) = 0
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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since the Euler characteristics are constant in the fibres.
It suffices to show that for every exact sequence0 →E1 → E → E2 → 0 of vector bundles on

Z we havedeg(E2) � 0. Consider the canonical extensionF1 ⊂ E of E1 in E, cf. [11, (9.4.1)].
For every open subsetU of Z we have

Γ(U,F1) =
{
s ∈ Γ(U,E) | s|U∩Z ∈ Γ(U ∩Z,E1)

}
.

The sheafF1 is a coherent, torsion freeOZ -module. LetF2 = E/F1 be the quotient, so tha
0 → F1 → E → F2 → 0 is an exact sequence of coherent sheaves onZ with generic fibre
0 → E1 → E → E2 → 0. If r is the rank ofF2, we blow up therth Fitting idealI of F2

and get a proper morphism

ϕ :Z ′ →Z

which is an isomorphism on the generic fibres.
If we denote byI ′ the idealϕ−1(I) · OZ′ (which coincides with therth Fitting ideal of

ϕ∗F2), thenE2 = ϕ∗F2/Annϕ∗F2(I ′) is a locally free sheaf onZ ′ by [30, (5.4.3)]. LetF be
the coherent sheaf onZ ′ such that the sequence

0 →F →E ′ →E2 → 0

with E ′ = ϕ∗E is exact. Sinceϕ is an isomorphism on the generic fibre and the generic fibr
I is OZ , the generic fibre ofE ′ respectivelyE2 is isomorphic toE respectivelyE2.

Now letC1, . . . ,Cr be the irreducible components of the special fibreZ ′
κ, and letC̃i → Ci be

their normalizations. Byαi : C̃i → Ci →Z ′ we denote the corresponding morphisms. SinceE2

is locally free, the sequence

0 → α∗
iF → α∗

i E ′ → α∗
i E2 → 0

is exact onC̃i. Since the special fibreE ′
κ is trivial, the sheafα∗

i E ′ is isomorphic to a power of th
structure sheafO

C̃i
. In particular, it is a semistable sheaf of degree0 on the smooth, projectiv

curveC̃i overκ.
Therefore, the quotientα∗

i E2 has degree� 0. By the degree formula in [3, 9.1, Proposition
it follows for the line bundle(detE2)κ, that

χ
(
Zκ, (detE2)κ

)
− χ(Zκ,OZκ) � 0.

Since the Euler characteristics are constant in the fibres ofZ , we deducedeg(E2) =
deg((E2)Q) = degdet((E2)Q) � 0. HenceE is indeed semistable.�

Remark. – The indecomposable componentsEi of a semistable bundleE of degree zero on
XCp have degree zero since they are both sub- and quotient bundles ofE and hence hav
degEi � 0 anddegEi � 0. If X = A is an elliptic curve overQp the converse is true. A vecto
bundleE onACp is semistable of degree zero if and only if it is the direct sum of indecompo
bundles of degree zero. This follows from the splitting of the Harder–Narasimhan filtrati
bundles over elliptic curves.

By [1, Theorem 5, p. 432] every indecomposable vector bundle of degree zero onACp is of the
form L⊗Fr whereL is a line bundle of degree zero andFr is an iterated extension of trivial lin
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bundles. Using Theorems 11 and 12 it follows thatL⊗Fr lies inB
�
ACp

and in the case whereA
has good reduction even inBACp

. From all this one obtains:

COROLLARY 15. – LetA be an elliptic curve overQp.

(a) The categoryB�
ACp

consists of all semistable bundles of degree zero onACp . All of these
are successive extensions of line bundles of degree zero.

(b) If AK has good reduction we have in additionB
�
ACp

= BACp
.

The following result makes it substantially easier to verify that a vector bundle lies inBXo,D .

THEOREM 16. – Let X be a model overZp of the smooth projective curveX over Qp. Let
k = Fp be the residue field ofZp. A vector bundleE on Xo lies in BXo,D if and only if there is
an objectπ :Y →X of SX,D such thatπ∗

kEk is a trivial bundle onYk = Y ⊗
Zp

k.

Remark. – In particular, every vector bundleE on Xo whose restrictionEk to the special fibre
Xk of Xo is trivial lies in BXo

. As explained to us by Holger Brenner there exist example
rank two bundlesE on smooth models of certain plane algebraic curvesX such thatEk is trivial
andECp is stable of degree zero. They are constructed by restricting suitable syzygy b
on P2.

Proof. –The necessity is clear. Consider a vector bundleE on Xo with π∗
kEk trivial. We

may assume thatπ is in Sss
X,D . The family (X,D,E1, π :Y → X) descends to a famil

(X0,D0,F , π0 :Y0 → X0) over oK for K a finite extension ofQp. Here Xo is a model of
X0 = X0 ⊗oK

K andF is a vector bundle onXo ⊗ oK/poK whose restriction to the speci
fibre X0 ⊗ oK/p becomes trivial after pullback alongπ0 ⊗ oK/p. Moreoverπ0 is an object of
Sss

X0,D0
. Let e be the ramification index ofK overQp and setoν/e = o/pνo = Zp/pνZp. Note

that this is compatible with our earlier notationon = Zp/pnZp. Let πν/e,Eν/e etc. be the bas
change withoν/e. Sinceπ1/e is also the base change ofπ0 ⊗ oK/p with o1/e it follows that
π∗

1/eE1/e is trivial onY1/e. By induction it therefore suffices to prove the following assertion
Givenν � 2 and someπ :Y → X in Sss

X,D with π∗
(ν−1)/eE(ν−1)/e trivial, there exists an objec

µ :Z → X in Sss
X,D with µ∗

ν/eEν/e trivial on Zν/e.
Consider the closed immersioni :Y(ν−1)/e ↪→Yν/e and set

J = Im
(
ων−1 :OYν/e

→OYν/e

)
.

Hereω is a prime element inoK . Let r be the rank ofE , then we have a short exact sequenc
(Zariski-)sheaves of groups onYν/e:

0 → Mr(J ) f−→ GLr(OYν/e
) adj−−→ i∗GLr(OY(ν−1)/e

)→ 1.

Here adj is the adjunction map andf(A) := 1 + A. Observe thatf is a homomorphism
f(A + A′) = f(A)f(A′) sinceAA′ = 0 in Mr(J ) becauseJ 2 = 0. Right exactness follow
becauseGLr is formally smooth overZ. We obtain an exact sequence of pointed sets:

H1
(
Yν/e,Mr(J )

) f−→ H1
(
Yν/e,GLr(O)

)
i∗−→ H1

(
Y(ν−1)/e,GLr(O)

)
.

Exactness can be checked directly. Alternatively one may identify sheaf torsors for theaffine
group schemeGLr with vector bundles and quote [19, III, Proposition 3.3.1] for the non-Abe
cohomology sequence and [19, V, Proposition 3.1.3] for the isomorphism

H1
(
Yν/e, i∗GLr(O)

)
= H1

(
Y(ν−1)/e,GLr(O)

)
.
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Note here that for elementary reasons we haveR1i∗GLr(O) = 0.
Consider the classΩ of π∗

ν/eEν/e in H1(Yν/e,GLr(O)). Via i∗ it is mapped to the class o

i∗π∗
ν/eEν/e = π∗

(ν−1)/eE(ν−1)/e, i.e. to the trivial class inH1(Y(ν−1)/e,GLr(O)). HenceΩ is of
the formΩ = f(A) for some classA = (Akl) in

H1
(
Yν/e,Mr(J )

)
= Mr

(
H1(Yν/e,J )

)
.

Instead of recalling the argument from non-Abelian cohomology we could also have q
[19, VII, Théorème 1.3.1] for this conclusion.

The exact sequence onYν/e:

0 → Kerων−1 →O g−→J → 0

whereg is multiplication byων−1 gives a surjection:

H1(Yν/e,O)
g
�H1(Yν/e,J )

becauseYν/e is one-dimensional.
Hence we haveΩ = fg(B) for some matrixB = (Bkl) with entries inH1(Yν/e,O). If the

genus ofY is zero, the same argument as in the proof of Theorem 11 shows thatH1(Yν/e,O) = 0
and we are done. If the genus ofY is non-zero it was shown in the proof of Theorem
that there is a morphismρ :Z → Y in SX,D such thatρ∗ :H1(Y ,O) → H1(Z,O) satisfies
ρ∗(H1(Y ,O)) ⊂ pνH1(Z,O). By Corollary 3(3) we may assume that the objectµ :Z → X is
even inSss

X,D. Arguing as in the proof of Theorem 11 (reduction step for theclaim, with p and
on replaced byω andoν/e) one sees that the induced map

ρ∗ν/e :H1(Yν/e,O)→ H1(Zν/e,O)

is trivial. The commutative diagram

H1(Yν/e,Mr(O))
fg

ρ∗
ν/e=0

H1(Yν/e,GLr(O))

ρ∗
ν/e

H1(Zν/e,Mr(O))
fg

H1(Zν/e,GLr(O))

shows thatρ∗ν/eΩ is the trivial class. Hence

µ∗
ν/eEν/e = ρ∗ν/e(π

∗
ν/eEν/e)

is a trivial bundle onZν/e, as was to be shown.�
Remark. – The proof shows that a vector bundleE onXo lies inBXo

if the special fibreEk is
trivial. In this case, for eachn � 1 there is a trivializing coverπ in SXo

whose generic fibre is
Galois covering ofX with solvable Galois group.

DEFINITION. – Let R be a valuation ring with quotient fieldQ and residue fieldk. Consider
a modelX/R of a smooth projective curveX/Q and letE be a vector bundle onX. We say that
E has strongly semistable reduction of degree zero if the pullback ofEk to the normalizatioñC
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that
of each irreducible componentC (with the reduced structure) ofXk is strongly semistable o
degree zero. Note here that eachC̃ is a smooth projective curve overk.

The following theorem is one of our main results.

THEOREM 17. – Let X/Zp be a model of the smooth projective curveX/Qp. Let E be a
vector bundle onXo. ThenE belongs toBXo,D for some divisorD on X if and only ifE has
strongly semistable reduction of degree zero. In this caseE even belongs toBXo,D andB

Xo,D̃

for two divisorsD andD̃ onX with disjoint support.

The proof depends on the following result which for smooth projective curves is due to L
and Stuhler [22, 1.9 Satz].

THEOREM 18. – Let E be a vector bundle on a purely one-dimensional proper schemX
overFq . Then the following conditions are equivalent:

(a) The pullback ofE to the normalization of each irreducible component ofX is strongly
semistable of degree zero.

(b) There is a finite surjective morphismϕ :Y → X whereY is a purely one-dimensiona
proper scheme overFq such thatϕ∗E is a trivial bundle.

(c) Same as in(b) but with ϕ a compositionϕ :Y F s−−→ Y π−→ X for somes � 0 whereπ is
finite étale and surjective andF = Frq = Frr

p is theq = pr-linear Frobenius onY .

Proof. –If (b) holds then every irreducible componentC of X is finitely dominated by an
irreducible componentD of Y . It follows that the pullback ofE to C̃ is trivialized by the
finite surjective morphism̃D → C̃. Since semistability can be verified after pullback to a fin
covering and since the absolute Frobenius is functorial, assertion (a) follows.

It remains to show that (a) implies (c). There are only finitely many isomorphism cl
of semistable vector bundles of degree zero on a smooth projective curve over a finit
It follows that there are only finitely many isomorphism classes of vector bundlesE on X
whose pullbacks to the normalizations of the irreducible components ofX are semistable o
degree zero. To see this, we first assume thatX is reduced. LetX =

⋃
Cν be the decompositio

of X into its irreducible components and letπ : X̃ =
∐

C̃ν → X be the finite normalization
morphism. Generalizing the arguments in the proofs of [3, Chapter 9, Propositions 9 and
[25, Lemma 7.5.12] one sees the following: The cokernel of the natural injection of shea
groupsGLr(OX) → π∗GLr(OX̃

) is a skyscraper sheaf of sets
∏

x∈Xsing ix∗Sx where each se
Sx is finite. Using [19, III, Proposition 3.2.2] we obtain a non-Abelian cohomology sequen

∏
x∈Xsing

Sx → H1
(
X,GLr(O)

)
→ H1

(
X,π∗GLr(OX̃

)
)

=
∏
ν

H1
(
C̃ν ,GLr(O)

)
.

Here we have also used [19, V, Proposition 3.1.3] and the equationR1π∗GLr(O) = 1 which
follows because vector bundles are locally trivial. Using [19, III, Corollaire 3.2.4], it follows
there are only finitely many isomorphism classes of vector bundles onX which induce given
isomorphism classes of vector bundles on the curvesC̃ν .

If X is not reduced, we have to show that the map

H1
(
X,GLr(O)

)
→ H1

(
Xred,GLr(O)

)
has finite fibres. By devissage it suffices to show that for every idealJ ⊂OX with J 2 = 0, the
map

ϕ :H1
(
X,GLr(O)

)
→ H1

(
X ′,GLr(O)

)
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has finite fibres wherei :X ′ ↪→ X is the closed subscheme ofX defined byJ . As in the proof
of theorem 16, we have a non-Abelian cohomology sequence

H1
(
X,Mr(J )

) f−→H1
(
X,GLr(O)

) ϕ−→ H1
(
X ′,GLr(O)

)
.

It follows thatϕ has finite fibres.
Now, if we are given a vector bundleE as in (a) the pullbacks tõCν of all the vector

bundlesF ∗n
X E on X are semistable of degree zero. It follows that we haveF ∗s

X E = F ∗t
X E

for some integerst > s � 0. For the bundleE′ = F s∗
X E we therefore haveF r∗

X E′ = E′ where
r = t− s � 1. Now, the proof of [22, 1.4 Satz] extends without change to an arbitraryFq-scheme
(note that in [22] the proof thatπ is finite is omitted, but this is not difficult). This shows th
there exists a finite étale and surjective morphismπ :Y → X such thatπ∗E′ = π∗F ∗s

X E is a
trivial bundle. WithX , the schemeY is a purely one-dimensional properFq-scheme as well
It follows that (π ◦ F s

Y )∗E = (F s
X ◦ π)∗E = π∗F ∗s

X E is a trivial bundle as was to be show
for (c). �

Proof of Theorem 17. –For a vector bundleE in BXo,D choose a coverπ :Y → X in S
good
X,D

such thatπ∗
kEk is a trivial bundle. LetXk =

⋃
ν Cν be the decomposition ofXk into irreducible

components. SinceX is irreducible andπ(Y) is closed and contains the generic point ofX, the
mapπ is surjective. Therefore anyCν is finitely dominated by an irreducible component ofYk.
As above it follows that the pullbacks ofEk to theC̃ν are strongly semistable of degree zero.

Now assume that the vector bundleE on Xo has strongly semistable reduction of deg
zero. There is a finite extensionK of Qp with ring of integersoK and residue fieldκ � Fq

such that the family(X,X,Cν ,Ek) descends to a family(XK ,XoK
,Cν0,E0) with corresponding

properties. In particularE0 is a vector bundle on the special fibreX0 = XoK
⊗κ whose pullbacks

to the normalizations̃Cν0 of the irreducible componentsCν0 of X0 are strongly semistable o
degree zero. Using Theorem 18 we obtain a finite étale morphismπ̃0 : Ỹ0 → X0 such that for
the compositionϕ̃0 : Ỹ0

F s−−→ Ỹ0
π̃0−−→ X0 the pullback bundlẽϕ∗

0E0 is trivial. Note that in this
statement we may replaces by any integers′ � s and henceF by any power ofF . Next, using
[15, IX, Théorème 1.10] we may lift̃π0 : Ỹ0 → X0 to a finite étale morphism̃πoK

: ỸoK
→ XoK

whose special fibre is̃π0. After replacingK by a finite extension and performing a base exten
to the newoK , Theorem 1(5) allows us to dominateπ̃oK

by an objectπoK
:YoK

→ XoK
of Sss

XoK
.

By Lipman’s desingularization theorem we may assume thatYoK
besides being semistable is a

regular, cf. [25, 10.3.25 and 10.3.26]. ReplacingF by Frr
p whereq = pr now denotes the order o

the new residue field it follows that under the compositionϕ0 :Y0
F s−−→Y0

π0−−→ X0 the pullback
ϕ∗

0E0 is a trivial bundle.
The irreducible regular surfaceYoK

is proper and flat overoK . Hence by a theorem o
Lichtenbaum [23] there exists a closed immersionYoK

↪→ PN
oK

overoK . LetHi be the coordinate

hyperplanexi = 0 in PN
K , and put∆ =

⋃N
i=0 Hi. ThenPN

K \ ∆ = GN
m,K . We observe that fo

any finite setS of closed points inPN
K there is a linear isomorphismf ∈ PGLN (oK) of PN

oK

such that its generic fibrefK mapsS to PN
K \ ∆. Hence we can choose a closed immers

τ :YoK
↪→ PN

oK
in such a way thatYK is not contained in∆. Consider the finite morphism

FoK
:PN

oK
→ PN

oK
given onA-valued points by mapping[x0 : · · · :xN ] to [xq

0 : · · · :xq
N ] for any

oK -algebraA. OverGN
m,K = PN

K \∆ this morphism is étale. Define anoK -schemeY ′
o by the
K
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cartesian diagram:

Y ′
oK

ρoK YoK

τ

PN
oK

F s
oK

PN
oK

ThenρoK
is finite andρK = ρoK

⊗ K :Y ′
K → YK is étale overUK = YK ∩ GN

m,K . Let D′
K be

a divisor onYK whose support isYK \ UK . Let ρ0 = ρoK
⊗ κ :Y ′

0 →Y0 be the special fibre o
ρoK

. The reduction ofF s
oK

is F s, i.e. thersth power of the absolute Frobenius morphism
PN

κ . Define a morphismi :Y0 →Y ′
0 overκ by the commutative diagram

Y0 F s

i

τ0

Y ′
0

ρ0 Y0

τ0

PN
κ

F s

PN
κ

Lemma 19 below implies thati induces an isomorphismY0
∼−→ Y ′red

0 . SetDK = πK(D′
K).

Base extending the situation tooK = Zp we obtain an objectπ′ :Y ′ ρ−→ Y π−→ X of SX,D .

MoreoverEk is trivialized by pullback via the composed mapYk
ik−→ Y ′

k

π′
k−−→ Xk since we

haveπ′
k ◦ ik = πk ◦ (ρk ◦ ik) = πk ◦ (F s ⊗κ k) andEk = E0 ⊗κ k. In additionik induces an

isomorphism ofYk onto Y ′red
k . For this, note thatY ′red

k = (Y ′
0 ⊗κ k)red = Y ′red

0 ⊗κ k since
Y ′red

0
∼= Y0 is geometrically reduced. By Corollary 3(3) there is an objectµ :Z → X of Sss

X,D

such thatµ factors overπ′:

µ :Z ψ−→Y ′ π′−→ X.

The special fibre ofZ is reduced. Hence the morphismψk :Zk → Y ′
k factors overik :Yk

∼=
Y ′red

k → Y ′
k and thereforeµk factors overπ′

k ◦ ik. It follows that µ∗
kEk is trivial. Applying

Theorem 16 it follows thatE is an object ofBXo,D. Let τ :YoK
↪→ PN

oK
be the projective

embedding above. By the above observation on linear automorphisms, after changingτ by some
f ∈ PGLN (oK) we can assume thatτK maps the support ofπ∗

KDK to PN
K \ ∆ = GN

m,K . Let

D̃K be a divisor onYK with support equal toYK \ YK ∩ τ−1
K (GN

m,K). Then we have seen th

E is in B
Xo,D̃

whereD̃ is the base-change ofπK(D̃K). By construction,D̃K is disjoint from

π∗
KDK and hencẽD is disjoint fromD. �
LEMMA 19. – LetT be anFp-scheme and letτ :S ↪→ T be a closed immersion of a reduc

subschemeS of T . For an integerN � 1 consider the canonical diagram where the square
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cartesian:

S FrN
p

i

τ
S′ ρ

S

τ

T
FrN

p

T

Then the induced mapi :S → S′red is an isomorphism.

Proof. –We may assume thatT = specR is affine. Then we haveS = specR/a for an ideala
with a =

√
a andS′ = specR/b whereb is the ideal generated by all elementsrpN

with r ∈ a.
The homomorphismi� :R/b → R/a is given byi�(r mod b) = r mod a. It is immediate tha√

b = a. Hencei : specR/a → (specR/b)red = spec(R/
√

b ) is an isomorphism. �
The following result due to M. Raynaud improves Theorem 17 in the case of good redu

The proof is a modification of the argument for Theorem 17.

THEOREM 20. – LetX/Zp be a smooth model of a smooth projective curveX/Qp of nonzero
genus and letE be a vector bundle onXo. ThenE belongs toBXo

if and only ifEk is strongly
semistable of degree zero on the smooth projective curveXk overk.

Proof. –Assume thatEk is strongly semistable of degree zero. As in the proof of Theorem
we descend(X,X,Ek) to a family(XK ,XoK

,E0) for a finite extensionK/Qp with residue field
κ ∼= Fq, q = pr.

SinceE0 is strongly semistable of degree zero on the smooth projective curveX0 = X ⊗ κ
over κ, Theorem 18 or in fact the original result in [22, 1.9 Satz] provides us with a sm
projective curveY0 overκ and a compositionϕ0 :Y0

F s−−→ Y0
π0−−→ X0 with s � 0 andπ0 finite

étale such that the bundleϕ∗
0E0 is trivial. As before we may liftπ0 to a finite étale morphism

πoK
:YoK

→ XoK
. ThenYoK

is a smooth and proper irreducibleoK -scheme. As in the proof o
Theorem 17 we can replaceK by a finite extension and hence assume that we have a se
y ∈ YoK

(oK) = YK(K). SetB = Pic0
YoK

/oK
and consider the Albanese map

τ :YoK
↪→A = B̂

with τ(y) = 0. DefineY ′′
oK

by the cartesian diagram

Y ′′
oK

λ YoK

τ

A
qs

A

(4)

After reduction, theqs-multiplication map onA0 factors

qs :A0
V s−−→A0

F s−−→A0
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with V therth power of Verschiebung andF = Frr
p. Correspondingly the reduction of diagra

(4) factors into two cartesian diagrams:

Y ′′
0 Y ′

0 Y0

τ

A0
V s

A0
F s

A0

By Lemma 19 the diagram

Y0 F s

i

τ
Y ′

0 Y0

τ

A0
F s

A0

induces an isomorphismi :Y0 →Y ′red
0 . Base extending toZp, respectivelyk, we can dominate

Y ′′ = Y ′′
oK

⊗ Zp by an objectµ :Z → X of Sss
X . SinceZk is reduced, the reductionµk factors

overY ′red
k ↪→Y ′

k →Yk and hence overF s ⊗ k :Yk →Yk. Henceµ∗
kEk is a trivial bundle and

we conclude using Theorem 16.�

3. Étale parallel transport for vector bundles in B

For vector bundles inBXo,D,BXCp ,D and B
�
XCp ,D we will now construct canonica

isomorphisms of parallel transport along étale paths between geometric points ofX \ D. We
begin by recalling some facts about the fundamental groupoid. The general reference is [

Let Z be a variety overQp and choose a geometric pointz in Z(Cp). Let Fz be the functor
from the category of finite étale coveringsZ ′ of Z to the category of finite sets defined
Fz = MorZ(z,_). It attaches toZ ′ the set ofCp-valued points ofZ ′ lying overz. The functor
Fz is known to be strictly pro-representable: There is a projective systemZ̃ = (Zi, zi, φij)i∈I of
pointed Galois coverings ofZ whereI is a directed set, and thezi ∈ Zi(Cp) are points overz.
Moreover, fori � j the mapφij :Zi → Zj is an epimorphism overZ such thatφij(zi) = zj and
such that the natural map

lim−→
i

MorZ(Zi,Z
′) → Fz(Z ′)

induced by evaluation on thezi’s is a bijection for everyZ ′.
For our purposes, we define the étale fundamental groupoidΠ1(Z) of Z as a topologica

category, as follows: The set of objects ofΠ1(Z) is Z(Cp). For twoCp-valued pointsz andz∗

of Z set

MorΠ1(Z)(z, z∗) = Iso(Fz, Fz∗).(5)

Such an isomorphism of fibre functors will be called an étale path (up to homotopy) fromz to z∗.
Using the pro-representability ofFz andFz∗ , one sees thatMorΠ1(Z)(z, z∗) is a pro-finite set and
as such a compact totally disconnected Hausdorff space. Moreover, composition of mor
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gives acontinuousmap

MorΠ1(Z)(z, z∗)×MorΠ1(Z)(z∗, z∗∗)→ MorΠ1(Z)(z, z∗∗).

The étale fundamental group with base pointz is the profinite group

π1(Z,z) = MorΠ1(Z)(z, z) = Aut(F ) whereF = Fz.

There is an isomorphism of topological groups

π1(Z,z) ∼−→
(
lim−→

i

AutZ(Zi)
)op

.(6)

Here the natural transformationσF :F ∼−→ F given by the family of compatible bijection
σF (Zi) :F (Zi) ∼−→ F (Zi) for i ∈ I is sent to the projective system(σi)i∈I whereσi ∈AutZ(Zi)
is uniquely determined by the relation:

σi(zi) = σF (Zi)(zi).

Let RepΠ1(Z)(o), respectivelyRepΠ1(Z)(Cp), be theo-linear, respectivelyCp-linear, cate-
gories of continuous functors fromΠ1(Z) into the category of freeo-modules of finite rank
respectively the category of finite dimensionalCp-vector spaces. Here a functor between to
logical categories is called continuous if the induced maps between the topological sp
morphisms are continuous.

We now make some remarks on the functoriality ofΠ1.
Let α :Z1 → Z2 be a morphism of varieties overQp. There is an induced continuous func

α∗ :Π1(Z1) → Π1(Z2) defined as follows. On objectsα∗ is the mapα :Z1(Cp) → Z2(Cp). For
pointsz, z′ of Z1(Cp) it remains to define continuous maps

α∗ : Iso(Fz, Fz′)→ Iso(Fα(z), Fα(z′)).

For a finite étale morphismY2 → Z2 consider the base change
Y1 = Y2 ×Z2 Z1 → Z1. There are natural bijections

Fz(Y1)∼= Fα(z)(Y2) and Fz′(Y1) ∼= Fα(z′)(Y2).

Forγ ∈ Iso(Fz, Fz′) defineα∗(γ)(Y2) as the composition:

α∗(γ)(Y2): Fα(z)(Y2) ∼= Fz(Y1)
γ(Y1)∼= Fz′(Y1) ∼= Fα(z′)(Y2).

This defines an isomorphismα∗(γ) of fibre functors. By construction, the mapγ �→ α∗(γ) is
continuous. It is clear thatα∗ defined on objects and morphisms gives a functor.

For a second morphismβ :Z2 → Z3 of varieties overQp we find that

(β ◦ α)∗ = β∗ ◦ α∗ :Π1(Z1) → Π1(Z3).

Obviouslyid∗ = id.
Now we consider the effect of Galois conjugation on fundamental groupoids. For a scheY

overQp and an automorphismσ of Qp overQp setσY = Y ⊗
Qp,σ Qp and writeσ :Y ∼−→ σY

for the inverse of the projection map.
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We now define a continuous functorσ∗ :Π1(Z) → Π1(σZ). On objects,σ∗ is defined by
mappingz ∈ Z(Cp) to σz = σ ◦ z ◦ σ−1 = σ ◦ z ◦ specσ in σZ(Cp).

The continuous mapσ∗ between the spaces of morphisms

σ∗ : Iso(Fz, Fz′) ∼−→ Iso(Fσz, Fσz′)

is obtained as follows: Every finite étale cover ofσZ is of the formσY for a finite étale coverY
of Z. It is clear thatFσz(σY ) ∼= Fz(Y ) naturally for every pointz of Z(Cp). Defineσ∗(γ)(σY )
as the composition:

σ∗(γ)(σY ) :Fσz(σY )∼= Fz(Y ) γ−→ Fz′(Y ) ∼= Fσz′(σY ).

This defines an isomorphism of fibre functorsσ∗(γ). The mapγ �→ σ∗(γ) is continuous. The
mapsσ∗ on objects and morphisms define a functorσ∗. It is clear that we have(στ)∗ = σ∗ ◦ τ∗
as functors fromΠ1(Z) to Π1(στZ) = Π1(σ(τZ)).

If Z is already defined over an extensionK ⊂ Qp of Qp, i.e. Z = ZK ⊗K Qp for some
varietyZK overK then for everyσ ∈ GK = Gal(Qp/K) the mapid ×specK spec(σ−1) gives
a Qp-linear isomorphismσZ ∼−→ Z. This will be used to identifyσZ with Z. It follows that for
suchZ the groupGK acts from the left by continuous automorphisms on the categoryΠ1(Z).

For a topological groupΣ let RepΣ(o) be the category of continuous representations ofΣ on
freeo-modules of finite rank. We defineRepΣ(Cp) similarly.

All these categories are equipped with a tensor product, duals, internal homs and e
powers. Theo-categories are exact, theCp-categories are even Abelian.

LEMMA 21. – For a varietyZ as above and a fixed pointz0 ∈ Z(Cp) the natural forgetful
functors

RepΠ1(Z)(o)→Repπ1(Z,z0)(o) and RepΠ1(Z)(Cp) →Repπ1(Z,z0)(Cp)

are fully faithful.

Proof. –SinceZ is connected all objects ofΠ1(Z) are isomorphic to each other. Faithfulne
follows. Given representationsV andV ′ of Π1(Z) let us writeVz = V (z) andV ′

z = V ′(z). Given
a π1(Z,z0)-equivariant homomorphismfz0 :Vz0 → V ′

z0
definefz :Vz → V ′

z for arbitrary z ∈
Z(Cp) as follows. Choose an étale pathγ ∈MorΠ1(Z)(z, z0) and setfz = V ′(γ)−1 ◦fz0 ◦V (γ).
This is independent ofγ sincefz0 is AutΠ1(Z)(z0, z0)-equivariant. One checks that the family
homomorphisms(fz)z∈Z(Cp) defines a morphism of functors fromV to V ′ which inducesfz0 .
Hence the above forgetful functors are full.�

Consider as before a smooth projective curveX overQp, a divisorD in X and a modelX of
X overZp. SetU = X \D.

Given a bundleE in BXo,D , we will construct a continuous functorρE from Π1(U) into the
category of freeo-modules of finite rank. By propernessX(Cp) = Xo(o). Hence we may view
any geometric pointx ∈ X(Cp) as a sectionxo : speco → Xo overspeco. We writeExo

= x∗
oE

viewed as a freeo-module ofrank r = rankE . The reductionXo(o) → Xo(on) = Xn(on) maps
xo to a morphism

xn : specon → speco
xo−−→ Xo

and we setExn = x∗
nE = Exo

⊗o on viewed as a freeon-module of rankr. We have

Exo
= lim−→ Exn
n
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as topologicalo-modules, the topology onExn being the discrete one. We defineρE on the set of
objectsU(Cp) of Π1(U) by settingρE(x) = Exo

. It remains to define continuous maps:

ρE :MorΠ1(U)(x,x′) = Iso(Fx, Fx′) → Homo(Exo
,Ex′

o
).

These in turn will be obtained as the projective limit of maps

ρE,n : Iso(Fx, Fx′)→ Homon(Exn ,Ex′
n
)

for n � 1. By construction each mapρE,n will factor over a finite quotient of the pro-finite s
Iso(Fx, Fx′). Hence eachρE,n is continuous and thereforeρE will be continuous as well.

Now, givenγ in Iso(Fx, Fx′) and somen � 1, let us constructρE,n(γ). By definition ofBXo,D

and by Corollary 3(3) there exists an objectπ :Y → X of Sgood
X,D such thatπ∗

nEn is a trivial bundle.

SetY = Y ⊗ Qp andV = Y \ π∗D. ThenV → U is a finite étale covering. Choose a po
y ∈ V (Cp) abovex and lety′ = γy ∈ V (Cp) be the image ofy under the map

γV :Fx(V )→ Fx′(V ).

Theny′ lies overx′. Since the structural morphismλ :Y → specZp satisfiesλ∗OY = OspecZp

universally, we findλn∗OYn = Ospecon and therefore the pullback map underyn : specon →Yn

is an isomorphism:

y∗
n : Γ(Yn, π∗

nEn) ∼−→ Γ(specon, y∗
nπ∗

nEn) = Γ(specon, x∗
nEn) = Exn .

We can now defineρE,n(γ) to be the composition:

ρE,n(γ) = γ(y)∗n ◦ (y∗
n)−1 = y′∗

n ◦ (y∗
n)−1 :Exn →Ex′

n
.

Note that by constructionρE,n factors over the finite setIso(Fx(V ), Fx′(V )).

THEOREM 22. – The preceding constructions are independent of all choices and defi
continuous functorρE fromΠ1(X \D) into the category of freeo-modules of finite rank.

Proof. –We first check thatρE,n(γ) does not depend on the choice of the pointy abovex.
So let z be another point inV (Cp) over x. By Theorem 4 there are a finite groupG and
a G-equivariant morphism̃π : Ỹ → X defining an object ofTgood

X,D , together with a morphism

ϕ : Ỹ → Y with π̃ = π ◦ ϕ. In particularṼ = Ỹ \ π̃∗D is a Galois covering ofU with groupG.
HereỸ is the generic fibre of̃Y . Choose points̃y andz̃ in Ṽ (Cp) abovey, respectivelyz. Then
the pointsγỹ andγz̃ lie aboveγy, respectivelyγz. Sinceỹ and z̃ both lie abovex, there is a
uniqueσ in G with σỹ = z̃ and hence withσỹo = z̃o andσỹn = z̃n as well. By construction th
following diagram is commutative:

Exn Γ(Yn, π∗
nEn)

y∗
n∼

�ϕ∗
n

(γy)∗n∼ Ex′
n

Exn Γ(Ỹn, π̃∗
nEn)

ỹ∗
n∼

(γỹ)∗n∼ Ex′
n

Hence we have the formula:

(γy)∗n ◦ (y∗
n)−1 = (γỹ)∗n ◦ (ỹ∗

n)−1
4e SÉRIE– TOME 38 – 2005 –N◦ 4



VECTOR BUNDLES ONp-ADIC CURVES 581

ve.

e

and similarly

(γz)∗n ◦ (z∗n)−1 = (γz̃)∗n ◦ (z̃∗n)−1.

Now, z̃ = σ ◦ ỹ implies thatz̃∗n equals the composition

Γ(Ỹn, π̃∗
nEn) σ∗−−→ Γ(Ỹn, π̃∗

nEn)
ỹ∗

n−−→Exn .

By naturality ofγ we haveγz̃ = σ ◦ γỹ and as before(γz̃)∗n = (γỹ)∗n ◦ σ∗. Thus we find

(γz)∗n ◦ (z∗n)−1 = (γz̃)∗n ◦ (z̃∗n)−1 = (γỹ)∗n ◦ σ∗ ◦ (σ∗)−1 ◦ (ỹ∗
n)−1

= (γy)∗n ◦ (y∗
n)−1.

Now we prove thatρE,n(γ) does not depend on the trivializing coverπ :Y →X. So, letπ̃ : Ỹ → X

be another object ofSgood
X,D such that̃π∗

nEn is a trivial bundle.

By Corollary 3(3) we may assume that there is a morphismϕ : Ỹ → Y with π̃ = π ◦ ϕ. With
notations as above choose a pointỹ ∈ Ṽ (Cp) abovex and sety = ϕ

Qp
(ỹ) whereϕ

Qp
: Ỹ → Y is

the induced map on the generic fibres. It follows thatϕ
Qp

(γỹ) = γy and by properness ofY and

Ỹ overspecZp thatyo = ϕ(ỹo) and(γy)o = ϕ((γỹ)o). One obtains the same diagram as abo
Hence we have

(γy)∗n ◦ (y∗
n)−1 = (γỹ)∗n ◦ (ỹ∗

n)−1

and this implies thatρE,n(γ) does not depend on the trivializing good cover. HenceρE,n(γ) is
well defined.

It is clear that we haveρE,n(id) = id for the trivial pathid ∈ Iso(Fx, Fx). For pathsγ ∈
Iso(Fx, Fx′) andγ′ ∈ Iso(Fx′ , Fx′′), choosing a pointy ∈ V (Cp) overx, the pointγy lies over
x′ and hence we have

ρE,n(γ) = (γy)∗n ◦ (y∗
n)−1 and ρE,n(γ′) =

(
γ′(γy)

)∗
n
◦ (γy)∗−1

n .

This implies the equation:

ρE,n(γ′) ◦ ρE,n(γ) =
(
(γ′ ◦ γ)(y)

)∗
n
◦ (y∗

n)−1 = ρE,n(γ′ ◦ γ).(7)

We now check that the maps

ρE,n : Iso(Fx, Fx′)→ Homon(Exn ,Ex′
n
)

form a projective system with respect to the natural projections

λn+1 :Homon+1(Exn+1 ,Ex′
n+1

)→Homon+1(Exn+1 ,Ex′
n+1

)⊗on+1 on

= Homon(Exn ,Ex′
n
)

i.e. thatλn+1 ◦ ρE,n+1 = ρE,n.
For a givenn � 1 chooseπ :Y → X in Sgood

X,D such thatπ∗
n+1En+1 is a trivial bundle. Then

π∗
nEn is trivial as well. Fory in V (Cp) overx andγ ∈ Iso(Fx, Fx′) consider the commutativ
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ly
f

a
a

diagram wherea andb are the natural maps

specon
yn

b

Yn

a

specon
(γy)n

b

specon+1
yn+1 Yn+1 specon+1

(γy)n+1

It induces a commutative diagram

Exn+1

b∗

Γ(Yn+1, π
∗
n+1En+1)

∼y∗
n+1

a∗

(γy)∗
n+1∼ Ex′

n+1

b∗

Exn Γ(Yn, π∗
nEn)

y∗
n∼ ∼(γy)∗n Ex′

n

The mapsb∗ are just the natural reduction maps from theon+1-moduleExn+1 , respectively
Ex′

n+1
, to theon-moduleExn = Exn+1 ⊗on+1 on, respectivelyEx′

n
= Ex′

n+1
⊗on+1 on. Hence

the mapρE,n(γ) = (γy)∗n ◦ (y∗
n)−1 is the reductionmodpn of the mapρE,n+1(γ) = (γy)∗n+1 ◦

(y∗
n+1)

−1.
Let

ρE : Iso(Fx, Fx′) →Homo(Exo
,Ex′

o
)

be the projective limit of the mapsρE,n. Using (7) it follows that together with the previous
defined mapρE on objects, we obtain a continuous functor fromΠ1(X \D) into the category o
freeo-modules of finite rank. �

For a fixedCp-valued pointx of X \ D the continuous functorρE induces in particular a
continuous representation

ρE :π1(X \D,x) = AutΠ1(X\D)(x) →Auto(Exo
).

In a preliminary version [8] we defined a representationρE in the following way: Choose
G-equivariant morphismπ :Y → X in T

good
X

such thatπ∗
nEn is a trivial bundle. The choice of

pointy ∈ Y (Cp) abovex determines a homomorphism

π1(X,x)
ϕy−−→ AutopX Y = Gop → Auton Γ(Yn, π∗

nEn),

i.e. a left action ofπ1(X,x) onΓ(Yn, π∗
nEn). Transporting this action toExn via the isomorphism

Γ(Yn, π∗
nEn)

y∗
n∼−−→Exn

gives a representatioñρE,n of π1(X,x) on Exn . The projective limit of theρ̃E,n defines a
representatioñρE :π1(X,x)→ Auto(Ex0).

PROPOSITION 23. – The representationsρE and ρ̃E :π1(X,x) → Auto(Exo
) agree with

each other.
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Proof. –The present construction obtainsρE(γ) as the limit ofρE,n(γ), whereρE,n(γ) is the
composition

Exn

(y∗
n)−1

∼−−−−→ Γ(Yn, π∗
nEn)

(γy)∗n−−−−→Exn .

We now show thatρ̃E,n(γ) = ρE,n(γ). For this, note that under the mapϕy the natural
transformationγ is sent to the unique automorphismσ ∈G of Y which sendsy to γy. Hence we
have

ρ̃E,n(γ) = y∗
n ◦ σ∗ ◦ (y∗

n)−1 = (σy)∗n ◦ (y∗
n)−1 = (γy)∗n ◦ (y∗

n)−1 = ρE,n(γ). �
We now turn the mapE �→ ρE into a functorρ from BXo,D into RepΠ1(X\D)(o). Let

f :E → E ′ be a morphism inBXo,D . We claim that the family ofo-module homomorphisms

fxo
= x∗

of :Exo
→E ′

xo
for all x ∈ U(Cp) = ObΠ1(U)

defines a natural transformation, denoted byρf from ρE to ρE′ . So, letγ ∈ MorΠ1(U)(x,x′) be

an étale path. For a givenn � 1 there is an objectπ :Y → X in Sgood
X,D such that bothπ∗

nEn and
π∗

nE ′
n are trivial bundles. This follows from Corollary 3(3). Letfn be the reduction off mod pn

and setfxn = x∗
n(f). Choose a pointy abovex and sety′ = γy. Then the commutative diagra

Exn

fxn E ′
xn

Γ(Yn, π∗
nEn)

y∗
n �

Γ(Yn,π∗
nfn)

�y′∗
n

Γ(Yn, π∗
nE ′

n)

�y∗
n

�y′∗
n

Ex′
n

fx′
n E ′

x′
n

shows that we havefx′
n
◦ ρE,n(γ) = ρE′,n(γ) ◦ fxn . In the limit we obtain thatfx′

o
◦ ρE(γ) =

ρE′(γ) ◦ fxo
. Henceρf = (fxo

) is a morphism fromρE to ρE′ . It is clear that in this way we
obtain a functorρ = ρX. The proof of the following proposition is easy:

PROPOSITION 24. – The functorρ = ρX :BXo,D → RepΠ1(X\D)(o) is o-linear and com-
mutes with tensor products, duals, internal homs and exterior powers of vector bundles
sequences of bundles are mapped to exact sequences of representations ofΠ1(X \D).

We now describe the effect of Galois conjugation onρ. Consider an automorphismσ of Qp

overQp. It induces aσ-linear functorσ∗ from VecXo
to VecσXo

. HereσX = X ⊗
Zp,σ Zp and

hence(σX)o = Xo ⊗o,σ o = σXo. The functorσ∗ sends the vector bundleE overXo to the vector
bundleσE = E ⊗o,σ o overσXo. A morphismf :E1 →E2 is sent toσf : σE1 → σE2. On the other
hand we have aσ-linear functor:

Cσ :RepΠ1(U)(o)→RepΠ1(σU)(o).

It is obtained as follows. LetModo be the category of freeo-modules of finite rank. We defin
a continuousσ-linear functor

σ∗ :Modo
∼−→Modo
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d

s is
by mapping ano-moduleΓ to σ∗(Γ) = σΓ, which isΓ as a set but with the twistedo-module
structureλ · γ = σ−1(λ)γ for λ ∈ o andγ ∈ Γ i.e. σΓ = Γ ⊗o,σ o. We write the identity map
Γ id−→ σΓ asσ : Γ → σΓ since it isσ-linear. Ano-module homomorphismf : Γ1 → Γ2 is sent to
σf = f in the first description ofσΓ and tof ⊗o,σ o in the second.

On objects ofRepΠ1(U)(o), i.e. on continuous functorsΓ :Π1(U) →Modo, the functorCσ

is defined by settingCσ(Γ) = σ∗ ◦Γ ◦ (σ∗)−1 whereσ∗ :Π1(U) ∼−→Π1(σU) is the isomorphism
of categories recalled above. For a morphismf : Γ → Γ′ in RepΠ1(U)(o), i.e. a family of
o-module homomorphismsfx : Γx → Γ′

x for x ∈ U(Cp) with Γ′(γ) ◦ fx = fx′ ◦ Γ(γ) for all
γ ∈ MorΠ1(U)(x,x′) we defineCσ(f) :Cσ(Γ) →Cσ(Γ′) as follows. Every point ofσU(Cp) is
of the formσx = σ∗(x) for some pointx of U(Cp). Hence we have to define ano-linear map

Cσ(f)σx :Cσ(Γ)σx = (σ∗ ◦ Γ)(x) → (σ∗ ◦ Γ′)(x) = Cσ(Γ′)σx

for everyx ∈ U(Cp), i.e. a map

Cσ(f)σx : σΓx → σΓ′
x.

In the above notation we setCσ(f)σx = σ ◦ fx ◦ σ−1. The family(Cσ(f)σx) defines the desire
natural transformationCσ(f) andCσ becomes a functor which is easily checked to beo-linear.

Moreover we haveCτσ = Cτ ◦Cσ andCid = id in an obvious sense.
With trivial changes we also get analogous functorsσ∗ :BXCp ,D → BσXCp ,σD and

σ∗ :VecCp →VecCp andCσ :RepΠ1(U)(Cp) →RepΠ1(σU)(Cp).
The proof of the following proposition is routine.

PROPOSITION 25. – In the above situation the diagram of categories and functor
commutative(up to canonical isomorphisms of functors):

BXo,D
ρX

σ∗

RepΠ1(U)(o)

Cσ

BσXo,σD
ρ

σX

RepΠ1(σU)(o)

In particular, we have forE in BXo,D that

ρσE = σ∗ ◦ ρE ◦ (σ∗)−1

as functors fromΠ1(σU) to Modo.

Remark. – It also follows that ifX and D are defined overoK , so that(σX, σD) can be
identified with(X,D) for all σ ∈ GK , the functor

ρ :BXo,D →RepΠ1(U)(o)

commutes with the leftGK -actions on these categories defined by lettingσ act via σ∗,
respectively viaCσ .

The next type of functoriality will be used all the time later. Letα :X → X′ be a morphism
over Zp of models and letD′ be a divisor onX ′. SetU ′ = X ′ \ D′ andU = X \ a∗D′. The
generic fibre ofα induces a functor

A(α) :RepΠ (U ′)(o)→RepΠ (U)(o)
1 1
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as follows: For an objectΓ of RepΠ1(U ′)(o) we defineA(α)(Γ) to be the composed functor:

A(α)(Γ) :Π1(U) α∗−−→Π1(U ′) V−→Modo.

For a morphismf : Γ1 → Γ2 in RepΠ1(U ′)(o) given by a family ofo-linear mapsfx′ : Γ1x′ →
Γ2x′ for x′ ∈ U ′(Cp) we defineA(α)(f) to be the family of maps

A(α)(Γ1)x = Γ1,α(x)
fα(x)−−−→ Γ2,α(x) = A(α)(Γ2)x.

It is clear thatA(α) so defined gives a functor and that for a second mapα′ :X′ → X′′ we have
A(α′ ◦ α) = A(α) ◦A(α′).

PROPOSITION 26. – For a morphismα :X → X′ as above the pullback alongα∗ induces
a functor α∗ :BX′

o,D′ → BXo,α∗D′ and the following diagram of categories and functo
commutes(up to canonical isomorphisms):

BX′
o,D′

ρ

α∗

RepΠ1(U ′)(o)

A(α)

BXo,α∗D′
ρ

RepΠ1(U)(o)

(8)

In particular, for everyE in BX′
o,D′ we have

ρα∗E = ρE ◦ α∗(9)

as functors fromΠ1(U) to Modo.

Proof. –Let E be a vector bundle inBX′
o,D′ . By Proposition 9,α∗E lies in BXo,α∗D′ . We

have (ρ ◦ α∗)(E) = ρα∗E and (A(α) ◦ ρ)(E) = ρE ◦ α∗. Commutativity of (8) on objects i
therefore equivalent to (9). On objects, relation (9) simply says that(α∗E)x = Eα(x), a canonica
isomorphism. Forγ ∈MorΠ1(U)(x, z) it suffices to show that for everyn � 1, we have

ρα∗E,n(γ) = ρE,n

(
α∗(γ)

)
.(10)

Let π′ :Y ′ → X′ be an object ofSgood
X′,D′ such thatπ′∗

n En is trivial. Choose someπ :Y → X in

Sgood
X,α∗D′ covering the object̃π : Ỹ = Y ′ ×X′ X → X of SX,α∗D′ , so that we get a commutativ

diagram

Y ψ

π

Y ′

π′

X
α

X′

Let y be a point inV (Cp) abovex and sety′ = ψ(y), a point inV ′(Cp) aboveα(x). Now,ρα∗E,n

is the composition

(α∗E)xn

(y∗
n)−1

−−−−→ Γ(Yn, π∗
nα∗

nEn)
(γy)∗n−−−−→ (α∗E)zn
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andρE,n(α∗(γ)) is the composition

Eα(x)n

(y′∗
n )−1

−−−−−→ Γ(Y ′
n, π′∗

n En)
(α∗(γ)y′)∗n−−−−−−−→Eα(z)n

.

Hence, for (9) it suffices to show that the following diagram commutes:

(α∗E)xn Γ(Yn, π∗
nα∗

nEn)
y∗

n (γy)∗n (α∗E)zn

Eα(x)n Γ(Y ′
n, π′∗

n En)
y′∗

n (α∗(γ)y′)∗n

ψ∗
n

Eα(z)n

For the left square this follows from the relationy′ = ψ ◦ y as morphisms fromspecCp to
V ′ ⊂ Y ′. Similarly the right square commutes because we haveα∗(γ)y′ = ψ ◦ (γy). Namely,
factoring ψ as a compositionψ :Y b−→ Ỹ a−→ Y ′ and settingỹ = b(y), we haveα∗(γ)(y′) =
α∗(γ)(a(ỹ)) = a(γỹ) = a(γ(by)) = (a ◦ b)(γy) = ψ(γy). It is an immediate consequence
the definitions, that diagram (8) commutes for morphisms, i.e. thatA(α)ρf = ρα∗f for all
f :E1 →E2 in BX′

o,D′ . �
We can now define a parallel transport along étale paths for the bundles inBXCp ,D.

PROPOSITION 27. – Let X be a smooth, projective curve overQp with modelsX1 and X2

overZp. Then there is a third modelX3 of X together with morphisms

X1
p1←− X3

p2−→ X2

restricting to the identity on the generic fibres(after their identification withX). For any divisor
D onX we have a commutative diagram of fully faithful functors

BX1o,D ⊗Q

p∗
1

j∗X1o

BX3o,D ⊗Q
j∗X3o

BXCp ,D

BX2o,D ⊗Q

p∗
2

j∗X2o

Proof. –DescendX to a smooth projective curveXK over a finite extensionK of Qp, and
X1,X2 to modelsX1,oK

,X2,oK
of XK over oK . Let X∗

oK
be the closure of the image of th

morphism

XK
∆−→ XK ×specK XK → X1,oK

×specoK
X2,oK

endowed with the reduced subscheme structure. LetX3,oK
be the normalization ofX∗

oK
. Then

there are natural morphismsX3,oK
→ X∗

oK
→ X1,oK

and X3,oK
→ X∗

oK
→ X2,oK

restricting
to the identity on the generic fibres. Now the first claim follows by base change. It rem
to show that for any modelX of X the functor j∗Xo

:BXo,D ⊗ Q → BXCp ,D induced by
the canonical morphismjXo

:XCp → Xo is fully faithful. For bundlesE1 and E2 on Xo set
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F = HomXo
(E1,E2). Then flat base change applied to the global sections ofF implies that

HomXo
(E1,E2)⊗Q−→

j∗
Xo

HomXCp
(j∗Xo

E1, j
∗
Xo

E2)

is an isomorphism. �
For every morphismf :X → X′ overZp of models ofX restricting to the identity on gener

fibres, Proposition 26 gives a commutative diagram:

BX′
o,D

f∗

ρ

BXo,D

ρ

RepΠ1(U)(o)

(11)

Next, note that there is a canonical functor:

RepΠ1(U)(o)⊗Q →RepΠ1(U)(Cp).(12)

Thus we get a commutative diagram:

BX′
o,D ⊗Q

f∗

ρ

BXo,D ⊗Q

ρ

RepΠ1(U)(Cp)

(13)

Together with Proposition 27, we obtain a functor

ρ = ρX :BXCp ,D →RepΠ1(U)(Cp).

Explicitly, it is given as follows: For an objectE of BXCp ,D we obtain the continuous functo
ρ(E) = ρE :Π1(U) →VecCp by setting on the one handρE(x) = Ex = x∗E for x ∈ U(Cp) =
ObΠ1(U). On the other hand, forx,x′ ∈ U(Cp) the continuous map

ρE = ρE,x,x′ :MorΠ1(U)(x,x′) → HomCp(Ex,Ex′)

is given by

ρE(γ) = ψ−1
x′ ◦

(
ρE(γ)⊗o Cp

)
◦ψx.

Here we have chosen a modelX of X over Zp and a bundleE in BXo,D together with an
isomorphismψ :E → j∗Xo

E in VecXCp
. Moreoverψx is the fibre map:

ψx = x∗(ψ) :Ex
∼−→ (j∗Xo

E)x = Exo
⊗o Cp = Exo

⊗Z Q.

For a morphismf :E → E′ in BXCp ,D the morphismρ(f) = ρf :ρE → ρE′ is given by the
family of linear mapsfx = x∗(f) :Ex → E′

x for all x ∈ U(Cp).
The main properties of parallel transport for bundles of classB onp-adic curves are collecte

in the next result:
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THEOREM 28. – Let X,X ′ be smooth projective curves overQp and letf :X → X ′ be a
morphism between them. LetD andD′ be divisors onX andX ′.

(a)The functor

ρ :BXCp ,D →RepΠ1(U)(Cp)

is Cp-linear, exact and commutes with tensor products, duals, internal homs and exterior p
(b) Pullback of vector bundles induces an additive and exact functor

f∗ :BX′
Cp

,D′ →BXCp ,f∗D′

which commutes with tensor products, duals, internal homs and exterior powers. The fol
diagram is commutative:

BX′
Cp

,D′
ρ

f∗

RepΠ1(X′\D′)(Cp)

A(f)

BXCp ,f∗D′
ρ

RepΠ1(X\f∗D′)(Cp)

(14)

In particular, for E in BXCp ,f∗D′ we have

ρf∗E = ρE ◦ f∗(15)

as functors fromΠ1(X \ f∗D′) to VecCp .
(c) For every automorphismσ of Qp overQp the following diagram commutes

BXCp ,D
ρ

σ∗

RepΠ1(U)(Cp)

Cσ

BσXCp ,σD
ρ

RepΠ1(σU)(Cp)

(16)

In particular, we have forE in BXCp ,D that

ρσE = σ∗ ◦ ρE ◦ (σ∗)−1

as functors fromΠ1(σU) to VecCp . If X = XK ⊗K Qp and D = DK ⊗K Qp for some field
Qp ⊂ K ⊂ Qp, so that(σX, σD) is canonically identified with(X,D) overQp for all σ ∈ GK ,
the functor

ρ :BXCp ,D →RepΠ1(U)(Cp)

commutes with the leftGK -actions on these categories, defined by lettingσ act via σ∗
respectively viaCσ .

Remark. – As usual, for diagrams of functors to commute means to commute up to can
isomorphisms.

Proof. –Assertions (a) and (c) follow from Propositions 24 and 25, respectively. Assertio
follows from Proposition 26 and Lemma 8.�
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Assume thatX has a smooth modelX over Zp. Then by Theorem 12, every line bundle
degree zero onXCp lies inBXCp

. Hence our functorρ induces a homomorphism

Pic0(XCp) →Homcont

(
π1(X,x),C∗

p

)
.

In [9] we show that on a certain open subgroup ofPic0(XCp) this homomorphism coincide
with the one constructed by Tate in [32, §4] using thep-divisible group of the Abelian schem
Pic0

X/Zp
and its Cartier dual.

The following theorem gives another relation to Tate’s work [32]. A proof is contained in

THEOREM 29. – Let X be a smooth, projective curve overQp with a smooth modelX
overZp. We writeExt1BXCp

(O,O) for the Yoneda groups of isomorphism classes of exten

0 →O→O(E) →O→ 0, whereE lies inBXCp
. Sinceρ is exact, it induces a homomorphis

ρ∗ :Ext1BXCp
(O,O) → ExtRepπ1(X,x)(Cp)(Cp,Cp).

Then the following diagram commutes:

Ext1BXCp
(O,O) ρ∗ Ext1Repπ1(X,x)(Cp)(Cp,Cp)

H1(X,O)⊗
Qp

Cp
α H1

ét(X,Qp)⊗Qp
Cp

whereα is the Hodge–Tate map from the Hodge–Tate decomposition ofH1
ét(X,Qp)⊗Qp

Cp.

PROPOSITION 30. – For a fixed pointx0 ∈ U(Cp) the functor “fibre inx0”

BXCp ,D →VecCp , E �→ Ex0 , f �→ fx0

is faithful. In particular, the evaluation map

Γ(XCp ,E)→ Ex0 , s �→ s(x0)

is injective for all bundlesE in BXCp ,D .

Proof. –The functorρ :BXCp ,D → RepΠ1(U)(Cp) is faithful because a morphism of vect
bundlesf :E → E′ is determined by the collection of linear mapsfx :Ex → E′

x for all Cp-valued
pointsx of UCp , cf. [11, 7.2.2.1]. Using Lemma 21 it follows that the functor “fibre inx0” is
faithful as well. In particular, the map

Γ(XCp ,E) = HomXCp
(O,E)→ HomCp(Cp,Ex0) = Ex0

is injective, whereO denotes the trivial line bundle onXCp . �
In order to extend the preceding results to the categoryB

�
XCp ,D we need the following result

PROPOSITION 31. – Consider a Galois coveringα :Y → X between varieties overQp.
A (continuous) functorW :Π1(Y ) → C into a (topological) categoryC factors asW = V ◦ α∗
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for some(continuous) functor V :Π1(X) → C if and only if we haveW ◦ σ∗ = W for all
σ ∈ G = Gal(Y/X). If α is only finite and étale but not necessarily Galois, the relat
W = V ◦ α∗ already determinesV uniquely.

Proof. –The conditionW ◦ σ∗ = W is necessary for the existence ofV sinceα∗ ◦ σ∗ =
(α ◦ σ)∗ = α∗. Now assume that we haveW ◦ σ∗ = W for all σ. It implies thatWσ(y) = Wy for
all y ∈ Y (Cp). Hence we may define

V :X(Cp) = ObΠ1(X) → ObC

by settingVx = Wy for an arbitraryy ∈ Y (Cp) with α(y) = x. We define

V :MorΠ1(X)(x1, x2) →MorC(Vx1 , Vx2)

as follows. Lety1 ∈ Y (Cp) be a point withα(y1) = x1. For any finite étale mapα, the natural
map

∐
α(y2)=x2

MorΠ1(Y )(y1, y2)
α∗∼−−→ MorΠ1(X)(x1, x2)(17)

is a homeomorphism. Hence any étale pathγ from x1 to x2 has a unique lifting to an éta
pathγ′ from y1 to some pointy2 abovex2. The desired relationW = V ◦ α∗ forces us to se
V (γ) = W (γ′), a morphism fromVx1 = Wy1 to Vx2 = Wy2 . We have to check that this is we
defined i.e. independent of the choice ofy1. Let y′

1 be another point abovex1 and letσ ∈ G be
the automorphism withσy1 = y′

1. Thenσ∗(γ′) is the unique path aboveγ from y′
1 to some point

y′
2 abovex2. Thus we have to show thatW (γ′) = W (σ∗(γ′)). But this follows from the relation

W ◦ σ∗ = W on morphisms. It is clear thatV is a functor withW = V ◦ α∗. We have also see
that this property determinesV uniquely. The continuity assertions are clear.�

Remark. – In particular the proposition applies to representations ofΠ1(Y ) on Cp-vector
spaces. There is no analogous result if one only considers representations of the fund
groupπ1(Y, y). For example, consider a smooth surfaceX with finite fundamental group an
universal coveringα :Y → X . Then a representation of the trivial groupπ1(Y, y) carries no
information whereas a representationW of Π1(Y ) defines a transitive set of isomorphism
between the vector spacesWy for all y in Y (Cp).

We can now define a functorρ :B�
XCp ,D →RepΠ1(U)(Cp) extending the functorρ previously

defined onBXCp ,D . Thus letE be a vector bundle inB�
XCp ,D. Choose a ramified Galois coverin

α :Y → X which is étale overU = X \ D such thatα∗E lies in BYCp ,α∗D. By Theorem 28(b)
we have

ρα∗E ◦ σ∗ = ρσ∗(α∗E) = ρα∗E

for everyσ in the Galois group ofV = Y \ α∗D over U . Using Proposition 31 it follows tha
there is a unique functorρ(E) = ρE :Π1(U) →VecCp such that we have

ρα∗E = ρE ◦ α∗.(18)

This functor is continuous. (In order to apply Proposition 31, we view canonical isomorp
such asσ∗(α∗E) = (ασ)∗E as identifications.)
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In particular, we haveρE(x) = Ex for all x ∈ U(Cp). For an étale pathγ from x1 to x2 in U
we have

ρE(γ) = ρα∗E(γ′) :Ex1 = (α∗E)y1 → (α∗E)y2 = Ex2 .(19)

Here y1 ∈ V (Cp) lies abovex1 and γ′ is the unique path inV with α∗γ
′ = γ from y1 to a

point y2 abovex2. For a morphismf :E → E′ of vector bundles inB�
XCp ,D the morphism

ρ(f) = ρf :ρE → ρE′ is defined to be the family of linear mapsfx :Ex → E′
x for all x ∈ U(Cp).

PROPOSITION 32. – The preceding constructions give a well defined functor

ρ :B�
XCp ,D →RepΠ1(U)(Cp)

which extends the previously defined functorρ onBXCp ,D .

Proof. –We first have to show that the definition ofρE is independent ofα. If we are given
ramified Galois coverings of smooth projective curvesα1 :Y1 → X andα2 :Y2 → X which are
étale overU there is a third oneα3 :Y3 →X coveringα1 andα2 i.e.α3 = αi ◦πi for morphisms
πi :Y3 → Yi wherei = 1,2. Now assume thatα∗

i E ∈BYiCp ,α∗
i
D. By the above we have

ρα∗
i
E = ρi ◦ αi∗

for functors ρi :Π1(U) → VecCp where i = 1,2. We have to show thatρ1 = ρ2. By
Theorem 28(b) we find fori = 1,2 that

ρα∗
3E = ρπ∗

i
(α∗

i
E) = ρα∗

i
E ◦ πi∗ = ρi ◦ αi∗ ◦ πi∗ = ρi ◦ α3∗.

The uniqueness assertion of Proposition 31 now implies thatρ1 = ρ2.
Next we have to check that for a morphismf :E → E′ in B

�
XCp ,D the family of maps

fx :Ex → E′
x defines a morphism inRepΠ1(U)(Cp). We may assume that bothα∗E andα∗E′

lie in BYCp ,α∗D. Then ρα∗f , i.e. the family of maps(α∗f)y : (α∗E)y → (α∗E′)y , defines a
morphism inRepΠ1(V )(Cp). Using (19) we see that

Ex1

fx1

ρE(γ)

E′
x1

ρE′ (γ)

Ex2

fx2
E′

x2

commutes for everyγ, as desired. It is clear thatρ is a functor and that it extends

ρ :BXCp ,D →RepΠ1(U)(Cp). �
THEOREM 33. – Assertions(a), (b) and (c) of Theorem28 hold for B

�
XCp ,D instead of

BXCp ,D as well. For any pointx0 ∈ U(Cp) the fibre functor

B
�
XCp ,D →VecCp , E �→ Ex0 , f �→ fx0

is faithful.
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Proof. –(a) Exactness ofρ is clear from its definition. For two vector bundlesE1 andE2 in
B

�
XCp ,D choose a ramified Galois coveringα :Y → X , étale overX \ D such thatα∗E1 and

α∗E2 are inBXCp ,D. Then we have

ρα∗(E1⊗E2) = ρα∗E1⊗α∗E2 = ρα∗E1 ⊗ ρα∗E2 = (ρE1 ◦ α∗)⊗ (ρE2 ◦ α∗)

= (ρE1 ⊗ ρE2) ◦ α∗

by Theorem 28(a). It follows that we haveρE1⊗E2 = ρE1 ⊗ ρE2 . It is clear that we also hav
ρf1⊗f2 = ρf1 ⊗ρf2 for morphismsf1, f2 of vector bundles. Henceρ commutes with⊗-products
and similarly with direct sums, duals, internal homs and exterior powers.

Let f :X → X ′ be a morphism of smooth projective curves overQp. On objects, we have t

show thatρf∗E = ρE ◦f∗ for all E in B
�
X′

Cp

. Thus letα′ :Y ′ → X ′ be a ramified Galois coverin

étale overX ′ \D′ with α′∗E in BY ′
Cp

,α′∗D′ . With notations as in the proof of Proposition 9 w

see thatα∗f∗E = g∗α′∗E lies inBYCp ,α∗f∗D′ . Moreover

ρα∗f∗E = ρg∗α′∗E = ρα′∗E ◦ g∗ = ρE ◦ α′
∗ ◦ g∗ = ρE ◦ f∗ ◦ α∗

by Theorem 28(a) and the definition ofρE . Now on the other hand,α :Y → X is a ramified
Galois covering, étale overX \ f∗D′. Hencef∗E lies in B

�
XCp ,f∗D′ andρf∗E is by definition

the unique functor withρα∗f∗E = ρf∗E ◦ α∗. It follows that we haveρf∗E = ρE ◦ f∗. It is
immediate from the definitions that diagram (14) forB� commutes on the level of morphism
The proof thatρ behaves functorially with respect to automorphisms is deduced similarly
Theorem 28(c). The last assertion is proved in the same way as Proposition 30.�

Remark. – It is known that the fibre functor in a point is faithful on the category of sta
bundles of degree zero on a compact Riemann surface, cf. [31, Chapter 1, IV]. By an induc
the length of the Jordan–Hölder filtration one gets faithfulness also on the category of sem
bundles of degree zero. The analogous assertion therefore holds on smooth projective
over fields that can be embedded intoC, e.g. overCp. Together with Theorem 13 one thus g
another proof of Theorem 33(b).

We will now explain how to glue the representationsρE attached to a vector bundleE onXCp

which belongs toB�
XCp ,D for several divisorsD. For this we need the following Seifert–va

Kampen theorem for étale groupoids:

PROPOSITION 34. – Given open subschemesU1 andU2 of a curveX , let i1 :U1 ∩U2 ↪→ U1,
i2 :U1 ∩U2 ↪→ U2 andj1 :U1 ↪→ U2 ∪U2, j2 :U2 ↪→ U1 ∪U2 be the corresponding immersio
and consider the commutative diagram of fundamental groupoids

Π1(U1 ∩U2)
i1∗

i2∗

Π1(U1)

j1∗

Π1(U2)
j2∗ Π1(U1 ∪U2)

Then for any Hausdorff topological categoryC and continuous functorsρ1 :Π1(U1) → C and
ρ2 :Π1(U2) → C such thatρ1 ◦ i1∗ = ρ2 ◦ i2∗ there is a unique continuous functorρ :Π1(U1 ∪
U2)→C such thatρ ◦ j1∗ = ρ1 andρ ◦ j2∗ = ρ2.

Proof. –We may assume thatU1 andU2 are nonempty. Letγ :x1 → x2 be an étale path i
U1 ∪ U2 with x1 ∈ U1 and x2 ∈ U2. Choose a pointx′ in U1 ∩ U2. Then sinceU1 ∪ U2 is
4e SÉRIE– TOME 38 – 2005 –N◦ 4
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connected we may writeγ as the composition of a pathγ1 :x1 → x′ with a pathγ2 :x′ → x2

in U1 ∪ U2. The homomorphismsπ1(Uν , xν) → π1(U1 ∪ U2, xν) for ν = 1,2 are known to
be surjective sinceX is a curve. We deduce that there are pathsγ̃1 :x1 → x′ in U1 and
γ̃2 :x′ → x2 in U2 such thatjν∗(γ̃ν) = γν . Hence if ρ exists, we haveρ(γ) = ρ(γ2 · γ1) =
ρ(γ2)ρ(γ1) = ρ2(γ̃2)ρ1(γ̃1) and similarly for paths fromx2 to x1. For pathsγ in X whose
endpoints are both inUν we haveρ(γ) = ρν(γ̃) where jν∗(γ̃) = γ. Hence the functorρ is
uniquely determined. As for existence, it is clear how to defineρ on objects and it remain
to check thatρ given on morphisms by the above formulas is well defined. This follows f
the Seifert–van Kampen theorem for the étale fundamental group, cf. [15, IX, corollaire
There is a subtlety here. The pushout property holds only in the category of profinite group
the mapsiν∗ :π1(U1 ∩U2, x

′)→ π1(Uν , x′) are surjective and hence the mapsρν onπ1(Uν , x′)
have the same images forν = 1,2. This common image is the quotient of a profinite group b
closed subgroup and hence profinite. Here we used the Hausdorff assumption on (the s
morphisms of)C. �

PROPOSITION 35. – LetD1 andD2 be divisors onX and setU1 = X \D1 andU2 = X \D2.
For a vector bundleE on XCp let ρ1

E and ρ2
E be the continuous representations ofΠ1(U1),

respectivelyΠ1(U2), onCp-vector spaces constructed before. Then there is a unique contin
representationρE of Π1(U1 ∪ U2) which inducesρν

E on Π1(Uν) for ν = 1,2. For the induced
functor whereU = U1 ∪U2

ρ :B�
XCp ,D1

∩B
�
XCp ,D2

→RepΠ1(U)(Cp)

the analogue of Theorem33holds.

Variant. For E in BXo,Dν for ν = 1,2 we obtain a well defined representation ofΠ1(U) on
freeo-modules of finite rank.

Proof. –On objectsρE is defined byρE(x) = Ex as before. The assertions are a form
consequence of Proposition 34 and Theorem 33.�

Let Bs
XCp

be the category of vector bundles onXCp with strongly semistable reduction
degree zero, as defined in the introduction.

THEOREM 36. – We haveBs
XCp

=
⋃

D BXCp ,D. Every vector bundleE in Bs
XCp

lies both in

BXCp ,D and B
XCp ,D̃

for suitable divisorsD and D̃ with disjoint support. There is a uniqu

representationρE of Π1(X) on finite dimensionalCp-vector spaces such thatρE(x) = Ex

for all x ∈ X(Cp) and such thatρE is compatible with the representationsρE of Π1(X \ D)
constructed earlier for thoseD with E in BXCp ,D . As before one obtains an exact addit
functorρ :Bs

XCp
→RepΠ1(X)(Cp) which commutes with tensor products, duals, internal h

and exterior powers. Moreover, it behaves functorially with respect to morphisms of curve
Qp and automorphisms ofQp overQp. For any pointx0 ∈X(Cp), the fibre functor

Bs
XCp

→VecCp , E �→ Ex0 , f �→ fx0

is faithful.

Proof. –This follows from Theorems 17 and 33 together with Proposition 35.�
Remark. – Arguing as in the proofs of Propositions 9 and 32 this result implies the theor

the introduction.
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Let Rep∞
π1(X,x)(Cp) be the full subcategory ofRepπ1(X,x)(Cp) of those representation

λ :π1(X,x) → GL(V ) which are continuous ifV is given the discrete topology. Equivalen
λ has to factor over a finite quotient ofπ1(X,x).

PROPOSITION 37. – The categoryRep∞
π1(X,x)(Cp) is contained in the essential image

ρ :B�
XCp

→Repπ1(X,x)(Cp).

Proof. –Let λ be a representation as above. LetG be the image ofλ in GL(V ). Letα :Y →X
be a Galois extension ofX with groupG such thatα∗ :π1(Y, y) → π1(X,x) with y ∈ Y (Cp)
abovex induces an isomorphismπ1(Y, y) ∼= kerλ. Define a vector bundleE on X by setting
E = Y ×G V whereV is the affine space overQp attached toV . ThenE lies inB

�
XCp

because
α∗E is a trivial bundle onY and hence lies inBYCp

. OnS-valued points ofY a trivialization

ψ :VY = Y ×V ∼−→ α∗E

is described by mapping(y, v) to the pair([y, v], y) in α∗E. Here[y, v] ∈ Eα(y) is the class o
(y, v)modG. We can now calculateρE . For γ ∈ π1(X,x) there is a unique étale pathγ′ in Y
from y to σy for a uniquely determinedσ ∈G. The commutative diagram

Ex

ρE(γ)

(α∗E)y

ρα∗E(γ′)

(VY )y

ψy∼

ρVY
(γ′)

V

Ex (α∗E)σy (VY )σy
∼ψyσ

V

shows that if we identifyEx with V via ψy the automorphismρE(γ) :V → V is given by
ρE(γ) = ψ−1

y ◦ψyσ . Thus we have

ρE(γ)(v) = ψ−1
y

[
yσ, v

]
= ψ−1

y [y,σv] = σv = λ(γ)v.

Hence we haveρE = λ as representations ofπ1(X,x) onV
ψy∼= Ex. �

PROPOSITION 38. – Let α :Y → X be a finite étale covering of smooth projective cur
overQp and letE be a vector bundle inB�

YCp
. Then

ρα∗E :π1(X,x)→GL
(
(π∗E)x

)

is the representation obtained fromρE :π1(Y, y) → GL(Ey) by induction via the inclusion
α∗ :π1(Y, y) ↪→ π1(X,x). Herey is any point inY (Cp) abovex ∈X(Cp).

Proof. –Under the natural injectionE ↪→ α∗α∗E we may view Ey as a subspace o
(α∗α∗E)y = (α∗E)x. From Theorem 33(a) we get that

ρα∗E ◦ α∗ = ρα∗α∗E

as representations ofπ1(Y, y) on GL((α∗E)x). Thusρα∗α∗E is the restriction ofρα∗E to the
subgroup (viaα∗) π1(Y, y) of π1(X,x). SinceρE ↪→ ρα∗α∗E by the exactness ofρ, it follows
that the restriction ofρα∗E to π1(Y, y) leaves the subspaceEy of (α∗E)x invariant and gives
4e SÉRIE– TOME 38 – 2005 –N◦ 4
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the representationρE there. It remains to show that(α∗E)x is the direct sum of the translat
ρα∗E([γ])Ey for [γ] running over the cosets ofα∗π1(Y, y) in π1(X,x). There is a bijection

π1(X,x)/α∗π1(Y, y) ∼−→
{
y′ ∈ Y (Cp) | α(y′) = x

}
given by mapping[γ] to the “endpoint” of the unique lifting ofγ to an étale path inY starting at
y, cf. (17). Together with the natural isomorphism

(α∗E)x =
⊕

α(y′)=x

Ey′

the assertion follows. Namely, we have:

ρα∗E(γ)Ey = ρα∗α∗E(γ′)Ey = ρE(γ′)Ey = Ey′ . �
We conclude this section with some general observations on the structure of represent
Consider a continuous representationρ :G → GLr(o) of a profinite groupG. Thenρ1 :G →

GLr(o1), the reductionmodp of ρ has finite image sinceG is compact ando1 is discrete. Hence
the image ofρ1 is contained inGLr(oK/poK) for some finite extensionK of Qp. Let p be the
prime ideal ofoK and consider the reductionsρ(n) :G→GLr(o(n)) of ρmodpn where we have
seto(n) = o/pno. By constructionρ(1) factors:

ρ(1) :G→ GLr(oK/p)⊂ GLr(o(1)).

Extending scalars tok = o/m the modular representationG → GLr(oK/p) becomesρk, the
reduction ofρmodm. For everyn � 1 the image ofρ(n) is finite. HenceGn = Kerρ(n) is an
open normal subgroup ofG. Let ρ(n) :G/Gn → GLr(o(n)) be the induced representation. W
have a commutative diagram

1 Gn/Gn+1

λn

G/Gn+1

ρ(n+1)

G/Gn

ρ(n)

1

1 Mr(pno(n+1))
f

GLr(o(n+1)) GLr(o(n)) 1

Heref is the homomorphismf(A) = 1 + A andλn is induced byρ(n+1). SinceGn/Gn+1 is
finite andMr(pno(n+1)) Abelian and annihilated byp it follows thatGn/Gn+1 is isomorphic to
(Z/p)δn for some integerδn � 0.

Thus ρ is built up from the modular representationρ(1) of the finite groupG/G1 in
GL1(oK/p) ⊂ GLr(k) via successive extensions by representations of elementary Ab
p-groups. It is instructive to compare this fact with the proof of Theorem 16: The way a bunE
in BX,D is built up fromEk is similar to the way a continuous representationρ is built up from
its residual representationρk.

Let us call a representation on a freeo(n)-moduleM “irreducible” if every invariant free and
cofree submodule ofM is either trivial or equal toM .

PROPOSITION 39. –If ρ(n) is “irreducible” for somen � 1, e.g. ifρk is irreducible then the
representationρCp :G→ GLr(Cp) is irreducible.

Proof. –Let V ⊂ Cr
p be aρCp -invariant subspace of dimensions �= 0, r. ThenΓ = V ∩ or is a

ρ-invarianto-submodule ofor for which or/Γ is o-torsionfree. Sinceor/Γ is finitely generated
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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it follows from [4, Lemma 3.9] thator/Γ is a freeo-module of rankt say. Hence we get an exa
sequence:

0 → Γ→ or → ot → 0.

By an induction ont it follows thatΓ is a freeo-module. Because ofV = Γ⊗Cp the rank ofΓ is
equal tos. HenceΓ(n) = Γ⊗ o(n) is a free and cofreeo(n)-module of ranks and thereforeρ(n)

is “reducible”. Note that the rank of a freeo(n)-moduleΓ(n) is well defined because it equals t
dimension ofΓ(n) ⊗ k overk. �

Example. – Let ρ :G → GL2(o) be a representation for which the image ofρ2 :G →
GL2(o/p2o) contains the two commuting matrices

(
1 p
0 1

)
and

(
1 0
p 1

)
. Thenρ2 is “irreducible”

and henceρCp is irreducible as well. For exampleρ1 could be trivial and we could hav
G1/G2 = G/G2

∼= (Z/p)2 with ρ2 given byρ2(i, j) =
( 1 ip

jp 1

)
.
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