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GALOIS REPRESENTATIONS MODULOp AND
COHOMOLOGY OF HILBERT MODULAR VARIETIES

BY MLADEN DIMITROV

ABSTRACT. – The aim of this paper is to extend some arithmetic results on elliptic modular forms
case of Hilbert modular forms. Among these results let us mention:
• control of the image of Galois representations modulop,
• Hida’s congruence criterion outside an explicit set of primes,
• freeness of the integral cohomology of a Hilbert modular variety over certain local components

Hecke algebra and Gorenstein property of these local algebras.
We study the arithmetic properties of Hilbert modular forms by studying their modulop Galois

representations and our main tool is the action of inertia groups at primes abovep. In order to determine thi
action, we compute the Hodge–Tate (resp. Fontaine–Laffaille) weights of thep-adic (resp. modulop) étale
cohomology of the Hilbert modular variety. The cohomological part of our paper is inspired by the
of Mokrane, Polo and Tilouine on the cohomology of Siegel modular varieties and builds upon geo
constructions of Tilouine and the author.

 2005 Elsevier SAS

RÉSUMÉ. – Le but de cet article est de généraliser certains résultats arithmétiques sur les
modulaires elliptiques au cas des formes modulaires de Hilbert. Parmi ces résultats citons :
• détermination de l’image de représentations galoisiennes modulop,
• critère de congruence de Hida en dehors d’un ensemble explicite de premiers,
• liberté de la cohomologie entière de la variété modulaire de Hilbert sur certaines composantes

de l’algèbre de Hecke et la propriété de Gorenstein de celles-ci.
L’étude des propriétés arithmétiques des formes modulaires de Hilbert se fait à travers leurs rep

tions galoisiennes modulop et l’outil principal est l’action des groupes d’inertie aux premiers au-de
dep. Cette action est déterminée par le calcul des poids de Hodge–Tate (resp. Fontaine–Laffaille) d
homologie étalep-adique (resp. modulop) de la variété modulaire de Hilbert. La partie cohomologique
cet article est inspirée par le travail de Mokrane, Polo et Tilouine sur la cohomologie des variétés mo
de Siegel et repose sur des constructions géométriques de Tilouine et l’auteur.
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0. Introduction

Let F be a totally real number field of degreed, ring of integerso and differentd. Denote by
F̃ the Galois closure ofF in Q and byJF the set of all embeddings ofF into Q ⊂ C.

We fix an idealn ⊂ o and we put∆ = NF/Q(nd).
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For a weightk =
∑

τ∈JF
kτ τ ∈ Z[JF ] as in Definition 1.1 we putk0 = max{kτ | τ ∈ JF }. If

ψ is a Hecke character ofF of conductor dividingn and type2 − k0 at infinity, we denote by
Sk(n, ψ) the corresponding space of Hilbert modular cuspforms (see Definition 1.3).

Let f ∈ Sk(n, ψ) be a newform, that is, a primitive normalized eigenform. For all idealsa ⊂ o,
we denote byc(f,a) the eigenvalue of the standard Hecke operatorTa on f .

Let p be a prime number and letιp :Q ↪→ Qp be an embedding.
Denote byE a sufficiently largep-adic field with ring of integersO, maximal idealP and

residue fieldκ.

0.1. Galois image results

The absolute Galois group of a fieldL is denoted byGL. By results of Taylor [40,41] an
Blasius and Rogawski [1] there exists a continuous representationρ = ρf,p :GF → GL2(E)
which is absolutely irreducible, totally odd, unramified outsidenp and such that for each prim
idealv of o, not dividingpn, we have:

tr
(
ρ(Frobv)

)
= ιp
(
c(f, v)
)
, det

(
ρ(Frobv)

)
= ιp
(
ψ(v)
)
NF/Q(v),

whereFrobv denotes a geometric Frobenius atv.
By taking a Galois stableO-lattice, we definēρ = ρf,p modP :GF → GL2(κ), whose semi-

simplification is independent of the particular choice of a lattice.
The following proposition is a generalization to the Hilbert modular case of resul

Serre [37] and Ribet [35] on elliptic modular forms (see Propositions 3.1, 3.8 and 3.17).

PROPOSITION 0.1. – (i)For all but finitely many primesp,
(Irrρ̄) ρ̄ is absolutely irreducible.
(ii) If f is not a theta series, then for all but finitely many primesp,
(LIρ̄) there exists a powerq of p such thatSL2(Fq)⊂ im(ρ̄) ⊂ κ× GL2(Fq).
(iii) Assume thatf is not a twist by a character of any of its internal conjugates and is n

theta series. Then for all but finitely many primesp,
(LIIndρ̄) there exist a powerq of p, a partitionJF =

∐
i∈I J i

F and for all τ ∈ J i
F an elemen

σi,τ ∈Gal(Fq/Fp) such that(τ �= τ ′ =⇒ σi,τ �= σi,τ ′) and IndQ
F ρ̄ :G

F̂ ′′ → SL2(Fq)JF factors

as a surjectionG
F̂ ′′ � SL2(Fq)I followed by the map(Mi)i∈I �→ (Mσi,τ

i )i∈I,τ∈Ji
F

, whereF̂ ′′

denotes the compositum ofF̃ and the fixed field of(IndQ
F ρ̄)−1(SL2(Fq)JF ).

0.2. Cohomological results

Let Y/Z[ 1
∆ ] be the Hilbert modular variety of levelK1(n) (see Section 1.4). Consider t

p-adic étale cohomologyH•(YQ,Vn(Qp)), whereVn(Qp) denotes the local system of weig
n =
∑

τ∈JF
(kτ − 2)τ ∈ N[JF ] (see Section 2.1). By a result of Brylinski and Labesse [3]

subspaceWf :=
⋂

a⊂o
ker(Ta − c(f,a)) of Hd(YQ,Vn(Qp)) is isomorphic, asG

F̃
-module and

after semi-simplification, to the tensor induced representation
⊗

IndQ
F ρ.

Assume that
(I) p does not divide∆.
ThenY has smooth toroidal compactifications overZp (see [10]). For eachJ ⊂ JF , we put

|p(J)| =
∑

τ∈J(k0 − mτ − 1) +
∑

τ∈JF\J mτ , wheremτ = (k0 − kτ )/2 ∈ N. By applying
a method of Chai and Faltings [15, Chapter VI] one can prove (see [11, Theorem
Corollary 7.9]).
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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THEOREM 0.2. –Assume thatp does not divide∆. Then
(i) the Galois representationHj(YQ,Vn(Qp)) is crystalline atp and its Hodge–Tate weigh

belong to the set{|p(J)|, J ⊂ JF , |J |� j}, and
(ii) the Hodge–Tate weights ofWf are given by the multiset{|p(J)|, J ⊂ JF }.

For our main arithmetic applications we need to establish a modulop version of the above
theorem. This is achieved under the following additional assumption:

(II) p− 1 >
∑

τ∈JF
(kτ − 1).

The integer
∑

τ∈JF
(kτ − 1) is equal to the difference|p(JF )| − |p(∅)| between the largest an

smallest Hodge–Tate weights of the cohomology of the Hilbert modular variety. We use(I) and
(II) in order to apply Fontaine–Laffaille’s Theory [17] as well as Faltings’ Comparison The
modulop [14]. By adapting to the case of Hilbert modular varieties some techniques deve
by Mokrane, Polo and Tilouine [31,33] for Siegel modular varieties, such as the constr
of an integral Bernstein–Gelfand–Gelfand complex for distribution algebras, we compu
Fontaine–Laffaille weights ofH•(YQ,Vn(κ)) (see Theorem 5.13).

0.3. Arithmetic results

Consider theO-module of interior cohomologyHd
! (Y,Vn(O))′, defined as the image o

Hd
c(Y,Vn(O)) in Hd(Y,Vn(E)). Let T = O[Ta,a ⊂ o] be the full Hecke algebra acting on

and letT′ ⊂ T be the subalgebra generated by the Hecke operators outside a finite set of
containing those dividingnp. Denote bym the maximal ideal ofT corresponding tof andιp and
putm′ = m∩T′.

THEOREM 0.3. – Assume that the conditions(I) and(II) from Section0.2hold.
(i) If (Irrρ̄) holds,d(p− 1) > 5

∑
τ∈JF

(kτ − 1) and

(MW) the middle weight|p(JF )|+|p(∅)|
2 = d(k0−1)

2 does not belong to{|p(J)|, J ⊂ JF }, then
the local componentH•

∂(Y,Vn(O))m′ of the boundary cohomology vanishes, and the Poinc
pairing Hd

! (Y,Vn(O))′m′ ×Hd
! (Y,Vn(O))′m′ →O is a perfect duality.

(ii) If (LIInd ρ̄) holds, thenH•(Y,Vn(O))m′ = Hd(Y,Vn(O))m′ is a freeO-module of finite
rank and its Pontryagin dual is isomorphic toHd(Y,Vn(E/O))m′ .

The proof involves a “local–global” Galois argument. The first part is proved in Theorem
using Lemma 4.2(ii) and a theorem of Pink [32] on the étale cohomology of a local sy
restricted to the boundary ofY . The second part is proved in Theorem 6.6 using Lemma 6.5
the computation of the Fontaine–Laffaille weights of the cohomology from Theorem 5.13
technical assumptions are needed in the lemmas. Since the conclusion of Lemma 6.5 is
then the one of Lemma 4.2(ii) we see that the results of Theorems 0.3(i) and A (see
remain true under the assumptions(I), (II) and(LIInd ρ̄).

Let L∗(Ad0(f), s) be the imprimitive adjointL-function of f and let Γ(Ad0(f), s) be
the corresponding Euler factor (see Section 4.4). We denote byΩf ∈ C×/O× any two
complementary periods defined by the Eichler–Shimura–Harder isomorphism (see Sectio

THEOREM A (Theorem 4.11). –Let f and p be such that(I) , (Irrρ̄) and (MW) hold, and

p − 1 > max(1, 5
d )
∑

τ∈JF
(kτ − 1). Assume thatιp(

Γ(Ad0(f),1)L∗(Ad0(f),1)

Ω+
f

Ω−
f

) ∈ P . Then there

exists another normalized eigenformg ∈ Sk(n, ψ) such thatf ≡ g (modP), in the sense tha
c(f,a)≡ c(g,a) (modP) for each ideala ⊂ o.

The proof follows closely the original one given by Hida [21] in the elliptic modular case
uses Theorem 0.3(i) as well as a formula of Shimura relatingL∗(Ad0(f),1) to the Petersso
4e SÉRIE– TOME 38 – 2005 –N◦ 4
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the weightk is parallel. A converse for Theorem A is provided by the second part of the follo

THEOREM B (Theorem 6.7). –Letf andp be such that(I), (II) and(LIInd ρ̄) hold. Then
(i) H•(Y,Vn(κ))[m] = Hd(Y,Vn(κ))[m] is aκ-vector space of dimension2d.

(ii) H•(Y,Vn(O))m = Hd(Y,Vn(O))m is free of rank2d overTm.
(iii) Tm is Gorenstein.

By [30] it is enough to prove (i), which is a consequence of Theorem 0.3(ii) and thq-
expansion principle Section 1.7. This theorem is due, under milder assumptions, to Maz
for F = Q andk = 2, and to Faltings and Jordan [16] forF = Q. The Gorenstein property
proved by Diamond [8] whenF is quadratic andk = (2,2) under the assumptions(I) , (II) and
(Irrρ̄). We expect that Diamond’s approach via intersection cohomology could be gene
in order to prove the Gorenstein property ofTm under the assumptions(I) , (II) and(LIρ̄) (see
Lemma 4.2(i) and Remark 4.3).

When f is ordinary atp (see Definition 1.13) we can replace the assumptions(I) and (II)
of Theorems A and B by the weaker assumptions thatp does not divideNF/Q(d) and that
k (modp − 1) satisfies(II) (see Corollary 6.10). The proof uses Hida’s families ofp-adic
ordinary Hilbert modular forms. We prove an exact control theorem for the ordinary p
the cohomology of the Hilbert modular variety, and give a new proof of Hida’s exact co
theorem for the ordinary Hecke algebra (see Proposition 6.9).

Theorems A and B prove that the congruence ideal associated to theO-algebra homomorphism

T →O, Ta �→ ιp(c(f,a)) is generated byιp(
Γ(Ad0(f),1)L∗(Ad0(f),1)

Ω+
f

Ω−
f

). In a subsequent paper [1

we relate it to the fitting ideal of the Bloch–Kato Selmer group associated toAd0(ρ)⊗E/O. An
interesting question is whetherΩf are the periods involved in the Bloch–Kato conjecture for

motiveAd0(f) constructed by Blasius and Rogawski [1] (see the work of Diamond, Flach
Guo [9] for the elliptic modular case).

0.4. Explicit results

By a classical theorem of Dickson, if(Irrρ̄) holds but(LIρ̄) fails, then the image of̄ρ in
PGL2(κ) should be isomorphic to a dihedral, tetrahedral, octahedral or icosahedral group
this fact as well as Proposition 3.1, Section 3.2, Propositions 3.5 and 3.13 we obtain the fol
corollary to Theorems A and B.

Denote byo×+ (respectivelyo×n,1) the group of totally positive (respectively congruent to1
modulon) units ofo.

COROLLARY 0.4. –Let ε be any element ofo×+ ∩ o
×
n,1.

(i) Assumed = 2 andk = (k0, k0 − 2m1), with m1 �= 0. If

p � ∆NF/Q

(
(εm1 − 1)(εk0−m1−1 − 1)

)
and p − 1 > 4(k0 − m1 − 1) then TheoremA holds. If additionally the image of̄ρ in
PGL2(κ) is not a dihedral group then TheoremB also holds.

(ii) Assumed = 3, id �= τ ∈ JF and k = (k0, k0 − 2m1, k0 − 2m2), with 0 < m1 + m2 �=
k0−1

2 . If

p � ∆NF̃ /Q

(
(τ(ε)m1 − ε−m2

)(
τ(ε)m1 − εm2+1−k0

)(
τ(ε)m1+1−k0 − εm2

)
×
(
τ(ε)k0−m1−1 − εm2+1−k0)

)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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3 (3k0 − 2m1 − 2m2 − 3) then TheoremA holds. If additionally the image

of ρ̄ in PGL2(κ) is not a dihedral group then TheoremB also holds.

1. Hilbert modular forms and varieties

We define the algebraic groupsD/Q = ResF
Q Gm, G/Q = ResF

Q GL2 andG∗
/Q = G ×D Gm,

where the fiber product is relative to the reduced norm mapν :G → D. The standard Bore
subgroup ofG, its unipotent radical and its standard maximal torus are denoted byB, U andT ,
respectively. We identifyD ×D with T , by (u, ε) �→

(
uε 0

0 u−1

)
.

1.1. Analytic Hilbert modular varieties

Let D(R)+ (respectivelyG(R)+) be the identity component ofD(R) = (F ⊗ R)× (re-
spectively ofG(R)). The groupG(R)+ acts by linear fractional transformations on the sp
HF = {z ∈ F ⊗C | im(z) ∈ D(R)+}. We haveHF

∼= HJF , whereH = {z ∈ C | im(z) > 0}
is the Poincaré’s upper half-plane (the isomorphism being given byξ ⊗ z �→ (τ(ξ)z)τ∈JF

,
for ξ ∈ F , z ∈ C). We consider the unique group action ofG(R) on the spaceHF extend-
ing the action ofG(R)+ and such that, on each copy ofH the element

(−1 0
0 1

)
acts by

z �→ −z̄. We puti = (
√
−1, . . . ,

√
−1 ) ∈ HF , K+

∞ = StabG(R)+(i) = SO2(F ⊗ R)D(R) and
K∞ = StabG(R)(i) = O2(F ⊗R)D(R).

We denote bŷZ =
∏

l Zl the profinite completion ofZ and we put̂o = Ẑ⊗ o =
∏

v ov , where
v runs over all the finite places ofF . Let A (respectivelyAf ) be the ring of adèles (respective
finite adèles) ofQ. We consider the following open compact subgroup ofG(Af ):

K1(n) =
{(

a b
c d

)
∈G(Ẑ) | d− 1 ∈ n, c ∈ n

}
.

The adélic Hilbert modular variety of levelK1(n) is defined as

Y an = Y1(n)an = G(Q)\G(A)/K1(n)K+
∞.

By the Strong Approximation Theorem, the connected components ofY an are indexed by the
narrow ideal class groupCl+F = D(A)/D(Q)D(Ẑ)D(R)+ of F . For each fractional idealc of F
we putc∗ = c−1d−1. We define the following congruence subgroup ofG(Q):

Γ1(c,n) =
{(

a b
c d

)
∈G(Q)∩

(
o c∗

cdn o

)
| ad− bc ∈ o

×
+, d≡ 1 (modn)

}
.

PutMan = M1(c,n)an = Γ1(c,n)\HF . Then we haveY1(n)an 

∐h+

F
i=1 M1(ci,n)an, where the

idealsci, 1 � i � h+
F , form a set of representatives ofCl+F .

PutH∗
F = HF

∐
P1(F ). The minimal compactificationM∗an of Man is defined asM∗an =

Γ1(c,n)\H∗
F . It is an analytic normal projective space whose boundaryM∗an\Man is a finite

union of closed points, called thecuspsof Man.
The same way, by replacingG by G∗, we defineΓ1

1(c,n), M1,an = M1
1 (c,n)an andM1∗,an.

1.2. Analytic Hilbert modular forms

For the definition of theC-vector space of Hilbert modular forms we follow [24].
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DEFINITION 1.1. – An elementk =
∑

τ∈JF
kτ τ ∈ Z[JF ] is called a weight. We alway

assume that thekτ ’s are � 2 and have the same parity. We putk0 = max{kτ | τ ∈ JF },
n0 = k0 − 2, t =

∑
τ∈JF

τ , n =
∑

τ∈JF
nττ = k − 2t andm =

∑
τ∈JF

mττ = (k0t− k)/2.

For z ∈ HF , γ =
(

a b
c d

)
we putjJ(γ, z) = c · zJ + d ∈D(C), where

zJ
τ =
{

zτ , τ ∈ J ,
z̄τ , τ ∈ JF\J .

DEFINITION 1.2. – The spaceGk,J (K1(n)) of adélic Hilbert modular forms of weightk,
level K1(n) and typeJ ⊂ JF at infinity is theC-vector space of the functionsg :G(A) → C
satisfying the following three conditions:

(i) g(axy) = g(x) for all a ∈ G(Q), y ∈K1(n) andx ∈G(A).
(ii) g(xγ) = ν(γ)k+m−tjJ(γ, i)−kg(x), for all γ ∈K+

∞ andx ∈G(A).
For allx ∈G(Af ) definegx :HF → C, by z �→ ν(γ)t−k−mjJ(γ, i)kg(xγ), whereγ ∈G(R)+

is such thatz = γ · i. By (ii) gx does not depend on the particular choice ofγ.
(iii) gx is holomorphic atzτ , for τ ∈ J and anti-holomorphic atzτ , for τ ∈ JF\J (whenF = Q

an extra condition of holomorphy at cusps is needed).
The spaceSk,J (K1(n)) of adélic Hilbert modular cuspforms is the subspace ofGk,J (K1(n))

consisting of functions satisfying the following additional condition:
(iv)
∫

U(Q)\U(A)
g(ux)du = 0 for all x ∈G(A) and all additive Haar measuresdu onU(A).

The conditions (i) and (ii) of the above definition imply that for allg ∈ Gk,J (K1(n)) there
exists a Hecke characterψ of F of conductor dividingn and of type−n0t at infinity, such that
for all x ∈ G(A) and for allz ∈D(Q)D(Ẑ)D(R), we haveg(zx) = ψ(z)−1g(x).

DEFINITION 1.3. – Letψ be a Hecke character ofF of conductor dividingn and of type
−n0t at infinity. The spaceSk,J (n, ψ) (respectivelyGk,J (n, ψ)) is defined as the subspace
Sk,J (K1(n)) (respectivelyGk,J (K1(n))) of elementsg satisfyingg(zx) = ψ(z)−1g(x) for all
x ∈ G(A) and for allz ∈ D(A). WhenJ = JF this space is denoted bySk(n, ψ) (respectively
by Gk(n, ψ)).

Since the characters of the ideal class groupClF = D(A)/D(Q)D(Ẑ)D(R) of F form a basis
of the complex valued functions on this set, we have:

Gk,J

(
K1(n)
)

=
⊕

ψ

Gk,J (n, ψ), Sk,J

(
K1(n)
)

=
⊕

ψ

Sk,J (n, ψ)(1)

whereψ runs over the Hecke characters ofF of conductor dividingn and infinity type−n0t. Let
Γ be a congruence subgroup ofG(Q). We recall the classical definition:

DEFINITION 1.4. – The spaceGk,J (Γ;C) of Hilbert modular forms of weightk, levelΓ and
typeJ ⊂ JF at infinity is theC-vector space of the functionsg :HF → C which are holomorphic
at zτ , for τ ∈ J , anti-holomorphic atzτ , for τ ∈ JF\J , and such that for everyγ ∈ Γ we have
g(γ(z)) = ν(γ)t−k−mjJ(γ, z)kg(z).

The spaceSk,J (Γ;C) of Hilbert modular cuspforms is the subspace ofGk,J (Γ;C), consisting
of functions vanishing at all cusps.

Put xi =
(

ηi 0
0 1

)
, where ηi is the idèle associated to the idealci, 1 � i � h+

F . The map
g �→ (gxi)1�i�h+ (see Definition 1.2) induces isomorphisms:
F
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Gk,J

(
K1(n)
)


⊕

1�i�h+
F

Gk,J

(
Γ1(ci,n);C

)
,

(2)
Sk,J

(
K1(n)
)


⊕

1�i�h+
F

Sk,J

(
Γ1(ci,n);C

)
.

Let dµ(z) =
∏

τ∈JF
y−2

τ dxτ dyτ be the standard Haar measure onHF .

DEFINITION 1.5. –
(i) The Petersson inner product of two cuspformsg,h ∈ Sk,J (K1(n)) is given by the formula

(g,h)K1(n) =
h+

F∑
i=1

∫
Γ1(ci,n)\HF

gi(z)hi(z)yk dµ(z),

where(gi)1�i�h+
F

(respectively(hi)1�i�h+
F

) is the image ofg (respectivelyh) under the
isomorphism (2).

(ii) The Petersson inner product of two cuspformsg,h ∈ Sk,J (n, ψ) is given by

(g,h)n =
∫

G(Q)\G(A)/D(A)K1(n)K+
∞

g(x)h(x)
∣∣ν(x)
∣∣−n0

A
dµ(x).

1.3. Hilbert–Blumenthal Abelian varieties

A sheaf over a schemeS which is locally free of rank one overo⊗OS , is called aninvertible
o-bundleonS.

DEFINITION 1.6. – A Hilbert–Blumenthal Abelian variety (HBAV) over aZ[ 1
NF/Q(d) ]-scheme

S is an Abelian schemeπ :A → S of relative dimensiond together with an injection
o ↪→ End(A/S), such thatωA/S := π∗Ω1

A/S is an invertibleo-bundle onS.

Let c be a fractional ideal ofF and c+ be the cone of totally positive elements inc. Given
a HBAV A/S, the functor assigning to aS-schemeX the setA(X) ⊗o c is representable b
another HBAV, denoted byA ⊗o c. Theno ↪→ End(A/S) yields c ↪→ Homo(A,A ⊗o c). The
dual of a HBAVA is denoted byAt.

DEFINITION 1.7. –
(i) A c-polarization on a HBAVA/S is an o-linear isomorphismλ :A ⊗o c

∼−→ At, such
that under the induced isomorphismHomo(A,A ⊗o c) ∼= Homo(A,At) elements ofc
(respectivelyc+) correspond exactly to symmetric elements (respectively polarizatio

(ii) A c-polarization class̄λ is an orbit ofc-polarizations undero×+.

Let (Gm ⊗ d−1)[n] be the reduced subscheme ofGm ⊗ d−1, defined as the intersection
the kernels of multiplications by elements ofn. Its Cartier dual is isomorphic to the finite grou
schemeo/n.

DEFINITION 1.8. – A µn-level structure on a HBAVA/S is an o-linear closed immersio
α : (Gm ⊗ d−1)[n] ↪→A of group schemes overS.

1.4. Hilbert modular varieties

We consider the contravariant functorM1 (respectively M) from the category o
Z[ 1 ]-schemes to the category of sets, assigning to a schemeS the set of isomorphism class
∆
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of triples (A,λ,α) (respectively(A, λ̄,α)) where A is a HBAV over S endowed with ac-
polarizationλ (respectively ac-polarization class̄λ) and aµn-level structureα. Assume the
following condition:

(NT) n does not divide2, nor3, norNF/Q(d).
Then Γ1(c,n) is torsion free, and the functorM1 is representable by a quasi-projecti

smooth, geometrically connectedZ[ 1
∆ ]-schemeM1 = M1

1 (c,n) endowed with a universa
HBAV π :A → M1. By definition, the sheafωA/M1 = π∗Ω1

A/M1 is an invertibleo-bundle

on M1. Consider the first de Rham cohomology sheafH1
dR(A/M1) = R1π∗Ω•

A/M1 on M1.
The Hodge filtration yields an exact sequence:

0 → ωA/M1 →H1
dR

(
A/M1
)
→ ω∨

A/M1 ⊗ cd−1 → 0.

ThereforeH1
dR(A/M1) is locally free of rank two overo⊗OM1 .

The functorM admits a coarse moduli spaceM = M1(c,n), which is a quasi-projective
smooth, geometrically connectedZ[ 1

∆ ]-scheme. The finite groupo×+/o
×2
n,1 acts properly and

discontinuously onM1 by [ε] : (A,λ,α)/S �→ (A, ελ,α)/S and the quotient is given byM .
This group acts also onωA/M1 and onH1

dR(A/M1) by acting on the de Rham complexΩ•
A/M1

([ε] acts onωA/M1 by ε−1/2[ε]∗).

These actions are defined over the ring of integers of the number fieldF (ε1/2, ε ∈ o
×
+).

Let o′ be the ring of integers of̃F (ε1/2, ε ∈ o
×
+). For everyZ[ 1

∆ ]-schemeS we put

S′ = S × Spec
(

o′
[

1
∆

])
.

The sheaf ofo×+/o
×2
n,1-invariants ofωA/M1 (respectively ofH1

dR(A/M1)) is locally free of
rank one (respectively two) overo⊗OM ′ and is denoted byω (respectivelyH1

dR).

We putY = Y1(n) =
∐h+

F
i=1 M1(ci,n) andY 1 = Y 1

1 (n) =
∐h+

F
i=1 M1

1 (ci,n), where the ideals
ci, 1 � i � h+

F , form a set of representatives ofCl+F .

1.5. Geometric Hilbert modular forms

Under the action ofo, the invertibleo-bundleω on M ′ decomposes as a direct sum of li
bundlesωτ , τ ∈ JF . For everyk =

∑
τ kτ τ ∈ Z[JF ] we define the line bundleωk =

⊗
τ ω⊗kτ

τ

onM ′.
One should be careful to observe, that the global section ofωk onMan is given by the cocycle

γ �→ ν(γ)−k/2j(γ, z)k, meanwhile we are interested in finding a geometric interpretation o
cocycleγ �→ ν(γ)t−k−mj(γ, z)k used in Definition 1.4.

The universal polarization class̄λ endowsH1
dR with a perfect symplectico-linear pairing.

Consider the invertibleo-bundleν := ∧2
o⊗OM′H1

dR onM ′. Note that(k + m− t)− k
2 = n0

2 t.

DEFINITION 1.9. – LetR be ano′[ 1
∆ ]-algebra. A Hilbert modular form of weightk, level

Γ1(c,n) and coefficients inR is a global section ofωk ⊗ ν−n0t/2 overM ×Spec(Z[ 1
∆ ]) Spec(R).

We denote byGk(Γ1(c,n);R) = H0(M ×Spec(Z[ 1
∆ ]) Spec(R), ωk ⊗ ν−n0t/2) theR-module of

these Hilbert modular forms.
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1.6. Toroidal compactifications

The toroidal compactifications of the moduli space ofc-polarized HBAV withprincipal level
structure have been constructed by Rapoport [34]. Several modifications need to be made
to treat the case ofµn-level structure. These are described in [10, Theorem 7.2].

Let Σ be a smoothΓ1
1(c,n)-admissible collection of fans (see [10, Definition 7.1]). Th

there exists an open immersion ofM1 into a proper and smoothZ[ 1
∆ ]-schemeM1 = M1

Σ, called
the toroidal compactification ofM1 with respect toΣ. The universal HBAVπ :A→ M1 extends
uniquely to a semi-Abelian schemeπ̄ :G→ M1. The group schemeG is endowed with an actio
of o and its restriction toM1\M1 is a torus. Moreover, the sheafω

G/M1 of G-invariants section

of π̄∗Ω1

G/M1
is an invertibleo-bundle onM1 extendingωA/M1 .

The schemeM1\M1 is a divisor with normal crossings and the formal completion ofM1

along this divisor can be completely determined in terms ofΣ (see [10, Theorem 7.2]). For th
sake of simplicity, we will only describe the completion ofM1 along the connected compone
of M1\M1 corresponding to the standard cusp at∞. LetΣ∞ ∈ Σ be the fan corresponding to th
cusp at∞. It is a complete, smooth fan ofc∗+ ∪ {0}, stable by the action ofo×2

n,1, and containing
a finite number of cones modulo this action. PutR∞ = Z[qξ, ξ ∈ c] andS∞ = Spec(R∞) =
Gm ⊗ c∗. Associated to the fanΣ∞, there is a toroidal embeddingS∞ ↪→ SΣ∞ (it is obtained
by gluing the affine toric embeddingsS∞ ↪→ S∞,σ = Spec(Z[qξ, ξ ∈ c ∩ σ̌]) for σ ∈ Σ∞). Let
S∧

Σ∞ be the formal completion ofSΣ∞ alongSΣ∞\S∞. By construction, the formal completio
of M1 along the connected component ofM1\M1 corresponding to the standard cusp at∞ is
isomorphic toS∧

Σ∞/o
×2
n,1.

Assume thatΣ is Γ1(c,n)-admissible (for the cusp at∞ it means thatΣ∞ is stable under th
action ofo×+). Then the finite groupo×+/o

×2
n,1 acts properly and discontinuously onM1 and the

quotientM = MΣ is a proper and smoothZ[ 1
∆ ]-scheme, containingM as an open subschem

Again by construction, the formal completion ofM along the connected component ofM\M
corresponding to the standard cusp at∞ is isomorphic toS∧

Σ∞/o
×
+.

The invertibleo-bundleω
G/M1 on M1 descends to an invertibleo-bundle onM ′, extending

ω. We still denote this extension byω. For eachk ∈ Z[JF ] this gives us an extension ofωk to a
line bundle onM ′, still denoted byωk.

1.7. q-expansion and Koecher Principles

If F �= Q the Koecher Principle states that

H0
(
M × Spec(R), ωk ⊗ ν−n0t/2

)
= H0
(
M × Spec(R), ωk ⊗ ν−n0t/2

)
.(3)

For a proof we refer to [10, Theorem 8.3]. For simplicity, we will only describe theq-expansion
at the standard (unramified) cusp at∞. For everyσ ∈ Σ∞ and everyo′[ 1

∆ ]-algebraR, the pull-
back ofω to S∧

Σ∞ × Spec(R) is canonically isomorphic too⊗OS∧
Σ∞ ⊗R. Thus

H0
(
S∧

Σ∞ × Spec(R)/o
×
+, ωk ⊗ ν−n0t/2

)
=
{ ∑

ξ∈c+∪{0}
aξq

ξ | aξ ∈ R, au2εξ = ukεk+m−taξ, ∀(u, ε) ∈ o
×
n,1 × o

×
+

}
.

This construction associates to eachg ∈ Gk(Γ1(c,n);R) an elementg∞ =
∑

ξ∈c+∪{0} aξ(g)qξ ,
called theq-expansion ofg at the cusp at∞. The elementa0(g) ∈R is the value ofg at the cusp
at∞.
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PROPOSITION 1.10. –LetR be ao′[ 1
∆ ]-algebra.

(i) (q-expansion Principle)Gk(Γ1(c,n);R) → R[[qξ, ξ ∈ c+ ∪ {0}]], g �→ g∞ is injective.
(ii) If there existsg ∈ Gk(Γ1(c,n);R) such thata0(g) �= 0, thenεk+m−t − 1 is a zero-divisor

in R, for all ε ∈ o
×
+.

1.8. The minimal compactification

There exists a projective, normalZ[ 1
∆ ]-schemeM1∗, containingM1 as an open dens

subscheme and such that the schemeM1∗\M1 is finite and étale overZ[ 1
∆ ]. Moreover, for

each toroidal compactificationM1 of M1 there is a natural surjectionM1 → M1∗ inducing
the identity map onM1. The schemeM1∗ is called the minimal compactification ofM1. The
action ofo×+/o

×2
n,1 onM1 extends to an action onM1∗ and the minimal compactificationM∗ of

M is defined as the quotient for this action. In generalM1∗ → M∗ is not étale.
We summarize the above discussion in the following commutative diagram:

G
π̄

M1 M

M1∗ M∗

A π
M1 M

1.9. Toroidal compactifications of Kuga–Sato varieties

Let s be a positive integer. Letπs :As → M1 be thes-fold fiber product ofπ :A→ M1 and
(π̄)s :Gs → M1 be thes-fold fiber product of̄π :G →M1.

Let Σ̃ be a(o ⊕ c) � Γ1
1(c,n)-admissible, polarized, equidimensional, smooth collectio

fans, above theΓ1
1(c,n)-admissible collection of fansΣ of Section 1.6. Using Faltings–Cha

method [15], the main result of [11, Section 6] is the following: there exists an open immers
aAs into a projective smoothZ[ 1

∆ ]-schemeAs = As

Σ̃
, and a proper, semi-stable homomorphi

πs :As → M1 extendingπs :As →M1 and such thatAs\As is a relative normal crossing diviso
aboveM1\M1. Moreover,As containsGs as an open dense subscheme andGs acts onAs

extending the translation action ofAs on itself.
The sheafH1

log-dR(A/M1) = R1π1∗Ω•
A/M1

(dlog∞) is independent of the particular choi

of Σ̃ aboveΣ and is endowed with a filtration:

0 → ω
G/M1 →H1

log-dR

(
A/M1
)
→ ω∨

G/M1 ⊗ cd−1 → 0.

It descends to a sheafH1
log-dR onM which fits in the following exact sequence:

0 → ω →H1
log-dR → ω∨ ⊗ cd−1 → 0.

1.10. Hecke operators on modular forms

Let Z[K1(n)\G(Af )/K1(n)] be the free Abelian group with basis the double cosets ofK1(n)
in G(Af ). It is endowed with algebra structure, where the product of two basis elements is
by: [

K1(n)xK1(n)
]
·
[
K1(n)yK1(n)

]
=
∑[

K1(n)xiyK1(n)
]
,(4)
i

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



516 M. DIMITROV

ts

in

the

1.5).
et of

r the
s

of

eak
values
where[K1(n)xK1(n)] =
∐

i K1(n)xi. Forg ∈ Sk,J (K1(n)) we put:

g|[K1(n)xK1(n)](·) =
∑

i

g
(
· x−1

i

)
.

This defines an action of the algebraZ[K1(n)\G(Af )/K1(n)] on Sk,J (K1(n)) (respectively
on Gk,J (K1(n))). Since this algebra is not commutative whenn �= o, we will define a
commutative subalgebra. Consider the semi-group:

∆(n) =
{(

a b

c d

)
∈G(Af )∩M2(ô) | dv ∈ o×v , cv ∈ nv for all v dividing n

}
.

The abstract Hecke algebra of levelK1(n) is defined asZ[K1(n)\∆(n)/K1(n)] endowed with
the convolution product(4). This algebra has the following explicit description.

For each ideala ⊂ o we define the Hecke operatorTa as the finite sum of double cose
[K1(n)xK1(n)] contained in the set{x ∈∆(n) | ν(x)o = a}. In the same way, for an ideala ⊂ o

which is prime ton, we define the Hecke operatorSa by the double coset forK1(n) containing
the scalar matrix of the idèle attached to the ideala.

For each finite placev of F , we haveTv = K1(n)
(


v 0
0 1

)
K1(n) and for eachv not dividingn

we haveSv = K1(n)
(


v 0
0 
v

)
K1(n), where�v is an uniformizer ofFv .

Then, the abstract Hecke algebra of levelK1(n) is isomorphic to the polynomial algebra
the variablesTv , wherev runs over the prime ideals ofF , and the variablesS±1

v , wherev runs
over the prime ideals ofF not dividingn. The action of Hecke algebra obviously preserves
decomposition (1) and moreover,Sv acts onSk,J (n, ψ) as the scalarψ(v).

Let T(C) be the subalgebra ofEndC(Sk,J (K1(n))) generated by the operatorsSv for v � n

andTv for all v (we will see in Section 1.13 thatT(C) does not depend onJ ).
The algebraT(C) is commutative, but not semi-simple in general. Nevertheless, forv � n the

operatorsSv andTv are normal with respect to the Petersson inner product (see Definition
Denote byT′(C) the subalgebra ofT(C) generated by the Hecke operators outside a finite s
places containing those dividingn. The algebraT′(C) is semi-simple, that is to saySk,J (K1(n))
has a basis of eigenvectors forT′(C).

We will now describe the relation between Fourier coefficients and eigenvalues fo
Hecke operators. By (2) we can associate tog ∈ Sk(K1(n)) a family of classical cuspform
gi ∈ Sk(Γ1(ci,n);C), whereci are representatives of the narrow ideal class groupCl+F .

Each formgi is determined by itsq-expansion at the cusp∞ of M1(ci,n)an. For each
fractional ideala = ciξ, with ξ ∈ F×

+ , we putc(g,a) = ξmaξ(gi). By Section 1.7 for eachε ∈ o
×
+,

we haveaεξ = εk+m−taξ and therefore the definition ofc(g,a) does not depend on the choice
ξ (nor on the particular choice of the idealsci; see [20, IV.4.2.9]).

DEFINITION 1.11. – We say thatg ∈ Sk(K1(n)) is aneigenform, if it is an eigenvector for
T(C). In this caseg ∈ Sk(n, ψ) for some Hecke characterψ, called thecentral characterof g.
We say that an eigenformg is normalizedif c(g,o) = 1.

LEMMA 1.12 ([24, Proposition 4.1, Theorem 5.2], [20, (4.64)]). –If g ∈ Sk(K1(n)) is a
normalized eigenform, then the eigenvalue ofTa on g is equal to the Fourier coefficientc(g,a).

The pairingT(C)× Sk(K1(n)) → C, (T, g) �→ c(g|T ,o) is a perfect duality.

A consequence of this lemma and theq-expansion Principle (see Section 1.7) is the W
Multiplicity One Theorem stating that two normalized eigenforms having the same eigen
are equal.
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1.11. Ordinary modular forms

When the weightk is non-parallel, the definition of the Hecke operators should be slig
modified. We putT0,v = �−m

v Tv andS0,v = �−2m
v Sv (see [24, Section 3]; in the applicatio

our base ring will be thep-adic ringO which satisfies the assumptions of this reference).
The advantage of the Hecke operatorsT0,v andS0,v is that they preserve in an optimal w

theO-integral structures on the space of Hilbert modular forms and on the cohomology
Hilbert modular variety.

DEFINITION 1.13. – A normalized Hilbert modular eigenform isordinary at p if for all
primesp of F dividing p, the image byιp of its T0,p-eigenvalue is ap-adic unit.

1.12. Primitive modular forms

For eachn1 dividing n and divisible by the conductor ofψ, and for alln2 dividing nn
−1
1 we

consider the linear map

Sk(n1, ψ)→ Sk(n, ψ), g �→ g|n2,

whereg|n2 is determined by the relationc(a, g|n2) = c(an
−1
2 , g).

We define the subspaceSold
k (n, ψ) of Sk(n, ψ) as the subspace generated by the image

all these linear maps. This space is preserved by the Hecke operators outsiden. We define the
spaceSnew

k (n, ψ) of the primitive modular forms as the orthogonal ofSold
k (n, ψ) in Sk(n, ψ)

with respect to the Petersson inner product (see Definition 1.5). Since the Hecke op
outsiden are normal for the Petersson inner product, the direct sum decompositionSk(n, ψ) =
Snew

k (n, ψ) ⊕ Sold
k (n, ψ) is preserved byT′(C). The Strong Multiplicity One Theorem, due

Miyake in the Hilbert modular case, asserts that iff ∈ Snew
k (n, ψ) is an eigenform forT′(C),

then it is an eigenform forT(C).
A normalized primitive eigenform is called anewform.

1.13. External and Weyl group conjugates

For an elementσ ∈ Aut(C) we define theexternal conjugateof g ∈ Sk(K1(n)) as the unique
elementgσ ∈ Sk(K1(n)) satisfyingc(gσ,a) = c(g,a)σ for each ideala of o.

We identify {±1}JF with the Weyl groupK∞/K+
∞ of G by sendingεJ = (−1J ,1JF\J) to

cJK+
∞, where for allτ ∈ JF , det(cJ,τ ) < 0 if and only if τ ∈ J . The length ofεJ is |J |.

We have an action of the Weyl group on the space of Hilbert modular forms. More precisεJ

acts as the double class[K1(n)cJK1(n)] and maps bijectivelySk(K1(n)) ontoSk,JF\J(K1(n)).
The action ofεJ commutes with the action of the Hecke operators. For an elementg ∈ Sk(K1(n))
we putgJ = εJF\J · g.

1.14. Eichler–Shimura–Harder isomorphism

Let R be anO-algebra and letVn(R) be the polynomial ring overR in the variables
(Xτ , Yτ )τ∈JF

which are homogeneous of degreenτ in (Xτ , Yτ ). We have a pairing (perfec
if n0! is invertible inR)

〈 , 〉 :Vn(R)× Vn(R) →R, given by(5) 〈 ∑
0�j�n

ajX
n−jY j ,

∑
0�j�n

bjX
n−jY j

〉
=
∑

0�j�n

(−1)jajbn−j

(
n

j

)
,

where

(
n

j

)
=
∏

τ∈J

(
nτ

jτ

)
.

F
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The R-moduleVn(R) realizes the algebraic representationVn =
⊗

τ (Symnτ ⊗detmτ ) of
G(R). We endowVn(R) with an action of(M2(O)∩GL2(E))JF given by

γ.P
(
(Xτ , Yτ )τ∈JF

)
= ν(γ)mP

((
det(γ)γ−1

)t(Xτ , Yτ )τ∈JF

)
.

Let Vn(R) be the sheaf of continuous (thus locally constant) sections of

G(Q)\G(A)× Vn(R)/K1(n)K+
∞ → G(Q)\G(A)/K1(n)K+

∞ = Y an,

wherey ∈K1(n)K+
∞ acts onVn(R) via itsp-partyp.

For eachy ∈ ∆(n) the map[y] :G(A) × Vn(R) → G(A) × Vn(R), (x, v) �→ (xy, yp.v) is a
homomorphism of sheaves. This induces an action of the Hecke operator[K1(n)yK1(n)] on
Hd(Y an,Vn(R)) preserving the cuspidal cohomologyHd

cusp(Y an,Vn(R)).
The action ofεJ on (Man,Van

n ) given byεJ · ((zJ , zJF\J), v) = ((−z̄J , zJF\J), v) induces an
action of the Weyl group onHd(Y an,Van

n ) commuting with the Hecke action.
By Harder [19] we know that ifn �= 0 thenHd

! (Y
an,Vn(C)) = Hd

cusp(Y an,Vn(C)).
By (5) we have a Poincaré pairing〈 , 〉 :Hd(Y an,Vn(R))×Hd

c(Y
an,Vn(R)) → R.

Let η be the idèle corresponding to the idealn and let ι =
(

0 1
−η 0

)
be the Atkin–Lehne

involution. By putting[x, y] = 〈x, ιy〉 we obtain a new pairing

[ , ] :Hd
!

(
Y an,Vn(R)

)
×Hd

!

(
Y an,Vn(R)

)
→ R,(6)

which is Hecke-equivariant. We call it thetwisted Poincaré pairing.
Now we state the Eichler–Shimura–Harder isomorphism:

THEOREM 1.14 (Hida [25]). –If n �= 0, then there exists an isomorphism:

δ :
⊕

ψ

⊕
J⊂JF

Sk,J (n, ψ) ∼= Hd
!

(
Y an,Vn(C)

)
,(7)

whereψ runs over the Hecke characters of conductor dividingn and type−n0t at infinity. This
isomorphism is equivariant for the actions of the Hecke algebra and the Weyl group.

For eachJ ⊂ JF let ε̂J :{±1}JF →{±1} be the unique character of the Weyl group send
ετ = (−1τ ,1τ ) to 1, if τ ∈ J , and to−1 if τ ∈ JF\J . The restriction of the Eichler–Shimura
Harder isomorphism (7) toSk,J (n, ψ), followed by the projection on the(ψ, ε̂J)-part yields a
Hecke equivariant isomorphism

δJ : Sk,J (n, ψ)∼= Hd
!

(
Y,Vn(C)

)
[ψ, ε̂J ].(8)

Remark1.15. – We have a direct sum decomposition:

Hd
(
Man,Vn(C)

)
=
⊕

J⊂JF

Hd
(
Man,Vn(C)

)
[ε̂J ⊗ c].(9)

wherec denotes the complex conjugation on the coefficients. This decomposition is fine
the usual Hodge decomposition, whose graded pieces are given by (0 � a � d):

gra Hd
(
Man,Vn(C)

)
=
⊕

J⊂JF ,|J|=a

Hd
(
Man,Vn(C)

)
[ε̂J ⊗ c].
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The transcendental decomposition (9) has an algebraic interpretation, via the so-calle
complex, that we will describe in the next section.

2. Hodge–Tate weights of Hilbert modular varieties

The aim of this section is to determine the Hodge–Tate weights of thep-adic étale
cohomology of a Hilbert modular varietyH•(MQp

,Vn(Qp)) as well as those of thep-adic Galois
representation associated to a Hilbert modular form. In all this section we assume

(I) p does not divide∆ = NF/Q(nd).
The proof relies on Faltings’ Comparison Theorem [14] relating the étale cohomologyM

with coefficients in the local systemVn(Qp) to the de Rham logarithmic cohomology of t
corresponding vector bundleVn over a smooth toroidal compactificationM of M . The Hodge–
Tate weights are given by the jumps of the Hodge filtration of the associated de Rham co
These are computed, following [15], using the so-called Bernstein–Gelfand–Gelfand co
(BGG complex).

Instead of using Faltings’ Comparison Theorem, one can apply Tsuji’s results to the
cohomology with constant coefficients of the Kuga–Sato varietyAs (s-fold fiber product of the
universal Abelian varietyA above the fine moduli spaceM1 associated toM ; see [11, Section 6
for the construction of toroidal compactifications ofAs).

For each subsetJ of JF we putp(J) =
∑

τ∈J(k0 −mτ − 1)τ +
∑

τ∈JF\J mττ ∈ Z[JF ] and
for eacha =

∑
τ∈JF

aττ ∈ Z[JF ] we put|a|=
∑

τ∈JF
aτ ∈ Z.

2.1. Motivic weight of the cohomology

Consider the smooth sheafR1π∗Qp on M1, whereπ :A → M1 is the universal HBAV. It
corresponds to a representation of the fundamental group ofM1 in G(Qp). By composing this
representation with the algebraic representationVn of G of highest weightn (see Section 1.14
we obtain a smooth sheaf onM1 (thus onY 1). It descends to a smooth sheaf onY , denoted by
Vn(Qp).

Let Wf =
⋂

a⊂o
ker(Ta − c(f,a)) be the subspace ofHd(YQ,Vn(Qp)) corresponding to th

Hilbert modular newformf ∈ Sk(n, ψ). Puts =
∑

τ (nτ + 2mτ ) = dn0.

PROPOSITION 2.1. –Wf is pure of weightd + s, that is to say for all primel � p∆ the

eigenvalues of the geometric FrobeniusFrobl at l are Weil numbers of absolute valuel
d+s
2 .

Proof. –Sincef is cuspidalWf ⊂ Hd
! (YQ,Vn(Qp)). We recall thatYQ is a disjoint union of

its connected componentsMQ = M1(ci,n)Q, where theci’s form a set of representatives ofCl+F .
Let c be one of theci’s andM1 = M1

1 (c,n). For∗ = ∅, c we have

H0
(
o
×
+/o

×2
n,1,H

d
∗
(
M1

Q
,Vn(Qp)

))
= Hd

∗
(
MQ,Vn(Qp)

)
,

and therefore, it is enough to prove thatHd
! (M

1
Q
,Vn(Qp)) is pure of weightd + s. We use

Deligne’s method [4]. Letπ :A→ M1 be the universal Abelian variety (see Section 1.4).
sheafVn(Qp) corresponds to the representation

⊗
τ∈JF

Symnτ ⊗detmτ of the groupG∗ and
can therefore be cut out by algebraic correspondences in(R1π∗Qp)⊗s. Let πs :As → M1 be the
Kuga–Sato variety. By the Kunneth’s formula we have

Hd
!

(
M1

Q
,
(
R1π∗Qp

)⊗s)⊂ Hd
!

(
M1

Q
,Rsπs∗Qp

)
⊂ Hd+s

!

(
As

Q
,Qp

)
⊂Hd+s

(
As ,Qp

)
,

Q
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where the middle inclusion comes from the degeneration of the Leray spectral seq
Ei,j

2∗ = Hi
∗(M1

Q
,Rjπs∗Qp) ⇒ Hi+j

∗ (As
Q
,Qp) for ∗ = ∅, c (see [4]). The proposition is the

a consequence of the Weil conjectures for the eigenvalues of the Frobenius, prov
Deligne [5]. �
2.2. The Bernstein–Gelfand–Gelfand complex overQ

In this and the next sections we describe, following Faltings [13], an algebraic construc
the transcendental decomposition of the Betti cohomology described in (9).

All the objects in this section are defined over a characteristic zero field splittingG.
Letg, b, t andu denote the Lie algebras ofG, B, T andU , respectively. Consider the canonic

splittingg = b⊕ u−. Let U(g), U(b) be the enveloping algebras ofg andb, respectively.
The aim of this section is to write down a resolution ofVn of the type:

0 ← Vn ← U(g)⊗U(b) K•
n,

where theKj
n are finite-dimensional semi-simpleb-modules, with explicit simple components

We start by the casen = 0. If we put Kj
0 =
∧j(g/b) we obtain the so-calledbar-resolution

of V0. Since
∧i(g/b) is a b-module with trivialu-action we deduce thatKj

0 =
⊕

Wµ with µ
running over the weights ofB that are sums ofj distinct negative roots.

By tensoring this resolution withVn we obtain Koszul’s complex:

0 ← Vn ← U(g)⊗U(b)

( j∧
(g/b)⊗ Vn|b

)
,(10)

which is a resolution ofVn by b-modules
∧i(g/b)⊗ Vn|b, not semi-simple in general.

The BGG complex that we are going to define is a direct factor of Koszul’s complex c
the action of the centerU(g)G of U(g).

Denote byχn the weightn character ofU(g)G. It is a classical result that

LEMMA 2.2. –χn = χµ if, and only if, there existsJ ⊂ JF such thatµ = εJ(n + t)− t.

By taking theχn-part of the bar resolution (10) ofVn we obtain a complex:

0 ← Vn ← U(g)⊗U(b) K•
n, with Ki

n =
⊕

J⊂JF ,|J|=i

WεJ (n+t)−t,(11)

which is still a resolution ofVn, as a direct factor of a resolution. We call this resolution the B
complex.

2.3. Hodge–Tate decomposition ofH•(M ⊗Qp,Vn(Qp))

In this paragraph we summarize the results of [11, Section 7]. The algebraic groupsG, B, T
andD of Section 1 have models overZ, denoted by the same letters. For a schemeS, we put
S′ = S × Spec(o′[ 1

∆ ]).
By Section 1.9 we can extend the vector bundlesω andH1

dR to M ′. Only the construction
depends on a choice of a toroidal compactificationπ̄ :A→ M1 of π :A→ M1.

The sheafMD = Isomo⊗O
M′

(ω,o⊗OM ′) is aD′-torsor overM ′ (for the Zariski topology).

We have a functorFD from the category of algebraic representations ofD′ to the category o
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vector bundles onM ′ which are direct sums of invertible bundles. To an algebraic represen

W of D′, FD associates the fiber productW := MD

D′

× W .
The sheafMB = Isomfil

o⊗O
M′

(H1
log-dR, (o⊗OM ′)2) is aB′-torsor overM ′. We have a functo

FB from the category of algebraic representations ofB′ to the category of filtered vector bundl
onM ′ whose graded are sums of invertible bundles. To an algebraic representationV of B′, FB

associates the fiber productV := MB

B′

× V .
A representation ofG (respectivelyT ) can be considered as a representation ofB by restriction

(respectively by makingU act trivially). Thus, we may define a filtered vector bundleVn on
M ′ associated to the algebraic representationVn of G, and an invertible bundleWn,n0 on M ′

associated to the algebraic representation ofT = D ×D, given by(u, ε) �→ unεm.
The sheafMG = Isomo⊗O

M′
(H1

log-dR, (o⊗OM ′)2) is aG′-torsor overM ′. We have a functo

FG from the category of algebraic representations ofG′ to the category of flat vector bundles
M ′ (that is vector bundles endowed with an integrable quasi-nilpotent logarithmic conne

To any algebraic representationV of B′, FG associates the fiber productV∇ := MG

G′

× V .
For j ∈ N, we putHj

log-dR(M
′
,V) = Rjθ∗(V∇ ⊗Ω•

M
′(dlog∞)), whereθ :M

′ → Spec(o′[ 1
∆ ])

denotes the structural homomorphism.
By Faltings’ Comparison Theorem [14], theGQp -representationH•(M1

Qp

,Vn(Qp)) is crys-

talline, hence de Rham, and we have a canonical isomorphism

H•(M1
Qp

,Vn(Qp)
)
⊗BdR

∼= H•
log-dR

(
M1

/Qp
,Vn

)
⊗BdR.

By [11, Section 7] the Hodge to de Rham spectral sequence

Ei,j
1 = Hi+j

(
M1

/Qp
,gri
(
Vn ⊗Ω•

M1(dlog ∞)
))

=⇒Hi+j
log-dR

(
M1

/Qp
,Vn

)
,

degenerates atE1 (the filtration being the tensor product of the two Hodge filtrations). In o
to compute the jumps of the resulting filtration we introduce the BGG complex:

K i

n =
⊕

J⊂JF ,|J|=i

WεJ (n+t)−t,n0 .

The fact thatK •
n is a complex follows from (11) and from the following isomorphism (see

Proposition VI.5.1])

HomU(g)

(
U(g)⊗U(b) W1

)
,
(
U(g)⊗U(b) W2

)
→ Diff.Op.(W2,W1).(12)

Define a filtration onK •
n by Fili K •

n =
⊕

J⊂JF ,|p(J)|�i WεJ (n+t)−t,n0 .

The image of Koszul’s complex (10) by the contravariant functorW �→ W is equal to the de
Rham complex. Since the BGG complex is a direct (filtered) factor of the Koszul’s comple
obtain:

THEOREM 2.3 [11, Theorem 7.8]. –
(i) There is a quasi-isomorphism of filtered complexes

K •
n ↪→Vn ⊗Ω•

M1(dlog ∞).
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(ii) The spectral sequence given by the Hodge filtration

Ei,j
1 =

⊕
J⊂JF ,|p(J)|=i

Hi+j−|J|(M1
/Qp

,WεJ (n+t)−t,n0

)
=⇒Hi+j

log-dR

(
M1

/Qp
,Vn

)
degenerates atE1.

(iii) For all j � d, the Hodge–Tate weights of thep-adic representationHj(M1
Qp

,Vn(Qp))

belong to the set{|p(J)|, |J |� j}.

2.4. Hecke operators on the cohomology

We describe the standard Hecke operatorTa as a correspondence onY 1. We are indebted to
M. Kisin for pointing us out that the usual definition of Hecke operators onY extends toY 1 (see
[29, §1.9–1.11]). Note that the corresponding Hecke action on analytic modular forms fG∗

(see Section 1.10) is not easy to write down, because the double class for the Hecke opeTv

does not belong toG∗(Af ), unlessv is inert inF .

Recall thatY 1
1 (n) =

∐h+
F

i=1 M1
1 (ci,n), wherec1, . . . , ch+

F
form a set of representatives ofCl+F .

Assume thatcia andcj have the same class inCl+F . Consider the contravariant functorM1
a

from the category ofZ[ 1
∆ ]-schemes to the category of sets, assigning to a schemeS the set of

isomorphism classes of quintuples(A,λ,α,C,β) where(A,λ,α)/S is a ci-polarized HBAV
with µn-level structure,C is a closed subscheme ofA[a] which is o-stable, disjoint from
α(Gm ⊗ d−1) and locally isomorphic to the constant group schemeo/a over S, andβ is an
o
×2
n,1-orbit of isomorphisms(cia, (cia)+) ∼−→(cj , cj+).
We have a projectionM1

a →M1, (A,λ,α,C,β) �→ (A,λ,α) which is relatively representab
by π1 :M1

a (ci,n) → M1
1 (ci,n). We have also a projectionπ2 :M1

a (ci,n) → M1
1 (cj ,n) coming

from (A,λ,α,C,β) �→ (A/C,λ′, α′), whereα′ is the composed map ofα andA→ A/C andλ′

is acj-polarization ofA/C (defined viaλ andβ).

Put Y 1
a =
∐h+

F
i=1 M1

a (ci,n). As ci �→ cj 
 cia is a permutation ofCl+F , we get two finite
projectionsπ1, π2 :Y 1

a → Y 1:

A
π

Aa

πa

A
π

Y 1 Y 1
a

π2π1
Y 1

From this diagram we obtainπ∗
2H1

dR → π∗
1H1

dR. Therefore, for every algebraic representat
V of G, we haveπ∗

2V∇ → π∗
1V∇. By composing this morphism byπ1∗ and taking the trace, w

obtainV∇ → π1∗π
∗
2V∇ → π1∗π

∗
1V∇ →V∇. This gives an action ofTa onH•(Y 1,V∇).

The same way, the above diagram givesπ∗
2ω → π∗

1ω andπ∗
2ν → π∗

1ν. Therefore, for each
algebraic representationW of T , we getπ∗

2W → π∗
1W . In order to define the action ofTa on

Hilbert modular forms, we need to modify the last arrow: we decomposeW as(W⊗ ω−2t)⊗ω2t

and we defineπ2∗(Wω−2t) → π1∗(Wω−2t) as above andπ2∗ω
2t → π1∗ω

2t via the Kodaira–
Spencer isomorphismΩ1

Y 1 
 ω2 ⊗o dc−1 as in [29, §1.11]. Thus we obtainW → π1∗π
∗
2W →

π1∗π
∗
1W →W and an action ofTa onH•(Y 1,W).

In particular, we obtain an action ofTa on the spaceH0(Y 1, ωk ⊗ ν−n0t/2) of geometric
Hilbert modular forms forG∗. As it has been observed in [29, 1.11.8] overC this action is given
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1.10).

-

senta-
by the projection

1
[o×+: o

×
n,1]

∑
[ε]∈o

×
+/o

×
n,1

[ε]· :H0
(
Y 1, ωk ⊗ ν−n0t/2

)
→ H0
(
Y,ωk ⊗ ν−n0t/2

)
,

followed by the usual Hecke operator on the space of Hilbert modular forms (see Section

2.5. Hodge–Tate weights of⊗ IndQ
F ρ in the crystalline case

We first recall the notion of induced representation. LetV0 be a vector space over a fieldL,
and letρ0 :GF → GL(V0) be a linear representation. The induced representationIndQ

F ρ0 of ρ0

from F to Q is by definition theL-vector space

HomGF
(GQ, V0) :=

{
φ0 :GQ → V0 | ∀x ∈ GF , y ∈ GQ, φ0(yx) = ρ0

(
x−1
)(

φ0(y)
)}

,

wherey ∈ GQ acts onφ0 ∈ HomGF
(GQ, V0) by y · φ0(·) = φ0(y−1·).

For any fixed decompositionGQ =
∐

τ∈JF
τ̃GF , the mapφ0 �→ (φ0(τ̃))τ gives an isomor

phism betweenHomGF
(GQ, V0) and the direct sum

⊕
τ Vτ (where eachVτ is isomorphic toV0).

Via this identification, the action ofGQ on
⊕

τ Vτ is given by:(
IndQ

F ρ0

)
(y)
(
(vτ )τ

)
=
(
ρ0

(
τ̃−1yτ̃y

)
(vτy )
)
τ
,

wherey−1τ̃ ∈ τ̃yGF . In fact (φ0(τ̃))τ
y�→(φ0(y−1τ̃))τ = (ρ0(τ̃−1yτ̃y)(φ0(τ̃y)))τ .

Keeping the same notations we define, following Yoshida [44], the tensor induced repre
tion
⊗

IndQ
F ρ0 :GQ →GL(⊗τVτ ) as:

(⊗
IndQ

F ρ0

)
(y)
(⊗

τ

vτ

)
=
⊗

τ

ρ0

(
τ̃−1yτ̃y

)
(vτy ).

Remark2.4. – For eachy ∈ GQ the mapτ �→ τy is a permutation ofJF and it is trivial if,
and only if,y ∈ G

F̃
. Therefore, for eachy ∈ G

F̃
, we have(

⊗
IndQ

F ρ0)(y) =
⊗

τ ρ0(τ̃−1yτ̃).
Moreover for ally, y′ ∈ GQ we have(τy)y′ = τyy′ .

DEFINITION 2.5. – Theinternal conjugategτ of g ∈ Sk,J (n, ψ) by τ ∈ JF is defined as the
unique elementgτ ∈ Skτ ,Jτ (τ(n), ψτ ) satisfyingc(gτ ,a) = c(g, τ(a)) for each ideala of o,
wherekτ =

∑
τ ′ kττ ′τ ′ andψτ (a) = ψ(τ(a)). It is a Hilbert modular form onτ(F ).

If ρ = ρf,p by the previous remark we have(
⊗

IndQ
F ρ)(y) =

⊗
τ ρfτ (y) for all y ∈ G

F̃
.

Brylinski and Labesse [3] have shown (see [40] for this formulation):

THEOREM 2.6 (Brylinski–Labesse). –The restrictions toG
F̃

of the twoGQ-representations

Wf and
⊗

IndQ
F ρ have the same characteristic polynomial.

COROLLARY 2.7 [11, Corollary 7.9]. –
(i) The spectral sequence given by the Hodge filtration

Ei,j
1 =

⊕
J⊂JF ,|p(J)|=i

Hi+j−|J|(M/Qp
,WεJ (n+t)−t,n0

)
=⇒Hi+j

log-dR(M/Qp
,Vn)

degenerates atE1 and is Hecke equivariant.
(ii) The Hodge–Tate weights ofWf are given by the multiset{|p(J)|, J ⊂ JF }.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



524 M. DIMITROV

plex

nce
that it

l

dent of
nce of

,

ver

is
Proof. –(i) By taking the invariants of the Hodge filtration ofVn ⊗ Ω•
M1

(dlog ∞) by the

Galois group of the étale coveringM1 → M we obtain a filtration of the complexVn ⊗
Ω•

M
(dlog ∞) onM ′, still called the Hodge filtration. The same way, we define the BGG com

overM ′ by taking the invariants of the BGG complex overM1. The associated spectral seque
is given by the invariants of the spectral sequence of Theorem 2.3(ii). We have now to see
is Hecke equivariant.

The Hecke operatorTa extends to a correspondence onY 1. One way to define it is to
take the schematic closure ofTa ⊂ Y 1 × Y 1 in Y 1 × Y 1. Another way is to take a toroida
compactificationY 1

a of Y 1
a over the toroidal compactificationY 1 of Y 1.

HenceTa acts onH•(Y 1,W) and onH•(Y 1,V∇). Moreover, theTa’s commute. In fact
they commute on the right-hand side of Theorem 2.3(ii), because this side is indepen
the toroidal compactification by Faltings’ Comparison Theorem. Since the spectral seque
Theorem 2.3(ii) degenerates atE1, they also commute on the left-hand side.

(ii) We haveWεJ (n+t)−t,n0 = ω−εJ (n+t)+t ⊗ νp(J). It follows from Theorem 2.3 (as in [15
Theorem 5.5] and [31, Section 2.3]) that the jumps of the Hodge filtration are among|p(J)|,
J ⊂ JF .

Moreovergr|p(J)| Hd(M/Qp
,Vn ⊗Ω•

M
(dlog ∞)) = Hd−|J|(M/Qp

, ω−εJ (n+t)+t ⊗ νp(J)).

It is enough to see that theQp-vector spaceHd−|J|(Y Qp
, ω−εJ (n+t)+t ⊗ νp(J))[f ] is of

dimension1 for all J ⊂ JF .
By the existence of a BGG complex overQ giving by base change the BGG complexes o

Qp andC, we have a Hecke-equivariant isomorphism

Hd−|J|(Y Qp
, ω−εJ (n+t)+t ⊗ νp(J)

)
⊗Qp

C = Hd
(
Y an,Vn(C)

)
[ε̂J ⊗ c].

For all J ⊂ JF , thef -part ofHd(Y an,Vn(C))[ε̂J⊗c] is equal toHd
! (Y

an,Vn(C))[ε̂J⊗c, f ]
and is therefore one dimensional by (8).�

Remark2.8. –
(1) We proved thatWf is pure of weightd(k0 − 1). The set of its Hodge–Tate weights

stable by the symmetryh �→ d(k0 − 1) − h, since|p(JF\J)| = d(k0 − 1) − |p(J)|. This
symmetry is induced by the Poincaré dualityWf ×Wf → Qp(−d(k0 − 1)).

(2) If F is a real quadratic field andτ denotes the non-trivial automorphism ofF , then the
Hodge–Tate weights ofWf are given bymτ , k0 −mτ − 1, k0 + mτ − 1,2k0 −mτ − 2.

2.6. Hodge–Tate weights ofρ in the crystalline case

The embeddingιp :Q ↪→ Qp allows us to identifyJF with HomQ−alg.(F,Qp). For each prime
p of F dividing p, we putJF,p = HomQp−alg.(Fp,Qp). Thus we get a partitionJF =

∐
p
JF,p.

Let Dp (respectivelyIp) be a decomposition (respectively inertia) subgroup ofGF atp.
The following result is due to Wiles ifk is parallel, and to Hida in the general case.

THEOREM 2.9 (Wiles [43], Hida [23]). –Assume thatf is ordinary atp (see Definition1.13).
Thenρ|Dp

is reducible and:

(ORD) ρ|Ip
∼
(

ε̃p ∗
0 δ̃p

)
,

whereδ̃p (respectivelỹεp) is obtained by composing the class field theory mapIp → o
×
p with the

mapo
×
p → Q

×
p , x �→

∏
τ∈J τ(x)−mτ (respectivelyx �→

∏
τ∈J τ(x)−(k0−mτ−1)).
F,p F,p
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Breuil [2] has shown that ifp > k0 andp does not divide∆, thenρ is crystalline at each prim
p of F dividing p, with Hodge–Tate weights between0 andk0 − 1.

COROLLARY 2.10. –Assumep > k0 and thatp does not divide∆. Then for each prime
p of F dividing p, ρ|Dp

is crystalline with Hodge–Tate weights the2[Fp : Qp] integers(mτ ,
k0 −mτ − 1)τ∈JF,p

.

Proof. –Assume first thatn �= 0. Let K be a CM quadratic extension ofF , splitting all the
primesp of F dividing p. Blasius and Rogawski [1] have constructed a pure motive overK with
Hodge weights(mτ , k0 −mτ −1)τ∈JF

, whosep-adic realization is isomorphic to the restricti
of ρ to GK . This shows thatρ|Dp

is de Rham for allp, and crystalline forp big enough.
By Faltings’ Comparison Theorem the Hodge weights of this motive correspond

ιp :Q ↪→ Qp to the Hodge–Tate weights of itsp-adic realization, which are the same as
Hodge–Tate weights ofρ at primesp dividing p. This proves the corollary forn �= 0.

If n = 0 (or more generally ifk is parallel) we can complete the proof using the following

LEMMA 2.11. –Leta andb be two positive integers and let(aτ )τ∈JF
(respectively(bτ )τ∈JF

)
be integers satisfying0 � 2aτ < a (respectively0 � 2bτ < b). Assume that the following tw
multisets are equal{∑

τ∈J

aτ +
∑

τ∈JF\J
(a− aτ ), J ⊂ JF

}
=
{∑

τ∈J

bτ +
∑

τ∈JF\J
(b− bτ ), J ⊂ JF

}
.

Thena = b and we have equality of multisets{aτ , τ ∈ JF } = {bτ , τ ∈ JF }.

Using this lemma together with Theorem 2.6 and Corollary 2.7(ii) we obtain, u
permutation, the Hodge–Tate weights ofρ at primesp dividing p. In particular, we know exactl
the Hodge–Tate weights ofρ whenk is parallel. �
2.7. Fontaine–Laffaille weights ofρ̄ in the crystalline case

Our aim is to find the weights of̄ρ|Ip
for p dividing p. If f is ordinary atp we know by

Theorem 2.9 thatρ|Dp
is reducible and by a simple reduction moduloP we obtain the weight

of ρ̄|Ip
.

PROPOSITION 2.12. –Assumep > k0 and thatp does not divide∆. Thenρ̄ is crystalline at
eachp dividingp with Fontaine–Laffaille weights(mτ , k0 −mτ − 1)τ∈JF,p

.

Proof. –It follows from Fontaine–Laffaille’s theory [17] and from the computation of Hod
Tate weights ofρ|Dp

from Section 2.6.
Consider a Galois stable latticeO2 in the crystalline representationρ, as well as the sub

latticeP2. The representation̄ρ is equal to the quotient of these two lattices. It is crystall
as a sub-quotient of a crystalline representation. Its weights are determined by the ass
filtered Fontaine–Laffaille module. Since the Fontaine–Laffaille functor is exact, this mod
given by the quotient of Fontaine–Laffaille’s filtered modules associated to the two lattice
compatibility of the filtrations on these two lattices, and by the conditionp > k0, the graded o
the quotient have the right dimension.�

COROLLARY 2.13. – Letp be a prime ofF abovep. Then

ρ̄|Ip
∼
(

εp ∗
0 δp

)
,
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whereεp, δp : Ip → F
×
p are two tame characters of level|JF,p| or 2|JF,p|, whose product equal

the(1−k0)th power of the modulop cyclotomic character and whose sum has Fontaine–Laff
weights(mτ , k0 −mτ − 1)τ∈JF,p

.

3. Study of the images of̄ρ and IndQ
F ρ̄

In all this section we assume thatp > k0 andp does not divide6∆.
Let ω :GQ → F×

p be the modulop cyclotomic character and letpr :GL2(κ) → PGL2(κ) be
the canonical projection. We recall thatρ̄ = ρ̄f,p.

3.1. Lifting of characters and irreducibility criterion for ρ̄

PROPOSITION 3.1. –
(i) For all but finitely many primesp (Irrρ̄) holds, that isρ̄ is absolutely irreducible.

(ii) Assume thatk is non-parallel. If for allJ ⊂ JF there existsε ∈ o
×
+, ε− 1 ∈ n, such thatp

does not divide the non-zero integerNF/Q(εp(J) − 1), then(Irrρ̄) holds.

Remark3.2. – Assume thatk = k0t is parallel and that for all∅ � J � JF , there existsε ∈ o
×
+,

ε − 1 ∈ n such thatp does not divide the non-zero integerNF/Q(εp(J) − 1). Then we expect̄ρ
to be absolutely irreducible, unlessp divides the constant term of an Eisenstein series of we
k and level dividingn, that is the numerator of the value at1 − k0 of theL-function of a finite
order Hecke character ofF of conductor dividingn (see [16, §3.2] for the caseF = Q).

Proof. –Sinceρ̄ is totally odd, if it is irreducible, then it is absolutely irreducible. Assume
ρ̄ is reducible:ρ̄ s.s. = ϕgal ⊕ ϕ′

gal. The charactersϕgal,ϕ
′
gal :GF → κ× are unramified outsid

np andϕgalϕ
′
gal = det(ρ̄) = ψ̄galω

−1 (recall thatψ is a Hecke character of infinity type−n0t).
Denote bŷo×n,1 the subgroup of̂o× of elements≡ 1 (modn). Thenô

×
n,1 is a product of itsp-part∏

p|p o
×
p and its part outsidep, denoted bŷo×(p)

n,1 .
By the global class field theory, the Galois group of the maximaln-ramified (respectivelynp∞-

ramified) Abelian extension ofF is isomorphic toCl+F,n = A×
F /F×ô

×
n,1D(R)+ (respectively

Cl+F,np∞ := lim← Cl+F,npr = A×
F /F×ô

×(p)
n,1 D(R)+). We choose the convention in which

uniformizer corresponds to a geometric Frobenius. We have the following exact sequence

1 →
(∏

p|p
o×p

)
/
{
ε ∈ o

×
+ | ε− 1 ∈ n

}
→ Cl+F,np∞ → Cl+F,n → 1.(13)

By Corollary 2.13, for each

p | p,ϕgal ⊕ϕ′
gal

is crystalline atp of weights(mτ , k0 −mτ − 1)τ∈JF,p
.

By (13) for everyε ∈ o
×
+, ε− 1 ∈ n we have the following equality inκ:

1 = ϕgal(ε) =
∏
p|p

ϕgal,p(ε) =
∏
p|p

∏
τ∈JF,p

τ(ε)mτ or (k0−mτ−1) = εp(J),

for some subsetJ ⊂ JF . By the assumptionp > k0, if k is non-parallel, thenεp(J) �= 1 for all
J ⊂ JF . Thus we obtain (ii) and (i) whenk is non-parallel.
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Assume now thatk = k0t is parallel and that for all∅ � J � JF , there existsε ∈ o
×
+, ε−1 ∈ n,

such thatp does not divide the non-zero integerNF/Q(εp(J) − 1). The same arguments as abo
show that the restriction to

∏
p|p o

×
p of the characterϕgal (respectivelyϕ′

gal) Cl+F,np∞ → κ× is
trivial (respectively given by the(1−k0)th power of the norm). By the following lemma (applie

to P = Cl+F,np∞ andQ = (
∏

p|p o
×
p )/{ε ∈ o

×
+ | ε− 1 ∈ n}) there exists a unique characterϕ̃gal

(respectivelyϕ̃′
gal) :Cl+F,np∞ → O× lifting ϕgal (respectivelyϕ′

gal) and whose restriction t∏
p|p o

×
p is trivial (respectively given by the(1− k0)th power of the norm).

LEMMA 3.3. – Let P be an Abelian group andQ be a subgroup, such that the fact
groupP/Q is finite. LetϕP :P → κ× and ϕ̃Q :Q →O× be two characters such that we ha
ϕP |Q = ϕ̃Q modp. Then, there exists a unique characterϕ̃P :P →O×, whose restriction toQ
is ϕ̃Q and such that̃ϕP modp = ϕP .

For x ∈ A×
F , we putϕ(x) := ϕ̃gal(x) andϕ′(x) := ϕ̃′

gal(x)x−k
p xk

∞. Thenϕ (respectivelyϕ′)
is a Hecke character ofF , of conductor dividingn and infinity type0 (respectively(1− k0)t). It
is crucial to observe that there are only finitely many suchϕ andϕ′.

Assume now that for infinitely many primesp, ρ̄ is reducible. Then there exist Hec
charactersϕ andϕ′ as above, such that for infinitely many primesp we haveρ̄ s.s. ≡ ϕgal ⊕ϕ′

gal

(mod P). Hence for each primev of F not dividing n we havec(f, v) ≡ ϕ(�v) + ϕ′(�v)
(mod P) for infinitely many P ’s and hencec(f, v) = ϕ(�v) + ϕ′(�v). By the Cebotarev
Density Theorem we obtainρ s.s. = ϕ⊕ϕ′. This contradicts the irreducibility ofρ. �
3.2. The exceptional case

The aim of this paragraph is to find a bound for the primesp such thatpr(ρ̄(GF )) is isomorphic
to one of the groupsA4, S4 or A5. We will only use the fact that the elements of these gro
are of order at most5.

Assume thatpr(ρ̄(GF )) ∼= A4, S4 or A5. By Corollary 2.13 there existετ ∈ {±1}, τ ∈ JF ,
such that for allp | p and for any generatorx of F×

ph , whereh = |JF,p|, the element

∏
τ∈Gal(F

ph/Fp)

τ(x)ετ (kτ−1) ∈ F×
ph

belongs topr(ρ̄(Ip)) and is therefore of order at most5 (if (ORD) holds we may assume th
ετ = 1 for all τ ). Denote byτ1, . . . , τh the elements ofJF,p. Then

ετ1(kτ1 − 1) + ετ2p(kτ2 − 1) + · · ·+ ετh
ph−1(kτh

− 1) ∈ Z/
(
ph − 1
)

is of order� 5, hence5((kτ1 − 1) + p(kτ2 − 1) + · · ·+ ph−1(kτh
− 1)) � ph − 1.

If we replace the generatorx by xp, xp2
, . . . , xph−1

and then sum these inequalities we fi
5
∑

τ∈JF,p
(kτ − 1) � |JF,p|(p− 1). Hence5

∑
τ∈JF

(kτ − 1) � d(p− 1).
We conclude thatpr(ρ̄(GF )) cannot be isomorphic toA4, S4 or A5 if

d(p− 1) > 5
∑

τ∈JF

(kτ − 1).

Note that this assumption follows from(II) if d � 5.
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3.3. The dihedral case

In this paragraph we study the case whenpr(ρ̄(GF )) is isomorphic to the dihedral groupD2r,
wherer � 3 is an integer prime top. Let Cr be the cyclic subgroup of orderr of D2r. Since
pr−1(Cr) is a commutative group containing only semi-simple elements (p does not divider), it
is diagonalizable. Sincepr−1(D2r\Cr) is contained in the normalizer ofpr−1(Cr), it is contained
in the set of anti-diagonal matrices.

Let ε :D2r → {±1} be the sign map and letK be the fixed field ofker(ε ◦ pr◦ρ̄). The
extensionK/F is quadratic and unramified outsidenp.

Let c be the non-trivial element of the Galois groupGal(K/F ). Since ρ̄ is absolutely
irreducible, butρ̄|GK

is not, there exists a characterϕgal :GK → κ× distinct from its Galois
conjugateϕc

gal and such that̄ρ|GK
= ϕgal ⊕ϕc

gal.

LEMMA 3.4. –Let p be a prime ofF dividing p. Assume that there existsτ ∈ JF,p such that
p �= 2kτ − 1. Then the fieldK is unramified atp, andϕgal is crystalline at primesP of K above
p of weights(mτ , k0 −mτ − 1)τ∈JF,p

.

Proof. –If K/F ramifies atp thenρ̄(Ip) would contain at least one anti-diagonal matrix a
the basis vectors would not be eigen forρ̄(Ip). But the group̄ρ(Ip) has a common eigenvecto
Hence, the elements ofpr(ρ̄(Ip)) would be of order� 2. Using the computations of Section 3
andp > k0, we find that for allτ ∈ JF,p we have2(kτ − 1) = p− 1.

By Corollary 2.13,ϕgal ⊕ ϕc
gal is crystalline atP of weights(mτ , k0 − mτ − 1)τ∈JF,p

and

(ϕgalϕ
c
gal)|IP

= ω1−k0
|IP

. �
Let O be the ring of integers ofK, and Ô its profinite completion. Denote bŷO×

n,1 the

subgroup of̂O× of elements≡ 1 (modn). ThenÔ
×
n,1 is a product of itsp-part

∏
P|p O

×
P

and its

part outsidep, denoted bŷO×(p)
n,1 .

By the global class field theory, the Galois group of the maximaln-ramified (respectivelynp∞-
ramified) Abelian extension ofK is isomorphic toClK,n := A×

K/K×Ô
×
n,1K

×
∞ (respectively to

ClK,np∞ := A×
K/K×Ô

×(p)
n,1 K×

∞). We have the following exact sequence:

1 →
(∏

P|p
O

×
P

)
/
{
ε ∈O× | ε− 1 ∈ n

}
→ ClK,np∞ →ClK,n → 1.(14)

PROPOSITION 3.5. –
(i) Assume that for allτ ∈ JF , p �= 2kτ − 1 and thatpr(ρ̄(GF )) is dihedral. LetK/F be the

quadratic extension defined above. Then one of the following holds:
• K is CM and there exists a Hecke characterϕ of K of conductor of norm dividing

n∆−1
K/F and infinity type(mτ , k0 − 1−mτ )τ∈JF

such thatρ≡ IndF
K ϕ (modP),

• K is not CM and we can choose placesτ̃ of K above eachτ ∈ JF such that for all
ε ∈O×, ε− 1 ∈ n the primep dividesNK/Q(

∏
τ∈JF

τ̃(ε)mτ τ̃(c(ε))k0−mτ−1 − 1).
(ii) Assume thatf is not a theta series. Then for all but finitely many primesp the group

pr(ρ̄(GF )) is not dihedral.

Remark3.6. –
(i) The primesp for which the congruenceρ ≡ IndF

K ϕ (modP) may occur should b
controlled by the value at1 of the L-function associated to the CM characterϕ/ϕc (in
the elliptic case it is proved by Hida [22] and Ribet [36]; see also Theorems A and B
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(ii) We would like to thank E. Ghate for having pointed us out the possible existen
dihedral primes for non-CM fieldsK. It would be interesting to explore the conver
statement, that is to say to try to construct for a given primep dividing the above norms,
newformf such thatpr(ρ̄(GF )) is dihedral.

Proof. –(i) By (14) and the above lemma, we haveϕgal :ClK,np∞ → κ× whose restriction

to
∏

P|p O
×
P

is given by the reduction modulop of an algebraic characterx �→ xk̃, where

k̃ =
∑

τ∈JF
mτ τ̃ + (k0 −mτ − 1)τ̃ ◦ c, for some choice of places̃τ of K aboveτ ∈ JF .

We observe that the characterx �→ xk̃ is trivial on o
×
+, whereas it is only trivial modulop on

{ε ∈O× | ε− 1 ∈ n}. The case whenK is not CM follows immediately.
Assume now thatK is CM. In this case{ε ∈ o

×
+ | ε − 1 ∈ n} is a finite index subgroup o

{ε ∈ O× | ε− 1 ∈ n}. Sinceker(O× → κ×) does not contain elements of finite order, the ab
character is trivial on{ε ∈O× | ε− 1 ∈ n}.

By Lemma 3.3 (applied toP = ClK,np∞ andQ = (
∏

P|p O
×
P

)/{ε ∈ O× | ε− 1 ∈ n}) there

exists a liftϕ̃gal :ClK,np∞ →O× whose restriction to
∏

P|p O
×
P

is given byx �→ xk̃.

We putϕ(x) := ϕ̃gal(x)x−k̃
p xk̃

∞. Thenϕ is a Hecke character ofK as desired.
(ii) There are finitely many fieldsK as above. For thoseK that are not CM it is enough t

chooseε ∈ O×, ε− 1 ∈ n, of infinite order inO×/o×.
For each of the CM fieldsK that are only finitely many charactersϕ as above. Therefore,

pr(ρ̄(GF )) is dihedral for infinitely many primesp, then there would existK andϕ as above
such that the congruenceρ ≡ IndF

K ϕ (modP) happens for infinitely manyP ’s. Hencef would
be equal to the theta series associated toϕ. �
3.4. The image of̄ρ is “large”

THEOREM 3.7 (Dickson). –
(i) An irreducible subgroup ofPSL2(κ) of order divisible byp is conjugated insidePGL2(κ)

to PSL2(Fq) or to PGL2(Fq), for some powerq of p.
(ii) An irreducible subgroup ofPSL2(κ) of order prime top is either dihedral, or isomorphic

to one of the groupsA4, S4 or A5.

As an application of this theorem, Propositions 3.1, 3.5 and Section 3.2 we obtain the fol

PROPOSITION 3.8. – Assume thatf ∈ Sk(n, ψ) is a newform, which is not a theta serie
Then for all but finitely many primesp, the image of̄ρ is large in the following sense:

(LIρ̄) there exists a powerq of p such thatSL2(Fq)⊂ im(ρ̄)⊂ κ× GL2(Fq).

Let F̂ be the compositum of̃F and of the subfield ofQ fixed by the Galois groupker(ψ̄ωn0).
The extension̂F/F is Galois and unramified atp, sinceF̃ is unramified atp andψ is of conductor
prime top. ThereforeG

F̂
is a normal subgroup ofGF containing the inertia subgroupsIp, for

all p dividing p.
We putD = det(ρ̄(G

F̂
)) = (F×

p )1−k0 .

PROPOSITION 3.9. – Assume(LIρ̄). Then there exists a powerq of p such that, either

ρ̄(G
F̂

) = GL2(Fq)D :=
{
x ∈ GL2(Fq) | det(x) ∈D

}
, or

UUρ̄(G
F̂

) =
(
F×

q2 GL2(Fq)
)D :=
{
x ∈ F×

q2 GL2(Fq) | det(x) ∈D
}
.

Proof. –We first show thatpr(ρ̄(G
F̂

)) is still irreducible of order divisible byp. By (LIρ̄) the
grouppr(ρ̄(GF )) is isomorphic toPSL2(Fq) or PGL2(Fq). The grouppr(ρ̄(G )) is a non-trivial
F̂
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normal subgroup ofpr(im(ρ̄)) (because it containspr(ρ̄(Ip)) andp > k0; see Corollary 2.13)
SincePSL2(Fq) is a simple group of index2 in the groupPGL2(Fq), we deduce

PSL2(Fq)⊂ pr
(
ρ̄(G

F̂
)
)
⊂ pr
(
ρ̄(GF )
)
⊂ PGL2(Fq).

LEMMA 3.10. – Let H be a group of centerZ and let pr :H → H/Z the canonical
projection. LetP and Q be two subgroups ofH such thatpr(P ) ⊃ pr(Q). Assume moreove
thatQ does not have non-trivial Abelian quotients. ThenP ⊃ Q.

It follows from this lemma that̄ρ(G
F̂

)⊃ SL2(Fq), hence

(
κ× GL2(Fq)

)D ⊃ ρ̄(G
F̂

)⊃ GL2(Fq)D.

Since[(κ× GL2(Fq))D : GL2(Fq)D] � 2 we are done. �
Let θ ∈ Fq2\Fq be such thatθ2 ∈ Fq . Then(F×

q2 GL2(Fq))D = GL2(Fq)D � (θ GL2(Fq))D

and hencetr((F×
q2 GL2(Fq))D) = Fq ∪ θFq . Therefore, theFp-algebra generated by the traces

the elements of(F×
q2 GL2(Fq))D is Fq2 , while pr((F×

q2 GL2(Fq))D) ⊂ PGL2(Fq). This reflects
the existence of a congruence with a form having inner twists.

3.5. The image ofIndQ
F ρ̄ is “large”

We assume in this paragraph that(LIρ̄) holds.
By Proposition 3.9 there exists a powerq of p such thatpr(ρ̄(G

F̂
)) = PSL2(Fq) or PGL2(Fq).

Consider the representationpr(IndQ
F ρ̄) :G

F̂
→ PGL2(Fq)JF . An automorphism of the simpl

group PSL2(Fq) is a composition of a conjugation by an element ofPGL2(Fq) with an
automorphism ofFq . By a lemma of Serre (see [35]), there exist a partitionJF =

∐
i∈I J i

F

and for alli ∈ I , τ ∈ J i
F , an elementσi,τ ∈Gal(Fq/Fp) such that

pr
(
φ
(
SL2(Fq)I

))
⊂ pr
(
IndQ

F ρ̄(G
F̂

)
)
⊂ pr
(
φ
(
GL2(Fq)I

))
,

whereφ = (φi)i∈I :GL2(Fq)I ↪→ GL2(Fq)JF is given byφi(Mi) = (Mσi,τ

i )τ∈Ji
F

.

Keeping these notations, we introduce the following assumption on the image ofIndQ
F ρ̄:

(LIIndρ̄) the condition(LIρ̄) holds and∀ i ∈ I , ∀ τ, τ ′ ∈ J i
F (τ �= τ ′ =⇒ σi,τ �= σi,τ ′).

We now introduce a genericity assumption on the weightk.

DEFINITION 3.11. – We say that the weightk ∈ Z[JF ] is non-induced, if there do not exist
strict subfieldF ′ of F and a weightk′ ∈ Z[JF ′ ] such that for eachτ ∈ JF , kτ = k′

τ |F ′ .

Remark3.12. – Definẽk =
∑

τ̃∈J
F̃

kτ̃ τ̃ ∈ Z[J
F̃

] by puttingkτ̃ = kτ̃ |F , for all τ̃ ∈ J
F̃

. The

group GQ acts onZ[J
F̃

] by k̃ =
∑

τ̃∈J
F̃

kτ̃ τ̃ �→ k̃τ̃ ′
=
∑

τ̃∈J
F̃

kτ̃ τ̃ ′ τ̃ . It is easy to see tha

k ∈ Z[JF ] is non-induced if, and only if,{τ̃ ′ ∈ GQ | k̃ = k̃τ̃ ′} equalsGF .

PROPOSITION 3.13. – Assume that(LIρ̄) holds andk is non-induced. Assume moreover th
for all τ �= τ ′ ∈ JF , p �= kτ + kτ ′ − 1. Then(LIIndρ̄) holds.

Proof. –Let τ̃1, τ̃2 ∈ GQ be such that for ally ∈ G
F̂

we havepr(ρ̄(τ̃−1
1 yτ̃1)) = pr(ρ̄(τ̃−1

2 yτ̃2)).
We have to prove that̃τ−1

1 τ̃2 ∈ GF . For i = 1,2, let ρ̄i(y) = ρ̄(τ̃−1
i yτ̃i).
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Let P be a prime ideal of̂F above a prime idealp of F dividing p. By Corollary 2.13 we
haveρ̄i| s.s.

IP
= εi ⊕ δi, whereεi andδi are two tame characters whose product equalsω1−k0 and

whose sum has Fontaine–Laffaille weights(mτ , k0 −mτ − 1)τ∈JF,pτi
.

SinceIP ⊂ G
F̂

andpr◦ ρ̄1 = pr◦ ρ̄2 onG
F̂

, we haveε1/δ1 = ε2/δ2. By varyingP we deduce

that for all τ̃ ∈ J
F̃

, k̃τ̃ = k̃τ̃ τ̃−1
1 τ̃2

(here we use thatp > k0 andp �= kτ +kτ ′ − 1). Sincek is non-

induced, it follows from Remark 3.12 thatτ̃−1
1 τ̃2 ∈ GF . �

The following corollary generalizes a result of Ribet [35] on the image of a G
representation associated to a family of classical modular forms, to the case of the fam
internal conjugates of a Hilbert modular form.

COROLLARY 3.14. –Assume that(LIρ̄) holds andk is non-induced. Assume moreover th
p > 2k0 is totally split inF . Then,(

GL2(Fq)JF
)D ⊂ IndQ

F ρ̄(G
F̂

)⊂
(
ρ̄(G

F̂
)JF
)D

, whereD =
(
F×

p

)1−k0
.

Put

H(Fq) =
(∏

i∈I

GL2(Fq)
)D

:=
{

(Mi)i∈I ∈
∏
i∈I

GL2(Fq) | ∃δ ∈D, ∀i, det(Mi) = δ

}
.

LEMMA 3.15. – Assume that(LIρ̄) holds andp > 2k0. Then,
(i) for all p dividing p, ρ̄(Ip) is contained(possibly after conjugation by an element

GL2(Fq)) either in the Borel subgroup ofGL2(Fq), or in the non-split torus ofGL2(Fq).
The second case cannot occur iff is ordinary atp.

(ii) IndQ
F ρ̄(Ip)⊂ φ(H(Fq)).

Proof. –(i) By Corollary 2.13ρ̄| s.s.
Ip

= εp⊕δp, whereεp, δp : Ip → F
×
p are two tame characte

of level h := |JF,p| or 2|JF,p| whose product equalsω1−k0 and whose sum has Fontain
Laffaille weights(mτ , k0 −mτ − 1)τ∈JF,p

.
Let xh be a generator ofF×

ph , and letε andδ be the characters ofF×
ph deduced fromεp andδp.

Since by(LIρ̄) the traces of the elements ofρ̄(G
F̂

) are inFq

∐
θFq (see Section 3.4), we dedu

that(ε(xh) + δ(xh))2 ∈ Fq and henceε(xh)2 + δ(xh)2 ∈ Fq .
If ε(xh)2, δ(xh)2 ∈ F×

q , then it is easy to see thatε(xh), δ(xh) ∈ F×
q (we usep > k0 and

p �= 2kτ − 1). In this caseIp fixes aFq-rational line and thereforēρ(Ip) is contained in a Bore
subgroup ofGL2(Fq).

Otherwiseε(xh)2 and δ(xh)2 are conjugated by the non-trivial element ofGal(Fq2/Fq),
henceε(xh)2 = δ(xh)2q. Sincep > 2k0, we haveε(xh) = δ(xh)q and soε(xh) + δ(xh)q ∈ F×

q .
Hencetr(ρ̄(Ip)) ⊂ Fq andρ̄(Ip) ⊂ GL2(Fq). In this casēρ(Ip) is contained in a non-split toru
of GL2(Fq). If f is ordinary atp, then the Fontaine–Laffaille weights ofδp are strictly smaller
than those ofεp, and therefore the second case cannot occur.

(ii) The determinant conditionD being satisfied, all we have to check is the following: for
i ∈ I andτ, τ ′ ∈ J i

F the character

Ip →{±1}, y �→
(
ρ̄
(
σ̃−1

i,τ yσ̃i,τ

))−1(
ρ̄
(
σ̃−1

i,τ ′yσ̃i,τ ′
))

is trivial. This follows, as in the proof of Proposition 3.13, from the fact thatp > 2k0. �
LEMMA 3.16. – Assume that(LIρ̄) holds. Thenφ(H(Fq)) ⊂ IndQ

F ρ̄(G ).

F̂
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Proof. –We have seen in the beginning of this paragraph that

pr
(
φ
(
SL2(Fq)I

))
⊂ pr
(
IndQ

F ρ̄(G
F̂

)
)
.

By Lemma 3.10, we deduce thatφ(PSL2(Fq)I)⊂ IndQ
F ρ̄(G

F̂
).

Sinceφ(H(Fq)) = φ(SL2(Fq)I) IndQ
F ρ̄(Ip), we are done. �

PROPOSITION 3.17. – Assume that(LIρ̄) holds but (LIIndρ̄) fails for somep > 2k0

(respectively for infinitely many primesp). Then, there existτ ∈ JF , τ �= idF and a finite
order Hecke characterε of F̃ of conductor dividingNF/Q(n) such that for all primesv of

F̃ not dividing NF/Q(n)p we havec(fτ , v) ≡ ε(v)c(f, v) (modP) (respectivelyc(fτ , v) =
ε(v)c(f, v)).

Proof. –Since(LIρ̄) holds but(LIIndρ̄) fails, there exist̃τ1, τ̃2 ∈ GQ such that

τ := τ̃−1
2 τ̃1|F �= idF

and such thatpr ρ̄(τ̃−1
2 yτ̃1) = pr ρ̄(τ̃−1

2 yτ̃2), for all y ∈ G
F̂

. SinceG
F̂

is a normal subgrou
of G

F̃
, the above relation holds for everyy ∈ G

F̃
. Therefore, there exists a charac

εgal :GF̃
→ κ× such that for ally ∈ G

F̃
, ρ̄fτ (y) = εgal(y)ρ̄f (y). Since p > 2k0, the same

argument as in the proof of Proposition 3.13 shows thatεgal is unramified at primes dividingp.
By Lemma 3.3,εgal can then be lifted to a finite order Hecke characterε of F̃ of conductor
dividing NF/Q(n). By evaluating atFrobv , for every primev � NF/Q(n)p of F̃ , we obtain

c(fτ , v)≡ ε(v)c(f, v) (modP).

By the determinant relationψτ = ε2
galψ̄, there are finitely many such charactersε. Therefore,

if (LIIndρ̄) fails for infinitely many primesp, then the above congruence will be an equality.�
COROLLARY 3.18. –Assume thatF is a Galois field of odd degree and the central charac

ψ of f is trivial (F = F̂ ). Assume moreover thatf is not a theta series and that(LIIndρ̄) does
not hold for infinitely many primesp. Then, there exist a subfieldF ′ � F and a Hilbert modular
form f ′ on F ′, such that the base change off ′ to F is a twist off by a quadratic character o
conductor dividingNF/Q(n).

Proof. –As in the proof of Proposition 3.17 there exist a quadratic characterε of F of
conductor dividingNF/Q(n) and idF �= τ ∈ Gal(F/Q) such thatρfτ = εgal ⊗ ρ = ρf⊗ε. Let
F ′ ⊂ F (respectivelyFi ⊃ F ) be the fixed field ofτ (respectively ofker(ετ i)). We know that
F/F ′ is a cyclic extension ofodddegreeh. Let F ′′ =

∏h
i=1 Fi. Then we have

Gal(F ′′/F ′) =

{
(u1, . . . , uh) ∈ {±1}h |

h∏
i=1

ui = 1

}
�
{
τ i | 0 � i � h− 1

}
,

whereτ acts on(u1, . . . , uh) by cyclic permutation. Whenh = 3 the groupGal(F ′′/F ′) is
isomorphic toA4.

The representationρ|GF ′′ is invariant byGal(F ′′/F ′), but Langlands Cyclic Descent do
not apply directly because the order ofGal(F ′′/F ′) is even. Consider the quadratic charac
δ = ε · ετ2 · · ·ετh−1 . Then theGF -representationδgal ⊗ ρ is invariant by the groupGal(F/F ′),
so extends to a representation ofGF ′ . By applying Langlands Cyclic Descent toδ ⊗ f we obtain
f ′ as desired. �
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4. Boundary cohomology and congruence criterion

We recall thatf ∈ Sk(n, ψ) is supposed to be a Hilbert modular newform.

DEFINITION 4.1. – We say that a normalized eigenformg ∈ Sk(n, ψ) is congruent to
f modulo P if their respective eigenvalues for the Hecke operators (that is their Fo
coefficients) are congruent moduloP .

We say that a primeP is a congruence primefor f if there exists a normalized eigenfor
g ∈ Sk(n, ψ) distinct fromf and congruent tof moduloP .

One expects that, as in the elliptic modular case (carried out by Hida [21,22] and Ribet
the congruence primes forf are controlled by the value at1 of the adjointL-function off . Such
results have been obtained by Ghate [18] whenk is parallel.

Following [21,18] and using a vanishing result of the boundary cohomology of a H
modular variety we obtain a new result in this direction (see Theorems 4.11 and 6.7(ii)).

4.1. Vanishing of certain local components of the boundary cohomology

We introduce the following condition:
(MW) the middle weight|p(JF )|+|p(∅)|

2 = d(k0−1)
2 does not belong to{|p(J)|, J ⊂ JF }.

This condition is automatically satisfied when the motivic weightd(k0 − 1) is odd, or when
d = 2 andk is non-parallel.

LEMMA 4.2. – Let ρ0 be a representation ofG
F̃

on a finite-dimensionalκ-vector spaceW .

Assume that for everyy ∈ G
F̃

, the characteristic polynomial of(
⊗

IndQ
F ρ̄)(y) annihilatesρ0(y).

(i) If (I) , (II) and(LIρ̄) hold, then for allh ∈ Z the weightsh andd(k0 − 1)− h occur with
the same multiplicity in eachG

F̃
-irreducible subquotient ofρ0.

(ii) If (I) , (Irrρ̄) and (MW) hold andp − 1 > max(1, 5
d )
∑

τ∈JF
(kτ − 1), then eachG

F̃
-

irreducible subquotient ofρ0 contains at least two different weights for the action of
tame inertia atp.

Proof. –We may assume thatρ0 is irreducible.
(i) By Lemmas 3.15(ii) and 3.16 we haveIndQ

F ρ̄(Ip) ⊂ φ(H(Fq)) ⊂ IndQ
F ρ̄(G

F̂
). Let T ′ be

the torus ofH(Fq) containing the image of the tame inertia, andN ′ be the normalizer ofT ′ in
H(Fq). The image ofN ′/T ′ ∼= {±1}I by φ is the subgroup of the Weyl groupN/T = {±1}JF

of G containing the elements which are constant on the partitionJF =
∐

i∈I J i
F . In particular,

the longest Weyl elementεJF
belongs to the image ofN ′/T ′.

Let x ∈ W be an eigenvector for the action ofT ′. By the annihilation condition, there exists
subsetJx ⊂ JF , such thatIp acts onx by the weight|p(Jx)|.

Let yJF
∈ G

F̃
be such thatIndQ

F ρ̄(yJF
) = εJF

modT ′. Then ρ0(yJF
)(x) is of weight

|p(Jx∆JF )|= d(k0−1)−|p(Jx)|. Therefore, for eachh ∈ Z, ρ0(yJF
) gives a bijection betwee

the eigenspaces for the tame inertia of weighth andd(k0 − 1)− h.
(ii) If (LIρ̄) holds, then the statement follows from (i) and(MW) . Otherwise, by Propos

tion 3.8 the grouppr(ρ̄(GF )) is dihedral. SincẽF is totally real,pr(ρ̄(G
F̃

)) is also dihedral (se
Section 3.3).

Denote byN the normalizer of the standard torusT in G. PutN ′ = IndQ
F ρ̄(G

F̃
) ⊂ N(κ) and

T ′ = N ′ ∩ T (κ). ThenN ′/T ′ is a subgroup of the Weyl group{±1}JF = N/T of G.
As we have seen in Section 3.3, the representationIndQ

F ρ̄ is tamely ramified atp and the
image of the inertia groupIp is contained inT ′.

Let x ∈ W be an eigenvector for the action ofT ′. By the annihilation condition, there exis
a subsetJx ⊂ JF , such thatIp acts onx by the weight|p(Jx)|. For every elementεJ ∈ N ′/T ′,
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(J ⊂ JF ), let yJ ∈ G
F̃

be such thatIndQ
F ρ̄(yJ ) = εJ modT ′. Thenρ0(yJ)(x) is of weight

|p(Jx∆J)|. It remains to show that the|p(Jx∆J)| are not all equal whenεJ runs over the
elements ofN ′/T ′. Note that, for allτ ∈ JF , the τ -projectionN ′/T ′ → {±1} is a surjective
homomorphism (because the grouppr(ρ̄fτ (G

F̃
)) is also dihedral). Therefore, we have:

∑
εJ∈N ′/T ′

∣∣p(Jx∆J)
∣∣= |N ′/T ′|d(k0 − 1)

2
.

The statement now follows from the(MW) assumption. �
Remark4.3. – The first part of the previous lemma is a generalization from the quadra

the arbitrary degree case of the key lemma in [8]. This lemma is false in general under th
assumptions(I) , (II) and(Irrρ̄) whend � 3. In fact, consider the following construction in th
cubic case: letL be a Galois extension ofQ of groupA4, such that the cubic subfieldF fixed by
the Klein group is totally real; letK be a quadratic extension ofF in L and consider a theta seri
f of weight(2,2,2) attached to a Hecke character ofK; then the tensor induced representat⊗

IndQ
F ρ has two irreducible four-dimensional subquotients of Hodge–Tate weights(0,2,2,2)

and(1,1,1,3).

As in the introduction, letT′ ⊂ T denote the subalgebra generated by the Hecke oper
outside a finite set of places containing those dividingnp.

THEOREM 4.4. – Assume that(I) , (Irrρ̄) and(MW) hold, and

p− 1 > max
(

1,
5
d

) ∑
τ∈JF

(kτ − 1).

Denote bym the maximal ideal ofT corresponding tof andιp and putm′ = m∩T′. Then
(i) them′-torsion of the boundary cohomologyH•

∂(Y,Vn(κ))[m′] vanishes,
(ii) the Poincaré pairingHd

! (Y,Vn(O))′m′ × Hd
! (Y,Vn(O))′m′ → O is a perfect duality o

freeO-modules of finite rank,
(iii) H•(Y,Vn(O))m′ = H•

c(Y,Vn(O))m′ = H•
! (Y,Vn(O))m′ .

Proof. –(i) Consider the minimal compactificationYQ

j
↪→ Y ∗

Q

i←↩ ∂Y ∗
Q

. The Hecke correspon
dences extend toY ∗

Q
. By the Betti-étale comparison isomorphism, we identify (in a Hec

equivariant way) the following two long exact cohomology sequences:

· · · Hr
c(Y,Vn(κ)) Hr(Y,Vn(κ)) Hr

∂(Y,Vn(κ)) · · ·

· · · Hr(Y ∗
Q

, j!Vn(κ)) Hr(Y ∗
Q

, j∗Vn(κ)) Hr(∂Y ∗
Q

, i∗Rj∗Vn(κ)) · · ·

Consider theGQ-moduleW r
∂ = Hr(∂Y ∗

Q
, i∗Rj∗Vn(κ)). We have to show thatW r

∂ [m′] = 0.
By the Cebotarev Density Theorem and the congruence relations at totally split primesF ,

we can apply Lemma 4.2 toW r
∂ [m′]. Therefore eachG

F̂
-irreducible subquotient ofW r

∂ [m′] has
at least two different weights for the action of the tame inertia atp. So it is enough to show tha
eachGQ-irreducible subquotient ofW r

∂ is pure (= contains a single weight for the action of t
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tame inertia atp). Since∂Y ∗
Q

is zero-dimensional, the spectral sequence

H•(∂Y ∗
Q

, i∗R•j∗Vn(κ)
)

=⇒ H•(∂Y ∗
Q

, i∗Rj∗Vn(κ)
)

shows thatW r
∂ = H0(∂Y ∗

Q
, i∗Rrj∗Vn(κ)).

SinceH0(∂Y ∗
Q

, i∗Rrj∗Vn(κ)) is a subquotient ofH0(∂Y 1,∗
Q

, i∗Rrj∗Vn(κ)) it is enough to

show that eachGQ-irreducible subquotient of this last is pure.
This will be done using a result of Pink [32]. We replacedY by Y 1, since the groupG does

not satisfy the conditions of this reference, whileG∗ satisfies them.
Consider the decompositionT = Dl ×Dh, according to(

uε 0
0 u−1

)
=
(

u 0
0 u−1

)(
ε 0
0 1

)
.

PutΓ1 = Γ1
1(c,n). By [32, Theorem 5.3.1], the restriction of the étale sheafi∗Rrj∗Vn(Fp) to a

cuspC = γ∞ of Y 1,∗
Q

is the image by the functor of Pink of theγ−1Γ1γ ∩ B/γ−1Γ1γ ∩ DlU -
module ⊕

a+b=r

Ha
(
γ−1Γ1γ ∩Dl,Hb

(
γ−1Γ1γ ∩U,Vn(Fp)

))
.

Under the assumption(II) , a modulo p version of a theorem of Kostant (see [33
gives an isomorphism ofT -module Hb(γ−1Γ1γ ∩ U,Vn(Fp)) =

⊕
|J|=b WεJ (n+t)−t,n0 . By

decomposingWεJ (n+t)−t = W l
εJ (n+t)−t,n0

⊗ Wh
εJ (n+t)−t,n0

according toT = Dl × Dh, we
get

Ha
(
γ−1Γ1γ ∩Dl,Hb

(
γ−1Γ1γ ∩U,Vn(Fp)

))
=
⊕
|J|=b

Ha
(
γ−1Γ1γ ∩Dl,W

l
εJ (n+t)−t,n0

)
⊗Wh

εJ (n+t)−t,n0
,

where Galois acts only on the second factors of the right-hand side.
ThereforeH0(∂Y ∗

Q
, i∗Rrj∗Vn(Fp)) is a direct sum of subspacesH0(C,Wh

εJ (n+t)−t,n0
(Fp)),

|J |� r, each containing a single Fontaine–Laffaille weight, namely the weight|p(J)|.
(ii) Since the Poincaré duality is perfect overE, it is enough to show that them′-localization

of natural mapHd(O)/Hd
! (O) → Hd(E)/Hd

! (E) is injective. For this, it is sufficient to sho
that Hd

∂(O)m′ := Hd(∂M,Vn(O))m′ is torsion free, which would follow from the vanishin
of Hd−1

∂ (E/O)m′ . We have a surjectionHd−1
∂ (κ)m′ � Hd−1

∂ (E/O)m′ [�], where � is an
uniformizer ofO. Finally, by (i) and Nakayama’s lemma,Hd−1

∂ (κ)m′ = 0.
(iii) The vanishing ofH•

∂(κ)m′ gives the vanishing ofH•
∂(O)m′ = 0. �

4.2. Definition of periods

By taking the subspace
⋂

a⊂o
ker(Ta − c(f,a)) of (8) we obtain

δJ :CfJ
∼−→ Hd

!

(
Y an,Vn(C)

)
[ε̂J , f ].

Fix an isomorphismC ∼= Qp compatible withιp. We recall thatHd
! (Y

an,Vn(O))′ denotes
the image of the natural mapHd

c(Y
an,Vn(O)) → Hd(Y an,Vn(C)). SinceO is principal, the

O-moduleLf,J := Hd
! (Y

an,Vn(O))′[ε̂J , f ] is free of rank1. We fix a basisη(f,J) of Lf,J .
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DEFINITION 4.5. – For eachJ ⊂ JF we define the periodΩ(f,J) = δJ (fJ )
η(f,J) ∈ C×/O×. We

fix J0 ⊂ JF and putΩ+
f = Ω(f,J0) andΩ−

f = Ω(f,JF\J0).

Remark4.6. – The periodsΩ±
f differ from the ones originally introduced by Hida in [21

Hida’s periods put together all the external conjugates off . Our slightly different definition is
motivated by the congruence criterion that we want to show (Theorem 4.11). Since we can
the perfectness of the twisted Poincaré pairing only for certain local components of the
degree cohomologyHd

! (Y
an,Vn(O))′ and in generalf and its external conjugates do not belo

to the same local component, we have to separate them in the definition of the period.

4.3. Computation of a discriminant

The aim of this paragraph is to compute the discriminantdisc(Lf ) of the O-lattice
Lf := Hd

! (Y
an,Vn(O))′[f ] =

⊕
J⊂JF

Lf,J , with respect to the twisted Poincaré pairing[ , ]
defined in (6). We follow [18, Section 6].

We havedisc(Lf ) = det(([η(f,J), η(f,J ′)])J,J ′⊂JF
).

By [18, (41)], for everyτ ∈ JF andx, y ∈ Hd
! (Y

an,Vn(C)) we have[ετ · x, y] =−[x, ετ · y].
The embeddingO ↪→ C that we have fixed gives an embeddingτ0 :F ↪→ C.

disc(Lf ) =
∏

τ0∈J⊂JF

∣∣∣∣ 0 [η(f,J), η(f,JF\J)]
[η(f,JF\J), η(f,J)] 0

∣∣∣∣
=
∏

τ0∈J⊂JF

−
(

[δJ(f), δJF\J(f)]
Ω(f,J)Ω(f,JF\J)

)2

,

and[δJ(f), δJF\J(f)] = 2d〈εJF
δ(f), ι·δ(f)〉= 2dW (f)〈εJF

δ(f), δ(f c)〉 = 2dW (f)(f, f)K1(n),
wheref c is the complex conjugate off andW (f) is the complex constant of the functional equ
tion of the standardL-function off . By [9, Lemma 2.13]W (f) ∈O×. Therefore the following
equality holds inE×/O×:

disc(Lf,J0 ⊕Lf,JF\J0) =
(

(f, f)K1(n)

Ω+
f Ω−

f

)2

.(15)

4.4. Shimura’s formula for L(Ad0(f),1)

For a primev of F we defineαv andβv by:

αv + βv = c(f, v), αvβv =
{

ψ(v)NF/Q(v), if v � n,
0, if v | n.

The naive adjointL-function off is defined by the Euler product:

L(n)
(
Ad0(f), s

)
=
∏
v�n

[(
1− αvβ−1

v NF/Q(v)−s
)(

1−NF/Q(v)−s
)

(16)

×
(
1− βvα−1

v NF/Q(v)−s
)]−1

.

In [38] Shimura studies the seriesD(f, fc, s) =
∑

a⊂o
c(f,a)c(f,a)NF/Q(a)−s and shows

that it has the following Euler product (see [26, Lemma 7.2]):
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D
(
f, f c, s
)
=
∏
v

(
1− αvβvαvβv NF/Q(v)−2s

)(
1− αvαv NF/Q(v)−s

)−1

×
(
1− αvβv NF/Q(v)−s

)−1(1− βvαv NF/Q(v)−s
)−1

×
(
1− βvβv NF/Q(v)−s

)−1
.

Using the fact that for allv � n c(f, v) = ψ(v)c(f, v) a direct computation gives:

ζ
(n)
F (2s)D(n)

(
f, f c, s + k0 − 1

)
= ζ

(n)
F (s)L(n)

(
Ad0(f), s

)
,(17)

whereD(n)(f, f c, s) is obtained fromD(f, f c, s) by removing the Euler factors forv|n.

THEOREM 4.7 (Shimura [38, (2.31), Proposition 4.13]). –Let f ∈ Sk(n, ψ) be a newform
Then

Ress=1 D
(
f, f c, s + k0 − 1

)
= 2d−1(4π)|k|

∏
τ∈JF

Γ(kτ )−1RF

[
o
×
+ : o×2
]
µ−1(f, f)K1(n),

whereµ = µ(Γ1(c,n)\HF ) = 2NF/Q(d)3/2ζF (2)

πd[o×
+ : o×2]

.
NF/Q(n)2

∏
v|n

(1−NF/Q(v)−2)

[o×: o
×
n,1]

.

By a direct computation:

ζ
(n)
F (2)Ress=1 D

(
f, f c, s + k0 − 1

)
(18)

=
Ress=1 ζ

(n)
F (s)(4π)|k|πd[o×+ : o×2][o× : o×n,1](f, f)K1(n)

2∆h+
F NF/Q(n)

∏
τ∈JF

Γ(kτ )
∏

v|n(1−NF/Q(v)−1)
.

We define the imprimitive adjointL-functionL∗(Ad0(f), s) by completing the naive adjoin
L-functionL(n)(Ad0(f), s) defined in (16), in order to have the relation:

L∗(Ad0(f), s
)
D(n)
(
f, f c, s + k0 − 1

)
= L(n)
(
Ad0(f), s

)
D
(
f, f c, s + k0 − 1

)
.

By [26, (7.7)] we haveL∗(Ad0(f), s) = L(n)(Ad0(f), s)
∏

v|n L∗
v(Ad0(f), s), where forv|n

L∗
v

(
Ad0(f), s

)
=

 (1−NF/Q(v)−s)−1, if f is a principal series and minimal atv,
(1−NF/Q(v)−s−1)−1, if f is special and minimal atv,
1, otherwise.

Following Deligne [6] we associate toL∗(Ad0(f), s) an Euler factor:

Γ
(
Ad0(f), s

)
=
∏

τ∈JF

π−(s+1)/2Γ
(
(s + 1)/2

)
(2π)1−kτ−sΓ(s + kτ − 1).

Finally, by (17) and (18), there existsa ∈ Z such that:

Γ
(
Ad0(f),1

)
L∗(Ad0(f),1

)
=

2a

∆
(f, f)n.(19)

Remark4.8. – Consider the adjointL-functionL(Ad0(ρ), s) attached to the three-dimensio
GF -representationAd0(ρ) on trace zero2 × 2 matrices. By compatibility between local an
global Langlands correspondenceL(Ad0(ρ), s) is equal to the adjointL-functionL(Ad0(f), s)
associated to the automorphic representation attached tof . NeverthelessL(Ad0(f), s) may dif-
fer fromL∗(Ad0(f), s) at some placesv dividing n (see [26, (7.3c)]).
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4.5. Construction of congruences

LEMMA 4.9. – Let V1 and V2 be two finite-dimensionalE-vector spaces and letL be a
O-lattice in V = V1 ⊕ V2. For j = 1,2, put Lj = L ∩ Vj and denoteLj the projection ofL
in Vj following the above direct sum decomposition. Then:

(i) Lj ⊂ Lj are two lattices ofVj , andLj is a direct factor inL.
(ii) we have isomorphisms of finiteO-modules:

L1/L1
∼←−L/L1 ⊕L2

∼−→L2/L2.

This finiteO-module is called the congruence module, and is denoted byC0(L;V1, V2).

The following proposition follows from Deligne–Serre [7, Lemma 6.11] and will be use
construct congruences:

PROPOSITION 4.10. – Keep the notations of Lemma4.9. LetT be a commutativeO-algebra
consisting of endomorphisms ofV , preserving the latticeL and the direct sum decompositio
V1 ⊕ V2. For j = 1,2, denote byTj the image ofT in End(Vj).

Assume thatC0(L;V1, V2) is non-zero and that its support containsP .
Let m1 be maximal idealT1 of residue fieldκ1, such thatL1/L1 ⊗T1 κ1 is non zero, and

denote bȳθ1 :T1 → κ1 the corresponding character.
Then there exists a discrete valuation ringO′ of maximal idealP ′ (withP ′ ∩O =P), residue

field κ′ ⊃ κ1 and whose fraction fieldE′ is a finite extension ofE, and there exists a characte
θ2 :T2 →O′ such that for eachT ∈ T , θ̄1(T ) ≡ θ2(T ) (modP ′).

Proof. –For j = 1,2, denote byπj the projection ofT onto Tj . Thenm = π−1
1 (m1) is a

maximal ideal ofT of residue fieldκ1. Putm2 = π2(m). Since the isomorphism of Lemma 4.9(
is T -equivariant, we have(

L1/L1

)
⊗T1 (T1/m1)∼=

(
L/(L1 ⊕L2)

)
⊗T (T /m)∼=

(
L2/L2

)
⊗T2 (T2/m2).

By assumption(L1/L1) ⊗T1 (T1/m1) is non-zero. Thereforem2 is a maximal ideal ofT2 of
residue fieldκ1 and the corresponding characterθ̄2 :T2 → κ1 fits in the following commutative
diagram:

T1 θ̄1

T κ1

T2
θ̄2

SinceT2 is a (finite) flatO-algebra, there exists a prime idealP2, contained inm2 and such
thatP2 ∩O = 0. The reduction moduloP2 gives a characterθ2 of T2 as in the statement.�

THEOREM 4.11 (Theorem A). –Let f and p be such that(I) , (Irrρ̄) and (MW) hold, and

p− 1 > max(1, 5
d )
∑

τ∈JF
(kτ − 1). If ιp(

Γ(Ad0(f),1)L∗(Ad0(f),1)

Ω+
f

Ω−
f

) ∈ P , thenP is a congruence

prime forf .

Proof. –Let L = Hd
! (Y

an,Vn(O))′m′ [±ε̂J0 , ψ] ⊂ V = Hd
! (Y

an,Vn(E))m′ [±ε̂J0 , ψ] and
V1 = Hd

! (Y
an,Vn(E))[±ε̂J0 , f ]. ThenL1 = L ∩ V1 = Lf,J0 ⊕ Lf,JF\J0 (see Section 4.2). B

(15) the twisted Poincaré pairing[ , ] is non-degenerate onV1. LetV2 be the orthogonal subspa
of V1 in V .
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By Theorem 4.4(ii) the twisted Poincaré pairing is perfect onHd
! (Y

an,Vn(O))′m′ [±ε̂J0 ]. After
rescaling by the factor (f,f)n

(f,f)K1(n)
(coming from congruences obtained by varying the cen

character) it restricts to a perfect pairing onL. Then, by [21, (4.6)] we have

[
L1 : L1

]
=
(

(f, f)n

(f, f)K1(n)

)2

disc(L1).

Using now (15), (19), and the assumption onP we obtain that theO-moduleL1/L1 is non-
zero andP belongs to its support. By Lemma 4.9 the same holds for the congruence m
C0(L;V1, V2). By Proposition 4.10 and the duality betweenT(C) and Sk(n, ψ) there exists
another normalized eigenformg ∈ Sk(n, ψ) congruent tof . HenceP is a congruence prim
for f . �

5. Fontaine–Laffaille weights of Hilbert modular varieties

In this section all the objects are overO. The aim is to establish a modulop version of
Theorem 2.3 under the assumptions thatp does not divide∆ andp− 1 > |n|+ d.

5.1. The BGG complex overO

Koszul’s complex. The Koszul’s complex of the trivialG-moduleO is given by

· · · → UO(g)⊗
2∧
O

g→ UO(g)⊗ g→ UO(g) →O→ 0.

Sinceg = b⊕ u−, theO[b]-moduleg/b is a direct factor ing and we have a homomorphism
B-modulesUO(g)⊗

∧•
O g→ UO(g)⊗UO(b)

∧•
O(g/b). Thus, we deduce another complex

UO(g)⊗UO(b)

•∧
O

(g/b)→O→ 0,

denoted byS•
O(g,b).

More generally, for a freeO-moduleV endowed with an action ofUO(g), we consider the
complexS•

O(g,b) ⊗ V endowed with the diagonal action ofUO(g). For everyUO(b)-module
W which is free overO, there is a canonical isomorphism ofUO(g)-modules(

UO(g)⊗UO(b) W
)
⊗ V ∼= UO(g)⊗UO(b) (W ⊗ V |b).

Therefore we obtain another complex

UO(g)⊗UO(b)

( •∧
O

(g/b)⊗ V |b

)
→ V → 0,

denoted byS•
O(g,b, V ). In the case whereV = Vn we denote it byS•

O(g,b, n).

Verma modules. For each weightµ ∈ Z[JF ], we define aUO(g)-module VO(µ) :=
UO(g)⊗UO(b) Wµ(O), called theVerma moduleof weightµ.
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LEMMA 5.1. –Let W be aB-module, free of finite rank overO, whose weights are smalle
than(p− 1)t. Then, there exists a filtration ofB-modules0 = W0 ⊂ W1 ⊂ · · · ⊂ Wr = W such
that for every1 � i � r there existsµi ∈ Z[JF ] such thatWi/Wi+1

∼= Wµi(O). Moreover the
Wµi(O), 1 � i � r, are the irreducible factors of theT -moduleW .

In particular, if U acts trivially onW , thenW ∼=
⊕r

i=1 Wµi(O).

Proof. –Let µ1 be a maximal weight ofW (for the partial order given by the positive roo
of G) and letv ∈ W be aO-primitive vector of weightµ1. Let W ′ be theUO(b)-submodule
generated byv. ThenW ′ ∼= Wµ1(O) and W ′ ⊗ κ is irreducible, becauseµ1 is smaller than
(p − 1)t (and W ′ is free of rank 1). SinceW is free overO we have an exact sequence
B-modules

0 →TorO1 (W/W ′, κ)→ W ′ ⊗ κ →W ⊗ κ.

SinceW ′ ⊗ κ is irreducible andv is primitive, the last arrow is injective. Therefore

TorO1 (W/W ′, κ) = 0,

that isW/W ′ is free overO. The lemma follows then by induction.�
LEMMA 5.2. – The moduleSi

O(g,b, n) has a finite filtration byUO(g)-submodules whos
graded pieces are of the formVO(µ), µ ∈ Ωi(n), whereΩi(n) is the set of weights of th
t-module

∧i
O(g/b)⊗ Vn(O)|b.

Proof. –Sincep− 1 > |n|+ d the previous lemma applies to
∧•

O(g/b)⊗Vn(O)|b. This gives
a filtration0 = W0 ⊂ W1 ⊂ · · · ⊂ Wr =

∧i
O(g/b)⊗ Vn(O)|b whose graded pieces areWµ(O),

µ ∈ Ωi(n). SinceUO(g) is UO(b)-free, the functorUO(g)⊗UO(b) • is exact. �
Central characters. Let UO(g) → UO(t) be the projection coming from the Poincar

Birkhoff–Witt decompositionUO(g) = UO(t) ⊕ (u−UO(g) + UO(g)u). We take its restriction
to the invariants for the adjoint actionθ :UO(g)G → UO(t). Note thatUFp

(t) identifies with

the algebra of regular functions onHomO(t,Fp) ∼= Fp[JF ] (a Laurent polynomial algebra). Th
Weyl group{±1}JF of G acts on it by(εJ · P )(µ) = P (εJ(µ + t)− t). The following result is
analogous to the theorem of Harish–Chandra:

THEOREM 5.3 (Jantzen [28]). –θFp
induces an algebra isomorphism

UFp
(g)G → UFp

(t){±1}JF
.

For everyµ ∈ Z[JF ] and everyO-algebraR, we denote bydµR : tR → R the corresponding
character and byχµ,R = dµR ◦ θR the composed mapUR(g)G → UR(t) → R. This definition is
compatible with theO-algebra homomorphisms.

If V is aUR(g)-module generated by a vectorv of weightµ and annihilated byu, thenUR(g)G

acts overV by χµ,R. Putχµ,p = χµ,O andχµ,p = χµ,Fp
.

COROLLARY 5.4. –If χn,p = χµ,p, then there existsJ ⊂ JF such thatµ− (εJ(n + t)− t) ∈
pZ[JF ]. In particular, if µ is smaller than(p− 1)t, then we haveµ = εJ(n + t)− t.

PROPOSITION 5.5. – Let µ ∈ Ωi(n) (see Lemma5.2). Thenχn,p = χµ,p if, and only if, there
exists a subsetJ ⊂ JF containingi elements and such thatµ = εJ(n + t)− t.

Proof. –By the corollary, it remains to show that forJ ⊂ JF , we haveεJ(n + t) − t ∈
Ωi(n) if, and only if, |J | = i. By Lemma 5.2, we have to show thatWεJ (n+t)−t,n0(E)
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∧i

E(g/b) ⊗ Vn(E)|t (with multiplicity one) if and only if |J | = i. The weights of∧i
E(g/b) ⊗ Vn(E)|t are of the formεJ ′(n + t) − t + ν, whereJ ′ ⊂ JF is a subset containin

i elements andν is a weight ofVn(E). ThereforeεJ(n + t) − t = εJ ′(n + t) − t + ν and so
n = εJ(ν) + εJ(εJ ′(t))− t. Sincen is a maximal weight ofVn(E), we deduce thatJ = J ′. �

Decomposition with respect to central characters. By Lemma 5.2,Si
O(g,b, n) admits a

finite filtration by UO(g)-submodules with graded of the formVO(µ), µ ∈ Ωi(n). Therefore
S•
O(g,b, n) is annihilated by a power of the idealI :=

∏
µ∈Ω•(n) ker(χµ,p) of the commutative

ring UO(g)G. In fact, it would follow from Proposition 5.5 thatS•
O(g,b, n) is annihilated byI

itself. We have the following commutative algebra result:

LEMMA 5.6. –Let P1, . . . , Pr be ideals of a commutative ringR such thatP1 . . . Pr = 0
and for all i �= j, Pi + Pj = R. Then eachR-moduleW admits a direct sum decompositio
W =
⊕

1�i�r WPi , with WPi = {m ∈W | Pim = 0}.

Consider the maximal ideals(p,ker(χµ,p)) = ker(χµ,p) of UO(g)G, whereµ ∈ Ω•(n). Let
χ1 = χn,p, χ2, . . . , χr be the set of distinct characters amongχµ,p, µ ∈ Ω•(n). Put Pi =∏

χµ,p=χi
ker(χµ,p). By the above lemma we get a decomposition

S•
O(g,b, n) =

r⊕
i=1

S•
O(g,b, n)Pi

which is a direct sum, because the differentials areUO(g)-equivariant. Moreover,VO(µ)χn,p
=

VO(µ) if χµ,p = χn,p, andVO(µ)χn,p
= 0 otherwise. From here and from Proposition 5.5

get:

THEOREM 5.7. – The complexS•
O(g,b, n)χn,p

is a direct factor inS•
O(g,b, n) and we have

S0
O(g,b, n)χn,p

= Vn(O). For eachi � 1, Si
O(g,b, n)χn,p

has a filtration whose graded ar
given by theVO(εJ(n + t)− t) whereJ ⊂ JF , |J |= i (with multiplicity one).

5.2. The BGG complex for distributions algebras

Let UO(G) be the distributionO-algebra overG. For eachG-moduleV , free overO, we
define the complex

0 ← V ←UO(G)⊗UO(B)

( •∧
O

(g/b)⊗ V |b

)
,

and denote it byS•
O(G,B,V ). In the case whereV = Vn(O) we denote this complex b

S•
O(G,B,n).

Remark5.8. – The complexS•
O(G,B,V ) is not exact. It will become exact after applying t

Grothendieck linearization functor to the associated complex of vector bundles over the
modular variety.

For all µ ∈ Z[JF ], we define the Verma moduleVO(µ) = UO(G) ⊗UO(B) Wµ(O) (see
Section 5.1). We recall that, sincep − 1 > |n| + d, Ωi(n) is the set ofµ ∈ Z[JF ] such that
Wµ(O) is an irreducible subquotient of

∧i
O(g/b)⊗ Vn(O)|b. Lemma 5.2 translates as:

LEMMA 5.9. –The moduleS•
O(G,B,n) has a finite filtration byUO(G)-submodules whos

successive quotients are given byVO(µ), with µ ∈Ωi(n).
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SinceUO(g) ⊂ UO(G) ⊂ UE(g), the centerUO(g)G of UO(g) is contained in the center o
UO(G). Consider the central charactersχµ,p = χµ,O andχµ,p = χµ,Fp

(see Section 5.1).
If W is a UO(G)-module generated by a vectorv of weight µ and annihilated byu, then

UO(g)G acts onW by the characterχµ,p. PutI =
∏

µ∈Ω•(n) ker(χµ,p). By the last lemma the

finite O-moduleS•
O(G,B,n) is a R := UO(g)G/I-module. Letχ1 = χn,p, χ2, . . . , χr be the

distinct algebra homomorphisms fromR in Fp. For1 � j � r, we put

S•
O(G,B,n)χj

=
{

x ∈ S•
O(G,B,n)

∣∣∣( ∏
µ∈Ω•(n),χµ,p=χj

ker(χµ,p)
)

x = 0
}

.

The same way as in Theorem 5.7 we obtain a decomposition:

S•
O(G,B,n) =

r⊕
j=1

S•
O(G,B,n)χj

.(20)

THEOREM 5.10. –Si
O(G,B,n)χn,p

∼=
⊕

J⊂JF ,|J|=i VO(εJ(n + t)− t).

Proof. –Assume firstn = 0. Sinceu is Abelian,U acts trivially on
∧i

O(g/b) and Lemma 5.2
gives
∧i

O(g/b)∼=
⊕

J⊂JF ,|J|=i WεJ (t)−t(O). SinceUO(G) is free overUO(B) we obtain:

Si
O(G,B,0) = Si

O(G,B,0)χ0,p
∼=
⊕

J⊂JF ,|J|=i

VO
(
εJ(t)− t

)
.

Forn � 0, using then = 0 case, we already have a decomposition:

Si
O(G,B,n)∼=

⊕
J⊂JF ,|J|=i

UO(G)⊗UO(B)

(
WεJ (t)−t(O)⊗ Vn(O)

)
.

By (20), the theorem is a consequence of the following lemma, whose proof follows di
from the one of Proposition 5.5.

LEMMA 5.11. –(UO(G)⊗UO(B) (WεJ (t)−t(O)⊗ Vn(O)))χn,p
∼= VO(εJ(n + t)− t).

5.3. BGG complex for crystals

Our reference is [31, Section 4]. For every integerr � 0 we putSr = Spec(Z/pr+1). For a
Z[ 1

∆ ]-schemeX , we putXr = X × Sr.
We have an equivalence of categories between the category of crystals over(X0/Sr)

crys
log and

the category ofOXr
-modulesM which are locally free and endowed with integrable, qu

unipotent connection with logarithmic poles∇ :M→M⊗O
Xr

Ω1
Xr/Sr

(dlog(∞X)).
We have a functorL, called thelinearization functor, from the category of sheaves

OXr
-modules to the category of crystals on(X0/Sr)

crys
log .

By the log-crystalline Poincaré lemma, we have a resolution:

0 →M→ L
(
M⊗O Ω•

X /S
(dlog∞)

)
.

Xr r r
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Let W1 andW2 be twoB-modules with weights smaller than(p − 1)t. PutWi = FB(Wi),
i = 1,2 (see Section 2.3). By [31, §5.2.4] we have a homomorphism

HomUO(G)

(
UO(G)⊗UO(B) W1

)
,
(
UO(G)⊗UO(B) W2

)
→ Diff.Op.(W2,r,W1,r),

which becomes an isomorphism after tensoring withE (see (12)).
We apply now the above construction to the toroidal compactification of the Hilbert mo

varietyM ′ and the vector bundleVn. For everyr � 0 we have an injective homomorphism
complexes of vector bundles overM

′
r

K•
n :=
⊕

J⊂JF

WεJ (n+t)−t,n0 ↪→Vn ⊗O
M

′
r

Ω•
M

′
r/Sr

(dlog∞).(21)

PROPOSITION 5.12. – The map(21) is a strict injective homomorphism of filtered complex

By the last propositionL(K•
n) is a direct factor inL(Vn ⊗O

M
′
r

Ω•
M

′
r/Sr

(dlog∞)), which is

exact by the Poincaré’s crystalline lemma. ThereforeL(K•
n) is also exact. Since the functor L

exact, we deduce filtered isomorphismsHj
log-dR(M

′
r/Sr,Vn)∼= Hj(M

′
r/Sr,K•

n).
Recall thatp does not divide∆ andp− 1 > |n|+ d. Under this assumption we have

THEOREM 5.13. – The spectral sequence given by the Hodge filtration

Ei,j
1 =

⊕
J⊂JF ,|p(J)|=i

Hi+j−|J|(M
′
r,WεJ (n+t)−t,n0) =⇒Hi+j

log-dR(M
′
r,Vn)

degenerates atE1 for r = 0:

gri Hj
log-dR(M/Fp

,Vn) =
⊕

J⊂JF ,|J|�j,|p(J)|=i

Hj−|J|(M/Fp
,WεJ (n+t)−t,n0).

Proof. –The proof is formally the same as the one of Theorem 2.3(ii), once we
Proposition 5.12. The degeneration of the spectral sequence follows from a result
lusie [27, Proposition 4.13.] applied to the semi-stable morphismπs :As → M1 of smooth
Zp-schemes. �

Remark5.14. –
(i) It follows from the same arguments as in Corollary 2.7(i), that the above decomposi

Hecke equivariant, except for theTp operators, whenp dividesp. Whenp is totally split
in F , we could use Wedhorn’s results [42] to writeTp as a sum of correspondences a
try to adapt to this case the method of [16]. Unfortunately, this approach is not ava
whenp is not totally split inF .
In the proof of Theorem 6.7, we will use a different method to prove theTp-equivariance
of the above decomposition after a localization outsidep.

(ii) The commutativity of the Hecke operators outsidep follows from the degeneration atE1

as in the proof of Corollary 2.7(i). The last graded pieceH0(Y ,WεJF
(n+t)−t,n0) of the

filtration is independent of the toroidal compactification by the Koecher Principle (3
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6. Integral cohomology over certain local components of the Hecke algebra

6.1. The key lemma

Let q = pr and denote byσ1, . . . , σr the elements ofGal(Fq/Fp).

THEOREM 6.1 (Brauer–Nesbitt, Steinberg [39]). –The groupSL2(Fq) has exactlyq irre-
ducible representations on finite-dimensionalFq-vector spaces, namely the

⊗r
j=1(Symaj )σj ,

for 0 � aj � p− 1.

COROLLARY 6.2. – For every finite setI , the group
∏

i∈I SL2(Fq) has exactlyq|I|

irreducible representations on finite-dimensionalFq-vector spaces, namely the

⊗
i∈I

(
r⊗

j=1

(
Symai,j

i

)σj

)
, for 0 � ai,j � p− 1.

In [30] Mazur states the following:

LEMMA 6.3. –Let Φ be a group and letρ0 be a representation ofΦ on a finite-dimensiona
Fq-vector spaceW . Letρ :Φ → GL2(Fq) be an absolutely irreducible representation such t
for all y ∈ Φ, the characteristic polynomial ofρ(y) annihilatesρ0(y). Then,ρs.s.

0 = ρ⊕ · · · ⊕ ρ
and in particularρ⊂ ρ0.

The corresponding statement for another group thanGL2 is false in general. Here is a
example forGL3: takeρ = Sym2 :GL2(Fq) → GL3(Fq) andρ0 = det :GL2(Fq) → GL1(Fq).
Nevertheless, we have a generalization for the special group:

H(Fq) =
(∏

i∈I

GL2(Fq)
)D

:=
{

(Mi)i∈I ∈
∏
i∈I

GL2(Fq)
∣∣∣∃δ ∈D, ∀i ∈ I, det(Mi) = δ

}
and the particular representation

ρ1 =
⊗

i∈I,τ∈Ji
F

Stσi,τ

i :H(Fq) → GL2d(Fq), (Mi)i∈I �→
⊗

i∈I,τ∈Ji
F

M
σi,τ

i ,

where(J i
F )i∈I is a partition ofJF and for alli ∈ I , (σi,τ )τ∈Ji

F
are two by two distinct elemen

of Gal(Fq/Fp) (St = Sym1 denotes the standard representation ofGL2).

LEMMA 6.4. – Let ρ0 be a representation ofH(Fq) on a finite-dimensionalFq-vector
spaceW , such that for ally ∈ H(Fq) the characteristic polynomial ofρ1(y) annihilatesρ0(y).
Thenρs.s.

0 = ρ1 ⊕ · · · ⊕ ρ1 (each irreducible subquotient ofρ0 is isomorphic toρ1).

Proof. –We can assume thatρ0 is absolutely irreducible. Consider the exact seque
1 → H1(Fq) =

∏
i∈I SL2(Fq) → H(Fq)

ν→D → 1. By Corollary 6.2, we know that eac
irreducible subquotient ofρ0|H1(Fq) is of the form

⊗
i∈I(
⊗r

j=1(Symai,j

i )σj ), with 0 � ai,j �
p− 1.

The subspace corresponding to the highest weight of the representationρ0|H1(Fq) is preserved
by the standard torus ofH(Fq) and therefore contains an eigenvectorx for the action of this
torus. Sinceρ0 is irreducible, it is generated byx, and thereforeρ0 is isomorphic to a twis
of
⊗

i∈I(
⊗r

j=1(Symai,j

i )σj ) by some power of the characterν (in particularρ0|H1(Fq) is also
irreducible).
4e SÉRIE– TOME 38 – 2005 –N◦ 4



COHOMOLOGY OF HILBERT MODULAR VARIETIES 545

t

e

l

on

t

places

he
he
Since the characteristic polynomial ofρ1 annihilatesρ0, the set of the weights ofρ0 is a subse
of the set of the weights ofρ1, and thereforeρ0 = ρ1. �

In Section 3.5 we proved under the assumption(LIInd ρ̄) thatIndQ
F ρ̄(G

F̂
) contains the imag

of the mapφ = (φi)i∈I :H(Fq) ↪→GL2(Fq)JF .
Denote byF̂ ′ the fixed field ofρ̄−1(φ(H(Fq))).

LEMMA 6.5 (Key lemma). – Let ρ0 be a representation ofG
F̂ ′ on a finite-dimensiona

κ-vector spaceW . Assume(LIInd ρ̄) and assume that, for everyy ∈ G
F̂ ′ , the characteristic

polynomial of(
⊗

IndQ
F ρ̄)(y) annihilatesρ0(y). Then eachG

F̂ ′ -irreducible subquotient ofρ0 is

isomorphic to
⊗

IndQ
F ρ̄.

Proof. –It is enough to treat the case whereρ0 is irreducible. The idea is show that the acti
of G

F̂ ′ onW is through the algebraic groupH(Fq) and use Lemma 6.4.

Put ρ̄′ = (IndQ
F ρ̄)|G

F̂ ′
. By the annihilation assumption, the groupρ0(ker(ρ̄′)) is an unipoten

p-group and thereforeW ker(ρ̄′) is non-zero. Moreover the subspaceW ker(ρ̄′) is preserved byG
F̂ ′ .

SinceW is irreducible we getW ker(ρ̄′) = W and therefore the action ofG
F̂ ′ on W is through

H(Fq). Hence there exists a homomorphismρ′0 fitting in the following commutative diagram:

GQ

⊗ IndQ

F
ρ̄

GL2d(κ)

G
F̃

IndQ

F
ρ̄

GL2(κ)JF

⊗

G
F̂ ′

ρ0

φ−1◦ρ̄′

H(Fq)

φ

ρ′
0

ρ1

GL(W )

The characteristic polynomial ofρ1 annihilates the representationρ′0. By Lemma 6.4 eachH-
irreducible subquotient ofW is isomorphic toρ1, that is to sayW s.s. =

⊕
ρ1 asH(Fq)-modules.

Since the action ofG
F̂ ′ on both sides is throughH(Fq), we are done. �

6.2. Localized cohomology of the Hilbert modular variety

Let T′ ⊂ T be the subalgebra generated by the Hecke operators outside a finite set of
containing those dividingnp. Putm′ = m∩T′.

THEOREM 6.6. – Assumef andp satisfy(I), (II) and(LIInd ρ̄). Then
(i) H•(Y,Vn(κ))m′ = Hd(Y,Vn(κ))m′ ,

(ii) H•(Y,Vn(O))m′ = Hd(Y,Vn(O))m′ is a freeO-module of finite rank and theO-module
H•(Y,Vn(E/O))m′ = Hd(Y,Vn(E/O))m′ is divisible of finite corank.

(iii) Hd(Y,Vn(O))m′ ×Hd(Y,Vn(E/O))m′ →O is a perfect Pontryagin pairing.

Proof. –(i) By Faltings’ Comparison Theorem [14] and Theorem 5.13(i) the integer|p(J)|
is not a Fontaine–Laffaille weight ofHr(κ) when r < d. Wedhorn [42] has established t
congruence relations for all totally split primes ofF . By the Cebotarev Density Theorem t
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assumptions of the key Lemma 6.5 are fulfilled. We deduce thatHr(κ)[m′] = 0 and therefore by
Nakayama’s lemmaHr(κ)m′ = 0. The casen > d follows by Poincaré duality.

(ii), (iii) By the long exact cohomology sequence

· · · → Hr−1(κ)→ Hr(O) 
−→Hr(O) → Hr(κ) → · · · ,

and by the vanishing ofHr(κ)m′ for r �= d, we deduce that (forr �= d) the multiplication by an
uniformizer� is a surjective endomorphism ofHr(O)m′ , so this last vanishes.

The same way, by the long exact sequence

· · · → Hr(�−1O/O) →Hr(E/O) 
−→Hr(E/O)→ Hr+1(�−1O/O) → · · · ,

we deduce a surjectionHr(κ)m′ � Hr(E/O)m′ [�] for r �= d. SinceHr(E/O)m′ is a torsion
O-module, it vanishes (forr �= d).

The localization atm′ of the long exact sequence ofO-modules:

· · · → Hr−1(E/O)→Hr(O)→ Hr(E) →Hr(E/O)→ · · · ,

is concentrated at the three terms of degreer = d. From this we deduce the freeness.�
6.3. On the Gorenstein property of the Hecke algebra

THEOREM 6.7 (Theorem B). –Letf andp be such that(I), (II) and(LIInd ρ̄) hold. Then
(i) H•(Y,Vn(κ))[m] = Hd(Y,Vn(κ))[m] is aκ-vector space of dimension2d.

(ii) H•(Y,Vn(O))m = Hd(Y,Vn(O))m is free of rank2d overTm.
(iii) Tm is Gorenstein.

Proof. –In this proof we putW = Hd(YQ,Vn(κ))m. By using an auxiliary level structure a
in [8], we can assume that the condition(NT) of Section 1.4 is fulfilled.

(i) As in the proof of Theorem 6.6(i), by Lemma 6.5 we have an isomorphism ofG
F̂ ′ -modules

W [m]s.s. =
(⊗

IndQ
F ρ̄
)⊕r

.

It is crucial to observe thatIp ⊂ G
F̂ ′ . By Theorem 2.6 we haver � 1. In order to show tha

r = 1 we consider the restriction of these representations toIp. The multiplicity of the maxima
Fontaine–Laffaille weight|p(JF )| in the right-hand side isr by Theorem 2.6, Corollary 2.7(ii
and Fontaine–Laffaille’s theory.

On the other hand, the multiplicity of|p(JF )| in the left-hand side is equal, by Theorem 5.
to the dimension ofH0(Y ⊗ κ,WεJF

(n+t)−t,n0)[m]: In fact, by Remark 5.14 all we have

check is theTp-linearity of the Fontaine–Laffaille functorgr|p(JF )| on Hd(YQ,Vn(κ))m′ . By

Theorem 6.6(ii) the moduleHd(YQ,Vn(O))m′ is torsion free. ThereforeTp-linearity may be
checked after extending the scalars toC, where it follows from the Strong Multiplicity On
Theorem (sincep is prime to the leveln). We owe this idea to Diamond (see [8, Proposition 1

We will now see thatdimκ H0(Y ⊗ κ,WεJF
(n+t)−t,n0)[m] = 1. We haveWεJF

(n+t)−t,n0 =
ωk ⊗ νn0t/2. So we are led to show that two normalized Hilbert modular forms of weighk,
level n and coefficients inκ = Tm/m having the same eigenvalues for all the Hecke opera
are equal. One should be careful to observe that the Hecke operators permute the co
componentsM1(c,n) of the Shimura varietyY = Y1(n) (here the idealc runs over a set o
representatives ofCl+F ). We use Hecke relations between Fourier coefficients and eigenvalu
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the Hecke operators and theq-expansion Principle at the∞ cusp of each connected compon
M1(c,n) (see Section 1.7).

(ii), (iii) Mazur’s argument in the elliptic modular case remains valid. By Theorem A,
twisted Poincaré pairing (6) onHd(Y,Vn(O))m = Hd

c(Y,Vn(O))m is a perfect duality o
Tm-modules, so it would be enough to show (ii).�

Again using the perfectness of the twisted Poincaré pairingW × W → κ we obtainW ∼=
HomTm

(W,κ), and soW ⊗Tm
κ = W/mW ∼= Hom(W [m], κ), and therefore

dimκ(W ⊗Tm
k) = dimκ

(
W [m]
)
,

which equals2d, by (i). Then (ii) follows from the following:

LEMMA 6.8. – LetT be a torsion free localO-algebra(T ↪→T ⊗O E) of maximal idealm
and residue fieldκ = T /m.

LetM be a finitely generatedT -module such thatM⊗O E is free of rankr overT ⊗O E. If
M⊗T κ is aκ-vector space of dimension� r, thenM is free of rankr overT .

Proof. –SinceM ⊗T k is of dimension� r, the Nakayama’s lemma gives a surject
homomorphism ofT -modulesT r � M. Denote byI its kernel. We have an exact sequen
of O-modules

0 → I →T r →M→ 0.

By tensoring it by⊗OE (or equivalently by⊗T (T ⊗O E)) we obtain another exact sequence

0 → I ⊗O E → (T ⊗O E)r →M⊗O E → 0.

By comparing the dimensions overE we getI ⊗O E = 0. SinceI is torsion free,I = 0. �
6.4. An application top-adic ordinary families

For r � 1, consider the following open compact subgroups ofG(Af )

K0

(
pr
)
=
{

u ∈K1(n) | u ≡
(
∗ ∗
0 ∗

)(
modpr
)}

,

K11

(
pr
)
=
{

u ∈K1(n) | u ≡
(

1 ∗
0 1

)(
modpr
)}

.

Let Y0(pr) (respectivelyY11(pr)) be the Hilbert modular variety of levelK0(pr) (respectively
K11(pr)).

The cohomology groupH•(Y11(pr),Vn(E/O))∗ has a natural action ofK0(pr)/K11(pr) 

(o/pr)× × (o/pr)× (we denote by∗ the Pontryagin dual). Therefore the groupT (Zp)/o× acts
on the inductive limitH•(Y11(p∞),Vn(E/O))∗ := lim

→
H•(Y11(pr),Vn(E/O))∗.

By Hida’s stabilization lemma, the ordinary part ofH•(Y11(p∞),Vn(E/O))∗ (that is the
part where the Hecke operatorsT0,p of Definition 1.13 are invertible for allp dividing p) is
independent onn. We denote it byH•

ord := H•
ord(Y11(p∞),E/O)∗.

By the above discussionH•
ord has a structure of aΛ := O[[T (Zp)/o×]]-module. It is of finite

type, by a theorem of Hida.

We also define thep-adic ordinary HeckeΛ-algebraT∞
k,ord := lim

←
Tk,ord(Y11(pr)). As T∞

k,ord

is independent ofk, we denote it byT∞
ord. ThenH•

ord is aT∞
ord-module.
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An arithmetic character ofT (Zp)/o× is by definition a character whose restriction to
open subgroup is given by an algebraic character. It is immediate that such a chara
a product of an algebraic character and a finite order character. An algebraic chara
T (Zp) 
 D(Zp) × D(Zp) trivial on o× is necessarily of the form(u, ε) �→ unε−m, where
m,n ∈ Z[JF ] and m + 2n ∈ Zt. Hence, the general form of an arithmetic characterψ of
T (Zp)/o× is (u, ε) �→ unε−mψ1(u)ψ2(ε), whereψ1, ψ2 are finite order characters. Every su
ψ induces anO-algebra homomorphismΛ →O, whose kernel is denoted byPψ .

Let m be a maximal ordinary ideal ofT and letm∞ be a maximal ideal ofT∞
ord abovem. We

denote byT∞
m∞ (respectivelyH•

m∞ ) the localization ofT∞
ord (respectively ofH•

ord) atm∞.

PROPOSITION 6.9. – Letm be such that(I), (II) and(LIInd ρ̄) hold. Then
(i) Hd

m∞ is free of finite rank overΛ and we have an exact control:

Hd
m∞/PψHd

m∞ 
H•(Y11

(
pr
)
,Vψ(E/O)

)∗
mr

,

(ii) Hd
m∞ is free of rank2d overT∞

m∞ , and
(iii) Hida’s control theorem for the Hecke algebra holds, that isT∞

m∞ is a freeΛ-algebra of
finite rank and for everyψ we haveT∞

m∞/PψT∞
m∞ 
 Tψ(Y11(pr))mr .

Proof. –(i) The proof is very similar to the one of [31, Theorem 9]. It uses that aΛ-module
is free, if it is free of constant rank overO for infinitely many specializations. In our case, it
enough to specialize at weights of the formk + (p − 1)k′ and verify the exact control criterio
using Theorem 6.6. We omit the details, because (i) follows from (ii) and (iii).

(ii) ConsiderΛ → T∞
m∞ → EndO(Hd

m∞). The specialization atψ = ψk gives

O→ T∞
m∞/PkT∞

m∞ → EndO
(
Hd

m∞/PkHd
m∞

)
.

By Theorem 6.6 we haveHd(Y0(p),Vn(E/O))∗m 
 Hd(Y,Vn(E/O))∗m 
 Hd(Y,Vn(O))m

and an exact control:Hd
m∞/PkHd

m∞ 
 Hd(Y,Vn(O))m.
From here and from Theorem B we obtain thatHd

m∞ ⊗T∞
m∞

(T∞
m∞/PψT∞

m∞) 
 Hd
m∞ ⊗Λ

Λ/Pk is free of rank2d overTm. HenceHd
m∞ ⊗T∞

m∞
κ is free of rank2d overTm ⊗T∞

m∞/PψT∞
m∞

κ = κ. Then Lemma 6.8 applies to theT∞
m∞ -moduleHd

m∞ which is finitely generated over th
local algebraΛ.

(iii) SinceHd
m∞ is a freeΛ-module, it admits a direct sum decomposition with respect to

Weyl group action on the Betti cohomology:

Hd
m∞ =
⊕

J⊂JF

Hd
m∞ [ε̂J ].

EveryHd
m∞ [ε̂J ] is free of rank 1 overT∞

m∞ and free overΛ. ThereforeT∞
m∞ is free overΛ

and exact control holds.�
COROLLARY 6.10. – Let f ∈ Sk+(p−1)k′(Y0(pr)) be a newform and letp be a prime not

dividing NF/Q(d), such thatp − 1 >
∑

(kτ − 1) and (LIInd ρ̄) holds. Then TheoremsA andB
hold.
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