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GALOIS REPRESENTATIONS MODUL® AND
COHOMOLOGY OF HILBERT MODULAR VARIETIES

By MLADEN DIMITROV

ABSTRACT. — The aim of this paper is to extend some arithmetic results on elliptic modular forms to the
case of Hilbert modular forms. Among these results let us mention:

e control of the image of Galois representations modulo

e Hida's congruence criterion outside an explicit set of primes,

o freeness of the integral cohomology of a Hilbert modular variety over certain local components of the

Hecke algebra and Gorenstein property of these local algebras.

We study the arithmetic properties of Hilbert modular forms by studying their mogu®alois
representations and our main tool is the action of inertia groups at primes@abowader to determine this
action, we compute the Hodge—Tate (resp. Fontaine—Laffaille) weights pfaldé (resp. modulp) étale
cohomology of the Hilbert modular variety. The cohomological part of our paper is inspired by the work
of Mokrane, Polo and Tilouine on the cohomology of Siegel modular varieties and builds upon geometric
constructions of Tilouine and the author.
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RESUME. — Le but de cet article est de généraliser certains résultats arithmétiques sur les formes
modulaires elliptiques au cas des formes modulaires de Hilbert. Parmi ces résultats citons :

e détermination de I'image de représentations galoisiennes mpdulo

e critére de congruence de Hida en dehors d’'un ensemble explicite de premiers,

e liberté de la cohomologie entiere de la variété modulaire de Hilbert sur certaines composantes locales

de I'algebre de Hecke et la propriété de Gorenstein de celles-ci.

L'étude des propriétés arithmétiques des formes modulaires de Hilbert se fait a travers leurs représenta-
tions galoisiennes modulp et I'outil principal est I'action des groupes d’inertie aux premiers au-dessus
dep. Cette action est déterminée par le calcul des poids de Hodge—Tate (resp. Fontaine—Laffaille) de la co-
homologie étale-adique (resp. modulp) de la variété modulaire de Hilbert. La partie cohomologique de
cet article est inspirée par le travail de Mokrane, Polo et Tilouine sur la cohomologie des variétés modulaires
de Siegel et repose sur des constructions géométriques de Tilouine et I'auteur.

0 2005 Elsevier SAS

Contents

0 INtroduCtion . . .. .o e 506
0.1 Galoisimage results . . ... ... 507
0.2 Cohomological results. . . . .. .. 507
0.3 Arithmeticresults . . . . . ... . 508
0.4  Explicitresults . . . . ... 509

1 Hilbert modular forms and varieties . .. ........ ... 510
1.1 Analytic Hilbert modular varieties. . . .. ... ... . . . e 510

ANNALES SCIENTIFIQUES DE UECOLE NORMALE SUPERIEURE
0012-9593/041 2005 Elsevier SAS. All rights reserved



506 M. DIMITROV

1.2 Analytic Hilbert modularforms .. ...... ... ... . . . .. 510
1.3 Hilbert-Blumenthal Abelian varieties . ... ... ... ... .. ... . .. . . .. 512
1.4 Hilbertmodularvarieties . . . .. ... .. 512
1.5 Geometric Hilbertmodularforms . . ....... ... ... . . . . . 513
1.6 Toroidal compactifications . . . . .. .. ... 514
1.7 g-expansion and Koecher Principles . .. ........ . . .. . .. 514
1.8 The minimal compactification . ............ ... . .. . . . .. . e 515
1.9 Toroidal compactifications of Kuga—Sato varieties . . . .. ........ ... .......... 515
1.10 Hecke operatorsonmodularforms . . ... ... . 515
1.11 Ordinary modular forms . . .. ... ... 517
1.12  Primitive modular forms . . . . . ... 517
1.13 External and Weyl group conjugates . . . . . . .. .. 517
1.14 Eichler-Shimura—Harder isomorphism . ... ......... .. ... ... . . .. ... 517
2 Hodge-Tate weights of Hilbert modular varieties .. ........... .. .. ... .. ... ....... 519
2.1 Motivic weight of the cohomology . .. ......... ... . . 519
2.2 The Bernstein-Gelfand—Gelfand complex 0@er . . . ... ... .ot 520
2.3 Hodge-Tate decompositionldf (M @ Q,,Vn(Q,)) .« oo v oieie et 520
2.4 Hecke operators onthe cohomology .. ......... ... . ... 522
2.5 Hodge-Tate weights of Ind% pinthecrystallinecase . ...................... 523
2.6 Hodge-Tate weights gfinthe crystallinecase. ... ......... ... .. ... ........ 524
2.7 Fontaine—Laffaille weights gf in the crystallinecase ........................ 525
3 Studyoftheimages gfandind® 5. . .. ...ttt 526
3.1 Lifting of characters and irreducibility criterionfpr. . . . ............. . ... . ... 526
3.2 Theexceptional Case . . . . . . ..t 527
3.3 Thedihedralcase . ... ... ... 528
3.4 Theimage obis“large” . . . .. ... 529
3.5 Theimage ofnd2 S “large” . . . .« oo ottt 530
4  Boundary cohomology and congruence Criterion . . . . ... ...ttt 533
4.1 Vanishing of certain local components of the boundary cohomology . . .. ... ........ 533
4.2 Definition of periods . . . . . ... 535
4.3 Computation of adiscriminant . . .......... .. . . . e 536
4.4 shimura’s formula fol (Ad®(£),1) « oo oot 536
4.5 Construction of CONQrUENCES . . . . . . ottt e e e 538
5 Fontaine—Laffaille weights of Hilbert modular varieties . ... ........... ... . ... ..... 539
5.1 TheBGGcompleXx oveD . . .. ... .. 539
5.2 The BGG complex for distributions algebras. . . . ........ ... ... .. ... ... ... .. 541
5.3 BGGcomplexforcrystals . . . ... 542
6 Integral cohomology over certain local components of the Hecke algebra . . ... ........... 544
6.1 Thekeylemma ... ... ... . 544
6.2 Localized cohomology of the Hilbert modular variety . ....................... 545
6.3 Onthe Gorenstein property of the Hecke algebra . . . .. ....... ... ... ... ...... 546
6.4 An application tg-adic ordinary families . ... ....... ... ... . o oL 547
Listof Symbols . . . .. 549
ACKNOWIEdgEmMENTS . . . . . 549
REfErENCES . . . . e 550

0. Introduction

_Let F' be a totally real number field of degréering of integerss and differento. Denote by
F the Galois closure of" in Q and by.Jr the set of all embeddings @ into Q C C.
We fix an ideal C o and we putA = Ng/q(n0).
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COHOMOLOGY OF HILBERT MODULAR VARIETIES 507

Foraweightt =3 __; k.7 € Z[Jp] as in Definition 1.1 we puky = max{k, |7 € Jp}. If
1 is a Hecke character df of conductor dividingn and type2 — kg at infinity, we denote by
Sk(n, 1) the corresponding space of Hilbert modular cuspforms (see Definition 1.3).

Let f € Si(n, ) be a newform, that is, a primitive normalized eigenform. For all ideatso,
we denote by:(f, a) the eigenvalue of the standard Hecke oper@toon f.

Letp be a prime number and leg: Q — @p be an embedding.

Denote byE a sufficiently largep-adic field with ring of integer®), maximal idealP and
residue fieldk.

0.1. Galois image results

The absolute Galois group of a fieldis denoted byG;,. By results of Taylor [40,41] and
Blasius and Rogawski [1] there exists a continuous representatiomny, ,:Gp — GLy(E)
which is absolutely irreducible, totally odd, unramified outsigleand such that for each prime
idealw of o, not dividingpn, we have:

tr(p(Froby)) = tp(c(f,v)),  det(p(Froby)) = tp(¥(v)) Nr/g(v),

whereFrob, denotes a geometric Frobeniuwat

By taking a Galois stabl®-lattice, we defingg = p; , mod P :Gr — GLa(x), whose semi-
simplification is independent of the particular choice of a lattice.

The following proposition is a generalization to the Hilbert modular case of results of
Serre [37] and Ribet [35] on elliptic modular forms (see Propositions 3.1, 3.8 and 3.17).

PrRoPOSITION 0.1. — (i) For all but finitely many primeg,

(Irrp) pis absolutely irreducible.

(i) If f is not a theta series, then for all but finitely many prinpes

(LI;) there exists a power of p such thatSLo (F,;) C im(p) C £ GLa(Fy).

(iii) Assume thaf is not a twist by a character of any of its internal conjugates and is not a
theta series. Then for all but finitely many primes

(LIinap) there exist a poweq of p, a partition J = [ [, J;. and for all 7 € J}. an element

i €Gal(F,/F,) such that(t # 7/ = 0, ; # 0;.++) andInd% 5: Gz, — SLy(F,)’r factors

as a surjectiorG,, — SLy(F,)’ followed by the magh;)ic; — (Mf””)ie“e,;, where "/

denotes the compositum bfand the fixed field ofind® )~ (SLa(F,) 7).
0.2. Cohomological results

Let Y,;11, be the Hilbert modular variety of levek (n) (see Section 1.4). Consider the
p-adic étale cohomologyl® (Y, V,.(Q,)), whereV,(Q,) denotes the local system of weight
n=7> cs. (k- —2)7 € N[JFr] (see Section 2.1). By a result of Brylinski and Labesse [3] the
subspacéVy := N, , ker(Ty — ¢(f,a)) of H* (Y5, V,,(Q,)) is isomorphic, ag/--module and
after semi-simplification, to the tensor induced represent@ﬁmd?ﬂ p.

Assume that

(I) pdoes not divideA.

ThenY has smooth toroidal compactifications ow&y (see [10]). For eaclf C Jr, we put
p(N)] =2 cs(ko —me — 1) + 32, ¢ 0y Mr Wherem, = (ko — k-)/2 € N. By applying
a method of Chai and Faltings [15, Chapter VI] one can prove (see [11, Theorem 7.8,
Corollary 7.9)).
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508 M. DIMITROV

THEOREM 0.2. —Assume thap does not divide\. Then

(i) the Galois representatioH’ (Y@, Vn(@p)) is crystalline atp and its Hodge—Tate weights
belong to the sef|p(.J)|, J C Jr, |J| <j}, and

(if) the Hodge—Tate weights @, are given by the multistip(J)|, J C Jr}.

For our main arithmetic applications we need to establish a mgduwiersion of the above
theorem. This is achieved under the following additional assumption:

m p=1>% ; (b —1).
The integer) . ;. (k- — 1) is equal to the differencp(Jr)| — [p(0)| between the largest and
smallest Hodge—Tate weights of the cohomology of the Hilbert modular variety. Wg) uead
(I in order to apply Fontaine—Laffaille’s Theory [17] as well as Faltings’ Comparison Theorem
modulop [14]. By adapting to the case of Hilbert modular varieties some techniques developed
by Mokrane, Polo and Tilouine [31,33] for Siegel modular varieties, such as the construction
of an integral Bernstein—Gelfand—Gelfand complex for distribution algebras, we compute the
Fontaine—Laffaille weights dfi* (Y5, V,,(x)) (see Theorem 5.13).

0.3. Arithmetic results

Consider theO-module of interior cohomologH{(Y,V,(0)), defined as the image of
HY(Y,V,(0)) in HY(Y,V,,(E)). Let T = O[T,,a C o] be the full Hecke algebra acting on it,
and letT’ C T be the subalgebra generated by the Hecke operators outside a finite set of places
containing those dividingp. Denote bym the maximal ideal off corresponding t¢ and.,, and
putm’ =mnNT.

THEOREM 0.3. — Assume that the conditiori§) and (IT) from SectiorD.2 hold.

(i) If (Irr) holds,d(p — 1) > 5% ; (k- —1) and

(MW) the middle Weigh{”(']F)‘;‘p(@)‘ = d(kf’;l) does not belong t|p(J)|, J C Jr}, then
the local componertti$ (Y, V,,(O))n  of the boundary cohomology vanishes, and the Poincaré
pairing H{ (Y, V,,(0))., x H}(Y,V,,(0)).., — O is a perfect duality.

(ii) If (LImap) holds, thenH* (Y, V,,(0))m = HY(Y,V,(0))w is a freeO-module of finite
rank and its Pontryagin dual is isomorphic (Y, V,,(E/O)).

The proof involves a “local—global” Galois argument. The first part is proved in Theorem 4.4
using Lemma 4.2(ii) and a theorem of Pink [32] on the étale cohomology of a local system
restricted to the boundary af. The second part is proved in Theorem 6.6 using Lemma 6.5 and
the computation of the Fontaine—Laffaille weights of the cohomology from Theorem 5.13. The
technical assumptions are needed in the lemmas. Since the conclusion of Lemma 6.5 is stronger
then the one of Lemma 4.2(ii) we see that the results of Theorems 0.3(i) and A (see below)
remain true under the assumptigii$, (IT) and (LIinq 7).

Let L*(Ad°(f),s) be the imprimitive adjointZ-function of f and letT'(Ad’(f),s) be
the corresponding Euler factor (see Section 4.4). We denoté py C*/O* any two
complementary periods defined by the Eichler—Shimura—Harder isomorphism (see Section 4.2).

THEOREM A (Theorem 4.11). +et f and p be such tha(l), (Irr;) and (MW) hold, and

p—1>max(1,3) > resp(kr —1). Assume thatp(F(Ado(f)glg,mdo(f)’l)) € P. Then there
Fof

exists another normalized eigenfogre Sk (n, ) such thatf = g (modP), in the sense that

c(f,a) =c(g,a) (mod P) for each ideak C o.

The proof follows closely the original one given by Hida [21] in the elliptic modular case, and
uses Theorem 0.3(i) as well as a formula of Shimura relafingAd"(f), 1) to the Petersson
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COHOMOLOGY OF HILBERT MODULAR VARIETIES 509

inner product off (see (19)). Let us note that Ghate [18] has obtained a very similar result when
the weightk is parallel. A converse for Theorem A is provided by the second part of the following

THEOREMB (Theorem 6.7). +et f andp be such thatI), (IT) and (LI,q5) hold. Then
(i) H*(Y,V,(k))[m] =H(Y,V,(x))[m] is ax-vector space of dimensi@{.

(i) H*(Y,V,,(O))m = HYY,V,(0))n is free of rank2? overT,,.

(i) T, is Gorenstein.

By [30] it is enough to prove (i), which is a consequence of Theorem 0.3(ii) and-the
expansion principle Section 1.7. This theorem is due, under milder assumptions, to Mazur [30]
for F = Q andk = 2, and to Faltings and Jordan [16] féf = Q. The Gorenstein property is
proved by Diamond [8] whed" is quadratic and: = (2,2) under the assumptiorg§, (II) and
(Irrz). We expect that Diamond’s approach via intersection cohomology could be generalized
in order to prove the Gorenstein propertylof, under the assumptiorf§, (II) and(LI;) (see
Lemma 4.2(i) and Remark 4.3).

When f is ordinary atp (see Definition 1.13) we can replace the assumpt{®nsand (1)
of Theorems A and B by the weaker assumptions thabes not divideNy,q(0) and that
k (modp — 1) satisfies(ll) (see Corollary 6.10). The proof uses Hida's familiespefdic
ordinary Hilbert modular forms. We prove an exact control theorem for the ordinary part of
the cohomology of the Hilbert modular variety, and give a new proof of Hida’'s exact control
theorem for the ordinary Hecke algebra (see Proposition 6.9).

Theorems A and B prove that the congruence ideal associated@ahgebra homomorphism

T — O, T, — 1,(c(f,a)) is generated byp(F(Ado(f)’éng;(Ado(f)’l) ). In a subsequent paper [12]
foof

we relate it to the fitting ideal of the Bloch—Kato Selmer group associatad¢p) ® E/O. An
interesting question is wheth, are the periods involved in the Bloch—Kato conjecture for the
motive Ado(f) constructed by Blasius and Rogawski [1] (see the work of Diamond, Flach and
Guo [9] for the elliptic modular case).

0.4. Explicit results

By a classical theorem of Dickson, [{Irr;) holds but(LI;) fails, then the image of in
PGL4 (k) should be isomorphic to a dihedral, tetrahedral, octahedral or icosahedral group. Using
this fact as well as Proposition 3.1, Section 3.2, Propositions 3.5 and 3.13 we obtain the following
corollary to Theorems A and B.

Denote byo’ (respectivelyo:’l) the group of totally positive (respectively congruentlto
modulon) units ofo.

COROLLARY 0.4. —Lete be any element af} No; ;.
(i) Assumel=2andk = (ko, ko — 2m1), withmy #0. If

PHANE/g (€™ = 1)(eho ™™™ —1))

andp — 1 > 4(kp — m; — 1) then TheorenA holds. If additionally the image gf in
PGL2 (k) is not a dihedral group then Theorenalso holds.
(II) Assumel = 3, id 75 7€ Jrandk = (ko,ko —2mq, kg — 2m2), with 0 < mq + mo 7é
ko—1
Bo=2 If
2

pJ[ANg/Q ((T(e)"” — e_mz) (T(e)m1 — em2+1_k°) (T(e)mﬁ_l_ko — em"‘)
% (T(ﬁ)kg—ml—l _ 6m2+1—’€0))
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510 M. DIMITROV

andp — 1> %(31% — 2m; — 2mgy — 3) then Theoren®\ holds. If additionally the image
of pin PGL4y(k) is not a dihedral group then Theorehalso holds.

1. Hilbert modular forms and varieties

We define the algebraic groufi3/q = Res G, G /g = Res{) GL» and Gy = G xp G,
where the fiber product is relative to the reduced norm ma@ — D. The standard Borel
subgroup ofG, its unipotent radical and its standard maximal torus are denotés] byandT’,
respectively. We identifyD x D with T, by (u,€) — (,* ,%).

0 wut?

1.1. Analytic Hilbert modular varieties

Let D(R), (respectivelyG(R)) be the identity component aD(R) = (F ® R)* (re-
spectively of G(R)). The groupG(R), acts by linear fractional transformations on the space
Ar={2€ F®C | im(z) € D(R), }. We havefir = H’r, where$ = {z € C | im(z) >0}
is the Poincaré’s upper half-plane (the isomorphism being giveq Byz — (7(£)z)rep,
for £ € F, z € C). We consider the unique group action GfR) on the space)r extend-
ing the action of G(R), and such that, on each copy &f the element(—olg) acts by
z— —z. We puti = (v—1,...,v/—1) € Hr, KI, = Stabg), (i) = SO2(F ® R)D(R) and
K= Stab(;(R) (g) =09 (F ® R)D(R).

We denote b;i = [1, Z; the profinite completion o and we pub = Z®o= L, 0v, where
v runs over all the finite places @. Let A (respectivelyA ;) be the ring of adéles (respectively
finite adeles) of). We consider the following open compact subgrouggoh ¢ ):

Kl(n):{(i Z) €G(Z)|d—1¢en, cEn}.
The adélic Hilbert modular variety of levé{; (n) is defined as
Yo =Yi(n)™ = G(QN\G(A)/K1(n) K.
By the Strong Approximation Theorem, the connected componenfs'oére indexed by the

narrow ideal class groupl}. = D(A)/D(Q)D(Z)D(R), of F. For each fractional idealof F
we putc* = ¢ 101, We define the following congruence subgrougfQ):

Fl(c,n):{<z Z)eG(Q)O( 0 ‘0) |ad—bceoi,dz1(modn)}.

con

PutM2® = My (c,n)*® =T (¢, n)\H . Then we havé (n)>? ~ H?’:“tl M (¢c;,n)*™, where the
idealsc;, 1 << h;C, form a set of representatives@fjg.

Put$i = 9 [[P'(F). The minimal compactificatiod/* * of M*" is defined as\/**" =
T (c,n)\35- It is an analytic normal projective space whose bounddry*™\M/>" is a finite
union of closed points, called tleeispsof M.

The same way, by replacir@ by G*, we definel'{ (¢,n), M1 = M (¢,n)*® and M 1*2n,

1.2. Analytic Hilbert modular forms

For the definition of th&C-vector space of Hilbert modular forms we follow [24].
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COHOMOLOGY OF HILBERT MODULAR VARIETIES 511

DEFINITION 1.1.— An element = >___, k.7 € Z[JF] is called a weight. We always
assume that thé,'s are > 2 and have the same parity. We pk§ = max{k, | 7 € Jp},

no=ko—2,t=% _c; Tn=> ;. n.T=k=2tandm=>3___; m.,7=(kot —k)/2.

Forz € §p,v=(2Y) weputj;(v,2) =c-z’ +d e D(C), where

J_ Zr, TEJ,
7z, TEJR.

DEFINITION 1.2. — The spacé&, ;(K;(n)) of adélic Hilbert modular forms of weight,
level K1(n) and typeJ C Jp at infinity is the C-vector space of the functions: G(A) — C
satisfying the following three conditions:

() g(axy) = g(x) forall a € G(Q), y € K1 (n) andz € G(A).

(i) g(zy) = v(y)F™ "t 5(y,i) " *g(z), forally € KL andx € G(A).

Forallz € G(Ay) defineg, : 7 — C, by z — v(y)! k=™ 5 (v,i)*g(x7), wherey € G(R) +
is such that =~ - i. By (ii) g, does not depend on the particular choicey of

(iii) g, is holomorphic at.,, for = € J and anti-holomorphic at, for r € Jg\J (whenF = Q
an extra condition of holomorphy at cusps is needed).

The spaceSy, (K4 (n)) of adélic Hilbert modular cuspforms is the subspacé/pf; (K1 (n))
consisting of functions satisfying the following additional condition:

(iv) fU(Q)\U(A) g(ux)du=0forall z € G(A) and all additive Haar measurés onU (A).

The conditions (i) and (ii) of the above definition imply that for ale Gy, ;(K1(n)) there
exists a Hecke characteérof I of conductor dividingn and of type—n,t at infinity, such that
forall z € G(A) and for allz € D(Q)D(Z)D(R), we havey(zz) = (2) " 1g(z).

DEFINITION 1.3.— Letty be a Hecke character df of conductor dividingn and of type
—not at infinity. The spaces, ;(n, ) (respectivelyGy, ;(n, 1)) is defined as the subspace of
Sk,7(K1(n)) (respectiverGk}J(Kl( n))) of elementy satlsfylngg(zx) Y(2)"Lg(x) for all
x € G(A) and for allz € D(A). WhenJ = Jg this space is denoted 8, (n, ) (respectively

by G (n, ).

Since the characters of the ideal class group = D(A)/D(Q)D(i)D(R) of F form a basis
of the complex valued functions on this set, we have:

@ G,y (Ki(n @GkJ )y Sk (Ki(n @SkJ

wherey runs over the Hecke charactersfobf conductor dividingh and infinity type—ngt. Let
I" be a congruence subgroup@fQ). We recall the classical definition:

DEFINITION 1.4.— The spacé, ;(T';C) of Hilbert modular forms of weight, levelT" and
typeJ C Jp atinfinity is theC-vector space of the functions $» — C which are holomorphic
at z,, for r € J, anti- holomorphic at,, for r € Jp\J, and such that for every € I" we have
9(v(2)) =v(M) (v, 2) g (2).

The spaces;, ;(I'; C) of Hilbert modular cuspforms is the subspacesaf ; (I'; C), consisting
of functions vanishing at all cusps.

Putz; = ("), wherer; is the idéle associated to the idea| 1 < i < h}.. The map
9+ (g2:)1<icpn+ (see Definition 1.2) induces isomorphisms:
XN p
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Gra(Ki(m)~ €D Gr.s(Ti(ein);C),
1<i<hl
(@)
Sk (K1)~ @ Sk (T1(ei,n);C).
1<L<h

Letdu(z) =I1,c;, ¥5 > dz, dy. be the standard Haar measurespp.

DEFINITION 1.5. —
(i) The Petersson inner product of two cuspforms € Sy, (K7 (n)) is given by the formula

i
Ghew=> [ " du).

=1 Ti(ci,n)\Hr

Where(gi)lgi@; (respectivel;(hi)lgi@;) is the image ofy (respectivelyh) under the
isomorphism (2).
(if) The Petersson inner product of two cuspformé € Sy ;(n, ) is given by

(9 B)a = / ()| (@)™ du(z).

G(Q\G(A)/D(A)K1(n) KL
1.3. Hilbert—Blumenthal Abelian varieties

A sheaf over a schemgwhich is locally free of rank one over® Og, is called arinvertible
o-bundleon S.

DEFINITION 1.6. — A Hilbert—Blumenthal Abelian variety (HBAV) overﬁm}-scheme

S is an Abelian schemer: A — S of relative dimensiond together with an injection
0 — End(A/S), suchthat g := W*QL/S is an invertibles-bundle onS.

Let ¢ be a fractional ideal of” and ¢ be the cone of totally positive elementsdnGiven
a HBAV A/S, the functor assigning to 8-schemeX the setAd(X) ®, ¢ is representable by
another HBAV, denoted byl ®, ¢. Theno < End(A/S) yields ¢ — Hom, (4, A ®, ¢). The
dual of a HBAV A is denoted byA?.

DEFINITION 1.7.—

(i) A c-polarization on a HBAVA/S is an o-linear isomorphism\: A ®, ¢ — A‘, such
that under the induced isomorphisifom, (A, A ®, ¢) = Hom, (A, A') elements ofc
(respectively, ) correspond exactly to symmetric elements (respectively polarizations).

(i) A c-polarization class is an orbit ofc-polarizations undes’;.

Let (G,,, ® 0~ 1)[n] be the reduced subscheme®f, @ o=, defined as the intersection of
the kernels of multiplications by elementsaflts Cartier dual is isomorphic to the finite group
scheme /n.

DEFINITION 1.8.— A u,-level structure on a HBAVA/S is ano-linear closed immersion
a:(G,, ® 0 1)[n] — A of group schemes ovet.

1.4. Hilbert modular varieties

We consider the contravariant functok! (respectively M) from the category of
Z[%]—schemes to the category of sets, assigning to a scltethe set of isomorphism classes
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COHOMOLOGY OF HILBERT MODULAR VARIETIES 513

of triples (A, \, ) (respectively(A, )\, «)) where A is a HBAV over S endowed with ac-
polarization\ (respectively ac-polarization class\) and ay,-level structurea. Assume the
following condition:

(NT) n does not divide2, nor3, norNpg,q().

ThenT(c,n) is torsion free, and the functoM' is representable by a quasi-projective,
smooth, geometrically connectefi x]-schemeM* = M{ (¢,n) endowed with a universal
HBAV =7:A — M?!. By definition, the shea@A/Ml = W*Q}“/Ml is an invertibleo-bundle
on M*. Consider the first de Rham cohomology shgglf; (A/M*) = R'm.Q% ), on M1
The Hodge filtration yields an exact sequence:

0= wWa/nn — Hip (A/M') — Wi ® @' —0.

ThereforeH i (A/M*) is locally free of rank two oves @ Oy

The functorM admits a coarse moduli spadé = M;(c,n), which is a quasi-projective,
smooth, geometrically connecté{x]-scheme. The finite groupi/oﬁ acts properly and
discontinuously onM! by [e]: (4, )\, a)/S — (A,e),«)/S and the quotient is given by/.
This group acts also an 4, and onH gy (A/M') by acting on the de Rham compleX, .
([e] acts orw 4 /51 by e=/2[€]).

These actions are defined over the ring of integers of the numbetfield?, € € o).

Let o’ be the ring of integers aF (¢}/2, ¢ € 0 ). For everyZ[+]-schemeS we put

’_ /l
S —SxSpec(o {A .

The sheaf ob* /o 3-invariants ofw 4,1 (respectively ofH i, (A/M1)) is locally free of
rank one (respectively two) over O, and is denoted by (respectivelyH. ).
I,+ I,+ .
We putY =Yi(n) = ]_[Zjl M;i(ci,n) andY! =Yii(n) = ]_[:jl Mji(c;,n), where the ideals
¢;, 1 <i< hj, form a set of representatives Gf;..

1.5. Geometric Hilbert modular forms

Under the action ob, the invertibleo-bundlew on M’ decomposes as a direct sum of line
bundlesw,, 7 € Jr. For everyk = > _ k.7 € Z[Jr] we define the line bundlg” = @) w®*-
onM’.

One should be careful to observe, that the global sectiarf @n M/2" is given by the cocycle
v — v(y)~*/24(~, z)¥, meanwhile we are interested in finding a geometric interpretation of the
cocycley — v(v)t=*=™j(v, 2)¥ used in Definition 1.4.

The universal polarization class endowsH}, with a perfect symplectie-linear pairing.
Consider the invertible-bundler := A7, Ml onM'. Note that(k +m —t) — k= nog,

DEFINITION 1.9.—LetR be ano’[x]-algebra. A Hilbert modular form of weighk, level
I';(¢,n) and coefficients ik is a global section ab* © v~ "0"/2 over M xgpe.(z 1) Spec(R).
We denote byG,(T'y (¢,n); R) = HO(M Xgpec(zp2)) Spec(R),wk @ v=0!/2) the R-module of
these Hilbert modular forms.

L
A
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1.6. Toroidal compactifications

The toroidal compactifications of the moduli space-golarized HBAV withprincipal level
structure have been constructed by Rapoport [34]. Several modifications need to be made in order
to treat the case qf, -level structure. These are described in [10, Theorem 7.2].

Let  be a smootH'}(c,n)-admissible collection of fans (see [10, Definition 7.1]). Then,
there exists an open immersion/f! into a proper and smoom[%]-schemdm = M, called
the toroidal compactification gf/* with respect t&. The universal HBAVr: A — M extends
uniquely to a semi-Abelian scherie  — M. The group schem® is endowed with an action
of o and its restriction ta/\M is a torus. Moreover, the sheaf; Vs of B-invariants sections

of ﬁ*Q; e is an invertibleo-bundle onM* extendingw 4 /51 -

/
The schemeV/\M! is a divisor with normal crossings and the formal completion\6f
along this divisor can be completely determined in termX ¢éee [10, Theorem 7.2]). For the
sake of simplicity, we will only describe the completionff! along the connected component
of W\M1 corresponding to the standard cusp<atLet >>° € X be the fan corresponding to the

cusp ato. It is a complete, smooth fan of U {0}, stable by the action ofﬁ, and containing
a finite number of cones modulo this action. B, = Z[¢%, & € ¢] and Sy, = Spec(Ro) =
G, ® c*. Associated to the fak*°, there is a toroidal embeddirfg,, — Ss~ (it is obtained
by gluing the affine toric embeddings,, — S, = Spec(Z[¢*, £ € cN &]) for o € £°°). Let
5S4 be the formal completion ofs; alongSy«\S~. By construction, the formal completion
of M along the connected component/f\M/! corresponding to the standard cuspatis
isomorphic toS4.. /o7 .

Assume thak is T'; (¢, n)-admissible (for the cusp ab it means thak> is stable under the
action ofo ). Then the finite groumi/o,ff1 acts properly and discontinuously dd! and the
quotientM = My, is a proper and smoo%[%]—scheme, containing/ as an open subscheme.
Again by construction, the formal completion 8f along the connected component/af\ A/
corresponding to the standard cuspxats isomorphic taS¢.. /o’ .

The invertibleo-bundlegej/m on M1 descends to an invertibkebundle onM’, extending
w. We still denote this extension by. For eachk € Z[.Jr] this gives us an extension of’ to a
line bundle on)’, still denoted byw*.

1.7. g-expansion and Koecher Principles

If F' = Q the Koecher Principle states that
(3) HO° (M x Spec(R),w* ® g_”"t/Q) = HO(M x Spec(R),w” ® g_""t/z).

For a proof we refer to [10, Theorem 8.3]. For simplicity, we will only describejtb&pansion
at the standard (unramified) cuspcat For everyo € 3> and everyo’[%]-algebraR, the pull-
back ofw to S8.. x Spec(R) is canonically isomorphic to @ Osp., ® R. Thus

HO (S x Spec(R) /0%t @1~ "?)

- { Z agq® | ag € R, ayzee = u"e" T g, Y(u,€) € 05 p X oj}.
¢ec u{0}

This construction associates to each Gy (I'i(c,n); R) an elemenyes = > cc.. U103 ag(9)qs,
called theg-expansion of; at the cusp ato. The element(g) € R is the value ofy at the cusp
atoo.
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PROPOSITION 1.10. —Let R be ao’[x]-algebra.
(i) (g-expansion Principledis, (T'1(c,n); R) — R[[¢%, £ € ¢ U{0}]], g+ g iS injective.
(i) If there existy € Gy (T'1(c,n); R) such thatag(g) # 0, thene*+™~t — 1 is a zero-divisor
inR,foralleco?.

1.8. The minimal compactification

There exists a projective, normm[%]-schemeMl*, containing M!' as an open dense
subscheme and such that the scheli&\M! is finite and étale oveZ|x]. Moreover, for
each toroidal compactification/ of M there is a natural surjectioh/t — M inducing
the identity map on\/!. The schemé/!* is called the minimal compactification @ff'. The
action Ofofr/oﬁ on M* extends to an action ab/** and the minimal compactificatiah/* of
M is defined as the quotient for this action. In gendéi* — M* is not étale.

We summarize the above discussion in the following commutative diagram:

® VL M
| et
M- — |- — > M*
i 7 7
A M! M

1.9. Toroidal compactifications of Kuga—Sato varieties

Let s be a positive integer. Let, : A5 — M be thes-fold fiber product ofr: A — M*! and
(7)s:®* — M1 be thes-fold fiber product oft : & — M1,

Let S be a(o @ ¢) x I'}(¢c,n)-admissible, polarized, equidimensional, smooth collection of
fans, above thé&'! (¢, n)-admissible collection of fan® of Section 1.6. Using Faltings—Chai’s
method [15], the main result of [11, Section 6] is the following: there exists an open immersion of
a.A® into a projective smootﬁ[%]—schemeﬁ = A%, and a proper, semi-stable homomorphism

T :F:W extendingrrszils — M and such thatls\ A* is a relative normal crossing div_isor
above M\M?!. Moreover, A5 contains®*® as an open dense subscheme dridacts on.As
extending the translation action g on itself.

The sheatt] . (A/M?) = R, Q% o

of ¥ aboveY. and is endowed with a filtration:

(dlog o0) is independent of the particular choice
0— Wes /37T — Hfog_dR(Z/W) — gé/m @t —=0.
It descends to a sheaf|,,.,; on M which fits in the following exact sequence:
0—w— Hipg-qr ~ @’ @' —0.
1.10. Hecke operators on modular forms

Let Z[K1(n)\G(Af) /K1 (n)] be the free Abelian group with basis the double cosefs (i)
in G(Ay). Itis endowed with algebra structure, where the product of two basis elements is given
by:

4) [K1(n)zK1(n)] - [K1(n)yKi(n)] = Z [K1(n)zy Ky (n)],

i
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where[K (n)z K (n)] =[], Ki(n)z;. Forg € Sk s (K:(n)) we put:
gl () =D _g(-@").

This defines an action of the algelaik; (W\G(Af)/K1(n)] on Sk (K1 (n)) (respectively
on Gy, ;(Ki(n))). Since this algebra is not commutative when# o, we will define a
commutative subalgebra. Consider the semi-group:

A(n) = { (Z Z) € G(Af) N My () | dy € 0%, ¢, €n, for all v dividing n}.

The abstract Hecke algebra of levé] (n) is defined a&[K; (n)\A(n)/ K1 (n)] endowed with
the convolution produdt4). This algebra has the following explicit description.

For each ideak C o we define the Hecke operat@t, as the finite sum of double cosets
[K1(n)z K7 (n)] contained in the sdtr € A(n) | v(x)o = a}. In the same way, for an idealC o
which is prime ton, we define the Hecke operat6y, by the double coset fak’; (n) containing
the scalar matrix of the idéle attached to the ideal

For each finite place of F, we haveT’, = K1 (n)( % {) K1 (n) and for each not dividingn
we haveS, = K (n)( %’ 2 ) Ki(n), wherew, is an uniformizer off",.

Then, the abstract Hecke algebra of le¥@l(n) is isomorphic to the polynomial algebra in
the variabledl’,, wherev runs over the prime ideals df, and the variablesvﬂ, wherev runs
over the prime ideals of' not dividingn. The action of Hecke algebra obviously preserves the
decomposition (1) and moreovet, acts onSy, ;(n,) as the scalap(v).

Let T(C) be the subalgebra dindc(Sk, (K1 (n))) generated by the operata$s for v{n
andT, for all v (we will see in Section 1.13 th&t(C) does not depend o).

The algebrdl' (C) is commutative, but not semi-simple in general. Nevertheless; farthe
operatorsS, andT, are normal with respect to the Petersson inner product (see Definition 1.5).
Denote byT’(C) the subalgebra ¢f (C) generated by the Hecke operators outside a finite set of
places containing those dividing The algebrdl’(C) is semi-simple, that is to saj, ; (K1 (n))
has a basis of eigenvectors fBf(C).

We will now describe the relation between Fourier coefficients and eigenvalues for the
Hecke operators. By (2) we can associatgyte Si(K7(n)) a family of classical cuspforms
gi € Sk(T'1(¢;,m); C), wherec; are representatives of the narrow ideal class gl(dl].fp

Each formg; is determined by itsj-expansion at the cuspo of M (c;,n)*". For each
fractional ideak = ¢;¢, with { € F*, we putc(g, a) = ™ a¢(g;). By Section 1.7 for eache o7,
we havea.¢ = et ~q, and therefore the definition of g, a) does not depend on the choice of
& (nor on the particular choice of the ideals see [20, 1V.4.2.9]).

DEFINITION 1.11. —We say thag € S, (K (n)) is aneigenform if it is an eigenvector for
T(C). In this casey € Si(n, 1) for some Hecke character, called thecentral characterof g.
We say that an eigenformis normalizedf ¢(g,0) = 1.

LEMMA 1.12 ([24, Proposition 4.1, Theorem 5.2], [20, (4.64)])f ¢ € Sk(K:1(n)) is a
normalized eigenform, then the eigenvaludpbn g is equal to the Fourier coefficientg, a).
The pairingT(C) x Sx(K;1(n)) — C, (T, g) — c(g|r,0) is a perfect duality.

A consequence of this lemma and tli@xpansion Principle (see Section 1.7) is the Weak
Multiplicity One Theorem stating that two normalized eigenforms having the same eigenvalues
are equal.
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1.11. Ordinary modular forms

When the weight is non-parallel, the definition of the Hecke operators should be slightly
modified. We putly , = w, ™T, and S, = w, *™S, (see [24, Section 3]; in the applications
our base ring will be the-adic ring© which satisfies the assumptions of this reference).

The advantage of the Hecke operat®ks, and.S, , is that they preserve in an optimal way
the O-integral structures on the space of Hilbert modular forms and on the cohomology of the
Hilbert modular variety.

DerINITION 1.13.— A normalized Hilbert modular eigenform gsdinary at p if for all
primesp of F' dividing p, the image by, of its T} ,-eigenvalue is a-adic unit.

1.12. Primitive modular forms

For eachn; dividing n and divisible by the conductor af, and for alln, dividing nn; * we
consider the linear map

Sk(nlaw)_)‘sk:(nvw)a g'_)g|n27

whereg|n, is determined by the relatiof(a, g|ny) = c(any !, g).

We define the subspac¥!(n, 1)) of Si(n,1) as the subspace generated by the images of
all these linear maps. This space is preserved by the Hecke operators autdidedefine the
spaceSy¥ (n,1)) of the primitive modular forms as the orthogonal $ff'd (n, 1)) in Sk (n,v)
with respect to the Petersson inner product (see Definition 1.5). Since the Hecke operators
outsiden are normal for the Petersson inner product, the direct sum decompasitiery) =
Snew (n ) @ Sl (n,¢)) is preserved byl’(C). The Strong Multiplicity One Theorem, due to
Miyake in the Hilbert modular case, asserts thaf i S (n, ) is an eigenform fofl’(C),
then it is an eigenform ' (C).

A normalized primitive eigenform is calledreewform

1.13. External and Weyl group conjugates

For an element € Aut(C) we define theexternal conjugatef g € S, (K7 (n)) as the unique
elementy” € Sy (K (n)) satisfyinge(g7,a) = c¢(g, a)? for each ideah of o.

We identify {+1}/# with the Weyl groupK../K% of G by sendinge; = (=1;,1,,7) to
cy KL, where for allr € Jg, det(c; ) < 0if and only if 7 € J. The length of; is | J|.

We have an action of the Weyl group on the space of Hilbert modular forms. More preejsely,
acts as the double clags’; (n)c; K1 (n)] and maps bijectivelfy, (K1 (n)) onto Sy, ;.7 (K1(n)).
The action o ; commutes with the action of the Hecke operators. For an elegrest, (K (n))
we putgy =€\ g-

1.14. Eichler—Shimura—Harder isomorphism

Let R be anO-algebra and lefV,,(R) be the polynomial ring oveR in the variables
(X+,Y:)res- Which are homogeneous of degree in (X,,Y;). We have a pairing (perfect
if ng! is invertible in R)

®) (,):Va(R) x Vo,(R)— R, given by
> XY ij"ij> > (1)Jajbn—j(~>a
<O<J<’ﬂ 0<j<n 0<j<n J
n n
where( . | = .
()=1 ()
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The R-moduleV,,(R) realizes the algebraic representatign= ). (Sym"” @ det™") of
G(R). We endowV/,, (R) with an action of( M, (O) N GLy(E))’* given by

’Y'P((XT)YT)TEJF) = y(’y)mP((det(’y)y_l)t(XﬂYT)TEJF).
LetV,,(R) be the sheaf of continuous (thus locally constant) sections of
GQ\G(A) x Vo (R) /K1 ()KL, — GQ)\G(A) /Ky (K =Y,

wherey € K (n)K 1 acts onV,,(R) via its p-party,,.

For eachy € A(n) the map[y]: G(A) x V,,(R) — G(A) X V,,(R), (z,v) — (zy,yp.v) is a
homomorphism of sheaves. This induces an action of the Hecke op&Rator)y K (n)] on
HY (Y™ V,,(R)) preserving the cuspidal cohomolo{,,.,(Y*", V,,(R)).

The action ofe; on (M, V2a*) given bye; - ((z7,25,\7),v) = ((—Z7, 25,7),v) induces an
action of the Weyl group ofl(Y#» Van) commuting with the Hecke action.

By Harder [19] we know that if: # 0 thenH{'(Y*» V,,(C)) = He, . (Y™, V,,(C)).

By (5) we have a Poincaré pairifg ) : H4(Y?",V,,(R)) x H{(Y*",V,,(R)) — R.

Let n be the idéle corresponding to the idealand let. = ( % §) be the Atkin-Lehner
involution. By putting[z, y] = (z, ty) we obtain a new pairing

(6) [, ]:H{ (Y™, Vo, (R)) x H{ (Y™, V,,(R)) — R,

which is Hecke-equivariant. We call it theisted Poincaré pairing
Now we state the Eichler—Shimura—Harder isomorphism:
THEOREM 1.14 (Hida [25]). df n # 0, then there exists an isomorphism

7) 5:D P Sk.s(n,v) =HH (Y™ V,(C)),

Y JCJIFp

wherey runs over the Hecke characters of conductor dividingnd type—ngt at infinity. This
isomorphism is equivariant for the actions of the Hecke algebra and the Weyl group.

For eachJ C Jr leté;: {£1}/F — {£1} be the unique character of the Weyl group sending
e:=(—1,,1")to 1, if 7 € J, and to—1 if 7 € Jp\J. The restriction of the Eichler—Shimura—
Harder isomorphism (7) t&, s(n,v), followed by the projection on thé&p, é;)-part yields a
Hecke equivariant isomorphism

(8) 8t S, (n,y) 2H{ (Y, V,(C)) [, é,].

Remark1.15. — We have a direct sum decomposition:

9) HY(M™,V,,(C)) = €D HY(M™,V,(C))[e; @ d].
JCJp

wherec denotes the complex conjugation on the coefficients. This decomposition is finer than
the usual Hodge decomposition, whose graded pieces are givéndy € d):

g HY(M™ V,(C)= P H(M™ V,(0))[e; @]
JCJr,|J|=a
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The transcendental decomposition (9) has an algebraic interpretation, via the so-called BGG
complex, that we will describe in the next section.

2. Hodge—-Tate weights of Hilbert modular varieties

The aim of this section is to determine the Hodge-Tate weights ofpth€ic étale
cohomology of a Hilbert modular variety* (Mg , V,, (Q,)) as well as those of the-adic Galois
representation associated to a Hilbert modular form. In all this section we assume

(I) pdoes not divideA = N /g (nd).

The proof relies on Faltings’ Comparison Theorem [14] relating the étale cohomolayy of
with coefficients in the local systef¥,, (Q,) to the de Rham logarithmic cohomology of the
corresponding vector bundlé, over a smooth toroidal compactificatidd of A/. The Hodge—

Tate weights are given by the jumps of the Hodge filtration of the associated de Rham complex.
These are computed, following [15], using the so-called Bernstein—Gelfand—Gelfand complex
(BGG complex).

Instead of using Faltings’ Comparison Theorem, one can apply Tsuiji's results to the étale
cohomology with constant coefficients of the Kuga—Sato vatigtys-fold fiber product of the
universal Abelian varietyl above the fine moduli spadé’! associated td/; see [11, Section 6]
for the construction of toroidal compactifications.4f).

For each subset of Jp we putp(J) =3 ;(ko —m; — )T+ > ;.\, m-7 € Z[Jp] and

foreacha=3_ ., a,7 € Z[Jp]weputla|=>__; ar €Z.

2.1. Motivic weight of the cohomology

Consider the smooth sheaf'r.Q, on M*, wherer: A — M is the universal HBAV. It
corresponds to a representation of the fundamental grou ‘ofn G(@p). By composing this
representation with the algebraic representatiprof G of highest weight: (see Section 1.14),
we obtain a smooth sheaf di* (thus onY!). It descends to a smooth sheafBndenoted by
VTL(Q[))' .

Let Wy = ,c, ker(Ta — ¢(f,a)) be the subspace 6¢(Y, V,,(Q,)) corresponding to the
Hilbert modular newforny € Si.(n,¢). Puts =" _(n. + 2m,) = dny.

ProPOSITION 2.1. =W, is pure of weightd + s, that is to say for all primel { pA the
eigenvalues of the geometric Frobenlusb, at [ are Weil numbers of absolute vallie™ .

Proof. —Sincef is cuspidaliVy C H,d(Y@,Vn (Q,)). We recall thai7 is a disjoint union of
its connected componenM@ = M (c;, n)@, where the;’s form a set of representatives@f}i.
Let ¢ be one of the;'s and M = M{ (¢c,n). Forx = (), c we have

HO (0% /0,2, HE (ML, V(@) = HE (Mg V,(T,).

and therefore, it is enough to prove tHﬂf(M&,V,L(@p)) is pure of weightd + s. We use
Deligne’s method [4]. Letr: A — M be the universal Abelian variety (see Section 1.4). The

sheafV,,(Q,) corresponds to the representat@®, . ;  Sym"” @ det™" of the groupG* and

can therefore be cut out by algebraic correspondeno(d%lim*@p)®s. Letr,:. A% — M" be the
Kuga—Sato variety. By the Kunneth'’s formula we have

H{ (M3, (R'7.Q,)"") C B (M}, R*m,.Q,) C H{ T (A5, Q,) € H**(

Q A%7 @p)»

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



520 M. DIMITROV

where the middle inclusion comes from the degeneration of the Leray spectral sequence
Ey) = Hi(]\%, Ring,Q,) = H (Af@, Q,) for x = 0,c (see [4]). The proposition is then

a consequence of the Weil conjectures for the eigenvalues of the Frobenius, proved by
Deligne [5]. O

2.2. The Bernstein—Gelfand—Gelfand complex ovep

In this and the next sections we describe, following Faltings [13], an algebraic construction of
the transcendental decomposition of the Betti cohomology described in (9).

All the objects in this section are defined over a characteristic zero field splitting

Letg, b, tandu denote the Lie algebras 6f, B, T'andU, respectively. Consider the canonical
splittingg=b@u~. LetU(g), U(b) be the enveloping algebras gandb, respectively.

The aim of this section is to write down a resolutioni§f of the type:

0V, U(g) ®uw Ky,

where theK?/ are finite-dimensional semi-simptemodules, with explicit simple components.
We start by the case = 0. If we put K7 = A?(g/b) we obtain the so-calledar-resolution
of V,. Since \*(g/b) is ab-module with trivialu-action we deduce thak] = D W, with p
running over the weights aB that are sums of distinct negative roots.
By tensoring this resolution witk,, we obtain Koszul’'s complex:

J

(10) 0=V, = U@ Suc ( \@/0) & Vil )

which is a resolution o¥/,, by b-modules/\‘(g/b) ® V,,|s, Nnot semi-simple in general.

The BGG complex that we are going to define is a direct factor of Koszul's complex cut by
the action of the centdr (g)“ of U(g).

Denote byy,, the weightn character of/(g)©. It is a classical result that

LEMMA 2.2. —x, = X, if, and only if, there existd C Jr such thatu =e;(n +t) —t.

By taking they,,-part of the bar resolution (10) &, we obtain a complex:

(11) 0=V, —U(g) ®ueey Kpy withKl = ) We,(ns)—ts
JCJIp,|J|=1

which is still a resolution o¥/,, as a direct factor of a resolution. We call this resolution the BGG
complex.

2.3. Hodge-Tate decomposition dfi*(M ® Q,,V,(Q,))

In this paragraph we summarize the results of [11, Section 7]. The algebraic groupsl’
and D of Section 1 have models ové&r, denoted by the same letters. For a schémwe put
5" =S x Spec(o’[x]).

By Section 1.9 we can extend the vector bundleand H to M’. Only the construction
depends on a choice of a toroidal compactificatiotd — M of 7: .4 — M.

The sheafllp = Isom, 0, (w,0® Og7,) is aD’-torsor overM’ (for the Zariski topology).
We have a functofFp from the category of algebraic representationdbfto the category of
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vector bundles o/’ which are direct sums of invertible bundles. To an algebraic representation

W of D', Fp associates the fiber produidt := 9ty [>)< w.

The sheaf s = Isomgg o (Hjo-qr: (09 Og7,)) is aB’-torsor overl!”. We have a functor
Fp from the category of algebraic representation®b6fo the category of filtered vector bundles
on M’ whose graded are sums of invertible bundles. To an algebraic represemtatfad’, 75

associates the fiber produét= My j§< V.

Arepresentation off (respectivelyl’) can be considered as a representatiafi biy restriction
(respectively by makind/ act trivially). Thus, we may define a filtered vector bundfig on
M’ associated to the algebraic representatiprof G, and an invertible bundi@V,, ,,, on M’
associated to the algebraic representatiofi ef D x D, given by(u,€) — u™e™.

The sheaflle = Isom, g0 (Hlg-ar, (0@ O37,)?) isaG’-torsor overM’. We have a functor
Fe from the category of algebraic representation&tfo the category of flat vector bundles on
M’ (that is vector bundles endowed with an integrable quasi-nilpotent logarithmic connecnon).

To any algebraic representandﬁ of B’, Fs associates the fiber produ?z’tv = Mg >< V.
For j € N, we putH],, (M V) = R, (VY ® Q2 (dlog 00)), whereg : M’ — Spec(o'[L])
denotes the structural homomorphism. B

By Faltings’ Comparison Theorem [14], t%p—representatioﬂ{’(w%p,Vn(Qp)) is crys-

talline, hence de Rham, and we have a canonical isomorphism
He (Mép , Vi (@p)) ® Bar = Hl'og_dR(W/@p s Vn) ® Byr.-

By [11, Section 7] the Hodge to de Rham spectral sequence

(dlog 00))) = H L 4r (MT 5 ,Vn),

/Qp’

SR
EiY =H J(Ml/@p7gr (Vn®QM1

degenerates &; (the filtration being the tensor product of the two Hodge filtrations). In order
to compute the jumps of the resulting filtration we introduce the BGG complex:

K= @ WEJ(n+t)—t7no'
JCTp | J|=i

The fact thaﬂf; is a complex follows from (11) and from the following isomorphism (see [15,
Proposition VI.5.1])

(12) HOIHU(g) (U(g) ®U(b) Wl), (U(g) ®U(b) Wg) - Diﬂ.Op.(Wg,Wl).

Define a filtration onC,. by Fil‘ K =D, ‘p(J)Dle(nH)_t?no.

The image of Koszul's complex (10) by the contravariant funétor— )V is equal to the de
Rham complex. Since the BGG complex is a direct (filtered) factor of the Koszul's complex, we
obtain:

THEOREM 2.3 [11, Theorem 7.8]. —
(i) There is a quasi-isomorphism of filtered complexes

Ky < Vi ® Q% (dlog ).
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(i) The spectral sequence given by the Hodge filtration

By = @ HH 1] (W/@p’w€l(n+t)*t1nn) :>Hf;—gj;dR( 13, Vn)
JCTr,|p(J)|=i

degenerates di;. _
(iiiy For all j < d, the Hodge—Tate weights of tipeadic representatiorHj(Mép,Vn(Qp))

belong to the sef|p(J)|, |J]| < j}.
2.4. Hecke operators on the cohomology

We describe the standard Hecke operdtpas a correspondence aft. We are indebted to
M. Kisin for pointing us out that the usual definition of Hecke operator¥ axtends ta"! (see
[29, 81.9-1.11]). Note that the corresponding Hecke action on analytic modular forr6s for
(see Section 1.10) is not easy to write down, because the double class for the Hecke @perator
does not belong t6* (A ), unlessv is inertin F.

+
Recall thaty}! (n) = Hf:Fl Mi(c;,n), wherec, . . ., Ct form a set of representatives Gf ..

Assume that;a and¢; have the same class {@}.. Consider the contravariant functar(}
from the category oﬁ[ﬁ]schemes to the category of sets, assigning to a scltethe set of
isomorphism classes of quintupléd, A\, a, C, 3) where (A, \,«)/S is ac;-polarized HBAV
with u,-level structure,C is a closed subscheme of{a] which is o-stable, disjoint from
a(G,, ® 2~ 1) and locally isomorphic to the constant group scherme over S, and 3 is an
o, 3-orbit of isomorphismsc;a, (c;a)4) ——(¢j, ¢j+).

We have a projectiom . — M', (A, \,a,C, B) — (A, X\, a) which is relatively representable
by 71 : M2 (¢c;,n) — M (c;,n). We have also a projectiom, : M (¢c;,n) — M{(c;,n) coming
from (A, )\, «,C,8) — (A/C, X ,a’), whered' is the composed map efandA — A/C and)\
is ac;-polarization ofA/C (defined viak and ).

3
PutY! = H?ﬁl M}(c;,n). As ¢; — ¢; ~ ¢;a is a permutation ofC1}, we get two finite
projectionsy, my: Y — Y

yi<=——y -2y

From this diagram we obtaim; ., — 7} H}. Therefore, for every algebraic representation
V of G, we haver; VYV — 77 VV. By composing this morphism by, and taking the trace, we
obtainVV — . m3 VYV — m.ri VY — VY. This gives an action df, onH®* (Y1, VV).

The same way, the above diagram gives — nfw and 5y — wfv. Therefore, for each
algebraic representatidi’ of T', we getmsW — w7 W. In order to define the action df, on
Hilbert modular forms, we need to modify the last arrow: we decompbss (W ® w™2t) @ w?
and we definery, Ww=%) — 1. (Ww~%) as above ane,.w?* — m1.w* via the Kodaira—
Spencer isomorphisif}}., ~ w? @, 0¢~! as in [29, §1.11]. Thus we obtalV — 71, T5W —
T W — W and an action of, onH®* (Y1, W).

In particular, we obtain an action @, on the spacél®(Y!,w* @ v~"0%/2) of geometric
Hilbert modular forms foiG*. As it has been observed in [29, 1.11.8] o@ethis action is given

4® SERIE— TOME 38 — 2005 N° 4



COHOMOLOGY OF HILBERT MODULAR VARIETIES 523
by the projection

1
e 2 E(ter ) S (Ve ey,
ool lel€o /o) 4

followed by the usual Hecke operator on the space of Hilbert modular forms (see Section 1.10).
2.5. Hodge-Tate weights of Ind% p in the crystalline case

We first recall the notion of induced representation. Ugte a vector space over a field
and letpy : G — GL(Vp) be a linear representation. The induced representﬁﬁi@% po Of pg
from F to Q is by definition theL-vector space

Homyg,. (Gg, Vo) := {#0:Go — Vo | Yz € Gr, y € Gg, do(yz) = po(z™") (¢0(y)) },

wherey € G acts ongy € Homg,. (Go, Vo) by y - ¢o(-) = do(y1+).

For any fixed decompositiofip = [, ;. 7Gr, the mapg, — (¢o(7))- gives an isomor-
phism betweeilomg,. (Gg, Vo) and the direct surép._ V- (where eaclV is isomorphic tolj).
Via this identification, the action &g on & V- is given by:

(Ind$ po) (1) ((v-)7) = (po (F1y7y) (vr,))

wherey~'7 € 7,Gr. In fact (¢o(7)), = (¢o(y~'7))r = (po(F'y7,) (b0 (7)) -
Keeping the same notations we define, following Yoshida [44], the tensor induced representa-
tion ®@ Ind? po: Gg — GL(®,V;) as:

(@Ind‘%i po) () (@ v7> = po (7 i) (vr,).

Remark2.4. — For eachy € Gg the mapr — 7, is a permutation of/r and it is trivial if,
and only if,y € G=. Therefore, for eacly € G, we have(® Ind2 po)(y) = ), po(71y7).
Moreover for ally,y’ € Go we have(r, ), = 7y, .

DEFINITION 2.5.—Theinternal conjugatey, of g € S, s(n,¢) by 7 € Jr is defined as the
unique elemeny, € Si- j-(7(n),,) satisfyingc(g-,a) = ¢(g,7(a)) for each ideala of o,
wherek™ =3, k7" andy-(a) =9 (7(a)). It is a Hilbert modular form on (F).

If p=py., by the previous remark we hay@® Ind% p)(y) = Q. py, (y) for all y € G=.
Brylinski and Labesse [3] have shown (see [40] for this formulation):

THEOREM 2.6 (Brylinski-Labesse). The restrictions taj of the twoGq-representations
W; and® Ind% p have the same characteristic polynomial.

COROLLARY 2.7 [11, Corollary 7.9]. —
(i) The spectral sequence given by the Hodge filtration

E}’ = @ Hi+i— 1l (M/QP7W5‘](n+t)7t,no) = le:gj-dR(M/@p’V")
JCJF,|p(J)|=i

degenerates di; and is Hecke equivariant.
(i) The Hodge—Tate weights Bf; are given by the multisgtip(.J)|, J C Jp}.
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Proof. —(i) By taking the invariants of the Hodge filtration 0f, ® Q;\T(dlog oo) by the

Galois group of the étale covering/! — M we obtain a filtration of the comple¥,, ®
Q’M(dlog oo) on M, still called the Hodge filtration. The same way, we define the BGG complex

over M’ by taking the invariants of the BGG complex ovér . The associated spectral sequence
is given by the invariants of the spectral sequence of Theorem 2.3(ii). We have now to see that it
is Hecke equivariant.

The Hecke operatof, extends to a correspondence Bi. One way to define it is to
take the schematic closure @ c Y x Y! in Y1 x Y. Another way is to take a toroidal
compactificationy! of Y;! over the toroidal compactificatiori! of Y'!.

HenceT, acts onH*(Y1, W) and onH*(Y1,VV). Moreover, theT,’s commute. In fact
they commute on the right-hand side of Theorem 2.3(ii), because this side is independent of
the toroidal compactification by Faltings’ Comparison Theorem. Since the spectral sequence of
Theorem 2.3(ii) degenerateskt, they also commute on the left-hand side.

(i) We haveW . | (1) —¢.ny = w ™ (" +t @ (/) |t follows from Theorem 2.3 (as in [15,
Theorem 5.5] and [31, Section 2.3]) that the jumps of the Hodge filtration are amiy,
JC Jp.

Moreovergr!P(/)! HY(M 5, Vn @ Q37(dlog 00)) = He- 1l (M5, ,w™ e ()T @ (),

It is enough to see that th®,-vector spaceHd—‘J‘(7@p,g—61(”+t)+t @ vP)[f] is of

dimensionl for all J C Jg. o
By the existence of a BGG complex ov@rgiving by base change the BGG complexes over

Q, andC, we have a Hecke-equivariant isomorphism

el (?@p’gfw(nﬂ)ﬂ ® ZP(J)) ®@p C = ge (Yan,Vn((C)) [ET\®C}

For all.J C Jp, the f-part of HY (Y, V,,(C))[e; @¢] is equal toH{ (Y, V,,(C))[e; @c, f]
and is therefore one dimensional by (8]0

Remark2.8. —
(1) We proved thall’; is pure of weightd(ko — 1). The set of its Hodge—Tate weights is
stable by the symmetry — d(ko — 1) — h, since|p(Jp\J)| = d(ko — 1) — |p(J)|. This

symmetry is induced by the Poincaré dualityy x Wy — Q,(—d(ko — 1)).
(2) If F is areal quadratic field and denotes the non-trivial automorphism Bf then the

Hodge—Tate weights di’; are given bym., ko — m, —1,ko + m, — 1,2kg — m, — 2.
2.6. Hodge—Tate weights op in the crystalline case

The embedding, : Q — Q,, allows us to identify/ with Homg_ .. (F, Q). For each prime
p of F dividing p, we putJr,, = Homg, s (Fy,Q,). Thus we get a partitiodr =[], Jr-
Let D, (respectivelyl,) be a decomposition (respectively inertia) subgroug efatp.

The following result is due to Wiles & is parallel, and to Hida in the general case.

THEOREM 2.9 (Wiles [43], Hida [23]). —Assume thaf is ordinary atp (see DefinitiorL.13)
Thenpp, is reducible and

g *
(ORD) o~ (T4,

whereSp (respectively:,) is obtained by composing the class field theory fiap- o, with the

mapo, — @;- T HTGJF » 7(x)~™~ (respectivelyr — HTGJF , 7(z) = (ko—m-=1)),
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Breuil [2] has shown that if > &y andp does not divide\, thenp is crystalline at each prime
p of F dividing p, with Hodge—Tate weights betweérandk, — 1.

COROLLARY 2.10. -Assumep > ko and thatp does not divideA. Then for each prime
p of I dividing p, p|p, is crystalline with Hodge-Tate weights tB&F, : Q,] integers(m.,
ko —mr —1)rep, -

Proof. —Assume first that, £ 0. Let K be a CM quadratic extension &f, splitting all the
primesp of F' dividing p. Blasius and Rogawski [1] have constructed a pure motive Aveiith
Hodge weightgm, ko — m, — 1)-c s, Wwhosep-adic realization is isomorphic to the restriction
of p to Gx. This shows thap|p, is de Rham for alp, and crystalline fop big enough.

By Faltings’ Comparison Theorem the Hodge weights of this motive correspond via
tp:Q — @p to the Hodge-Tate weights of ijsadic realization, which are the same as the
Hodge—Tate weights of at primesp dividing p. This proves the corollary fat £ 0.

If n =0 (or more generally ik is parallel) we can complete the proof using the following

LEMMA 2.11. —Leta andb be two positive integers and 16t ) ¢ ;. (respectivelyb,) c ;)
be integers satisfying < 2a, < a (respectively0 < 2b,. < b). Assume that the following two
multisets are equal

{ZQT+ > (aaT),JCJF}{ZbT+ > (bbT),JCJF}.

TeJ TEJp\J TeJ TeJr\J

Thena = b and we have equality of multisefs., 7 € Jp} = {b,, 7€ Jp}.

Using this lemma together with Theorem 2.6 and Corollary 2.7(ii) we obtain, up to
permutation, the Hodge—Tate weightspddt primesp dividing p. In particular, we know exactly
the Hodge—Tate weights pfwhenk is parallel. O

2.7. Fontaine—Laffaille weights ofp in the crystalline case

Our aim is to find the weights of|;, for p dividing p. If f is ordinary atp we know by
Theorem 2.9 thap, p, is reducible and by a simple reduction mod@tove obtain the weights

of oI, -

PROPOSITION 2.12. —Assumep > k and thatp does not divideA. Thenp is crystalline at
eachp dividing p with Fontaine—Laffaille weightém, ko —m, —1);¢c ., -

Proof. —It follows from Fontaine—Laffaille’s theory [17] and from the computation of Hodge—
Tate weights op|p, from Section 2.6.

Consider a Galois stable latti@®@? in the crystalline representatign as well as the sub-
lattice P2. The representatiop is equal to the quotient of these two lattices. It is crystalline,
as a sub-quotient of a crystalline representation. Its weights are determined by the associated
filtered Fontaine—Laffaille module. Since the Fontaine—Laffaille functor is exact, this module is
given by the quotient of Fontaine—Laffaille’s filtered modules associated to the two lattices. By
compatibility of the filtrations on these two lattices, and by the conditionk,, the graded of
the quotient have the right dimensiono

COROLLARY 2.13. —Letp be a prime off” abovep. Then

_ g *
P|IPN(6J 5p>7
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wheree,, 5, : I, — F; are two tame characters of levelp | or 2|Jp,,|, whose product equals
the (1 — ko )th power of the modulp cyclotomic character and whose sum has Fontaine—Laffaille
weights(m,, ko —m, —1)rcs,, -

3. Study of the images ofs and Ind% 5

In all this section we assume that> k, andp does not divid&A.
Letw:Ggp — F)’ be the modulg cyclotomic character and letr : GLa (k) — PGLa(x) be
the canonical projection. We recall that= py .

3.1. Lifting of characters and irreducibility criterion for p

PROPOSITION 3.1. —

(i) For all but finitely many primeg (Irr;) holds, that isp is absolutely irreducible.

(ii) Assume thak is non-parallel. If for all.7 C Jp there exists € 0, e — 1 € n, such thap
does not divide the non-zero integefq(e?”) — 1), then(Irr;) holds.

Remark3.2. — Assume thdt = kot is parallel and that for all C J C Jp, there exists € o7,
e — 1 € n such thap does not divide the non-zero integ&@/@(ep(” —1). Then we expecp
to be absolutely irreducible, unlegslivides the constant term of an Eisenstein series of weight
k and level dividingn, that is the numerator of the valuelat- k, of the L-function of a finite
order Hecke character @f of conductor dividingh (see [16, §3.2] for the cadé = Q).

Proof. —Sincep is totally odd, if it is irreducible, then it is absolutely irreducible. Assume that
p is reducible:p®® = @ga1 @ gp/gal. The charactergg,i, <P/ga1 :Gr — k> are unramified outside
np andggaipy,) = det(p) = Pgaw " (recall thaty is a Hecke character of infinity typenqt).
Denote byo 7 ; the subgroup oé* of elements= 1 (modn). Theno, , is a product of itg-part
11 plp o, and its part outsidg, denoted byax(”).

By the global class field theory, the Galois group of the maxim@mified (respectivelyp°-
ramified) Abelian extension of' is isomorphic toCl}n = Aﬁ/Fxﬁf’lD(R)+ (respectively

Can o = lim._ Can .= AX/FXAX(”)D( R)+). We choose the convention in which an
unn‘orm|zer corresponds to a geometric Frobenius. We have the following exact sequence

(13) 1%(H0;> {6€0+|€71€n}—>01pnp HCl;nﬂl.
plp

By Corollary 2.13, for each

P | D, 0gal D Pl

is crystalline ap of weights(m.,, ko —m; —1);csp, -
By (13) for everye € 0, e — 1 € n we have the following equality ir:

1= SDgal H@gal p H H m., Or (ko—m,—1) _ eP(J)7

plp plp T€JFRp

for some subsef c Jp. By the assumptiop > ko, if k is non-parallel, ther?(”) = 1 for all
J C Jr. Thus we obtain (ii) and (i) wheh is non-parallel.
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Assume now that = kot is parallel and that forall C J C Jp, there exists € 05, e—1€n,
such thap does not divide the non-zero integep/@(ep(” —1). The same arguments as above
show that the restriction tp[, o, of the charactepg. (respectivelyy,,) Cl}npm — KX IS
trivial (respectively given by thél — k)th power of the norm). By the following lemma (applied
to P =Cl} e andQ = (ILy, 00 )/{€ € 0f | € — 1 €n}) there exists a unique charactgy.
(respectively@ﬁéal):Cl}npw — O lifting ¢ga1 (respectivelyyy,) and whose restriction to
lep o, is trivial (respectively given by thél — kq)th power of the norm).

LEMMA 3.3.— Let P be an Abelian group and) be a subgroup, such that the factor
group P/Q is finite. Letpp: P — k* and ¢g : Q — O* be two characters such that we have
vp|o = P modp. Then, there exists a unique characfes : P — O*, whose restriction t@)
is ¢g and such thapp modp = ¢p.

Forz € A, we putp(z) := @gai(z) andy’(z) := @, (z)x, *zk, . Theny (respectivelyy’)
is a Hecke character df, of conductor dividingr and infinity type0 (respectively(1 — ko )t). It
is crucial to observe that there are only finitely many spcmdy’.

Assume now that for infinitely many primes p is reducible. Then there exist Hecke
characterg andy’ as above, such that for infinitely many primes/e havep®* = pga @ (p/gal
(mod P). Hence for each prime of F' not dividing n we havec(f,v) = ¢(w,) + ¢’ (@)
(mod P) for infinitely many P’s and hencec(f,v) = ¢(w,) + ¢'(w,). By the Cebotarev

Density Theorem we obtaip®* = ¢ & ¢’. This contradicts the irreducibility of. O
3.2. The exceptional case

The aim of this paragraph is to find a bound for the primeach thapr(p(Gr)) is isomorphic
to one of the groupsly, Sy or As. We will only use the fact that the elements of these groups
are of order at mosi.

Assume thapr(p(Gr)) = A4, S4 Or As. By Corollary 2.13 there exist, € {£1}, 7 € Jp,
such that for alp | p and for any generatar of F;h, whereh = |Jr;,|, the element

H T(x)ef(kf_l) E]F;h
TGGal(Ith /Fp)

belongs topr(p(1,)) and is therefore of order at most(if (ORD) holds we may assume that
e; = 1 for all 7). Denote byry, ..., r, the elements ofr,,. Then

€ry(kry = 1) +€rp(hr, = 1)+ + eTh,phil(kTh, -1)e Z/(ph - 1)

is of order< 5, hences((ky, — 1) +p(kr, — 1) +--- +p" 1k, — 1)) = p" — 1.
h—1

If we replace the generatar by xp,xPQ, ...,z and then sum these inequalities we find
5% resp, (kr =1) 2 [Jppl(p—1). Hence5 3~ ; (k- —1) >d(p—1).
We conclude thapr(p(Gr)) cannot be isomorphic td, Sy or As if

dp—1)>5> (k- —1).

TEJR

Note that this assumption follows fro¢f) if d > 5.
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3.3. The dihedral case

In this paragraph we study the case wie(p(Gr)) is isomorphic to the dihedral group,,,
wherer > 3 is an integer prime t@. Let C,. be the cyclic subgroup of orderof Ds,.. Since
pr—1(C,) is a commutative group containing only semi-simple elementés not divide), it
is diagonalizable. Singer—! (D, \C,.) is contained in the normalizer pf ~*(C,.), itis contained
in the set of anti-diagonal matrices.

Let e: Dy, — {£1} be the sigh map and lek be the fixed field ofker(e o prop). The
extensionk'/F' is quadratic and unramified outsidg.

Let ¢ be the non-trivial element of the Galois groWml(K/F). Since p is absolutely
irreducible, butp|g, is not, there exists a charactgg.;: Gx — «* distinct from its Galois
conjugatepg,) and such thapig,. = @ga1 ® P,

LEMMA 3.4. —Letp be a prime off dividing p. Assume that there existsc Jr, such that
p # 2k, — 1. Then the field< is unramified ap, and g, is crystalline at prime$§3 of K above
p of weights(m.,, ko —m; — 1)cp, -

Proof. —If K/F ramifies atp then(I,) would contain at least one anti-diagonal matrix and
the basis vectors would not be eigen figf, ). But the groups(1,) has a common eigenvector.
Hence, the elements of(p(7,,)) would be of ordek< 2. Using the computations of Section 3.2
andp > ko, we find that for allr € Jp, we have2(k, — 1) =p — 1.

By Corollary 2.13,pg. @ Pgal is crystalline a3 of weights(m, ko —m,; —1),¢s,, and

c 11—k
(‘Pgal(pgal)\fspfwum .o

Let © be the ring of integers of(, and O its profinite completion. Denote b@jjl the
subgroup o of elements= 1 (modn). Thenﬁi1 is a product of ita)-part]_[gmp Dg and its

part outsidep, denoted by .
By the global class field theory, the Galois group of the maximamified (respectivelyp>-
ramified) Abelian extension ok is isomorphic toClk , := A /K*O [ | KX (respectively to

Clg npee 1= AIX(/KXE):?S”)KOXO). We have the following exact sequence:

(14) 1H(HD§)/{€GDXEleﬂ}HCh{,npmHClKﬁnﬂl.
Blp

PROPOSITION 3.5. —
(i) Assume that for alt € Jr, p # 2k, — 1 and thatpr(p(Gr)) is dihedral. LetK/F' be the
guadratic extension defined above. Then one of the following:holds
e K is CM and there exists a Hecke characterf K of conductor of norm dividing
Ay and infinity type(m., ko — 1 — m;),c., such thap = Indg ¢ (mod P),
e K is not CM and we can choose placeof K above each € Jr such that for all
e€ 0%, e—1enthe primep dividesN g /q(I ], , 7(€)™ 7(c(e))o—m =1 —1).
(i) Assume thaif is not a theta series. Then for all but finitely many primethe group
pr(p(Gr)) is not dihedral.

Remark3.6. —

(i) The primesp for which the congruence = Ind% ¢ (modP) may occur should be
controlled by the value at of the L-function associated to the CM charactefy° (in
the elliptic case it is proved by Hida [22] and Ribet [36]; see also Theorems A and B).
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(i) We would like to thank E. Ghate for having pointed us out the possible existence of
dihedral primes for non-CM field€’. It would be interesting to explore the converse
statement, that is to say to try to construct for a given prind&viding the above norms, a
newform f such thapr(p(Gr)) is dihedral.

Proof. —(i) By (14) and the above lemma, we hayg,; : Clg np — £ Whose restriction

to H,mp 53;3 is given by the reduction modulp of an algebraic character — z*, where
k= > resp MrT + (ko —m. —1)7 o ¢, for some choice of placesof K abover € Jr.

We observe that the character— z* is trivial on o, whereas it is only trivial modulp on
{e€ ©* | e — 1 €n}. The case wheik is not CM follows immediately.

Assume now thaf is CM. In this case{e € 0 | e — 1 € n} is a finite index subgroup of
{e€ O* | e — 1€ n}. Sinceker(O* — k*) does not contain elements of finite order, the above
character is trivial o{e € O* | e — 1 € n}.

By Lemma 3.3 (applied t& = Clg npee and @ = (I [, Ogp)/{e € O* [ € — 1 € n}) there

exists a liftggal : Cli np — O* whose restriction tg [y, Og; is given byz — zk.

We pute(z) := @gai(z)z, "2k, . Theny is a Hecke character df as desired.

(ii) There are finitely many field$( as above. For thosE that are not CM it is enough to
choose: € 9%, € — 1 € n, of infinite order inO* /o*.

For each of the CM field4( that are only finitely many charactegsas above. Therefore, if
pr(p(Gr)) is dihedral for infinitely many primeg, then there would exisk” and ¢ as above,
such that the congruenge= Indf( ¢ (mod P) happens for infinitely man#’s. Hencef would
be equal to the theta series associated.to O

3.4. The image ofp is “large”

THEOREM 3.7 (Dickson). —

(i) Anirreducible subgroup dPSL4(x) of order divisible by is conjugated insid®GL, (k)
to PSL,(F,) or to PGLy(F,), for some powey of p.

(i) Anirreducible subgroup dPSL,(x) of order prime top is either dihedral, or isomorphic
to one of the groupsl,, S; or As.

As an application of this theorem, Propositions 3.1, 3.5 and Section 3.2 we obtain the following

PrROPOSITION 3.8. — Assume thalf € Si(n,+) is a newform, which is not a theta series.
Then for all but finitely many primes the image of is large in the following sense
(LI;) there exists a powey of p such thatSLy(F,) C im(p) C ™ GLy(F,).

Let ' be the compositum of and of the subfield of) fixed by the Galois grouper(w™).
The extensiod?/F is Galois and unramified at sinceF is unramified ap andy is of conductor
prime top. ThereforeG is a normal subgroup of containing the inertia subgrougs, for
all p dividing p.

We putD = det(p(G)) = (F)' .

ProPOSITION 3.9. — AssumgLI;). Then there exists a powgrof p such that, either
p(G5) = GLy(Fy)” := {z € GLy(F,) | det(z) e D}, or
UUp(Gz) = (IFqX2 GLg(]Fq))D ={ze ]F;z GL2(F,) | det(z) € D}.

Proof. —We first show thapr(p(G4)) is still irreducible of order divisible by. By (LI;) the
grouppr(p(Gr)) is isomorphic td’SLa(IF,) or PGL2(F, ). The grouppr(p(G5)) is a non-trivial
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normal subgroup opr(im(p)) (because it containsr(p(1,)) andp > ky; see Corollary 2.13).
SincePSL;(F,) is a simple group of indeR in the groupPGL»(F,), we deduce

PSLy(Fy) C pr (ﬁ(gl/;)) Cpr (p(Gr)) C PGLy(F,).

LEmMMA 3.10.— Let H be a group of centetZ and letpr: H — H/Z the canonical
projection. LetP and @ be two subgroups off such thatpr(P) D pr(Q). Assume moreover
that ) does not have non-trivial Abelian quotients. Them Q.

It follows from this lemma thap(G ) O SL2(F, ), hence
(5 GLa(F,))"” 5 p(Gp) D GLa(F,).

Since[(k* GLa(F,))? : GL2(F,)P] < 2 we are done. O

Let§ € F,2\F, be such thad® € F,. Then(F,, GL2(F,))” = GLy(F,)” I (§ GLx(F,))”
and hencer((]F;2 GLy(F,))P) =F, U 0F,. Therefore, th&,-algebra generated by the traces of

the elements ofF, GLy(F,))” is Fy2, while pr((F, GL2(FF,))”) C PGL2(F,). This reflects
the existence of a congruence with a form having inner twists.

3.5. The image ofind? 5 is “large”

We assume in this paragraph ti&f;) holds.

By Proposition 3.9 there exists a poweosf p such thapr(p(G5)) = PSLa(IFy) or PGL2(F,).
Consider the representatim(lnd?i p):gﬁ — PGLy(F,)’7. An automorphism of the simple
group PSL.(F,) is a composition of a conjugation by an elementREGL,(F,) with an
automorphism off,. By a lemma of Serre (see [35]), there exist a partitibn= ][, JL
and for alli € I, 7 € J},, an element; , € Gal(F,/F,) such that

pr(¢(SL2(Fq)1)) - pr(Ind}Q; ﬁ(gﬁ)) - pr(¢(GL2(Fq)I))»

Keeping these notations, we introduce the following assumption on the imdgé%;ﬁ:
(LI;,,,) the condition(LI) holds and i € I,V 7,7 € Jp. (T # 7' == 0i s # 0i.r/).
We now introduce a genericity assumption on the weight

where = (¢')ier : GLa(Fy)" — GLo(IFy) 7 is given byg* (M;) = (M;"7) ¢ i -

DEFINITION 3.11. — We say that the weighte Z[.JF] is non-induced, if there do not exist a
strict subfieldF” of F' and a weight’ € Z[Jp/] such that for each € Jp, k, =k’

- T|F/'

Remark3.12. — Definek = Y se ks € Z[JZ] by puttingkz = k., for all 7 € J. The

group Gg acts onZ[Jz] by k=Y., k:7— k7 =3 .., k:»7. It is easy to see that
F -, F
k € Z[Jr] is non-induced if, and only iff 7' € Go | k = k™ } equalsGp.

PROPOSITION 3.13. — Assume thatLI;) holds andk is non-induced. Assume moreover that
forall 7 # 7' € Jp, p # kr + ks — 1. Then(LLy, 4 ;) holds.

Proof. —Let 7,7, € Gy be such that for aly € G~ we havepr(p(7; 'y71)) = pr(p(7; 'y72)).
We have to prove that, ' 7, € Gr. Fori = 1,2, let p;(y) = p(7 'y7i).
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Let B be a prime ideal of" above a prime ideg of F' dividing p. By Corollary 2.13 we
havep;| I;S* =¢; @ 0;, wheree; andé; are two tame characters whose product equéige and
whose sum has Fontaine—Laffaille weights, , kg — m, — 1)T€JF,pn- .

Sincely C gf andpro p; = props 0N gl/;, we haves; /5, = e2/d2. By varying®l3 we deduce
that for all# € J, kz = %%%;1%2 (here we use that > ko andp # k, + k. — 1). Sincek is non-

induced, it follows from Remark 3.12 thaf '7, € Gr. O

The following corollary generalizes a result of Ribet [35] on the image of a Galois
representation associated to a family of classical modular forms, to the case of the family of
internal conjugates of a Hilbert modular form.

COROLLARY 3.14. —Assume thatLI;) holds andk is non-induced. Assume moreover that
p > 2k is totally splitin F'. Then,

(GLa(F,)’")” c nd% p(G=) € (p(G2)7F)",  whereD = (Fx)' ™.

Put

D

H(F,) = (H GLQ(]Fq)) = {(Mi)ie[ € [ GL2(F,) | 36 € D, Vi, det(M;) = 5}.

el el

LEMMA 3.15. — Assume thatLI;) holds andp > 2k,. Then,

(i) for all p dividing p, p(I,) is contained(possibly after conjugation by an element of
GL2(FF,)) either in the Borel subgroup @&Lq(F,), or in the non-split torus oL (Fy ).
The second case cannot occuyifs ordinary atp.

(i) nd§ p(1,) C G(H(F,)).

Proof. —(i) By Corollary 2.13p|,** = &, ©6,, wherez,, 6, : [, — F; are two tame characters
of level h := |Jp,| or 2|.Jr,| Whose product equals!~* and whose sum has Fontaine—
Laffaille weights(m, ko —m; —1)7c ., -

Letz;, be a generator (ﬁ’;h,, and lets andé be the characters (Wf;h deduced fronz, andd,,.
Since by(LI;) the traces of the elements pfG ) are inF, [ [ 0F, (see Section 3.4), we deduce
that(e(zp,) + 6(x1))? € F, and hence(zp,)? + 6(x)? € F,.

If e(xn)?,6(xn)? € FY, then it is easy to see thatxy),d(x,) € FX (we usep > ko and
p # 2k, — 1). In this case,, fixes aFF,-rational line and thereforg(I,) is contained in a Borel
subgroup ofGLy(F,).

Otherwisezs(z;,)? and 6(x,)? are conjugated by the non-trivial element Ghl(F,. /F,),
hences (xy,)? = d(2,)%. Sincep > 2ko, we haves(xy,) = 6(xy,)? and sce(zy) + 6(x,)? € FY.
Hencetr(p(1,)) C F, andp(l,) € GL2(F,). In this casep(l,) is contained in a non-split torus
of GLy(F,). If fis ordinary atp, then the Fontaine—-Laffaille weights &f are strictly smaller
than those ot,,, and therefore the second case cannot occur.

(ii) The determinant conditio® being satisfied, all we have to check is the following: for all
i € I andr, 7’ € J% the character

(=1 ~ -1, _/._ ~
L= {1},  y— (p(6;}y5ir))  (P(5; ) y5ir))
is trivial. This follows, as in the proof of Proposition 3.13, from the fact that2k,. O

LEMMA 3.16. — Assume thatLI;) holds. Themp(H (F,)) C Ind% p(Gz).
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Proof. —We have seen in the beginning of this paragraph that
pr (¢( SLQ(]F(I)I)) Cpr (Ind(% ﬁ(gf)).

By Lemma 3.10, we deduce thatPSLy(F,)7) ¢ Ind2 p(Gp)
Since¢(H (F,)) = ¢(SLa(F,)) Ind% 5(1,,), we are done. O

PROPOSITION 3.17. — Assume that(LL;) holds but (LL,,,,) fails for somep > 2k,
(respectively for infinitely many primgs). Then, there exist € Jp, 7 # idp and a finite
order Hecke charactee of ' of conductor dividingN z,q(n) such that for all primesy of
F not dividing N/ (n)p we havec(f,,v) = e(v)c(f,v) (modP) (respectivelye(f,,v) =
e(v)e(f,v))-

Proof. —Since(LI;) holds but(LI,,,,) fails, there exist:, 7> € Gg such that
Ti=7 'R|p #idp

and such thapr 5(7, 'y71) = prp(7; 'y7), for all y € G. Sincegx is a normal subgroup
of Gz, the above relation holds for every € G. Therefore, there exists a character
€gal: Gz — £ such that for ally € Gz, py, (y) = egai(y)pys(y). Sincep > 2kq, the same
argument as in the proof of Proposition 3.13 shows ¢hatis unramified at primes dividing.

By Lemma 3.3, can then be lifted to a finite order Hecke charaetef F of conductor
dividing N /g (n). By evaluating akrob,,, for every primev { Np/q(n)p of F, we obtain

c(fr,v) =e(v)e(f,v) (mod P).

By the determinant relation, = gzali, there are finitely many such character§ herefore,
if (LIy,q,) fails for infinitely many primegp, then the above congruence will be an equality

COROLLARY 3.18. —Assume that" is a Galois field of odd degree and the central character
¢ of fistrivial (F = F). Assume moreover thdtis not a theta series and thaL1,,,,) does
not hold for infinitely many primes. Then, there exist a subfield C F' and a Hilbert modular
form f’ on F’, such that the base change fifto I is a twist of f by a quadratic character of
conductor dividingN /g (n).

Proof. —As in the proof of Proposition 3.17 there exist a quadratic charactef F' of
conductor dividingN r/q(n) andidr # 7 € Gal(F/Q) such thatlpy = ega1 ® p = pyge. Let
F' C F (respectivelyF; D F) be the fixed field ofr (respectively ofker(e.:)). We know that
F/F’is a cyclic extension obdddegreeh. Let ' = H?:I F;. Then we have

h
Gal(F”/F’):{(ul,...,uh)e{ﬂ:l}h|Hu¢:1} x {r"|0<i<h—1},

=1

where acts on(uq,...,us) by cyclic permutation. Whem = 3 the groupGal(F"/F’) is
isomorphic toA,.

The representatiop|g,.,, is invariant byGal(F"/F"), but Langlands Cyclic Descent does
not apply directly because the order @&l(F"'/F") is even. Consider the quadratic character
d=¢-e,;2---e.n-1. Then theGp-representatiod,, ® p is invariant by the grougal(F/F’),
so extends to a representationdof . By applying Langlands Cyclic Descentd@ f we obtain
f/ asdesired. O
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4. Boundary cohomology and congruence criterion

We recall thatf € Si(n,v) is supposed to be a Hilbert modular newform.

DEFINITION 4.1. —We say that a normalized eigenfogme Si(n,¢) is congruent to
f modulo P if their respective eigenvalues for the Hecke operators (that is their Fourier
coefficients) are congruent moduka

We say that a primé® is acongruence priméor f if there exists a normalized eigenform
g € Si(n, ) distinct from f and congruent tg’ moduloP.

One expects that, as in the elliptic modular case (carried out by Hida [21,22] and Ribet [36]),
the congruence primes fgrare controlled by the value &tof the adjointZ-function of f. Such
results have been obtained by Ghate [18] whas parallel.

Following [21,18] and using a vanishing result of the boundary cohomology of a Hilbert
modular variety we obtain a new result in this direction (see Theorems 4.11 and 6.7(ii)).

4.1. Vanishing of certain local components of the boundary cohomology

We introduce the following condition:

(MW) the middle weight2Ze)LHp@ _ dtko—1) qoes not belong té|p(.J)|, J C Jr}-

This condition is automatically satisfied when the motivic weidti, — 1) is odd, or when
d =2 andk is non-parallel.

LEMMA 4.2. - Letp, be a representation @j on a finite-dimensionat-vector spacéV'.

Assume that for everye G, the characteristic polynomial ¢fX) Ind% p)(y) annihilatespy (y).
@) 1f (1), () and(LI;) hold, then for allk € Z the weightsh andd(ky, — 1) — h occur with
the same multiplicity in eacli~-irreducible subquotient gfo.
(i) If (1), (Irr;) and (MW) hold andp — 1 > max(1,5)> ., (k- — 1), then eachyz-
irreducible subquotient ofy contains at least two different weights for the action of the
tame inertia afp.

Proof. —~We may assume tha is irreducible.

(i) By Lemmas 3.15(ii) and 3.16 we ha¥ed$ 5(1,) C ¢(H (F,)) C Ind} 5(G). Let T” be
the torus ofH (FF,,) containing the image of the tame inertia, akid be the normalizer of” in
H(F,). The image ofV’ /T’ = {£1}! by ¢ is the subgroup of the Weyl groul/T = {+1}/7
of G containing the elements which are constant on the partifior- [[,; J&. In particular,
the longest Weyl element;,. belongs to the image a¥’ /T".

Letz € W be an eigenvector for the action’6f. By the annihilation condition, there exists a
subset/, C Jr, such thatl, acts onz by the weightip(.J,)|.

Let y;, € G be such thatind} 5(y,,.) = es, modT". Then po(ys,.)(x) is of weight
Ip(JzAJp)| = d(ko—1) —|p(Jy)|. Therefore, for each € Z, po(y.s,.) gives a bijection between
the eigenspaces for the tame inertia of weilglaindd(ko — 1) — h.

(i) If (LI;) holds, then the statement follows from (i) afdW). Otherwise, by Proposi-
tion 3.8 the groupr(5(Gr)) is dihedral. Sincé” is totally real,pr(p(Gz)) is also dihedral (see
Section 3.3).

Denote byN the normalizer of the standard torifisn G. PutN’ = Ind% p(g7) C N(k)and
T' = N'NT(k). ThenN’/T" is a subgroup of the Weyl groupt-1}/r = N/T of G.

As we have seen in Section 3.3, the representditioly. 5 is tamely ramified ap and the
image of the inertia group, is contained iril”.

Let x € W be an eigenvector for the action 6f. By the annihilation condition, there exists
a subset/, C Jg, such thatl, acts onz by the weight/p(.J,)|. For every element; € N'/T",

el
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(J C Jr), lety, € Gz be such thai[ndF p(ys) = €5 modT’. Thenpo(ys)(z) is of weight
[p(J.AJ)|. It remalns to show that thip(J,AJ)| are not all equal whem; runs over the
elements ofN’/T’. Note that, for allr € Jp, the 7-projection N’ /T" — {+1} is a surjective
homomorphism (because the groupy, (G)) is also dihedral). Therefore, we have:

d(ko —1)

> pA)| = |INYT ==

esEN'/T'

The statement now follows from ti{&MW) assumption. O

Remark4.3. — The first part of the previous lemma is a generalization from the quadratic to
the arbitrary degree case of the key lemma in [8]. This lemma is false in general under the only
assumptiongl), (Il) and(Irr;) whend > 3. In fact, consider the following construction in the
cubic case: lef. be a Galois extension @) of group A4, such that the cubic subfield fixed by
the Klein group is totally real; Iek” be a quadratic extension éfin L and consider a theta series
f of weight (2,2, 2) attached to a Hecke charactergf then the tensor induced representation
®Ind9 p has two irreducible four-dimensional subquotients of Hodge—Tate we(gits2, 2)
and(1,1,1,3).

As in the introduction, lefl” C T denote the subalgebra generated by the Hecke operators
outside a finite set of places containing those dividing

THEOREM 4.4. — Assume thafl), (Irr;) and(MW) hold, and

p—1 >max(1,g> > (ke —1).

Te€Jp

Denote bym the maximal ideal of" corresponding tof and:,, and putm’ =m N T’. Then
(i) them’-torsion of the boundary cohomolo@if, (Y, V,,(x))[m’] vanishes,
(i) the Poincaré pairingtl{(Y,V,,(0)),., x HY(Y,V,(0)),, — O is a perfect duality of
free ©O-modules of finite rank,
(ifi) H(Y, V,i(0))w = (Y, V1 (0)) o = HY (Y, Vs (O) )

Proof. —(i) Consider the minimal compactificatidry; R Yé L 65%. The Hecke correspon-
dences extend tof@j‘. By the Betti-étale comparison isomorphism, we identify (in a Hecke-
equivariant way) the following two long exact cohomology sequences:

HL(Y,V,.( HL(Y,V,(x

. S H(Y- ,le K)) — = H" (Y- ,]* ))*)HT((?Y*ZR]* (k) — ...

Consider th&jg-moduleW = HT(aYé, i*Rj.Vy,(k)). We have to show thdl’;[m’] = 0.

By the Cebotarev Density Theorem and the congruence relations at totally split pricies of
we can apply Lemma 4.2 t/;[m’]. Therefore eacly >-irreducible subquotient df’;[m’] has
at least two different weights for the action of the tame inertia. 8o it is enough to show that
eachgg-irreducible subquotient dft’} is pure & contains a single weight for the action of the
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tame inertia ap). Sincané is zero-dimensional, the spectral sequence
e (aY@f,i*Pf 3 Vn(k)) = H* (8Y@’f,i*Rj*Vn(m))

shows thatV}, = HO((‘BY@T, i*R" 5.V, (K)).

SinceHO(aY@T,i*RTj*Vn(n)) is a subquotient oHO(aYé’*,z‘*RTj*Vn(x)) it is enough to
show that eaclig-irreducible subquotient of this last is pure.

This will be done using a result of Pink [32]. We repladédy Y, since the groug: does
not satisfy the conditions of this reference, whité satisfies them.

Consider the decompositidhi= D; x Dy,, according to

ue 0 _fu 0 e 0
0 vt/ \0 wt/\Oo 1/°
Putl'! =T} (c,n). By [32, Theorem 5.3.1], the restriction of the étale shéaf 5.V, (F,) to a
cuspC = oo of Yé’* is the image by the functor of Pink of the 'I''y N B/~ 'T''y N D,U-
module
P v (TN DL H (v IT N UL V,L(Fy))).
a+b=r
Under the assumptiorfll), a modulop version of a theorem of Kostant (see [33])
gives an isomorphism of -module H*(y 1Ty N U, V,,(F,)) = D, sj=p Wes(nt6)—tmo- BY
de;:omposing/VeJ(nH),t = Wél(nmftno ® We},bz(nwtt)ft,no according toT" = D; x Dy, we
ge

H*(y'T'y N D, HY (v ' Ty N UV, (Fp)))

- @ H (v ' T Yy N DL WE it —ime) @ WE i) tmos
|J|=b
where Galois acts only on the second factors of the right-hand side.

ThereforeHO(aY@’j, *R"j.V,(Fp)) is a direct sum of subspace (C, W) .,y ;.. (Fp)),
|J| < r, each containing a single Fontaine—Laffaille weight, namely the wéigHt|.

(i) Since the Poincaré duality is perfect ovBr it is enough to show that the’-localization
of natural mapH¢(0)/H{(O) — HY(E)/H{(E) is injective. For this, it is sufficient to show
that HE(O) s := HY(OM,V,,(O))w is torsion free, which would follow from the vanishing
of HE 1 (E/O)w . We have a surjectiofly ! (k)m — HE 1 (E/O)w ], wherew is an
uniformizer of O. Finally, by (i) and Nakayama’s Iemmﬂg‘l(n)mf =0.

(i) The vanishing ofH$(x)w’ gives the vanishing dfi§(O),w =0. O

4.2. Definition of periods

By taking the subspadg - ker(T, — ¢(f,a)) of (8) we obtain

aCo
05:Cfy = H{ (Y™, V,,(C))[es, f).

Fix an isomorphismC = Q, compatible with.,. We recall thatH{'(Y*",V,(0))’ denotes
the image of the natural magd(Y**,V,,(0)) — HY(Y2",V,,(C)). SinceO is principal, the
O-moduleL; ; :=HE(Y*,V,(0))'[és, f] is free of rankl. We fix a basis;(f, J) of Ly ;.
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DEFINITION 4.5. —For eacly C Jr we define the perio(f,J) = f}g;fj)) € C*/O*. We
fix Jo C Jp and put} = Q(f, Jo) andQ; = Q(f, Jr\Jo)-

Remark4.6. — The period:thE differ from the ones originally introduced by Hida in [21].
Hida’s periods put together all the external conjugateg.dDur slightly different definition is
motivated by the congruence criterion that we want to show (Theorem 4.11). Since we can prove
the perfectness of the twisted Poincaré pairing only for certain local components of the middle
degree cohomologhl?(Y**,V,,(0))" and in generaf and its external conjugates do not belong
to the same local component, we have to separate them in the definition of the period.

4.3. Computation of a discriminant

The aim of this paragraph is to compute the discrimindidc(L;) of the O-lattice
Ly = H}(Y*,V,,(0))[f] = @ ¢, Ly, with respect to the twisted Poincaré pairihg
defined in (6). We follow [18, Section 6].

We havedisc(Ly) = det(([n(f, ). n(f, J)]) rrcar ).

By [18, (41)], for everyr € Jr andz,y € H{ (Y, V,,(C)) we havele, - z,y] = —[z, €, - y].

The embedding — C that we have fixed gives an embedding F' — C.

. B 0 n(f,J),n(f, Jr\J)]
dscll= A1 oo 0
B (508500 ()] )
77061;£JF (Q(f?J)Q<f7JF\J)> ’

and(0,5(f), 8.5\ 7 (f)] = 2Ues0(f),0-0(f)) = 29W (f){es:0(f),6(f°)) = 2W (/). [ i (m)
wheref© is the complex conjugate gfandV ( f) is the complex constant of the functional equa-
tion of the standard.-function of f. By [9, Lemma 2.13/ (f) € O*. Therefore the following
equality holds inE* /O*:

. (f7 f)K1 2
(15) disc(Ls.y0 @ Ly ss) = (W—() .
o f

4.4, Shimura’s formula for L(Ad"(f),1)

For a primev of F' we definex, andg, by:

, if v|n.

ay+ B =c(fv), awfy= {gp(v) Nr/g(v), ifvfn,

The naive adjoinf.-function of f is defined by the Euler product:

(16) LW (Ad(f),s) = [T [(1 ey Nejo(v) ") (1= Npjg(v) ™)
vin

X (1= Buay Nryj(v) )]

In [38] Shimura studies the serid3(f, f¢,s) = -, c(f,a)c(f,a) Np/g(a)~* and shows
that it has the following Euler product (see [26, Lemma 7.2]):

—1
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D(f, f¢s) = H (1 — BBy Npjg(v) %) (1 — QU@NF/Q(U)78)71

x (1= 0By Np/o(0) ™) ™' (1= Bulis Nryo(v) ™)
% (1= B8y Npjg(v)~*) .

Using the fact that for alb { n ¢(f,v) = ¥ (v)c(f,v) a direct computation gives:

(17) ¢ @8)DM(f, 6,5+ ko — 1) = W ()L (A’ (f), 5),

whereD™ (f, f¢, s) is obtained fromD( f, £, s) by removing the Euler factors fatn.

THEOREM 4.7 (Shimura [38, (2.31), Proposition 4.13])Let f € Si(n,%) be a newform.
Then

Ress_1 D(f, f€,5+ ko — 1) = 27 (4m) ¥ TT Tkr) " Re[05 - 0*2) ™ (f, Dy (n):

TEJR

@)2¢r (@) Nea®? T, (1-Nro@) ™)
Where“:M(Fl(c’n)\ﬁF):2Ni27£%):0x<2?(2) F/Q H’u|n F/Q .

[0%: 0]
By a direct computation:
(18) W (2) Resomy D(f, f,5+ ko — 1)
_ Res1 67 () (4m) o’ < 020> < 0]/, iy o
2Ahj; Nr/om) [1,e,, D(kr) H’U|n(1 —Nryg(v)~1)

We define the imprimitive adjoink-function L*(Ad°(f), s) by completing the naive adjoint
L-function L(™ (Ad°(f), s) defined in (16), in order to have the relation:

L*(Ad°(f),s) D™ (f, f¢ s+ ko — 1) = L™ (AA°(f),s)D(f, f°, s + ko — 1).
By [26, (7.7)] we havel.* (Ad°(f),s) = L™ (AQ°(f),s) [T, L3 (Ad°(f), ), where foru|n

(1- NF/Q(U)*S)*, if fis a principal series and minimal at
Ly (Ad°(f),s) =¢ (1 —Npjo(v)=*~1)~1, if fis special and minimal at,
1, otherwise.

Following Deligne [6] we associate b (Ad"(f), s) an Euler factor:
U(Ad’(f),s) = [ =~ “TV20((s+1)/2)(2m)' T (s + k- — 1).
TE€JR

Finally, by (17) and (18), there existsc Z such that:
19) D(AC(F), 1) (AL(F),1) = 2 (F

Remark4.8. — Consider the adjoirit-function L(Ad"(p), s) attached to the three-dimensional
Gr-representatiodd’(p) on trace zer® x 2 matrices. By compatibility between local and
global Langlands correspondentéAd® (p), s) is equal to the adjoink-function L(Ad®(f), s)
associated to the automorphic representation attachgdNevertheless.(Ad"(f), s) may dif-
fer from L*(Ad°(f), s) at some places dividing n (see [26, (7.3c)]).
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4.5. Construction of congruences

LEMMA 4.9.— Let V4 and V; be two finite-dimensionak-vector spaces and let be a
O-lattice inV =V, @ V. For j = 1,2, put L; = L NV, and denoteL’ the projection ofL
in V; following the above direct sum decomposition. Then

(|) L; C L7 are two lattices of/;, and L; is a direct factor inL.

(ii) we have isomorphisms of flni@»modules

L'/Ly <~ L/Ly ® Ly~ L*/ L.

This finiteO-module is called the congruence module, and is denotethbl; V7, V5).

The following proposition follows from Deligne—Serre [7, Lemma 6.11] and will be used to
construct congruences:

PROPOSITION 4.10. — Keep the notations of Lemmda9. Let7 be a commutativé-algebra
consisting of endomorphisms Bf, preserving the latticd. and the direct sum decomposition

Vi @ V. For j = 1,2, denote byZ; the image off in End(V}).

Assume thaCO(L V1, V3) is non-zero and that its support contaifs

Let m; be maximal idealZ; of residue fields;, such thatL'/L; @7, x; is non zero, and
denote by, : 7; — x; the corresponding character.

Then there exists a discrete valuation ri@j of maximal idealP’ (with P’ N O = P), residue
field ' O x; and whose fraction field’ is a finite extension of/, and there exists a character
02: 7> — O’ such that for eacll” € 7, 0,(T) = 0(T) (mod P’).

Proof. —For j = 1,2, denote byr; the projection of7 onto 7;. Thenm = 7y Y(my) is a
maximal ideal ofl” of residue field:; . Putms = m3(m). Since the |somorph|sm of Lemma 4.9(ii)
is 7 -equivariant, we have

(L'/L1) @7, (Ty/m1) = (L) (L1 @ Ly)) @7 (T /m) = (L?/La) ®1, (T2/ms).

By assumptioL!/L,) @7, (T1/my) is non-zero. Therefore, is a maximal ideal off; of
residue fields; and the corresponding character 7o — &, fits in the following commutative
diagram:

/ .
T~ /97

2

Since7; is a (finite) flatO-algebra, there exists a prime idél, contained inm; and such
thatP, N1 O = 0. The reduction modul®; gives a charactet, of 7; as in the statement.
THEOREM 4.11 (Theorem A). —Let f and p be such thafl), (Irr;) and (MW) hold, and

—1>max(1,3) Y regp (ke = 1)1 LP(F(AdO(f)glgSAdo(f)’l)) € P, thenP is a congruence
Fof

prime for f.

Proof. —Let L = H{(Y*,V,,(0)).,/[+és,%] C V = HY(Y* V,(E))w [+és,,] and
Vi =HI (Y™, V,(E))[+és, f]. ThenLy = LN Vi = Ly 5, ® Ly g, (Se€ Section 4.2). By
(15) the twisted Poincaré pairirig] is non-degenerate dn . Let V5 be the orthogonal subspace
of 1inV.
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By Theorem 4.4(ii) the twisted Poincaré pairing is perfectgy *»,V,,(0))’ ,[£¢,,]. After
rescaling by the facto% (coming from congruences obtained by varying the central
character) it restricts to a perfect pairing bnThen, by [21, (4.6)] we have

2
[L': L] = (4(;’];;)*’21“(“)) disc(Ly).

Using now (15), (19), and the assumptionBrwe obtain that thé-module L' /L; is non-
zero andP belongs to its support. By Lemma 4.9 the same holds for the congruence module
Co(L; V1, Vs). By Proposition 4.10 and the duality betwe®@(C) and Si(n,¢) there exists
another normalized eigenforme Si(n, ) congruent tof. HenceP is a congruence prime
for f. O

5. Fontaine—Laffaille weights of Hilbert modular varieties

In this section all the objects are ovér. The aim is to establish a modujo version of
Theorem 2.3 under the assumptions hdbes not divideA andp — 1 > |n| + d.

5.1. The BGG complex ovei©

Koszul's complex. The Koszul's complex of the trivial-module© is given by
= Uo(g ®/\g—>Uo()®g—>Uo(g)—>C’)—>0.

Sinceg = b @ u—, the O[b]-moduleg/b is a direct factor ing and we have a homomorphism of
B-modulesUn (g) ® Ay 8 — Uo(8) ®ue () Ao (8/b). Thus, we deduce another complex

9) ®Uo (b /\El/b )= 0 —0,
o

denoted byS$ (g, b).

More generally, for a fre€-moduleV endowed with an action df»(g), we consider the
complexSs (g, b) ® V endowed with the diagonal action &% (g). For everyUp (b)-module
W which is free ovelO, there is a canonical isomorphism@ (g)-modules

(Uo(8) ®uo ) W) @V 2Uo(g) Quee) (W R V]p).
Therefore we obtain another complex

Uo(8) ®ue (v) (/\(9/5) ® V|b> -V =0,

o
denoted byS$ (g, b, V). In the case wher® = V,, we denote it by5¢,(g, b, n).

Verma modules. For each weighty € Z[Jr], we define alUp(g)-module Vo (u) :=
Uo(8) ®ue(6) Wu(O), called thevVerma modulef weight ...
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LEMMA 5.1.—Let W be aB-module, free of finite rank ove®P, whose weights are smaller
than (p — 1)t. Then, there exists a filtration &-module) =W, C W, C --- C W,. = W such
that for everyl < ¢ < r there existg; € Z[Jg] such thatW, /W, = W, (O). Moreover the
W, (0),1<i<r, are the irreducible factors of th&-modulelV/.

In particular, if U acts trivially onW, thenW =~ ._, W,,,(O).

Proof. —Let 1 be a maximal weight of¥ (for the partial order given by the positive roots
of G) and letv € W be aO-primitive vector of weightu,. Let W’ be theUp (b)-submodule
generated by. ThenW’' = W, (0) and W'’ ® « is irreducible, becausg, is smaller than
(p — 1)t (and W' is free of rank 1). SincéV is free overO we have an exact sequence of
B-modules

0— Tor®(W/W' k) = W' @k — W @ k.

SinceWW’ ® k is irreducible and is primitive, the last arrow is injective. Therefore
Tor® (W/W', k) =0,

that isWW/W' is free over®. The lemma follows then by induction.o

LEMMA 5.2.— The moduleS}, (g, b,n) has a finite filtration byl (g)-submodules whose
graded pieces are of the forvip (1), pu € Q¢(n), whereQ(n) is the set of weights of the

t-module)\, (g/b) ® V,,(O)]s.

Proof. —Sincep — 1 > |n| + d the previous lemma applies f§, (g/b) @ V,,(O)|s. This gives
afiltration0 =Wy C Wy C --- C W, = Ay (g/b) ® V,,(O)]p Whose graded pieces &g, (O),
€ Q'(n). SinceUp (g) is Uo (b)-free, the functolUo (g) @y, (v) @ is exact. O

Central characters. Let Un(g) — Uo(t) be the projection coming from the Poincaré—
Birkhoff-Witt decompositionUp (g) = Uo (t) @ (u"Uon(g) + Uo(g)u). We take its restriction
to the invariants for the adjoint actioh: Up (g)“ — Uo(t). Note thatUFp(t) identifies with
the algebra of regular functions é¢fomo (t,F,) = F,[JFr] (a Laurent polynomial algebra). The
Weyl group{+1}”/7 of G acts on it by(e; - P)(u) = P(e;(pu+t) — t). The following result is
analogous to the theorem of Harish—Chandra:

THEOREM 5.3 (Jantzen [28]). éﬁp induces an algebra isomorphism

UFP (g)G _ UFP (t){il}JF .
For everyu € Z[Jr] and everyO-algebraR, we denote bylur : tr — R the corresponding
character and by, r = dur o 0r the composed maliz(g)¢ — Ug(t) — R. This definition is
compatible with the)-algebra homomorphisms.
If V is aUg(g)-module generated by a vectoof weight,, and annihilated by, thenUx (g)¢
acts overt/ by x,.,.r. Putx,.p = xu.0 @ndx,, , = x, 5, -

COROLLARY 5.4.-If X, , =X, ,, then there existd C Jr suchthaty — (e;(n+1t) —t) €
pZ[Jr]. In particular, if 4 is smaller than(p — 1)¢, then we have. = ¢, (n +t) — ¢.

PROPOSITION 5.5. — Let i € Q'(n) (see Lemma.2). Theny,, , =X, if, and only if, there
exists a subsel C Jr containingi elements and such that=¢;(n +t) — t.

Proof. —By the corollary, it remains to show that fof C Jr, we havee;(n +t) — t €
Qi(n) if, and only if, |J| = i. By Lemma 5.2, we have to show th&t (i) _¢n,(E)

4® SERIE— TOME 38 — 2005 N° 4



COHOMOLOGY OF HILBERT MODULAR VARIETIES 541

occurs inA\'%;(g/b) ® V,,(E)|¢ (with multiplicity one) if and only if|J| = i. The weights of
Nz(g/b) @ V,,(E)|, are of the forme;/(n + t) — ¢ + v, whereJ’ C Jr is a subset containing
i elements and is a weight ofV,,(E). Thereforec;(n +t) —t =€y (n+t) —t + v and so
n=c¢e;(v)+e;s(ep(t)) —t. Sincen is a maximal weight o¥/,,(F), we deduce thaf = J'. O

Decomposition with respect to central characters. By Lemma 5.2,5%,(g, b, n) admits a
finite filtration by Up (g)-submodules with graded of the forbi (1), p € Qi(n). Therefore
S5&(g,b,n) is annihilated by a power of the ideat= ][ .., ker(x.,p) of the commutative
ring Uo(g)¢. In fact, it would follow from Proposition 5.5 tha$ (g, b,n) is annihilated byl
itself. We have the following commutative algebra result:

LEMMA 5.6.-Let P;,..., P. be ideals of a commutative rin§ such thatP,...P. =0
and for alli # j, P, + P; = R Then eachR-moduleW admits a direct sum decomposition
W= EBKKTW WIthWPZ—{m€W|Pm 0}.

Consider the maximal ideal®, ker(x,.,)) = ker(x,, ,) of Uo(g)“, wherep € Q°(n). Let
X1 = Xn,ps Xos---5 X, D€ the set of distinct characters amoRg ,, p € Q*(n). Put P; =
H% =%, ker(x,,p). By the above lemma we get a decomposition

©p i

SO g,hn @SO g7bn

which is a direct sum, because the differentialsi@¢ g)-equivariant. Moreovel/o (u)x, =

Vo(u) if X,p = Xnp @andVo(u)x, =0 otherwise. From here and from Proposition 5.5 we
get:

THEOREM 5.7. — The complexsg, (g, b,n)x,  is a direct factor inS¢ (g, b,n) and we have

S%(g, b, n)x,, = Va(O). For eachi > 1, S5 (g,b,n)x,  has a filtration whose graded are
given by thd/@(q(n +t) —t) whereJ C Jp, |J| =1 (Wlth multiplicity ong.

5.2. The BGG complex for distributions algebras

Let Un(G) be the distributionD-algebra ovelG. For eachG-moduleV, free overO, we
define the complex

0V «—Uo(G) Ryy(B) (/\(9/[’) ® V|h>v

(@]

and denote it byS$ (G, B,V). In the case wherd = V,(O) we denote this complex by
S5(G, B,n).

Remark5.8. — The comple$g, (G, B, V) is not exact. It will become exact after applying the
Grothendieck linearization functor to the associated complex of vector bundles over the Hilbert
modular variety.

For all u € Z[JFr], we define the Verma modul¥o (1) = Uo(G) @y, sy Wu(O) (see
Section 5.1). We recall that, singe— 1 > |n| 4 d, Q'(n) is the set ofu € Z[Jr] such that
W,(0) is an irreducible subquotient ¢, (g/b) ® V,,(O)|s. Lemma 5.2 translates as:

LEMMA 5.9. -The moduleSg, (G, B,n) has a finite filtration by{» (G)-submodules whose
successive quotients are givenWy(u), with i € Qi (n).
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SinceUon(g) C Uo(G) C Ug(g), the centeln(g)¢ of Up(g) is contained in the center of
Uo(G). Consider the central characters, = x,.,0 andy,, , = X, F, (see Section 5.1).

If W is allo(G)-module generated by a vectorof weight . and annihilated by, then
Uo(g)¢ acts onW by the charactey,, ,,. Putl = [1,.ca0 (n) ker(xu,p). By the last lemma the

finite O-moduleS¢, (G, B,n) is a R := Up(g)®/I-module. Lety, =X, ,,Xa:---, X, be the
distinct algebra homomorphisms froRiin F,,. Forl <j <r,we put

HEQ®(N), X, p=X;

s By, = {resp@mn| (T kel o =0}
The same way as in Theorem 5.7 we obtain a decomposition:

(20) S(G,B,n) = éS@(G7B7n);j.

j=1
THEOREM 5.10. =S4,(G, B, n)x, =D ¢ g, 7= Voles(n+1) —1).

Proof. —Assume first» = 0. Sinceu is Abelian,U acts trivially on/\’b(g/b) and Lemma 5.2
gives A\, (g/b) = D scip =i We,1)-1(0). Sincello (G) is free oveldo (B) we obtain:

SH(G,B,0)=8,(G,B,0)5,, = B Voles(t)—1).
JCJIp,|J|=1

Forn > 0, using then = 0 case, we already have a decomposition:

SH(G,B )= P Uo(G) Buos) (We,)-+(0) ® Vi (0)).

JCJp,|J|=i

By (20), the theorem is a consequence of the following lemma, whose proof follows directly
from the one of Proposition 5.5.

LEMMA 5.11. —(Un (G) ®uo (B) (We,](t)—t(o) ® V"(O»)Yn,p ~Vo(ej(n+1t)—t).
5.3. BGG complex for crystals

Our reference is [31, Section 4]. For every integer 0 we putS, = Spec(Z/p"*1). For a
Z[x]-schemeX, we putX, = X x S,.

We have an equivalence of categories between the category of crysta(SS_(cb\/efj‘r)f;gS and
the category ofDYT-modulesM which are locally free and endowed with integrable, quasi-
unipotent connection with logarithmic pol&: M — M ®ox. QlyT/ST(dlog(OO)()).

We have a functoil, called thelinearization functoyr from the category of sheaves of
Ox -modules to the category of crystals 6K /S, ),.)"-

By the log-crystalline Poincaré lemma, we have a resolution:

0—M—L(M Qog Q.YT/ST (dlog 00)).
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Let W, and W, be two B-modules with weights smaller thap — 1)t. PutW; = Fg(W;),
i=1,2 (see Section 2.3). By [31, §5.2.4] we have a homomorphism

Homuo(g) (Z/[O(G) ®MO(B) Wl), (U@(G) ®Uo(3) Wg) — Diff.Op.(WZle}r),

which becomes an isomorphism after tensoring vitfsee (12)).

We apply now the above construction to the toroidal compactification of the Hilbert modular
variety M’ and the vector bund¥’,,. For everyr > 0 we have an injective homomorphism of
complexes of vector bundles OVE;

(21) ICT.L = @ WeJ(n-i-t)—t,no (_}vn ®Oﬁ;‘ Q.M;/Sr (dlogoo)
JCJF

PROPOSITION 5.12. — The map(21) is a strict injective homomorphism of filtered complexes.

By the last propositior.(K?) is a direct factor inL(V,, ®o_, Qﬁ,/s (dlog 00)), which is
exact by the Poincaré’s crystalline lemma. TherelofE?) is also exact. Since the functor L is
exact, we deduce filtered isomorphismgg_dR(M;/Sr,Vn) ~Hi(M. /S, K2).

Recall thatp does not divideA andp — 1 > |n| + d. Under this assumption we have

THEOREM 5.13. — The spectral sequence given by the Hodge filtration

/) —

ij i+l (T T i+ (A
E1J = @ H'* ‘J‘(MT’WEJ(“H)*RHO) = Hl;:g{dR(Mr?V")
JCTp|p(J)|=i

degenerates dt, for » =0:

gI‘i Hfog-dR (M/ﬁp s Vn) = @ Hjiu‘ (M/FD ) WEJ (n+t)—t,no )
JCJIr,|JI< p(J)|=i

Proof. —The proof is formally the same as the one of Theorem 2.3(ii), once we have
Proposition 5.12. The degeneration of the spectral sequence follows from a result of II-

lusie [27, Proposition 4.13.] applied to the semi-stable morphigm4s — M! of smooth
Zy,-schemes. O

Remark5.14. —

(i) It follows from the same arguments as in Corollary 2.7(i), that the above decomposition is
Hecke equivariant, except for thig operators, whep dividesp. Whenp is totally split
in F', we could use Wedhorn'’s results [42] to wrifg as a sum of correspondences and
try to adapt to this case the method of [16]. Unfortunately, this approach is not available
whenp is not totally split inF'.
In the proof of Theorem 6.7, we will use a different method to provelihequivariance
of the above decomposition after a localization outgide

(i) The commutativity of the Hecke operators outsjdfollows from the degeneration &t
as in the proof of Corollary 2.7(i). The last graded pi#E¥Y, W, (n+t)—t.n,) Of the
filtration is independent of the toroidal compactification by the Koecher Principle (3).
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6. Integral cohomology over certain local components of the Hecke algebra
6.1. The key lemma

Let g =p” and denote by, ..., o, the elements oGal(F,/F,).

THEOREM 6.1 (Brauer—Nesbitt, Steinberg [39]).Fhe groupSL,(F,) has exactlyg irre-
ducible representations on finite-dimensiotighvector spaces, namely ﬂ@;zl(Symaj)"f,
for0<a; <p—-1.

COROLLARY 6.2.— For every finite set/, the group ], ;SL2(F,) has exactly g!’!
irreducible representations on finite-dimensiofiglvector spaces, namely the

® <®(Sym?i,j)ﬂj>7 foroéam« <p-—1.

iel \ j=1
In [30] Mazur states the following:

LEMMA 6.3.-Let ® be a group and lep, be a representation ob on a finite-dimensional
[F,-vector spacéV. Letp: & — GLy(F,) be an absolutely irreducible representation such that
for all y € @, the characteristic polynomial gf(y) annihilatespy(y). Then,pi® =p&---®p
and in particularp C pg.

The corresponding statement for another group thdn is false in general. Here is an
example forGL;: takep = Sym?: GLy(F,) — GL3(F,) andpy = det: GLy(F,) — GL,(F,).
Nevertheless, we have a generalization for the special group:

H(F,) = (HGLQ(FQ))D = {(Mi)ief e [ [ GLa(Fy)

iel icl

€D, Viel, det(M;) = 5}
and the particular representation

p1= ® St;"": H(Fq) — GLya(F,), (Mi)ier — ® M7

iel,reJ}, iel,reJi

where(J%);e; is a partition ofJr and for alli € I, (0i,r)rei are two by two distinct elements
of Gal(F,/F,) (St = Sym' denotes the standard representatiofib).

LEMMA 6.4.— Let p, be a representation ofi(F,) on a finite-dimensionaF,-vector
spacelV, such that for ally € H(F,) the characteristic polynomial gf (y) annihilatespg (y).
Thenp§® = p1 @ --- @ p1 (each irreducible subquotient of is isomorphic tap).

Proof. -We can assume thai, is absolutely irreducible. Consider the exact sequence
1 — Hy(Fy) = [[;c;SL2(F,) — H(F,) =D — 1. By Corollary 6.2, we know that each
irreducible subquotient ofo |z, s, is of the form®iel(®§:1(Symfi”')"f), with 0 < a; ; <
p—1.

The subspace corresponding to the highest weight of the represenigtio, ) is preserved
by the standard torus dff (IFF,) and therefore contains an eigenvectofor the action of this
torus. Sincepy is irreducible, it is generated hy, and thereforey, is isomorphic to a twist
of ®iel(®;:1(8ym,{;i‘j)"f) by some power of the character(in particularpg, g, (s, is also
irreducible).
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Since the characteristic polynomial @f annihilatespy, the set of the weights gf; is a subset
of the set of the weights qf;, and thereforgy = p;. O

In Section 3.5 we proved under the assumptibifi,q 5) thatInd?;i p(Gz) contains the image
of the maps = (¢');er : H(F,) < GLy(F,)”'"

Denote byF” the fixed field ofp*1(¢(H(IFq))).

LEMMA 6.5 (Key lemma). —Let py be a representation of, on a finite-dimensional
k-vector spacdV. AssumeLly,q5) and assume that, for everye QF,, the characteristic

polynomial of(®IndF p)(y) annihilatespo (y). Then eacly, -irreducible subquotient of is
isomorphic to) Ind% p
Proof. —It is enough to treat the case whergis irreducible. The idea is show that the action
of Gz, on W is through the algebraic groug(F,) and use Lemma 6.4.
Putp = (Ind‘?;i p)|g~ - By the annihilation assumption, the gropg(ker(p’)) is an unipotent
F/

p-group and thereford’r(?") is non-zero. Moreover the subspagé<(?") is preserved by,

SinceW is irreducible we get*e*(?") = 1/ and therefore the action o, on W is through
H(FF,). Hence there exists a homomorphisfffitting in the following commutative diagram:

(X)IndQ o

Go £’ GLya (k)

v Ind T

O ———————=CGLy(w)’7 |;m

(bI/

Go 7 j(F,)

P q)
Po _ /

L
GL(W)

The characteristic polynomial gf, annihilates the representatipf). By Lemma 6.4 eacl# -
irreducible subquotient ¥ is isomorphic tg, that is to sayV*= = € p; asH (F,)-modules.
Since the action ofi, on both sides is througH (I ), we are done. O

6.2. Localized cohomology of the Hilbert modular variety

Let T C T be the subalgebra generated by the Hecke operators outside a finite set of places
containing those dividingp. Putm’ =m N T’.

THEOREM 6.6. — Assumef andp satisfy(I), (IT) and (LIinq5). Then
(I) H.(Y Vn( )) Hd(Y Vn( ))m/r
(i) H'( Vo (O0))m = HY(Y, V,,(0))n is a freeO-module of finite rank and th@-module
H*(Y, (E/(’)))mf HY(Y,V,(E/O))n is divisible of finite corank.
Y,V (0

(i) HY(Y N x HY(Y, V,,(E/O))m — O is a perfect Pontryagin pairing.

Proof. —(i) By Faltings’ Comparison Theorem [14] and Theorem 5.13(i) the intéger)|
is not a Fontaine—Laffaille weight dfi"(x) whenr < d. Wedhorn [42] has established the
congruence relations for all totally split primes Bf By the Cebotarev Density Theorem the
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assumptions of the key Lemma 6.5 are fulfilled. We deduceHhé&t)[m’] = 0 and therefore by
Nakayama’s lemm&l” (k) = 0. The case: > d follows by Poincaré duality.
(i), (iii) By the long exact cohomology sequence
= HY k) = H(0) ZHH(0) = H (k) — -+ -,
and by the vanishing dili" (), for r # d, we deduce that (for # d) the multiplication by an

uniformizerw is a surjective endomorphism 8f (O),,/, so this last vanishes.
The same way, by the long exact sequence

= H (w'0/0) - H(E/0) ZH"(E/O) - H (@ t0/0) — - -,

we deduce a surjectioH” (k)m — H"(E/O)w [w] for r # d. SinceH" (E /O), is a torsion
O-module, it vanishes (for # d).
The localization atn’ of the long exact sequence @Fmodules:

= HTHE/O) - H'(0) —» H'(E) - H'(E/O) — -,
is concentrated at the three terms of degreed. From this we deduce the freenessa
6.3. On the Gorenstein property of the Hecke algebra

THEOREM 6.7 (Theorem B). -Let f andp be such thatI), (IT) and (LI,q 5) hold. Then
(i) H*(Y,V,(k))[m] =HY,V,(x))[m] is ak-vector space of dimensiaf.

@iy H*(Y,V,(0))m = HY(Y, V,,(O))n is free of rank2? overT,,.

(iii) T, is Gorenstein.

Proof. —In this proof we putiV = Hd(Y@, V.(k))m. By using an auxiliary level structure as
in [8], we can assume that the conditifviT) of Section 1.4 is fulfilled.
(i) As in the proof of Theorem 6.6(i), by Lemma 6.5 we have an isomorphisgi:pinodules

Wm]s = (®Ind<§i /3) o

It is crucial to observe that, C G,. By Theorem 2.6 we have > 1. In order to show that
r =1 we consider the restriction of these representatiods.tdhe multiplicity of the maximal
Fontaine—Laffaille weightp(.Jr)| in the right-hand side is by Theorem 2.6, Corollary 2.7(ii)
and Fontaine—Laffaille’s theory.
On the other hand, the multiplicity ¢f(.J#)| in the left-hand side is equal, by Theorem 5.13,
to the dimension oH’(Y ® #, W, _(n+t)—t,n,)[m]: In fact, by Remark 5.14 all we have to
check is theT,-linearity of the Fontaine-Laffaille functogr!*(/~)l on H% (Y, V., (%)) By
Theorem 6.6(ii) the modulél? (Y5, V,,(O))n is torsion free. Thereford),-linearity may be
checked after extending the scalars@pwhere it follows from the Strong Multiplicity One
Theorem (since is prime to the leveh). We owe this idea to Diamond (see [8, Proposition 1]).
We will now see thatlim, H*(Y ® &, We, (nit)—tmo)[m] = 1. We haveW,, (ni1)—tn, =
wk ® v™t/2 So we are led to show that two normalized Hilbert modular forms of welight
level n and coefficients inc = T\, /m having the same eigenvalues for all the Hecke operators
are equal. One should be careful to observe that the Hecke operators permute the connected
componentsi/; (¢,n) of the Shimura varietyt” = Y;(n) (here the ideat runs over a set of
representatives @f1}.). We use Hecke relations between Fourier coefficients and eigenvalues for
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the Hecke operators and theexpansion Principle at th& cusp of each connected component
M; (¢, n) (see Section 1.7).

(ii), (iif) Mazur's argument in the elliptic modular case remains valid. By Theorem A, the
twisted Poincaré pairing (6) ofl?(Y,V,,(0))m = H(Y,V,(0))n is a perfect duality of
Tw-modules, so it would be enough to show (ii)a

Again using the perfectness of the twisted Poincaré paifingk W — x we obtain\l &
Homr, (W, k), and soW @t,, k = W/mW = Hom(W[m], ), and therefore

dim,, (W ®r,, k) = dim,, (W [m]),

which equal2?, by (i). Then (ii) follows from the following:

LEMMA 6.8.—Let7 be atorsion free locaD-algebra(7 — 7 ®» F) of maximal ideain
and residue fieldk = 7 /m.

Let M be a finitely generate@-module such thaM ®¢ FE is free of rankr over7 ®¢ E. If
M @7 k is ak-vector space of dimensiog r, thenM is free of rankr over7 .

Proof. —Since M ®7 k is of dimension< r, the Nakayama’s lemma gives a surjective
homomorphism of7 -modules7”™ — M. Denote by! its kernel. We have an exact sequence
of O-modules

0—I—-T7T"—M-—0.

By tensoring it by® o E (or equivalently by® (7 ®¢ E)) we obtain another exact sequence
0-2I®R0E—(TQRoE) - M®oE— 0.

By comparing the dimensions ovérwe get/ ®» E = 0. Sincel is torsion free/ =0. O

6.4. An application to p-adic ordinary families

Forr > 1, consider the following open compact subgroup&6h ;)
Ko(p") = {u eKi(n)|u= (S :) (modpr)},
1
Kiu(p') = {u eKi(n)|u= (O 4{) (modpr)}.

Let Yy (p") (respectively¥1; (p")) be the Hilbert modular variety of levé{, (p") (respectively

Ki1(p")).

The cohomology groupl® (Y11 (p"), V,.(E/O))* has a natural action dio(p")/K11(p") ~
(0/p")* x (o/p")* (we denote by the Pontryagin dual). Therefore the grofifZ,,) /o acts
on the inductive limitt* (Y11 (p™), V. (E/O))* := liLnH'(YH(pT),V”(E/(’)))*.

By Hida’'s stabilization lemma, the ordinary part B (Y11 (p>°), V,.(E/O))* (that is the
part where the Hecke operatdfs, of Definition 1.13 are invertible for alp dividing p) is
independent on. We denote it byi? , := H? (Y11 (p>), E/O)*.

By the above discussigh?,, has a structure of A := O[[T(Z,)/0*]]-module. It is of finite

ord

type, by a theorem of Hida.
We also define thg-adic ordinary Hecke&-algebrdﬂ‘ﬁord =1lm T ora(Y11(p")). As T ora
is independent ok, we denote it byl'>e,. Then??, ; is aToo,-module.

ord* ord
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An arithmetic character of'(Z,)/o* is by definition a character whose restriction to an
open subgroup is given by an algebraic character. It is immediate that such a character is
a product of an algebraic character and a finite order character. An algebraic character of
T(Z,) ~ D(Z,) x D(Z,) trivial on o* is necessarily of the forntu,¢) — u"e~"™, where
m,n € Z[Jr] and m + 2n € Zt. Hence, the general form of an arithmetic characeteof
T(Z,)/0% is (u,€) — u™e~ ™)y (u)ih2(€), whereyy, b, are finite order characters. Every such
1 induces ar0-algebra homomorphisth — O, whose kernel is denoted 1.

Let m be a maximal ordinary ideal & and letm, be a maximal ideal oSy, abovem. We
denote byT';>  (respectivelyHy, ) the localization offgs, (respectively ofH3, ;) atm.

PROPOSITION 6.9. — Letm be such thatI), (IT) and (LI,q 5) hold. Then
0] Hﬁqm is free of finite rank oveA and we have an exact control

Mo /PoH ~H* (Yu(p"), Vu(E/O)),

(i) M _ isfree of ranke? overTg? , and

(iii) Hida’s control theorem for the Hecke algebra holds, thal'fs_ is a free A-algebra of
finite rank and for every) we havel'y /PyTyy  ~ Ty (Y11(p"))m, -

Proof. —(i) The proof is very similar to the one of [31, Theorem 9]. It uses thAtmodule
is free, if it is free of constant rank ové? for infinitely many specializations. In our case, it is
enough to specialize at weights of the fokm- (p — 1)k’ and verify the exact control criterion
using Theorem 6.6. We omit the details, because (i) follows from (ii) and (jii).

(i) ConsiderA — Tg®_ — Endo (MY, ). The specialization ap = v, gives

O =Ty /PTy_ —Endo (He _/PHE ).

By Theorem 6.6 we havBl?(Yy(p), V,(E/0)): ~ HY(Y,V,(E/O)); ~HY(Y,V,(0))m
and an exact controt(?, /PyHE  ~HYY,V,(0))m.

From here and from Theorem B we obtain thgf, _ ®re (To. /PpTa.) = HE @4
A /Py is free of rank¢ overT,,. HenceH, _ ®ree s free of rank2? overT,, ®Te_/PyToe_
k = k. Then Lemma 6.8 applies to tﬁmow-moduleH;ﬁm which is finitely generated over the
local algebra\.

(iii) Since H¢, _ is a freeA-module, it admits a direct sum decomposition with respect to the
Weyl group action on the Betti cohomology:

ML= P Ha 6.

JCJF

Every’Hd _[€;] is free of rank 1 ovellse  and free over\. ThereforeTy  is free overA
and exact control holds. O

COROLLARY 6.10. - Let f € S (,—1)x (Yo(p")) be a newform and lep be a prime not
dividing N7/ (), such thatp — 1 > 3" (k, — 1) and (LI.q ) holds. Then Theoren#s and B
hold.
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