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STABILITY OF TRAVELLING WAVES IN A MODEL
FOR CONICAL FLAMES IN TWO SPACE DIMENSIONS

BY FRANÇOIS HAMEL, RÉGIS MONNEAU AND

JEAN-MICHEL ROQUEJOFFRE

ABSTRACT. – This paper deals with the question of the stability of conical-shaped solutions of a c
reaction-diffusion equations inR2. One first proves the existence of travelling waves solutions with con
shaped level sets, generalizing earlier results by Bonnet, Hamel and Monneau [SIAM J. Math. A
(1999) 80–118; Comm. Partial Differential Equations 25 (2000) 769–819]. One then gives a characte
of the global attractor of these semilinear parabolicequations under some conicalasymptotic conditions
Lastly, the global stability of the travelling waves solutions is proved.

 2004 Elsevier SAS

RÉSUMÉ. – On étudie dans cet article la stabilité des solutions d’ondes progressives à lignes de niveau
coniques pour une classe d’équations de réaction-diffusion dansR

2. Nous prouvons d’abord l’existenc
de telles ondes, généralisant ainsi des résultats antérieurs de Bonnet, Hamel, Monneau [SIAM
Anal. 31 (1999) 80–118 ; Comm. Partial Differential Equations 25 (2000) 769–819]. Nous donnons
une caractérisation de l’attracteur global des ces équations paraboliques semi-linéaires sous des c
de conditions aux limites coniques équivalentes à celles des ondes progressives. Nous prouvon
stabilité globale desondes progressives.

 2004 Elsevier SAS

1. Introduction and main results

This paper deals with the question of the global stability of the solutionsφ of the following
semilinear elliptic equation

∆φ− c∂yφ + f(φ) = 0, 0 < φ < 1 in R
2,(1.1)

under the following type of conical conditions at infinity


lim
y→+∞

inf
C+(y,π−α)

φ = 1,

lim
y→−∞

sup
C−(y,α)

φ = 0.
(1.2)

Throughout the paper, the notation∂yφ (as well asφy) means the partial derivative of th
functionφ with respect to the variabley. For anyy0 ∈ R and any0 � β � π, the lower and uppe
conesC±(y0, β) are defined by

C±(y0, β) =
{
(x, y) = (0, y0) + ρ(cosϕ, sinϕ), ρ � 0, |ϕ∓ π/2|� β

}
.
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Fig. 1. Upper and lower cones.

We also use the following notation: for a functionv of the 2D real variable(x, y), and for
(a, b) ∈ R

2, we denote byτa,bv the function

τa,bv : (x, y) �→ v(x + a, y + b).

Another way of formulating the question of the stability of the solutionsφ of (1.1)–(1.2) is to
ask the question of the convergence to the travelling frontsφ(x, y + ct), or to some translates o
them, for the solutionsu(t, x, y) of the Cauchy problem{

ut = ∆u + f(u), t > 0, (x, y) ∈ R
2,

u(0, x, y) = u0(x, y) given, 0 � u0 � 1
(1.3)

whereu0 is close, in some sense to be defined later, to a translateτa,bφ of a solutionφ of (1.1)–
(1.2).

The functionf is assumed to be of classC1,δ in [0,1] (for someδ > 0) and to have the
following profile:

∃θ ∈ (0,1), f = 0 on [0, θ]∪ {1}, f > 0 on (θ,1) and f ′(1−) < 0.(1.4)

For mathematical convenience, we extendf by 0 outside[0,1]. Notice that, from standard ellipti
estimates, any classical solutionφ of (1.1) is actually of classC2,µ(R2) for anyµ ∈ [0,1).

Eq. (1.1) arises in models of equidiffusional premixed Bunsen flames. The functionu is a
normalized temperature and its level sets represent the profile of a conical-shaped Bunse
coming out of a thin elongated Bunsen burner (see Buckmaster and Ludford [12], Jouli
Sivashinsky [38], Williams [40]). The temperature of the unburnt gases is close to0 and that of
the burnt gases is close to1, the hot zone being above the fresh zone. The realθ is called an
ignition temperature, below which no reaction happens. The realc is the speed of the gases
the exit of the burner. Since the shape of the Bunsen flames is invariant with respect to t
of the Bunsen burner, one way of modelling these conical flames consists in setting Eq.
the whole planeR2 together with asymptotic conical conditions of the type (1.2). The angl2α
then stands for the aperture of the tip of the flame.
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In the one-dimensional case, Eq. (1.1) and conditions at infinity (1.2) reduce to the ordinary
differential equation { ′′ ′
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φ0 − c0φ0 + f(φ0) = 0,

φ0(−∞) = 0, φ0(+∞) = 1.
(1.5)

It is well known (Aronson, Weinberger [2], Berestycki, Nicolaenko, Scheurer [6], Kanel’ [
that there exists a unique solution(c0, φ0) of (1.5) such thatφ0(0) = θ (the solutions of (1.5
are actually unique up to translation). Besides, the speedc0 is positive and the functionφ0 is
increasing. The functionφ0(y) is also a solution of the two-dimensional problem (1.1)–(1.2
the particular caseα = π/2.

In the two-dimensional case withα �= π/2, the existence of solutionsφ of (1.1)–(1.2) was
proved by Hamel and Monneau [19] for some anglesα ∈ (0, π/2) and some functionsf
satisfying (1.4) under some additional assumptions (see Theorem 1.8 in [19]). Existence
solutions of (1.1) under some conical conditionsweaker than (1.2) was also proved by Bon
and Hamel (see Theorem 1.1 in [9]).

The first result of this paper is to establish the existence of solutions of (1.1)–(1.2) fo
angleα ∈ (0, π/2] and for any functionf satisfying (1.4):

THEOREM 1.1 (Existence). – For every angleα ∈ (0, π/2] and for every functionf
satisfying(1.4), there exists a solutionφ to (1.1)–(1.2), with c = c0/ sinα.

Furthermore, it follows from Theorem 1.7 in [19] that the solutions(c, φ) of (1.1)–(1.2)
are unique, in the sense thatc is unique, andφ up to a translation in(x, y). The speedc is
necessarily equal toc = c0/ sinα. Besides, any solutionφ satisfies the following propertie
(1) there exists a realx0 such thatφ is symmetric with respect to the vertical line{x = x0},
(2) for anyλ ∈ (0,1), the level set{φ(x, y) = λ} has two asymptots parallel to the half-lin
{y = − cotα|x|, x � 0} and{y = − cotα|x|, x � 0}, (3) there exist two realst± such that for
any sequencexn → ±∞, the functionsφn(x, y) = φ(x + xn, y − |xn| cotα) go to the plana
fronts φ0(±x cosα + y sinα + t±) asxn → ±∞ in C2

loc(R
2). The last two properties mea

that any solutionφ is asymptotically conical-shaped far away from the origin: namely,φ is
asymptotically planar and asymptotically equal to two translates of the planar frontφ0 in the
two directions of angleα with respect to the vector−e2 = (0,−1).

The formula c = c0/ sinα, which actually follows from earlier results of Bonnet a
Hamel [9], and had already been used in several papers (see e.g. Lewis, Von Elb
Sivashinsky [38], Williams [40]), is very natural. Indeed, any solutionφ of (1.1)–(1.2) gives
rise to a solutionu(t, x, y) = φ(x, y + ct) of the evolution problem (1.3) withu0 = φ. The planar
speedc0 is now nothing else than the projection on the directions(± cosα,− sinα) of the vertical
speedc of the curved frontφ(x, y + ct) moving downwards. The speedc0 is the speed of two
planar waves moving in the directions(± cosα,− sinα) perpendicular to the half-lines makin
an angleα with the vertical axis.

Remark1.2. – 1. The dimension2 is quite different from other dimensions since, as soo
N � 3, there is no solution of problem (1.1) inRN , with α < π/2 and conical conditions of th
type (1.2) (see [19]). But the possible existence of solutions of (1.1) inR

N under some weake
conical conditions is still open in dimensionsN � 3.

2. It was also proved in [19] that no solution of (1.1)–(1.2) exists wheneverα ∈ (π/2, π), in
dimensions2 and higher.

Whereas there are many papers dealing with the stability of the travelling fronts for
dimensional equations of the type (1.5) with various types of nonlinearitiesf (see e.g. [2,10,17
25,36,37]), or for wrinkled travelling fronts of multidimensional equations in infinite cylind
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(see [4] and [8] for the existence and uniqueness results, and [5,29,33–35] for the stability
results), or lastly for planar fronts in the whole space (see [27,41]), nothing seems to be known
about the stability of the solutions of two-dimensional problem (1.1)under conical conditions of

l
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f (1.3)

o

imilar
some
the type (1.2), forα < π/2. As already emphasized, the travelling frontsφ(x, y + ct) are specia
time-global solutions of (1.3) satisfying, ateach time, the conical conditions (1.2) in the fra
moving downwards with speedc = c0/ sinα. Therefore, the question of the global stability
these travelling waves and the question of the asymptotic behaviour for large time of the so
of the Cauchy problem (1.3) starts from the study of the global attractor of Eq. (1.3) under c
conditions of the type (1.2) in a frame moving downwards with speedc.

The next theorem states that the travelling waves are the only time-global solutions o
satisfying such conical conditions.

THEOREM 1.3 (Liouville type result). –Let α ∈ (0, π/2] and 0 � u(t, x, y) � 1 solve the
equation

ut = ∆u + f(u), (x, y) ∈ R
2(1.6)

with t ∈ (−∞,+∞) andf satisfying(1.4), and assume that


lim
y0→−∞

sup
t∈R, y�y0−|x| cotα

u(t, x, y − ct) = 0,

lim
y0→+∞

inf
t∈R, y�y0−|x| cotα

u(t, x, y − ct) = 1.
(1.7)

Then there exists a couple(h, k) ∈ R
2 such thatu(t, x, y) = τh,kφ(x, y + ct) for all (t, x, y) ∈

R×R
2, whereφ is given by Theorem1.1.

Since φ(x, y) → 0 (respectively→ 1) uniformly as y + |x| cotα → −∞ (respectively
y + |x| cotα → +∞), the following corollary holds:

COROLLARY 1.4. –Let 0 � u(t, x, y) � 1 be a solution of(1.6);assume the existence of tw
couples(a1, b1) and(a2, b2) ∈ R

2 for whichτa1,b1φ(x, y + ct) � u(t, x, y) � τa2,b2φ(x, y + ct)
for all (t, x, y) ∈ R

3. Then the conclusion of Theorem1.3holds.

The idea for proving Theorem 1.3 is based on a sliding method (see [7]) in the variablet and
some versions of the maximum principle for parabolic equations in unbounded domains. S
methods were used in [35] and [3] to get some monotonicity results for the solutions of
semilinear parabolic equations in various domains.

Theorem 1.3 especially implies the following

THEOREM 1.5 (Convergence of a subsequence to a travelling wave). –Let φ be a solution
of (1.1)–(1.2)for α ∈ (0, π/2] with assumptions(1.4) on f . Let u(t, x, y) be a solution of the
Cauchy problem(1.3)such that{

u0 � φ in R
2,

lim
y0→+∞

inf
y�y0−|x| cotα

u0(x, y) > θ.(1.8)

Then, for every sequencetn → +∞, there exist a subsequencetn′ → +∞ and(a, b) ∈ R
2 such

that

u(tn′ + t, x, y − ctn′ − ct) → φ(x + a, y + b) asn′ →+∞

locally uniformly in(t, x, y) ∈ R
3.
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A consequence of this result is that, ifu0 satisfies (1.8) and ifω(u0) is theω-limit set ofu0 for
the semi-groupS(t) given by (1.3), thenω(u0) is made up of travelling waves. Condition (1.8) is
especially satisfied whenu0 lies between two translates of a solutionφ of (1.1)–(1.2). But, even

for

t

under condition (1.8), theω-limit setω(u0) of u0 may well be a continuum, and one may ask
sufficient conditions forω(u0) to be a singleton. This is the goal of Theorem 1.6 below.

Before stating this result, let us first introduce some notations. Denote byUC (R2) the space
of all bounded uniformly continuous functions fromR2 to R. We fix aC∞ functiong :R → R

such thatg(x) = |x| for |x| large enough. Forρ > 0, we set

q(x, y) = e−ρ(g(x) sinα−y cosα)(1.9)

and

Gρ =
{
w ∈UC (R2), limsup

|(x,y)|→+∞

∣∣w(x, y)
∣∣ = 0, w/q ∈L∞(R2)

}
.

The spaceGρ is a Banach space with the norm

‖w‖Gρ = ‖w‖L∞(R2) + ‖w/q‖L∞(R2).

THEOREM 1.6 (Stability result). –Chooseα ∈ (0, π/2) and letf satisfy(1.4). Letu(t, x, y)
be a solution of the Cauchy problem(1.3)with initial datumu0 ∈UC (R2) such that0 � u0 � 1.
Assume the existence ofρ0, C0 > 0 and of a solutionφ of (1.1)–(1.2)such that

∣∣u0(x, y)− φ(x, y)
∣∣ � C0e

−ρ0

√
x2+y2

in R
2. Also assume that there exists(a, b) ∈ R

2 such thatu0 � τa,bφ in R
2.

Then there are four constantsT � 0, K � 0, ω > 0 andρ > 0, such that

∀t � T,
∥∥u(t, x, y − ct)− φ(x, y)

∥∥
Gρ

� Ke−ωt.

Under the above assumptions, it especially follows thatu(t, · , ·− ct) converges toφ uniformly

in R
2, and exponentially in time. Notice also that if|u0 − φ| � C0e

−ρ0

√
x2+y2

in R
2 for some

solutionφ of (1.1)–(1.2), thenu0 andφ have the same limits along the linesy = −|x| cotα as
x→±∞, whence such aφ, if any, is unique.

Notice that Theorem 1.6 holds especially ifu0 ∈UC (R2) is such that, say,0 � u0 < 1 and if
there exists a solutionφ of (1.1)–(1.2) such thatu0 − φ has compact support.

Lastly, the following theorem holds:

THEOREM 1.7. – Let α ∈ (0, π/2), andf satisfy(1.4). Let 0 � u(t, x, y) � 1 be a solution
of the Cauchy problem(1.3) with u0 bounded inC1(R2) and 0 � u0 � 1. Assume tha
limy→+∞ infC+(y,π−α) u0 > θ and that there exists a solutionφ of (1.1)–(1.2)such thatu0 � φ
in R

2. Also assume that for someρ0 > 0∣∣∂eαu0(x, y)
∣∣ � Ceρ0(y sinα−x cosα),

∣∣∂e′
α
u0(x, y)

∣∣ � Ceρ0(y sinα+x cosα)

for all (x, y) ∈ R
2, where

eα = (sinα,− cosα) and e′α = (− sinα,− cosα).(1.10)

Then the functionu(t, · , · − ct) converges uniformly inR2, as t → +∞, to a solutionφ′ of
(1.1)–(1.2).
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Remark1.8. – The convergence phenomenon is really governed by the behaviour of the initial
datum when the space variable becomes infinite along the directionseα ande′α. In that sense, the
situation is similar to the KPP situation; see [29]. It may well happen that, if the initial datumu0

]).
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utions

equa-
by

symp-
[30].
tence
al
1.6,
global

in

ng

f

has no limit in theeα ande′α directions, itsω-limit is made up of a continuum of waves (see [15

Let us mention here similar stability results were obtained by Ninomiya and Taniguchi [3
curved fronts in singular limits for Allen–Cahn bistable equations. Existence of smooth sol
of problem (1.1)–(1.2) with bistable nonlinearityf was obtained by Fife [16] for anglesα < π/2
close toπ/2. Conical-shaped and more general curved fronts also exist for the Fisher-KPP
tion, with concave nonlinearityf (see [11,21]). Other stability results were also obtained
Michelson [31] for Bunsen fronts solving the Kuramoto–Sivashinsky equation, in some a
totic regimes. Formal stability results in the nearly equidiffusional case were also given in

The plan of the paper is the following. Section 2 is devoted to the proof of the exis
of travelling waves with the conical conditionsat infinity. In Section 3, we prove that glob
solutions – i.e. defined for allt ∈ R – are travelling wave solutions. In order to prove Theorem
we present a local stability result in Section 4; combined to Section 3, this implies the
stability: this last item will be treated in Section 5.

2. Existence of travelling wave solutions

2.1. Proof of Theorem 1.1

Let α ∈ (0, π/2] be given. We are looking for a solutionφ of (1.1), i.e.

∆φ− c∂yφ + f(φ) = 0, 0 < φ < 1 in R
2

with c = c0/ sinα, satisfying the conditions (1.2) at infinity, i.e.


lim
y0→+∞

inf
y�y0−|x| cotα

φ(x, y) = 1,

lim
y0→−∞

sup
y�y0−|x| cotα

φ(x, y) = 0.

The strategy to prove Theorem 1.1 is to build a solutionφ between a sub- and a supersolution
the whole planeR2.

We perform the proof in three steps.
Step1: Construction of a subsolution.A natural candidate for a subsolution is the followi

function:

φ(x, y) = φ0

((
y − γ0(x)

)
sinα

)
,

where

γ0(x) = − 1
c0 sinα

ln
(
cosh(x c0 cosα)

)
,

andφ0 is the solution of the one-dimensional problem (1.5) satisfyingφ0(0) = θ. It can easily
be checked (see also [19] where such subsolutions were used) thatφ is a classical subsolution o

∆φ− c∂yφ + f(φ ) =
cos2 α

cosh2(x c0 cosα)
f
(
φ0

((
y − γ0(x)

)
sinα

))
� 0 in R

2.

Furthermore,φ is a solution of∆φ−c∂yφ = 0 in {y � γ0(x)}. Notice that sinceφ is of classC2,
it is also a subsolution of∆φ− c∂yφ + f(φ ) � 0 in the viscosity sense.
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Moreover, the functionγ0 satisfies supx∈R
|γ0(x) + |x| cotα| < +∞. This implies in

particular

tion

o

,

ive

he
of
lim
y0→−∞

sup
{y�y0−|x| cotα}

φ(x, y) = 0(2.1)

and

lim
y0→+∞

inf
{y�y0−|x| cotα}

φ(x, y) = 1.(2.2)

Step2: Construction of a supersolution.On the contrary, the construction of a supersolu
which is above the subsolution is a nontrivial fact, and requires the use of the solutionψ to an
associated free boundary problem.

We define the candidate for the supersolution as:

φ̄(x, y) =
{

θψ(x, y) in Ω := {ψ < 1},
φ0

(
dist

(
(x, y),Ω

))
in R

2\Ω

wheredist denotes the euclidean distance function andψ is the unique (up to shift) solution t
the following free boundary problem (see [20]):

THEOREM 2.1 (A free boundary problem,1 [20]). – For α ∈ (0, π/2], c0 > 0 andc = c0/ sinα
there exists a functionψ satisfying




∆ψ − c∂yψ = 0 in Ω := {ψ < 1},
0 < ψ � 1 in R

2,
∂ψ

∂n
= c0 onΓ := ∂Ω,

lim
y→−∞

sup
C−(y,α)

ψ = 0,

ψ = 1 in C+(y0, π − α) for somey0 ∈ R,

(2.3)

where ∂ψ
∂n stands for the normal derivative onΓ of the restriction ofψ to Ω̄. Furthermore,ψ is

continuous inR2, the setΓ = ∂Ω is aC∞ graphΓ = {y = ϕ(x), x ∈ R} such that

sup
x∈R

∣∣ϕ(x) + |x| cotα
∣∣ < +∞,

Ω is the subgraphΩ = {y < ϕ(x)}, the restriction ofψ is C∞ in Ω̄, and |ϕ′(x)| � cotα in R.
Lastly,ψ is nondecreasing iny, even inx and satisfies

∂xψ(x, y) � 0 for x � 0, y < ϕ(x).

From Theorem 2.1 and from the definition ofγ0, it is easy to see that there exist two posit
constantsr0 andC such that

∀r � r0, φr(x, y) := φ(x, y − r) � θ in Ω̄

and

1 This problem arises in models of equidiffusional premixed Bunsen flames in the limit of high activation energy. T
existence of a solutionψ of problem (2.3) can be obtained by regularizing approximations, starting from solutions
problems of the type (1.1) with nonlinearitiesfε approximating a Dirac mass at1.
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dist
(
(x, y),Ω

)
) � −C +

(
y − γ0(x)

)
sinα in R

2\Ω = {ψ = 1}.
Because of (2.1), and from the comparisonprinciples proved in [19], it follows thatφr � φ̄ in Ω

¯

. 41),

2)
for all r � r0 and then, by construction ofφ, we get that

φr � φ̄ in R
2

as soon asr � max(r0,C/ sinα).
Moreover, notice that the construction ofφ̄ implies that

lim
y0→−∞

sup
{y�y0−|x| cotα}

φ̄(x, y) = 0.(2.4)

We shall prove in Section 2.2 the following result.

PROPOSITION 2.2. – The functionφ̄ is a supersolution of(1.1) in the vicosity sense.

Step3. Existence of a solution.Choose a real numberr such thatr � max(r0,C/ sinα). By
using the Perron method for viscosity solutions (see [14] and H. Ishii [23], Theorem 7.2, p
we get the existence of a vicosity solutionφ of ∆φ− c∂yφ + f(φ) = 0, which satisfies:

0 � φr � φ � φ̄ � 1 in R
2.

Now by the regularity theory for viscosity solutions (see [13]), it follows thatφ is C2+β (with
β > 0), and thenφ is a classical solution of (1.1). Finallyφ satisfies the conditions at infinity (1.
because of (2.2) and (2.4). This completes the proof of Theorem 1.1.

2.2. Proof of Proposition 2.2

The proof of Proposition 2.2 is based on the following result:

LEMMA 2.3. – Let ξ be the function defined by

ξ(x, y) = φ−1
0

(
θ ψ(x, y)

)
in Ω̄ =

{
y � ϕ(x)

}
,

whereψ is the solution to the free boundary problem given by Theorem2.1. Then

|∇ξ| � 1 in Ω̄.

Proof. –We have 


∆ξ + c0

(
|∇ξ|2 − ∂yξ

sinα

)
= 0 in Ω = {ξ < 0},

ξ = 0 and
∂ξ

∂n
= 1 onΓ = ∂{ξ < 0}

sinceφ0(s) = θec0s for all s � 0. A straightforward computation gives, forv = |∇ξ|2:

∆v + b · ∇v = 2|D2ξ|2,

whereb = 2c0∇ξ − c0/ sinα ey andey = (0,1).
Let us defineM = supv. We want to prove thatM � 1. Let us assume thatM > 1. We

know thatv = 1 on Γ and v(x, y) → 1 as |x| → +∞ and d((x, y),Γ) stays bounded. From
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STABILITY OF CONICAL WAVES 477

the maximum principle we conclude that there exists a sequence of points(xn, yn) such that
v(xn, yn) →M , d((xn, yn),Γ)→+∞, and the sequence of functions

es

on
o

et
vn(x, y) = v(xn + x, yn + y)

converges to the functionv∞(x, y) which from the strong maximum principle satisfi
v∞(x, y) ≡ M . Moreoverξ0,n(x, y) = ξ0,n(xn + x, yn + y) − ξ0,n(xn, yn) converges to a
functionξ0,∞(x, y) such thatv∞ = |∇ξ0,∞|2, andD2ξ0,∞ ≡ 0.

On the other hand, the following function

w(x, y) = ec0(y sinα+x cosα) + ec0(y sinα−x cosα) = ec0 sinα(y−g(x)))

is a solution of the equation∆w − c0
sinα∂yw = 0 on the whole space. Using the comparis

principle on the Lipschitz subgraphΩ = {y < ϕ(x)}, we can deduce that there exist tw
constantsy1 > y2 such that

ec0 sinα(y−g(x)−y1)) � ψ � ec0 sinα(y−g(x)−y2)) onΩ

and then a simple computation implies∣∣ξ0,∞(x, y)
∣∣ � |y1 − y2| sinα +

√
x2 + y2.

BecauseM > 1, this is in contradiction with∇ξ0,∞ ≡ ν
√

M for a constant vectorν satisfying
‖ν‖= 1. This ends the proof of the lemma.�

Let us now turn to the

Proof of Proposition 2.2. –Let us define

I[u] := ∆u− c∂yu + f(u).

By constructionφ̄ is a classical solution ofI[φ̄] = 0 in the open setΩ = {φ̄ < θ}. Moreover the
gradient ofφ̄ is continuous acrossΓ = ∂{φ̄ < θ}, which is smooth.

Let us now consider the functionξ(x, y) = φ−1
0 (φ̄(x, y)), defined in the whole planeR2. We

have

J [ξ] :=
I[φ̄]
φ′

0(ξ)
= ∆ξ + c0

(
|∇ξ|2 − ∂yξ

sinα

)
+ G(ξ)

(
1− |∇ξ|2

)
(2.5)

in the viscosity sense inR2, whereG(ξ) = f(φ0(ξ))/φ′
0(ξ) � 0. Becauseξ(x, y) = d((x, y),Γ)

in R
2\Ω = {ξ � 0}, the following inequality holds in theviscosity sense:

J [ξ] � H [ξ] := − K

1−Kξ
+ c0

(
1− n · ey

sinα

)
in

{
y > ϕ(x)

}
,(2.6)

and equality holds whereξ is smooth (see Gilbarg, Trudinger [18]). HereK = K(Y ) and
n = n(Y ) are respectively the curvature2 and the exterior normal to the set̄Ω at a point
Y = Y (x, y) ∈ Γ where the ballBξ(x,y)((x, y)) is tangent toΓ.

On the other hand, on the level setΓ we have|∇ξ| = 1 and because of Lemma 2.3 we g
D2

nnξ � 0. Therefore, sinceI[φ̄] = 0 in Ω̄, we deduce from (2.5) that

2 Under the convention that the curvature of a disk is negative.
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−K(Y ) + c0

(
1− n(Y ) · ey

sinα

)
� 0 for all Y ∈ Γ.

as

ing a

:

s
z-

ts

that
Furthermore, observe that the inequality

−K(Y )
1−K(Y )ξ(x, y)

� −K(Y )

holds for all(x, y) ∈ R
2\Ω = {ξ � 0}, whatever the sign ofK is, under the same notations

above forY .
Therefore,H [ξ] � 0 in R

2\Ω and finallyJ [ξ] � 0 in {y > ϕ(x)} = {ξ > 0} in the viscosity
sense. Hence,I[φ̄] � 0 in R

2 in the viscosity sense, which ends the proof ofProposition 2.2. �
3. Global solutions are travelling waves

This section is devoted to the proof of Theorems 1.3 and 1.5 below, the latter be
consequence of the former.

One of the main tools in the proof of Theorem 1.3 is the following comparison principle

PROPOSITION 3.1 (Comparison principle). –Let δ ∈ R and g :R → R be a Lipschitz-
continuous function which is nonincreasing in(−∞, δ]. Letψ :R → R be a Lipschitz-continuou
function. Letv : (t, x, y) �→ v(t, x, y) and v̄ : (t, x, y) �→ v̄(t, x, y) be two bounded and Lipschit
continuous functions defined onR× Ω̄, whereΩ = {y < ψ(x)}. Letκ ∈ R. Assume that

{
v t � ∆v + κ∂yv + g(v ) in D′(R ×Ω),
v̄t � ∆v̄ + κ∂y v̄ + g(v̄) in D′(R ×Ω),

v � δ in R× Ω̄, v(t, x,ψ(x)) � v̄(t, x,ψ(x)) for all (t, x) ∈ R
2, and

lim
y0→−∞

sup
t∈R, y<ψ(x)+y0

(
v(t, x, y)− v̄(t, x, y)

)
� 0.

Thenv(t, x, y) � v̄(t, x, y) for all (t, x, y) ∈ R× Ω̄.

Proof. –Sincev and v̄ are bounded inR × Ω̄, one hasv − ε � v̄ in R × Ω̄ for ε > 0 large
enough. Let us now define

ε∗ = inf{ε > 0, v − ε′ � v̄ in R× Ω̄ for all ε′ � ε}.

By continuity, one can immediately say thatv − ε∗ � v̄ in R× Ω̄.
Let us now assume thatε∗ > 0. There exist then a sequenceεn

<→ ε∗ and a sequence of poin
(tn, xn, yn) in R× Ω̄ such that

v(tn, xn, yn)− εn > v̄(tn, xn, yn).

Sinceεn � ε∗/2 > 0 for n large enough, it follows from the assumptions of Proposition 3.1
there exist two real numbers0 < A � B such that

ψ(xn)−B � yn � ψ(xn)−A(3.1)

for n large enough.
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Call ψn(x) = ψ(x+xn)− yn and letv n andv̄n the functions defined inR×{y � ψn(x)} by

v n(t, x, y) = v(t + tn, x + xn, y + yn) and v̄n(t, x, y) = v̄(t + tn, x + xn, y + yn).

to

in

nd

ciple
ly
tors
Since the functionsψn are uniformly Lipschitz-continuous, they locally converge, up
extraction of some subsequence, to a globally Lipschitz-continuous functionψ∞. Similarly, up
to extraction of another subsequence, the functionsv n and v̄n converge locally uniformly in
R × {y < ψ∞(x)} to two globally Lipschitz-continuous functionsv∞ and v̄∞, which can be
extended by continuity onR× {y = ψ∞(x)}. Call

Ω∞ =
{
(x, y) ∈ R

2, y < ψ∞(x)
}
.

Sincev(t, x,ψ(x)) � v̄(t, x,ψ(x)) for all (t, x) ∈ R
2 and sincev andv̄ are globally Lipschitz-

continuous inR× Ω̄, it follows that

v∞
(
t, x,ψ∞(x)

)
� v̄∞

(
t, x,ψ∞(x)

)
for all (t, x) ∈ R

2.
By passage to the limit, the functionsv∞ andv̄∞ satisfy{

(v∞)t � ∆v∞ + κ∂yv∞ + g(v∞) in D′(R×Ω∞)
(v̄∞)t � ∆v̄∞ + κ∂y v̄∞ + g(v̄∞) in D′(R×Ω∞)

andv∞ − ε∗ � v∞ in R×Ω∞. On the other hand,ψ∞(0) � A > 0 from (3.1), and

v∞(0,0,0)− ε∗ = v∞(0,0,0).

Lastly,v∞ − ε∗ � v∞ � δ in R × Ω∞ and the functiong was assumed to be nonincreasing
(−∞, δ]. Hence,g(v∞ − ε∗) � g(v∞) in R×Ω∞.

Therefore, the functionw := v∞ − ε∗ − v̄∞ is a bounded, globally Lipschitz-continuous a
nonpositive function inR×Ω∞, vanishing at the point(0,0,0) and satisfying

wt � ∆w + κ∂yw + γ(t, x, y)w in D′(R ×Ω∞),

where γ is globally bounded function (here we use the fact thatg is globally Lipschitz-
continuous). The strong parabolic maximum principle then implies thatw(t, x, y) = 0, i.e.
v∞(t, x, y)− ε∗ = v̄∞(t, x, y), for all t � 0 and(x, y) ∈ Ω∞. But the positivity ofε∗ contradicts
the fact thatv∞ � v̄∞ onR× ∂Ω∞.

As a conclusion,ε∗ = 0 andv � v̄ in R× Ω̄. �
Remark3.2. – The above comparison principle is a version of a parabolic maximum prin

for time-global solutions in an unbounded space-domain. This comparison principle actual
holds the same way in any space-dimension for more general second-order parabolic opera
with smooth coefficients depending on time and space and a non-linearityg(t, x1, . . . , xN , u)
satisfying the same monotonicity assumption with respect tou as in Proposition 3.1.

Let us now turn to the

Proof of Theorem 1.3. –Under the assumptions of Theorem 1.3, the functionv defined inR
3

by v(t, x, y) := u(t, x, y − ct) is such that0 � v � 1 and it solves

vt = ∆v − c∂yv + f(v).(3.2)
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From standard parabolic estimates, the functionv is globally Lipschitz-continuous with respect
to all variables(t, x, y). Furthermore,v satisfies

1 are

r




lim
y0→−∞

sup
t∈R, y�y0−|x| cotα

v(t, x, y) = 0,

lim
y0→+∞

inf
t∈R, y�y0−|x| cotα

v(t, x, y) = 1.
(3.3)

We shall now prove thatv is actually independent oft. That will imply thatv = v(x, y) is a
solution of (1.1)–(1.2) (notice that from the strong maximum principle, one then has0 < v < 1).
From Theorem 1.1 and from the uniqueness results in [19], it will follow thatv = τa,bφ in R

2,
for some pair(a, b) ∈ R

2.
Fix now any real numbert0. Fors ∈ R, call ws the function defined inR3 by

ws(t, x, y) = v(t + t0, x, y + s).

The functionws is a solution of (3.2) as well.
From the assumptions onf , there existsρ > 0 such thatθ � 1− ρ andf is nonincreasing on

the interval[1− ρ,+∞). Remember also thatf is identically equal to0 on (−∞, θ]. From (3.3),
there existsA > 0 such that{

v(t, x, y) � 1− ρ for all t ∈ R, y � A− |x| cotα,

v(t, x, y) � θ for all t ∈ R, y �−A− |x| cotα.

Choose anys � 2A and observe that

ws
(
t, x,−A− |x| cotα

)
= v

(
t + t0, x, s−A− |x| cotα

)
� 1− ρ � θ � v

(
t, x,−A− |x| cotα

)
for all (t, x) ∈ R

2. It is then immediate to check that all the assumptions of Proposition 3.
satisfied withg = f , δ = θ, ψ(x) = −A− |x| cotα, κ = −c, v = v, v̄ = ws. Therefore,

ws(t, x, y) � v(t, x, y) for all t ∈ R andy � −A− |x| cotα.

Similarly, the assumptions of Proposition 3.1 are also satisfied with the choices

g(τ) = −f(1− τ), δ = ρ, ψ(x) = A + |x| cotα, κ = c,

v(t, x, y) = 1−ws(t, x,−y) and v̄(t, x, y) = 1− v(t, x,−y).

Therefore,v(t, x, y) � v̄(t, x, y) for all t ∈ R andy � A + |x| cotα, which means that

v(t, x, y) � ws(t, x, y) for all t ∈ R andy � −A− |x| cotα.

As a consequence, one hasv � ws in R
3 for all s � 2A. Let us now define

s∗ = inf {s > 0, v � wτ in R
3 for all τ � s}.

By continuity, one hasv � ws∗
. Let us assume by contradiction thats∗ > 0. One shall conside

two cases, namely whether the infimum ofws∗ − v is positive or zero on the strip

S =
{
(t, x, y) ∈ R

3, |y + |x| cotα|� A
}
.
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Case1: infS(ws∗ − v) > 0. Since the functionv, as well asws∗
, is globally Lipschitz-

continuous, there existsη0 ∈ (0, s∗) such thatws∗−η � v in S for all η ∈ [0, η0]. Choose any
η ∈ [0, η0]. Sinces∗ − η � 0, one hasws∗−η(t, x, y) � 1− ρ for all t ∈ R andy � A− |x| cotα.

s

e
ove

up
It also follows from the choice ofη that

ws∗−η
(
t, x,A− |x| cotα

)
� v

(
t, x,A− |x| cotα

)
for all (t, x) ∈ R

2 (since (t, x,A − |x| cotα) ∈ ∂S for all (t, x) ∈ R
2). As above, it is

straightforward to check that Proposition 3.1 implies that

ws∗−η(t, x, y) � v(t, x, y) for all t ∈ R andy � A− |x| cotα.

Similarly, it can also be deduced that

ws∗−η(t, x, y) � v(t, x, y) for all t ∈ R andy � −A− |x| cotα.

Putting all the preceding facts together, one concludes thatws∗−η � v in R
3 for all η ∈ [0, η0].

This is in contradiction with the minimality ofs∗, sinceη0 > 0. Therefore, case 1 is ruled out.
Case2: infS(ws∗ − v) = 0. There exists then a sequence(tn, xn, yn) such thattn ∈ R,

−A− |xn| cotα � yn � A− |xn| cotα and

ws∗
(tn, xn, yn)− v(tn, xn, yn)→ 0 asn→+∞.

Call vn(t, x, y) = v(t + tn, x + xn, y + yn). Each functionvn is a solution of (3.2) and range
in [0,1]. From standard parabolic estimates, the functionsvn converge locally uniformly, up
to extraction of some subsequence, to a global solutionv∞ of (3.2) such that0 � v∞ � 1.
Furthermore,v∞(t0,0, s∗) = v∞(0,0,0). Therefore, the function

z(t, x, y) := v∞(t + t0, x, y + s∗)− v∞(t, x, y),

which is nonnegative sincev � ws∗
, vanishes at(0,0,0) and is a global bounded solution of

zt = ∆z − c∂yz + γ(t, x, y)z

for some bounded functionγ (here we use the fact thatf is globally Lipschitz-continuous). Th
strong maximum principle fort � 0 and the uniqueness of the Cauchy problem for the ab
equation then imply thatz(t, x, y) = 0 for all (t, x, y) ∈ R

3. As a consequence,

v∞(t + nt0, x, y + ns∗) = v∞(t, x, y)(3.4)

for all (t, x, y) ∈ R
3 andn ∈ Z.

Furthermore, from the definitions of(tn, xn, yn), one of the following three cases occur
to extraction of some subsequence: (i) the sequence(xn, yn) is bounded, (ii)xn → −∞, or
(iii) xn →+∞.

If case (i) occurs, then (3.3) holds forv∞. If case (ii) occurs, then the functionv∞ satisfies




lim
y0→−∞

sup
t∈R, y�y0+x cotα

v∞(t, x, y) = 0,

lim
y0→+∞

inf
t∈R, y�y0+x cotα

v∞(t, x, y) = 1.
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Lastly, if case (iii) occurs, thenv∞ satisfies lim
y →−∞

sup v∞(t, x, y) = 0,

refore

e

ality

)

 0 t∈R, y�y0−x cotα

lim
y0→+∞

inf
t∈R, y�y0−x cotα

v∞(t, x, y) = 1.

In each of the three cases (i), (ii) or (iii), one gets a contradiction with property (3.4). The
case 2 is ruled out too.

As a conclusion, the assumptions∗ > 0 is impossible, whence

v(t, x, y) � w0(t, x, y) = v(t + t0, x, y)

for all (t, x, y) ∈ R
3. Sincet0 is arbitrary inR, one concludes thatv does not depend on th

variablet. As already emphasized, that completes the proof of Theorem 1.3.�
Let us now turn to the

Proof of Theorem 1.5. –The functionsvn(t, x, y) = u(tn + t, x, y − ctn − ct) solve

∂tvn = ∆vn − c∂yvn + f(vn)(3.5)

for t > −tn. Furthermore, sinceφ is a solution of (1.1), the maximum principle implies that

vn(t, x, y) � φ(x, y)

for all (x, y) ∈ R
2 and for all t � −tn. On the other hand, because of the second inequ

in (1.8) and becauseu0 is nonnegative, there existη ∈ (θ,1] ands0 ∈ R such that

∀(x, y) ∈ R
2, u0(x, y) � max

(
H(±x cosα + y sinα + s0)

)
,

whereH(s) = 0 if s < 0 andH(s) = η if s � 0. Therefore,

∀t � −tn, ∀(x, y) ∈ R
2, vn(t, x, y) � max

(
v+(tn + t, x, y), v−(tn + t, x, y)

)
,

where the functionsv± solve Eq. (3.5) with initial conditions

v±(0, x, y) = H(±x cosα + y sinα + s0).

Consider the functionv+. Since Eq. (3.5) is invariant up to translation and sincev+(0, · , ·) only
depends on the variables = x cosα + y sinα, so doesv+(t, · , ·) at any timet � 0. Therefore,
v+(t, x, y) can be written asv+(t, x, y) = V +(t, s) whereV + solves{

∂tV
+ = ∂2

sV + − c0∂sV
+ + f(V +),

V +(0, s) = H(s + s0).

A result of Kanel’ [25,26] (see also Roquejoffre [35]) yields the convergence ofV +(t, s)
to φ0(s + s1) uniformly in s ∈ R ast→ +∞, for somes1 ∈ R, whereφ0 is the solution of (1.5
such that, say,φ0(0) = θ. By symmetry in thex-variable, it follows thatv−(t, x, y)→ φ0(s′+s1)
uniformly in (x, y) ∈ R

2 ast →+∞, wheres′ = −x cosα + y sinα. Consequently,

∀(t, x, y) ∈ R
3, lim inf

n→+∞
vn(t, x, y) � max

(
φ0(±x cosα + y sinα + s1)

)
.
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Eventually, from standard parabolic estimates, there exists a subsequencen′ → +∞ such
that the functionsvn′ converge locally uniformly inR × R

2 to a classical solutionv(t, x, y)
of vt = ∆v − cvy + f(v) such that

that

tion

lack of
on

Leod
max
(
φ0(±x cosα + y sinα + s1)

)
� v(t, x, y) � φ(x, y)

for all (t, x, y) ∈ R
3.

The functionu(t, x, y) = v(t, x, y + ct) then satisfies (1.6) and (1.7). Theorem 1.3 yields
u(t, x, y) = φ(x + a, y + b + ct) for some(a, b) ∈ R

2 and for all(t, x, y) ∈ R × R
2. Therefore,

v(t, x, y) = φ(x + a, y + b) and the conclusion of Theorem 1.5 follows.�
4. Local stability

The goal of this section is to prove the following stability result:

THEOREM 4.1 (Local stability). – Let α ∈ (0, π/2) and f satisfy(1.4). Let u(t, x, y) be a
solution of the Cauchy problem(1.3). There exists̄ρ > 0 (one may choosēρ = c0 cotα) such that
the following holds: for any ρ ∈ (0, ρ̄), there isε > 0 such that if0 � u0 � 1, u0 ∈ UC (R2),
and‖u0 −φ‖Gρ � ε for some solutionφ of (1.1)–(1.2), then there are two constantsK � 0 and
ω > 0 such that

∀t � 0,
∥∥u(t, · , · − ct)− φ(· , ·)

∥∥
Gρ

� Ke−ωt.

The object to study is the linearized operator around a wave solutionφ:

Lv = −∆v + c∂yv − f ′(φ)v.

In the whole section, we choose the (unique) waveφ solving (1.1)–(1.2) such that:

φ(x, y) = φ(−x, y), φ(0,0) = θ.

PROPOSITION 4.2 (No eigenvalue with negative real part). –Let ρ > 0 andu ∈ C(R2,C) be
a classical solution ofLu = λu such thatRe(u), Im(u) ∈ Gρ.
• If Re(λ) < 0, thenu = 0.
• If Re(λ) = 0, then there isC > 0 such that

|u|� Cφy in R
2.

Proof. –We wish to follow the idea in [5]. The result is obtained by proving first thatu decays
faster than any derivative of the wave, then to conclude with the aid of the parabolic equa

Ut + LU = 0, U(0) = Re(u).(4.1)

This first part of the programme does not seem to be done as easily as in [5], due to the
precise boundaries where to apply an exact boundary condition – hence an evolution equati
approach.

In order to circumvent the difficulty we directly use Eq. (4.1) and construct a Fife–Mc
type super-solution (see [17]): set

w0(x, y) = min(eρ̃(y sinα−x cosα), eρ̃(y sinα+x cosα)),

whereρ̃ ∈ (0, c0) shall be chosen later. We also set
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Ū(t, x, y) = a0(t)φy(x, y) + a1(t)γ1(x, y) + a2(t)w0(x, y)γ2(x, y).

Definey1 > 0 andk > 0 such that

re
∀(x, y) ∈ C+(y1, π −α), f ′(φ(x, y)
)

� −k(4.2)

and choosey2 < 0 such that

∀(x, y) ∈ C−(y2, α), f ′(φ(x, y)
)

= 0.(4.3)

Actually, any negativey2 works sinceφ(0,0) = θ and it is known ([9,19]) thatφ is nonincreasing
in any directionτ = (cosβ, sinβ) such that−π/2 − α � β � −π/2 + α. The functionsγ1 and
γ2 are required to be inC2(R2) and to satisfy
• 0 � γ1, γ2 � 1 in R

2;
• γ1 ≡ 1 in C+(2y1, π − α) andγ1 ≡ 0 in C−(y1, α);
• γ2 ≡ 1 in C−(2y2, α) andγ2 ≡ 0 in C+(y2, π − α);
• ∂xγ1(0, y) = ∂xγ2(0, y)≡ 0.
Then set

LŪ = Ūt + LŪ ;

as is now classical we anticipate thatȧ0(t) will be nonnegative, and break the evaluation ofLŪ
in three parts.

1. (x, y) ∈ C−(2y2, α). Then we have, because of (4.3) and becauseφy � 0:

LŪ �
(
ȧ2(t) + (cρ̃ sinα− ρ̃2)a2(t)

)
w0,

provided thata2(t) is nonnegative. Remember thatc sinα = c0 and set

a2(t) = α2e
−tρ̃(c0−ρ̃)

with α2 > 0 to be chosen later. Observe here thatρ̃(c0 − ρ̃) > 0 sinceρ̃ is in (0, c0).
2. (x, y) ∈ C+(2y1, π − α). Then we have, because of (4.2) and provided thata1(t) is

nonnegative:

LŪ � ȧ1(t) + ka1(t),

and we define

a1(t) = α1e
−kt

with α1 > 0 to be chosen later.
3. (x, y) ∈ C−(2y1, α)∩C+(2y2, π−α). There is a large constantC1 > 0 and a small positive

constantω such that

LŪ � ȧ0(t)φy(x, y)−C1e
−ωt.

Then, becauseφy is positive and bounded away from0 in the region under consideration, the
is a large constantC2 such that we may take

a0(t) = α0 −C2e
−ωt, α0 > 0,

and

LŪ � 0 in C−(2y1, α)∩ C+(2y2, π − α).
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Combining the above steps, and sinceRe(u) ∈ Gρ, one can chooseα0, α1, α2 large enough
andρ̃ > 0 small enough so that̄U satisfiesLŪ � 0 in R+ × R

2 andRe(u) � Ū(0, .). Then we
have:

or

r

pect
Re(e−λtu)(t, x, y) � Ū(t, x, y).

We may repeat the argument with−Re(u) so as to obtain a similar lower bound f
Re(e−λtu).

We can now conclude:
• If Re(λ) < 0, assumingu �= 0 contradicts the unboundedness ofRe(e−λtu).
• If Re(λ) = 0, then we argue similarly withIm(u) and Im(e−λtu) and we get an uppe

bound of the type|Im(e−λtu)| � V̄ (t, x, y), whereV̄ is of the same type as̄U . We then
only have to lett→ +∞ to get that|u|� Cφy in R

2.
This ends the proof of Proposition 4.2.

The next step is to show that 0 is NOT an eigenvalue ofL whenL is restricted toGρ. We first
observe that

L(φx) = L(φy) = 0,

but neitherφx norφy belongs toGρ since

lim inf
|x|→+∞

φx(x,−|x| cotα) and lim inf
|x|→+∞

φy(x,−|x| cotα)

are positive (indeed,φ(x + ξ, y − |ξ| cotα) → φ0(±x cosα + y sinα + t±) as ξ → ±∞ in
C2

loc(R
2), for somet± ∈ R). 3

Then remark that a functionu(x, y) may be decomposed in an even and odd part (with res
to x): u = u1 + u2 with

u1(x, y) =
u(x, y) + u(−x, y)

2
, u2(x, y) =

u(x, y)− u(−x, y)
2

.

Notice also that∂xu1(0, y) = 0 – providedu1 is smooth enough – and thatu2(0, y) = 0. This
trivial remark implies in fact boundary conditions foru1 andu2 on they-axis if u1 andu2 are
considered as functions from the right half-space that we denoteR

2
+ = {x > 0}. Notice finally

thatφx is odd andφy is even (with respect to thex-variable).
On the other hand, the operatorL commutes with the reflections with respect to they axis.

Hence, if a functionu in Gρ solvesLu = 0, then both functionsu1 andu2 are inGρ and solve
Lu = 0. On the basis of all the above remarks we have the

PROPOSITION 4.3 (No eigenfunctions in the null space ofL). – (i) Let ρ > 0 and u ∈
C2(R2

+) ∩Gρ solve

Lu = 0 in R
2
+, u(0, y) = 0.(4.4)

Thenu = 0.
(ii) Letρ > 0 andu ∈C2(R2

+) ∩Gρ solve

Lu = 0 in R
2
+, ux(0, y) = 0.

Thenu = 0.

3 We have of courset− = t+ as soon asφ is symmetric with respect to thex-variable.
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We will only prove part (i) of Proposition 4.3, part (ii) being completely similar and being
actually included in the proof of Proposition 4.5 below. The proof of part (i) will be based on the
following

s

e

the
e)
e

he
ts

;

LEMMA 4.4. – Letρ > 0 andu ∈C2(R2
+)∩Gρ satisfy(4.4). Then there is a constantC > 0

such that

|u|� Cφx in R
2
+.

Proof. –Argue as in Proposition 4.2, but this timeu vanishes at the boundary{x = 0}, as well
asφx. To circumvent this we define the supersolutionŪ as

Ū(t, x, y) = a0(t)φx(x, y) +
(
a1(t)γ1(x, y) + a2(t)w0(x, y)γ2(x, y)

)
w1(x),

wherew1 is bounded, increasing and concave, and satisfies moreoverw1(0) = w′′
1 (0) = 0 and

w1(+∞) = 1. With similar choices for the functionsa0, a1, a2, w0 as in Proposition 4.2, one ha
LŪ � 0 for all t � 0 and(x, y) ∈ R

2
+. Furthermore, sinceLφx = 0, φx > 0 in R

2
+ andφx = 0

on{x = 0}, it follows from Hopf lemma thatφxx(0, y) > 0 for all y ∈ R. On the other hand, th
standard elliptic estimates upto the boundary imply that, say,

‖∇u‖L∞({0�x�1, y0�y�y0+1}) � C0‖u‖L∞({0�x�2, y0−1�y�y0+2})

for some constantC0 independent ofy0 ∈ R. Therefore, suitable choices ofa0, a1, a2 and
ρ̃ guarantee thatu(x, y) � Ū(0, x, y) in R

2
+. Hence,u(x, y) � Ū(t, x, y) for all t � 0 and

(x, y) ∈ R
2
+. Passing to the limitt→+∞ as in Proposition 4.2 leads tou � Cφx in R

2
+.

The same reasoning with−u completes the proof of Lemma 4.4.�
Proof of Proposition 4.3. –As already emphasized, we will only prove part (i). Under

assumptions of part (i), and from Lemma 4.4, let us denote byC0 the biggest (maybe negativ
constantC such thatu � Cφx in R

2
+. We would like to prove thatC0 � 0. To see this, we assum

the contrary and try to prove thatu � (C0 + δ)φx, for all δ in a small range.
First of all, sinceu ∈ Gρ, φx /∈Gρ andC0 �= 0, one gets thatu �≡ C0φx. Therefore,u > C0φx

in R
2
+ andux(0, y) > C0φxx(0, y) for all y ∈ R, due to the strong maximum principle and t

Hopf lemma. Consequently, for all subdomainΩ of R
2
+ such thatR2

+\Ω is bounded, there exis
δ0(Ω) > 0 such that

∀δ ∈ [0, δ0(Ω)], ∀(x, y) ∈ R
2
+\Ω, u(x, y) � (C0 + δ)φx(x, y).(4.5)

Rotate the coordinates(x, y) so as to bring the vector(1,0) to the vectoreα defined by (1.10)
let

(X,Y ) = (x sinα− y cosα,x cosα + y sinα)

be the new coordinates.
In this new system the operatorL reads

L = −∆− c cosα
∂

∂X
+ c0

∂

∂Y
− f ′(φ).

To describe some portions of the plane, we will indifferently use the(x, y) or (X,Y ) coordinate
system, and we make a slight abuse of notations identifying a point inΩ with its coordinates in
the rotated frame.
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e

,
ence,
Fig. 2. Rotated axes.

Sincef ′(1−) < 0 andφ → 1− uniformly in C+(y, π − α) asy → +∞, one can then choos
Y1 > 0 such that:

∃k > 0, ∀Y � Y1, f ′(φ(X,Y )) � −k.

Let Ω andS be the subsets ofR2
+ defined by

Ω =
{
x > 0 and (Y > Y1 or X > 1)

}
,(4.6)

S = {X1 � 1, 0 � Y � Y1},(4.7)

and letδ0(Ω) > 0 satisfy (4.5).
Sinceu � C0φx in R

2
+, two cases may occur:

Case1: infS(u − C0φx) = 0. In that case, there exists a sequence(Xn, Yn) (in the (X,Y )-
frame) such thatu(Xn, Yn)−C0φx(Xn, Yn) → 0 asn→ +∞. Since the distance betweenS and
∂R

2
+ = {x = 0} is positive andu > C0φx in R

2
+, one concludes thatXn → +∞. Furthermore

since the sequence(Yn) ranges in[0, Y1], one can assume, up to extraction of some subsequ
thatYn → Y∞ asn→+∞.

On the one hand, one has already mentioned the existence oft+ ∈ R such that

φ(x + ξ, y − |ξ| cotα) → φ0(x cosα + y sinα + t+)

as ξ → +∞ in C2
loc(R

2). Therefore, the functions(X,Y ) �→ φx(X + Xn, Y + Yn) locally
converge to the functioncosα φ′

0(Y + Y∞ + t+) asn→+∞.
On the other hand, from standard elliptic estimates, the functions

(X,Y ) �→ un(X + Xn, Y + Yn)

locally converge, up to extraction of some subsequence, to a solutionu∞(X,Y ) of

−∆u∞ − c cosα∂Xu∞ + c0∂Y u∞ − f ′(φ0(Y + Y∞ + t+)
)
u∞ = 0 in R

2.
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Both functionsu∞ andC0 cosαφ′
0(Y + Y∞ + t+) satisfy the above equation, and

u∞(X,Y ) � C0 cosαφ′
0(Y + Y∞ + t+) in R

2

e that

lic
is
with equality at(0,0). The strong maximum principle implies that

u∞(X,Y )≡ C0 cosαφ′
0(Y + Y∞ + t+) in R

2.

But, sinceu ∈ Gρ, one has, say,u(X,0) → 0 asX → +∞. Hence,u∞(0,−Y∞) = 0, and
φ′

0(t+) = 0 sinceC0 cosα �= 0. But φ′
0 > 0 in R. Therefore, case 1 is ruled out.

Case2: infS(u − C0φx) > 0. In that case, sinceφx is globally bounded, there existsη0 > 0
such thatu � (C0 + η)φx in S for all η ∈ [0, η0].

Choose now anyδ such that0 < δ � min(δ0(Ω), η0). One then hasu � (C0 + δ)φx in
S ∪ (R2

+\Ω). Let us now prove that the latter also holds in the two other parts ofR
2
+, namely in

Ω1 = {x > 0, Y < 0, X > 1} andΩ2 = {x > 0, Y > Y1}.
Let us first deal withΩ1. Notice thatf(φ) = f ′(φ) = 0 in C−(0, α) sinceφ(0,0) = θ andφ is

nonincreasing in any direction of this coneC−(0, α). Hence,f ′(φ(X,Y )) = 0 in Ω1 and bothu
and(C0 + δ)φx satisfy

−∆v − c cosαvX + c0vY = 0 in Ω1.

Furthermore,u � (C0 + δ)φx on∂Ω1. Lastly, remember that|u|� Cφx in R
2 from Lemma 4.4.

Because of (1.2) and standard elliptic estimates, one can say thatlimy→−∞ supC−(y,α) |φx| = 0.
Hence, asφx does,u(X,Y ) → 0 uniformly asY →−∞ with (X,Y ) ∈ Ω1. Therefore, with a
method similar to the proof of Proposition 3.1 (see also Lemma 5.1 in [19]), one can prov
u � (C0 + δ)φx − ε in Ω1 for all ε > 0, whenceu � (C0 + δ)φx in Ω1.

Similarly, bothu and(C0 + δ)φx satisfy

−∆v − c cosαvX + c0vY − f ′(φ)v = 0 in Ω2,(4.8)

with f ′(φ(X,Y )) � 0 in Ω2. Furthermore,u � (C0 + δ)φx on∂Ω2. Lastly,

lim
y→+∞

sup
C+(y,π−α)

|φx| = 0,

whence u(X,Y ) and φx(X,Y ) → 0 uniformly as Y → +∞ with (X,Y ) ∈ Ω2. Since
(C0 + δ)φx − ε is a subsolution of (4.8) for allε > 0, it then follows similarly that

u � (C0 + δ)φx − ε

in Ω2 for all ε > 0, whenceu � (C0 + δ)φx in Ω2.
As a conclusion,u � (C0 + δ)φx in R

2
+ for all δ ∈ [0,min(δ0(Ω), η0)]. This contradicts the

definition ofC0.
Therefore,C0 � 0 andu � 0 in R

2
+. However we would prove in the same way thatu � 0

in R
2
+. This provesu = 0 in R

2
+. �

PROPOSITION 4.5 (No eigenfunctions with pure imaginary eigenvalue). –Let ρ > 0 and
u ∈ C2(R2,C) such thatRe(u), Im(u) ∈ Gρ. Assume thatLu = λu with Re(λ) = 0 and
Im(λ) �= 0. Thenu = 0.

Proof. –The proof is a generalisation of the aboveproposition, combined with the parabo
maximum principle. Once again, we may assume thatu is either odd or even; suppose it
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even. Ifu is as described above, Proposition 4.2 applies, and we may define the infimum (maybe
nonpositive) of allC such thatRe(u) � Cφy in R2

+ (or equivalently inR2 by evenness). Denote
it by C0.

ce

two
We wish to prove thatC0 � 0, as is now usual. Assume by contradiction thatC0 > 0.
Setλ = iω, with ω �= 0. The function

U(t) = Re(e−λtu) = Re(u) cosωt + Im(u) sinωt

solves (4.1) inR2
+ together with Neumann boundary conditions on∂R

2
+ for all t ∈ R, as doesφy .

Therefore,U(t)(x, y) � C0φy(x, y) for all (x, y) ∈ R2
+ and for allt � 0, whence for allt ∈ R

sinceU(t) is 2π/ω-periodic int.
If there exists(x0, y0) ∈ R

2
+ such thatRe(u)(x0, y0) = C0φy(x0, y0), then U(t) − C0φy

has an interior minimum att = 0 and (x0, y0). Hence,U(t) ≡ C0φy in R
2
+ for all t � 0,

and thusRe(u) ≡ C0φy . The latter is impossible sinceRe(u) ∈ Gρ andφy /∈ Gρ. Therefore,
Re(u) < C0φy in R

2
+. Similarly, the parabolic Hopf lemma then implies thatRe(u) < C0φy

in ∂R
2
+.

Under the notations in the proof of Proposition 4.3, letS′ be the strip

S′ = {x � 0, 0 � Y � Y1}.

SinceRe(u) � C0φy (in R
2), two cases may occur:

Case1: supS′(Re(u)−C0φy) = 0. SinceRe(u) < C0φy in R
2
+, there exists then a sequen

of points(Xn, Yn) ∈ S′ such thatXn → +∞, Yn → Y∞ ∈ R and

Re(u)(Xn, Yn)−C0φy(Xn, Yn) → 0 asn→+∞.

From standard elliptic estimates, the functions(X,Y ) �→ Re(u)(X + Xn, Y + Yn) and
(X,Y ) �→ Im(u)(X + Xn, Y + Yn) converge, up to extraction of some subsequence, to
real-valued bounded functionsv∞(X,Y ) andw∞(X,Y ) solving

L∞v∞ = −ωw∞ and L∞w∞ = ωv∞ in R
2,

where

L∞ = −∆− c cosα∂X + c0∂Y − f ′(φ0(Y + Y∞ + t+)
)
.

Therefore, the functionu∞ = v∞ + iw∞ solvesL∞u∞ = λu∞.
On the other hand, one recalls that the functions(X,Y ) �→ φy(X + Xn, Y + Yn) locally

converge to the functionsinαφ′
0(Y + Y∞ + t+) asn→+∞.

Furthermore,Re(u∞) = v∞ � C0 sinαφ′
0(Y + Y∞ + t+) in R

2 with equality at(0,0), and
both functionsRe(e−λtu∞) andC0 sinαφ′

0(Y + Y∞ + t+) solve (4.1) with the operatorL∞
instead ofL. As done several lines above, one then concludes that

v∞ = Re(u∞) ≡ C0 sinαφ′
0(Y + Y∞ + t+).

But Re(u) ∈ Gρ, whence, say,Re(u)(X,0) → 0 as X → +∞ and v∞(0,−Y∞) = 0. Thus
φ′

0(t+) = 0 sinceC0 sinα �= 0. One gets a contradiction and case 1 is ruled out.
Case2: supS′(Re(u)−C0φy) < 0. In that case, there existsη0 > 0 such that

Re(u) � (C0 − δ)φy
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in S′ for all δ ∈ [0, η0]. Choose anyδ such that0 � δ � η0. Let Ω′
1 = {x � 0, Y � 0} and

Ω′
2 = {x � 0, Y � Y1}, and let us prove thatRe(u) � (C0 − δ)φy in Ω′

1 ∪ Ω′
2, which would

yield thatRe(u) � (C0 − δ)φy in R
2
+ and would contradict the minimality ofC0.

t
of

on with

e

h

d away
ce

k, up
to
Let us first deal withΩ′
1. Sincef ′(φ) = 0 in C−(0, α), both even (inx) functionsU(t)(x, y)

and(C0 − δ)φy(x, y) satisfy

vt −∆v + c∂yv = 0 for all (t, x, y) ∈ R× C−(0, α),

and Re(u) � (C0 − δ)φy on ∂C−(0, α). Let ε∗ be the smallest nonnegativeε such that
Re(u) � (C0 − δ)φy + ε in C−(0, α). Assumeε∗ > 0. Since |u| � Cφy , one knows tha
limy→−∞ supC−(y,α) |Re(u) − (C0 − δ)φy| = 0. Therefore, we may assume the existence
some sequenceεn → ε∗ and(Xn, Yn) ∈ C−(0, α) such thatXn →+∞ andYn → Y∞ < 0 such
that

Re(u)(Xn, Yn)− (C0 − δ)φy(Xn, Yn)− εn → 0 asn→+∞.

Arguing as in case 1 above and in the proof of Proposition 3.1, one then gets a contradicti
the positivity ofε∗.

Therefore,ε∗ = 0 andRe(u) � (C0 − δ)φy in C−(0, α).
Similarly, using the fact that

f ′(φ) � 0

in {(x, y), (x, y) ∈Ω′
2 or (−x, y) ∈ Ω′

2} = C+(Y1/ sinα,π − α), one can prove that

Re(u) � (C0 − δ)φy in C+(Y1/ sinα,π − α).

Eventually,Re(u) � (C0 − δ)φy in R
2 for all δ > 0 small enough. This contradicts th

definition ofC0.
Therefore,C0 � 0 andRe(u) � 0. We may prove thatRe(u) � 0 in the same fashion, whic

impliesRe(u) = 0, and thenu = 0 sinceLu = iωu. �
Proof of Theorem 4.1. –It remains to prove thatL is a Fredholm operator; namely

L = T + K, Re
(
σ(T )

)
� β for someβ > 0, KT−1 compact.

To do so, we wish to find a weight functionp(x, y) such that the operatorM , defined by

L = pM(pI)

is a second order elliptic operator whose zero-order coefficient is positive and bounde
from 0 outside a compact subset. A natural choice would be – at least in the right half-spa

p(x, y) = e−ρXφ′
0(Y )

whereρ > 0 is small andX , Y are the rotated coordinates. Such a choice would almost wor
to the fact that we are here asking too much decay at infinity. Therefore the weight will have
be slightly modified, in order to keep only thedecay that is asked to functions belonging toGρ.

In the sequel of the proof of Theorem 4.1, we fixρ ∈ (0, c0 cotα), and call

λ =
ρ(c0 cotα− ρ)

4
> 0.
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Step1 (an auxiliary function). Letφ0 be the 1D wave, and let the real numbert+ be chosen so
thatφ(x + xn, y − |xn| cotα) → φ0(±x cosα + y sinα + t+) asxn →±∞ (we recall thatφ is
assumed to be even in the variablex). Set

the
L0 = −∂2
Y + c0∂Y − f ′(φ0(. + t+)

)
.

It is known thatφ′
0 > 0 in R, φ′′

0 (s)/φ′
0(s) → c0 (respectively→−µ) ass →−∞ (respectively

as s → +∞), and φ′′′
0 (s)/φ′

0(s) → c2
0 (respectively→ µ2) as s → −∞ (respectively as

s→+∞), whereµ = (c0 +
√

c2
0 − 4f ′(1−))/2.

Lastly, one has thatf ′(φ0(s)) = 0 for −s large enough, andf ′(φ0(s)) → f ′(1−) ass→+∞.
Therefore, there existA > 0 and a functionψ of classC2 such that



∀|Y |� A, ψ(Y ) = φ′
0(Y + t+),

∀|Y |� 2A, ψ′(Y ) = 0,

∀− 2A � Y � −A, −ψ′′(Y )
ψ(Y )

+ c0
ψ′(Y )
ψ(Y )

− f ′(φ0(Y + t+)
)
� −λ,

∀A � Y � 2A, −ψ′′(Y )
ψ(Y )

+ c0
ψ′(Y )
ψ(Y )

− f ′(φ0(Y + t+)
)
� −λ,

min
R

ψ > 0.

The existence of such a functionψ can be obtained through a slight perturbation of
exponential tails ofφ′

0. We callC0 a positive constant such that∥∥∥∥ψ′

ψ

∥∥∥∥
L∞(R)

+
∥∥∥∥ψ′′

ψ

∥∥∥∥
L∞(R)

� C0.

We also choose twoC∞ functionsk1 andk2 :R → R such that0 � k1, k2 � 1, k1 = k2 = 1 on
[−A,A] andk1 = k2 = 0 outside[−2A,2A].

Step2 (construction ofT ). We next choose aC∞ convex functionh :R → R such that
h(x) = |x| for |x| large enough, and

0 � h′′ � λ/(C0 cosα),(4.9)

whereC0 is as above. Notice that the above properties especially imply that|h′|� 1.
We set,only in this particular step2:

X = h(x) sinα− y cosα,

Y = h(x) cosα + y sinα.

Sincef ′(φ0(Y + t+))− f ′(φ(x, y)) → 0 uniformly as|(x, y)| →+∞, and

lim
y0→+∞

sup
y�y0−|x| cotα

∣∣f ′(φ(x, y)
)
− f ′(1−)

∣∣ = lim
y0→−∞

sup
y�y0−|x| cotα

∣∣f ′(φ(x, y)
)∣∣ = 0,

one may, without loss of generality, chooseA large enough so that[
f ′(φ0(Y + t+)

)(
1− k1(x)

)
− f ′(φ(x, y)

)](
1− k1(x)k2(Y )

)
� −λ(4.10)

for all (x, y) ∈ R
2.
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We finally set

u(x, y) = p(x, y)v(x, y),

.

where

p(x, y) = e−ρXψ(Y ).

Let us write, for everyC2 functionu:

Lu(x, y) = p(x, y)Mv(x, y).

The operatorM has the form

M = −∆ + B(x, y).∇+
Lp

p
,

whereB = −2∇p/p + (0, c) is aC1 bounded vector-valued function.
Let us now evaluateLp. Using (1.5) and the fact thatc = c0/ sinα, a straightforward

calculation gives:

Lp

p
= a(x, y) + b(x, y),

where 


a(x, y) = c0ρ cotα− ρ2 sin2 α h′2(x)

+
[
−ψ′′(Y )

ψ(Y )
+ c0

ψ′′(Y )
ψ(Y )

− f ′(φ0(Y + t+)
)](

1− k1(x)
)

+
[
f ′(φ0(Y + t+)

)(
1− k1(x)

)
− f ′(φ(x, y)

)](
1− k1(x)k2(Y )

)
+

(
ρ sinα− cosα

ψ′(Y )
ψ(Y )

)
h′′(x),

b(x, y) =
[
−ψ′′(Y )

ψ(Y )
+ c0

ψ′′(Y )
ψ(Y )

]
k1(x)

+ cosα

[
cosα

ψ′′(Y )
ψ(Y )

− 2ρ sinα
ψ′(Y )
ψ(Y )

](
1− h′2(x)

)
+

[
f ′(φ0(Y + t+)

)(
1− k1(x)

)
− f ′(φ(x, y)

)]
k1(x)k2(Y ).

The functiona is clearly continuous and bounded inR
2. Let us now estimate it from below

Assume thatA > 0 is large enough so that

f ′(φ(s + t+)
)

= 0 for s � −2A, −f ′(φ(s + t+)
)
� −f ′(1−)/2 � 0 for s � 2A.

It follows then from the choice ofψ that[
−ψ′′(Y )

ψ(Y )
+ c0

ψ′′(Y )
ψ(Y )

− f ′(φ0(Y + t+)
)](

1− k1(x)
)

� −λ
(
1− k1(x)

)
�−λ

for all (x, y) ∈ R
2. Putting the above estimate together with (4.10), (4.9) and the fact that|h′| � 1,

it follows that

∀(x, y) ∈ R
2, a(x, y) � ρ(c0 cotα− ρ)− 3λ = λ > 0.
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On the other hand, it follows from the choices ofh, k1 andk2 that the functionb is continuous
with compact support inR2.

Set

e
nt.

s

M̃ = −∆ + B(x, y).∇+ a(x, y)

and

Tu = pM̃

(
u

p

)
; Ku = Lu− Tu = b(x, y)u.

Step3. Let us prove the existence ofβ > 0 such thatRe(σ(T )) � β. For this we estimate
‖e−tT‖L(Gρ). Let u0 ∈ Gρ. We have

e−tT u0 = pe−tM̃

(
u0

p

)

and the maximum principle yields

‖p−1e−tT u0‖∞ � e−λt‖p−1u0‖∞ � Ce−λt‖q−1u0‖∞,(4.11)

whereq was defined in (1.9) andC is a constant which does not depend onu0. We here use th
definition ofGρ, and the fact that the functionψ is bounded from below by a positive consta
Furthermore, sinceψ is bounded from above, one infers that

‖q−1e−tT u0‖∞ � C′‖p−1e−tT u0‖∞

for some constantC′ > 0. Hence,

‖q−1e−tT u0‖∞ � CC′e−λt‖q−1u0‖∞.

On the other hand, let us chooseB > 0 large enough so thatb = 0 andf ′(φ) � f ′(1−)/2 < 0
in C+(B,π−α). Observe now that the functionq is bounded inC−(B,α). Therefore, there exist
a constantC′′ (independent ofu0) such that

‖e−tT u0‖L∞(C−(B,α)) � C′′‖q−1e−tT u0‖L∞(C−(B,α)) � CC′C′′e−λt‖q−1u0‖∞.

Lastly, the functionu(t) := e−tT u0 satisfies

{
ut −∆u + cuy − f ′(φ)u = 0 in C+(B,π −α),∣∣u(t, x, y)

∣∣ � CC′C′′e−λt‖q−1u0‖∞ on ∂C+(B,π − α).

Hence we have

‖e−tT u0‖L∞(C+(B,π−α)) � (1 + CC′C′′)e−βt
(
‖u0‖L∞(C+(B,π−α)) + ‖q−1u0‖∞

)
,

whereβ = min(λ,−f ′(1−)/2) > 0.
Summing up, one gets that

‖e−tT u0‖Gρ � C̃e−βt‖u0‖Gρ
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for some constant̃C. Therefore - by a standard Laplace transform argument – the spectrum ofL
satisfiesRe(σ(T )) � β.

Step4 (conclusion). For everyλ such thatRe(λ) ∈ (−∞, β), the operatorT − λI is an
,

ne

tations

along

.

bolic
e of the

of the
isomorphism of a dense subspace ofGρ onto Gρ, andK(T − λI)−1 is compact. Moreover
L is sectorial inGρ (Stewart [39]).

Combining these considerations with Propositions 4.2–4.5, we obtain the existence of a co
with aperture less thanπ/2 and positive vertex containing the spectrum ofL – see [29] for more
details. Classical stability results [22] apply subsequently.�

5. Convergence to a single wave

The aim of this section is to prove Theorems 1.6 and 1.7. In this section we keep the no
of the preceding section. In particular, we use the rotated coordinate system(X,Y ). We will have
to investigate the behaviour of different functions as the space variable becomes infinite
the directionseα = (sinα,− cosα) ande′α = (− sinα,− cosα). Only the directioneα will be
investigated, the case ofe′α being similar.

The first result that we need is another Liouville type property.

PROPOSITION 5.1. – Let v(t,X,Y ) ranging in [0,1] be a classical solution of

vt −∆v − c0 cotα vX + c0vY = f(v), (t,X,Y ) ∈ R
3,

limsup
Y →−∞, (t,X)∈R2

v(t,X,Y ) = 0,(5.1)

lim inf
Y →+∞, (t,X)∈R2

v(t,X,Y ) > θ.

Then there existsY0 ∈ R such thatv(t,X,Y ) = φ0(Y + Y0) for all (t,X,Y ) ∈ R
3.

Proof. –The first part of the proof consists in observing that there existsY1 ∈ R andη ∈ (θ,1]
such thatv(t,X,Y ) � H(Y +Y1) for all (t,X,Y ) ∈ R

3, whereH(s) = 0 if s < 0 andH(s) = η
if s � 0. Therefore, arguing as in the proof of Theorem 1.5, one gets the existence ofY2 ∈ R such
thatv(t,X,Y ) � φ0(Y + Y2) for all (t,X,Y ) ∈ R

3.
The second part of the proof is identical to the proof of Theorem 1.3.�
Let u0 andφ satisfy the assumptions of Theorem 1.6, and letu(t, x, y) be the solution of (1.3)

Up to a same shift of bothu0 andφ, we may assume without loss of generality thatφ(0,0) = θ
andφ is even inx. A standard argument from local existence theory for nonlinear para
equations – see [22], Chapter 3, and [1] – would yield the exponential spatial convergenc
solutionu under investigation to a 1D wave in theX direction, locally inY . Notice especially
that, for the functionφ, there existst+ ∈ R such that, for allK > 0, there areCK > 0 andλK > 0
such that

∀X � 0, ∀|Y |� K,
∣∣φ(X,Y )− φ0(Y + t+)

∣∣ � CKe−λKX .(5.2)

The same type of property holds in the left plane{x < 0}.
As far as the functionu(t, x, y) is concerned, such an exponential decay isa priori not uniform

in time, and our point is that this convergence is indeed uniform in time. This is the goal
next proposition.

PROPOSITION 5.2. – Under the assumptions of Theorem1.6, there are constantsC > 0,
t0 > 0 andρ1 > 0, such that∣∣∂eαu(t, x, y − ct)

∣∣ � Ce−ρ1X+c0Y/2,
∣∣∂eαu(t,−x, y − ct)

∣∣ � Ce−ρ1X+c0Y/2

for all t � t0 and(x, y) ∈ R
2
+, whereX = x sinα− y cosα, Y = x cosα + y sinα.
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Proof. –It is divided into several steps.
Step1 (estimates foru). Set

s

hat

d

ū(t, x, y) = u(t, x, y − ct).

The functionū satisfies̄ut = ∆ū− cūy + f(ū) and0 � ū(t, x, y) � τa,bφ(x, y) for all t � 0 and
(x, y) ∈ R

2. Since both functionsφ and

w(x, y) = ec0(x cosα+y sinα) + ec0(−x cosα+y sinα)

satisfy∆v−cvy = 0 in C−(0, α), together withlimy→−∞ supC−(y,α) φ (respectivelyw) = 0 and
φ � θ � w on∂C−(0, α), it follows from Lemma 5.1 in [19] that

φ � w in C−(0, α).

On the other hand,∇x,yū, as well as∂t∇x,yū and the spatial derivatives of∇x,yū up to the
second order, are globally bounded for allt � 1 and(x, y) ∈ R

2. Furthermore, the functionw
is bounded from below by a positive constant in any strip of the typeC+(B,π − α)\C−(A,α)
for eachA < B. Standard parabolic estimates then imply that there exist some constantsC1 and
C′

1(y0) such that

∣∣∇x,yū(t, x, y)
∣∣ +

∣∣∂t∇x,yū(t, x, y)
∣∣ +

∣∣D2ū(t, x, y)
∣∣ +

∣∣D3ū(t, x, y)
∣∣

�
{

C′
1(y0)(ec0(x cosα+y sinα) + ec0(−x cosα+y sinα)) in C−(y0, α),

C1 in R
2

(5.3)

and for allt � 1, where|D2ū| and|D3ū| respectively mean the maximum of the absolute value
of the second order (respectively third order) spatial derivatives ofū.

Step2 (estimates forφX ). First of all, it follows from (5.2) and standard elliptic estimates t

|φX | � C2e
−λX on{y =−x cotα, x � 0}= {X � 0, Y = 0}

for someλ > 0. Similar estimates as (5.3) obviously hold for the derivatives ofφ in C−(0, α).
Therefore, even if it means increasingC2 > 0, decreasingλ > 0, one can assume that

|φX |� C2e
−λX+

3c0
4 (x cosα+y sinα) =: v(x, y) on∂(C−(0, α)∩R

2
+).

A direct calculation shows thatv satisfies∆v − cvy � 0 in C−(0, α) ∩ R
2
+, as soon as

λ2 − c0λ cotα � 3c2
0/16, which can always be assumed even if it means decreasingλ. Since

limsup
dist((x,y),∂(C−(0,α)∩R

2
+))→+∞, (x,y)∈C−(0,α)∩R

2
+

∣∣φX(x, y)
∣∣ = 0

and v � 0, it follows therefore from the proof of Lemma 5.1 in [19]4 that |φX | � v in
C−(0, α) ∩R

2
+. In other words,

∣∣φX(x, y)
∣∣ � C2e

−λX+
3c0
4 Y in C−(0, α)∩ R

2
+.(5.4)

4 The proof can easily be adapted to our situation, the boundary ofC−(0, α)∩R
2
+ being a Lipschitz graph in a rotate

frame.
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On the other hand, because of (1.2) and sincef ′(1−) < 0, there existsy1 such that
f ′(φ) � f ′(1−)/2 < 0 in C+(y1, π − α). Even if it means decreasingλ > 0, the function
ζ := e−λX+λY satisfies

s

at

ts
∆ζ − c∂yζ + f ′(φ)ζ � 0 in C+(y1, π − α),

while |φX | � C3ζ on∂(C+(y1, π − α)∩ R
2
+) for some constantC3. Since

lim
y→+∞

sup
C+(y,π−α)

|φX |= 0,

it follows from the proof of Lemma 5.1 in [19] that

|φX | � C3ζ = C3e
−λX+λY in C+(y1, π − α) ∩R

2
+.(5.5)

Step3 (estimates for̄uX − φX ). The functionz(t, x, y) := ū(t, x, y) − φ(x, y) satisfies an
equation of the type

∂tz −∆z + c∂yz + γ(t, x, y)z = 0,

where γ is bounded and‖γ‖L∞((0,+∞)×R2) � ‖f‖Lip (‖f‖Lip denotes the Lipschitz norm
of f ). Choose now any directionν of R

2 such that|ν| = 1. It follows from the assumption
of Theorem 1.6 that|z(0, x, y)|� C0e

−ρ0ν·(x,y) in R
2. Let ω0 = ρ2

0 + cρ0 + ‖f‖Lip. It is easy to
check that the functionκ(t, x, y) := C0e

ω0t−ρ0ν·(x,y) satisfies

∂tκ−∆κ + c∂yκ−‖f‖Lipκ � 0,

together with κ(0, x, y) � |z(0, x, y)| in R
2. The maximum principle then yields th

|z(t, x, y)|� κ(t, x, y), whence∣∣ū(t, x, y)− φ(x, y)
∣∣ � C0e

ω0t−ρ0ν·(x,y)

for all t � 0 and(x, y) ∈ R
2. Since the above estimate holds for allν ∈ R

2 with |ν| = 1, one
concludes that ∣∣ū(t, x, y)− φ(x, y)

∣∣ � C0e
ω0t−ρ0

√
x2+y2

(5.6)

for all t � 0 and(x, y) ∈ R
2.

Standard parabolic estimates then imply that

∣∣ūX(t, x, y)− φX(x, y)
∣∣ � C4e

ω0t−ρ0

√
x2+y2

(5.7)

for all t � 1 and(x, y) ∈ R
2, for some constantC4.

Furthermore, estimates of the type (5.3) also hold by replacingū with φ (takeu0 = φ as the
initial condition). Therefore,∣∣ūX(t, x, y)− φX(x, y)

∣∣ � C′
4(e

c0(x cosα+y sinα) + ec0(−x cosα+y sinα))(5.8)

in C−(0, α), for all t � 1, and for some constantC′
4.

Step4 (auxiliary functions and definition of a setΩ′). Choose now some positive coefficien
ρ1, ρ2 andc1 such that0 < ρ2 < ρ1, 0 < c1 < c0 and2(ρ1 + ρ2) < (c0 − c1) tanα. Consider the
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function

v1(t, x, y) = eρ1X−c0Y/2ūX(t, x, y)

at

bility

nd,

e,

if

e

defined for allt > 0 and(x, y) ∈ R
2, and letΩ′ be the set defined by

Ω′ =
{
(x, y) ∈ R

2, x > −1 and(X > X1 or Y > Y1)
}
,

whereX1 > 0 andY1 > 0 shall be chosen below.
From the above upper bounds for|∇x,yū| given in step 1, it is straightforward to check th

there is a constantC5 = C5(X1, Y1) > 0 such that

∣∣v1(t, x, y)
∣∣ +

∣∣∂tv1(t, x, y)
∣∣ +

∣∣∇x,yv1(t, x, y)
∣∣

+
∣∣D2v1(t, x, y)

∣∣ � C5e
−ρ2|X|−c1|Y |/2

(5.9)

for all t � 1 and(x, y) ∈ ∂Ω′ (remember that the quantityx is bounded on∂Ω′). Note that (5.9)
is not optimal whenY (or y) becomes positive and large; all we need, however, is an integra
condition forv1.

Setψ(t, x, y) = v1(t, x, y) for all t � 1 and(x, y) ∈ ∂Ω′ and extendψ in [1,+∞) × Ω̄′ by
a C2 function, still denoted byψ, such thatψ, as well asψt and the space derivatives ofψ up
to the second order, are bounded byC6e

−ρ2|X|−c1|Y |/2 in [1,+∞)× Ω̄′ for some constantC6.
Finally set, for allt � 1 and(x, y) ∈ Ω̄′,

v(t, x, y) = v1(t, x, y)−ψ(t, x, y).

Step5 (v(t, · , ·) ∈ L2(Ω′) for each t � 1). First, the functionψ(t, · , ·) is in L2(Ω′) by
construction. Write now

v1(t, x, y) = v2(x, y) + v3(t, x, y),

wherev2(x, y) = eρ1X−c0Y/2φX(x, y) andv3(t, x, y) = eρ1X−c0Y/2(ūX(t, x, y)− φX(x, y)).
The functionv2 is in L2(Ω′ ∩ C−(0, α)) because of (5.4), evenif it means decreasingρ1 so

that

0 < ρ1 < λ.(5.10)

One hasv2 ∈ L2(Ω′ ∩ {0 � Y � y1/ sinα}) because of (5.2) and (5.10). On the other ha
v2 ∈ L2(Ω′∩{Y � y1/ sinα, X � 0}) because of (5.5), (5.10), andeven if it means decreasingλ
so that0 < λ < c0/2. Lastly,v2 ∈L2(Ω′∩{X � 0}) becauseφX is globally bounded. Therefor
v2 ∈ L2(Ω′).

Fix now a real numberβ > 0 such thatρ0 > c0β/2 andβ < tanα. Let t � 1. The function
v3(t, · , ·) is in L2(Ω′ ∩ {Y � −βX}) because of (5.8), evenif it means decreasingρ1 so that
0 < ρ1 < c0β/2. The functionv3(t, · , ·) is in L2(Ω′ ∩ {|Y | � βX}) because of (5.7), even
it means decreasingρ1 so that0 < ρ1 < ρ0 − c0β/2. On the other hand,v3(t, · , ·) ∈ L2(Ω′ ∩
{Y � βX, X � 0}) becauseuX − φX is globally bounded inL∞([1,+∞)×R

2) and becaus
0 < ρ1 < c0β/2. Lastly,v3(t, · , ·) ∈ L2(Ω′ ∩ {X � 0}) becauseuX − φX is globally bounded
in L∞([1,+∞)×R

2). Therefore,v3(t, · , ·)∈ L2(Ω′) for eacht � 1.
One concludes thatv(t, · , ·)∈ L2(Ω′) for eacht � 1.
Step6 (integration by parts overΩ′). Multiply the equation forv by v; integrate by parts

overΩ′. We get
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1
2

d

dt

∫
Ω′

v2 = −
∫
Ω′

(
v2

X + (c0 cotα ρ1 − ρ2
1)v

2
)

︸ ︷︷ ︸
−

∫
Ω′

(
v2

Y −
(

f ′(ū) +
c2
0

4

)
v2

)
︸ ︷︷ ︸

−
∫
Ω′

(Pψ)v

︸ ︷︷ ︸
s.
I II III

whereP is a parabolic operator with bounded coefficients. Let us analyse these three term
The term I is the one that will control the estimate ofv. We may obviously estimate it by

I � −(c0 cotα ρ1 − ρ2
1)

∫
Ω′

v2,(5.11)

and, even if it means decreasing bothρ1 andρ2, we may assume that

0 < ρ1 < c0 cotα.

By assumption,|u0(x, y)− φ(x, y)| = O(e−ρ0

√
x2+y2) asx2 + y2 →+∞, whence

lim
y→+∞

inf
C−(y,π−α)

u0 = 1 > θ.

From the proof of Theorem 1.5, there exist two functionsV ±(t, s) such that

ū(t, x, y) � max
(
V ±(t,±x cosα + y sinα)

)
for all t � 0 and(x, y) ∈ R

2, whereV ±(t, s)−φ0(s+s1)→ 0 uniformly in s ∈ R ast→+∞. In
particular, it also follows that, for anyε > 0, one has̄u(t, x, y) � 1−ε as soon asY andt are large
enough, uniformly inX ∈ R. On the other hand,u0 � τa,bφ implies thatū(t, x, y) � τa,bφ(x, y)
for all t � 0 and (x, y) ∈ R

2. From Proposition 5.1, there is then a bounded functiont �→ Yt,
defined fort large enough, such that

lim
X→+∞

lim
t→+∞

∣∣ū(t,X,Y )− φ0(Y + Yt)
∣∣ = 0

uniformly in Y ∈ R (under the restriction thatx > −1) – argue by contradiction.
As a consequence, there existX1 > 0 andY1 > 0 in the definition ofΩ′ so that

∣∣f ′(ū(t, x, y)
)
− f ′(φ0(Y + Yt)

)∣∣ � 1
3
(c0 cotαρ1 − ρ2

1) in Ω′

for t large enough (remember that0 < ρ1 < c0 cotα).
On the other hand we have, for alla ∈ R, for all V ∈H1

0 (a,+∞), and as long asYt is defined:

+∞∫
a

(
V 2

Y −
(

f ′(φ0(Y + Yt)
)
+

c2
0

4

)
V 2

)
dY � 0.

This is due to the linear stability of the 1D waveφ0.
Hence, integral II can be estimated by

II � 1
3
(c0 cotαρ1 − ρ2

1)
∫
Ω′

v2(5.12)

for t is large enough.
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Because of the choice ofψ, the spatialL2(Ω′) norm of ψt, as well as that of the spatial
derivatives ofψ up to second order, is uniformly bounded int. Hence we may, as is classical,
estimate III by

e,

f

,

nd
r

III � 1
3
(c0 cotαρ1 − ρ2

1)
∫
Ω′

v2 + C7(5.13)

for some constantC7 independent oft � 1.
Summing up (5.11), (5.12) and (5.13), we obtain a uniform control of theL2-norm

‖v(t, . , .)‖L2(Ω′), and thus a uniform control of‖v1(t, . , .)‖L2(Ω′), for t large enough. Therefor
standard parabolic estimates imply that the functioneρ1X−c0Y/2∂eα ū = eρ1X−c0Y/2ūX is
bounded inL∞((t0,+∞) × Ω̃′) for somet0 > 0, where, say,̃Ω′ = {(x, y) ∈ R

2, (x − 1, y) ∈
Ω′}. Eventually, since|∇x,yū| is globally bounded in(x, y) ∈ R

2 independently oft � t0, one
concludes thateρ1X−c0Y/2ūX is bounded inL∞((t0,+∞)×R

2
+).

Similar estimates can be proven for∂eαu(t,−x, y − ct). That completes the proof o
Proposition 5.2. �

Proof of Theorem 1.6. – Step1. Even if it means shifting bothu0 andφ, with the same shift
one can assume without loss of generality thatφ is even inx and that

φ
(
x + xn, y − |xn| cotα

)
→ φ0(±x cosα + y sinα)(5.14)

locally in (x, y) for any sequencexn →±∞. It then follows from (5.6) that

{
u(t, x + r sinα, y − r cosα− ct)→ φ0(x cosα + y sinα)
u(t, x− r sinα, y − r cosα− ct)→ φ0(−x cosα + y sinα)

asr →+∞,

for all (x, y) ∈ R
2 andt � 0 (and also fort = 0 by assumption onu0).

Therefore, integrating ineα the bounds given in Proposition 5.2 yields the existence ofC > 0,
t0 > 0 such that

∣∣u(t, x, y − ct)− φ0(x cosα + y sinα)
∣∣ � Ce−ρ1X+c0Y/2,

∣∣u(t,−x, y − ct)− φ0(−x cosα + y sinα)
∣∣ � Ce−ρ1X+c0Y/2

(5.15)

for all t � t0 and(x, y) ∈ R
2
+.

Since the initial datumu0 := φ obviously falls within the assumptions of Theorem 1.6, a
sinceφ(x, y + ct) is the solution of (1.3) with initial conditionφ, one concludes that simila
estimates as (5.15) also hold withu(t,±x, y − ct) replaced withφ(x, y). Summing (5.15) with
these estimates forφ implies that

∣∣u(t, x, y − ct)− φ(x, y)
∣∣ � C′e−ρ′

1X+c0Y/2,

∣∣u(t,−x, y − ct)− φ(−x, y)
∣∣ � C′e−ρ′

1X+c0Y/2

(5.16)

for all t � t1 and(x, y) ∈ R
2
+, whereC′, t1 andρ′1 are positive constants.
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Therefore, there existsρ > 0 (depending only onρ′1, c0 andα), which we may choose less
thanρ̄ as in Theorem 4.1, such that: for allε > 0 andy1 ∈ R, there isr � 0 such that

r

e

e

dy
∥∥u(t, · , · − ct)− φ
∥∥

L∞(C−(y1,α)\Br)

+
∥∥q−1(u(t, · , · − ct)− φ)

∥∥
L∞(C−(y1,α)\Br)

� ε/2
(5.17)

for all t � t1, whereq has been defined in (1.9) andBr denotes the euclidean open ball of cente0
and radiusr.

Step2. Let us now prove thatu(t, x, y − ct) → φ(x, y) as t → +∞ locally uniformly in
(x, y) ∈ R

2. If not, there exists a sequence(xn, yn) → (x∞, y∞) ∈ R
2 such that

lim inf
n→+∞

∣∣u(tn, xn, yn − ctn)− φ(xn, yn)
∣∣ > 0.

From Theorem 1.5, the functionsu(tn + t, x, y − ctn − ct) converge, up to extraction of som
subsequence, locally uniformly in(t, x, y) ∈ R

3 to a translateτh,kφ asn → +∞. Owing to the
definition of(xn, yn), one has

∣∣τh,kφ(x∞, y∞)− φ(x∞, y∞)
∣∣ > 0.(5.18)

On the other hand, the inequalities (5.16) imply, after passage to the limittn →+∞, that

∣∣τh,kφ(x, y)− φ(x, y)
∣∣ � C′e−ρ′

1X+c0Y/2

and ∣∣τh,kφ(−x, y)− φ(−x, y)
∣∣ � C′e−ρ′

1X+c0Y/2

for all (x, y) ∈ R
2
+. It especially follows thatτh,kφ and φ have the same limits along th

directioneα ande′α. Henceτh,kφ = φ, which contradicts (5.18).
Therefore,

u(t, x, y − ct) → φ(x, y) ast→+∞

locally uniformly in (x, y) ∈ R
2.

Let now ρ ∈ (0, ρ̄) be as in step 1 above. Letε > 0 be any positive number. As alrea
underlined in the proofs of Proposition 5.2 and Theorem 1.5, there existy2 � 0 and t2 > 0
such that

∀t � t2, ∀(x, y) ∈ C+(y2, π − α),
{

φ(x, y) � 1− ε/8,
u(t, x, y − ct) � 1− ε/8.

(5.19)

Therefore, for allt � t2,

∥∥u(t, · , · − ct)− φ
∥∥

L∞(C+(y2,π−α))
� ε/4.

The functionz(t, x, y) = u(t, x, y − ct)− φ(x, y) satisfies the equation

∂tz −∆z + c∂yz + γ(t, x, y)z = 0
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for some globally bounded functionγ. Without loss of generality, one may also assume thaty2

andt2 are such that

t

∀t � t2, ∀(x, y) ∈ C+(y2, π − α), γ(t, x, y) � −f ′(1−)
2

> 0.

The inequalities (5.17) applied to, say,ε/8 andy2, yield the existence ofr > 0 such that

∀(x, y) ∈ ∂C+(y2, π −α)\Br,
∣∣z(t, x, y)

∣∣ � εq(x, y)/8

for all t � t′2 large enough (we may chooset′2 � t2). Furthermore, one has proved thaz
converges to0 locally uniformly ast → +∞. Sinceq is bounded from below inBr , one may
then assume that|z(t, x, y)| � εq(x, y)/8 for all t � t′2 large enough and for all(x, y) ∈ Br .
Therefore,

∀t � t′2, ∀(x, y) ∈ ∂C+(y2, π −α),
∣∣z(t, x, y)

∣∣ � εq(x, y)/8.

On the other hand, because of (5.6), even if it means decreasingρ (depending only onρ0, ρ′1
andα), there is a constantC > 0 such that

∀(x, y) ∈ C+(y2, π −α),
∣∣z(t′2, x, y)

∣∣ =
∣∣u(t′2, x, y − ct′2)− φ(x, y)

∣∣ � Cq(x, y).

Next, the functionh(t, x, y) = εq(x, y)/8 + Ce−δ(t−t′2)q(x, y) is such that

∂th−∆h + c∂yh− f ′(1−)
2

h � 0

for δ > 0 and ρ > 0 small enough (ρ depending only onc, f ′(1−), α, ‖g′‖∞ and ‖g′′‖∞).
Furthermore,|z(t′2, x, y)|� h(t′2, x, y) in C+(y2, π−α), and|z(t, x, y)|� h(t, x, y) on∂C+(y2,
π − α) for all t � t′2. The maximum principle yields

∀t � t′2, ∀(x, y) ∈ C+(y2, π − α),
∣∣z(t, x, y)

∣∣ � h(t, x, y).

As a consequence, ∥∥q−1
(
u(t, · , · − ct)− φ

)∥∥
L∞(C+(y2,π−α))

� ε/4

for all t � t′′2 � t′2 large enough.
As a conclusion of this step 2, one has

∥∥u(t, · , · − ct)− φ
∥∥

L∞(C+(y2,π−α))

+
∥∥q−1(u(t, · , · − ct)− φ)

∥∥
L∞(C+(y2,π−α))

� ε/2
(5.20)

for all t � t′′2 .
Step3 (conclusion). Onceρ > 0 has been defined in steps 1 and 2, let nowε > 0 be as in

Theorem 4.1. Lety2 be as in step 2, lety1 = y2 and letr > 0 be such that (5.17) holds fort large
enough. Remember that (5.20) holds fort large enough. Lastly,u(t, x, y − ct)→ φ(x, y) locally
in (x, y) ast →+∞. Sinceq is bounded from below inBr , one gets∥∥u(t, · , · − ct)− φ

∥∥
L∞(Br)

+
∥∥q−1(u(t, · , · − ct)− φ)

∥∥
L∞(Br)

� ε/2
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for t large enough.
Eventually, there existst3 � 0 such that the functioñu0(x, y) := u(t3, x, y − ct3) satisfies:

ũ0 − φ ∈ Gρ and‖ũ0 − φ‖Gρ � ε. From Theorem 4.1, one concludes that

ve

l

y

n

∀t � 0,
∥∥u(t + t3, · , · − ct− ct3)− φ

∥∥
Gρ

� K ′e−ωt

for some constantsK ′ � 0 andω > 0. The conclusion of Theorem 1.6 follows.�
Proof of Theorem 1.7. –In R

2
+ denote, as above, the rotated coordinates by(X,Y ). According

to the assumptions of the theorem we may define

u0,+∞(Y ) = lim
X→+∞

u0(X,Y ).(5.21)

The functionu0,+∞ is such thatlim infY →+∞ u0,+∞(Y ) ∈ (θ,1], andu0,+∞(·) � φ0(· + Y0)
for someY0 ∈ R, because of the assumptions onu0. The solutionu+∞(t, Y ) of the Cauchy
problem

ut − uY Y + c0uY = f(u) (t > 0, Y ∈ R)

u(0, Y ) = u0,+∞(Y )

converges exponentially in time and uniformly inY ∈ R to a steady 1D solution of the abo
problem (see [26,34]), which is a 1D wave that we denote byφ0(Y + Y+∞), whereY+∞ ∈ R.

Fix any sequencexn →+∞. The functionsun(t, x, y) = u(t, x+ xn, y− |xn| cotα− ct) are
bounded inC1,δ

t ((0,+∞)×R
2) andC2,δ

(x,y)((0,+∞)×R
2) locally in (t, x, y) ∈ (0,+∞)×R

2,
for someδ > 0. Up to extraction of some subsequence, these functionsun converge locally
uniformly in (0,+∞)×R

2 to a solution u∞ of ∂tu∞ = ∆u∞ − c∂yu∞ + f(u∞) in
(0,+∞)×R

2.
Fix now anyε > 0. Let v0 be a function bounded inC3(R2) such thatu0 − ε � v0 � u0 + ε

in R
2 (remember thatu0 ∈ UC (R2)), and letv(t, x, y) be the solution of (1.3) with initia

conditionv0. It follows that‖u(t, · , ·)− v(t, · , ·)‖L∞(R2) � εe‖f‖Lipt for all t � 0. The functions

vn(t, x, y) = v
(
t, x + xn, y − |xn| cotα− ct

)
converge locally uniformly in[0,+∞)× R

2 to a solutionv∞ of the same equation asu∞, and
such that‖u∞(t, · , ·) − v∞(t, · , ·)‖L∞(R2) � εe‖f‖Lipt for all t > 0. Furthermore, one can sa
from (5.21) that

u0,+∞(x cosα + y sinα)− ε � v∞(0, x, y) � u0,+∞(x cosα + y sinα) + ε

for all (x, y) ∈ R
2. Since the functionu+∞(t, x cosα + y sinα) is a solution of the equatio

satisfied byv∞, one then has|v∞(t, x, y)− u+∞(t, x cosα + y sinα)| � εe‖f‖Lipt for all t � 0
and (x, y) ∈ R

2. It follows that |u∞(t, x, y) − u+∞(t, x cosα + y sinα)| � 2εe‖f‖Lipt for all
t > 0 and(x, y) ∈ R

2. Sinceε > 0 was arbitrary, one then has that

u∞(t, x, y)≡ u+∞(t, x cosα + y sinα).

By uniqueness of the limit, one concludes that

u(t, x + r sinα, y − r cosα) → u+∞(t, Y ) asr →+∞(5.22)

for all t � 0 and(x, y) ∈ R
2.
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In a similar fashion, we may defineu−∞(t, Y ′) andφ0(Y ′ + Y−∞) for the left side, so that
u−∞(t, Y ′) → φ0(Y ′ + Y−∞) uniformly in Y ′ ∈ R ast →+∞, and

r
t

word

t

oose
on of

f

u(t, x− r sinα, y − r cosα) → u−∞(t, Y ′) asr →+∞

for all t � 0 and(x, y) ∈ R
2, whereY ′ = −x cosα + y sinα.

Under the notations of the proof of Proposition 5.2, the functionūX satisfies a parabolic linea
equation with bounded coefficients. Because of the assumptions onu0, it then easily follows tha
there existsω0 ∈ R such that∣∣ūX(t, x, y)

∣∣ � Ceρ0(y sinα−x cosα)eω0t(5.23)

for all t � 0 and (x, y) ∈ R
2. Furthermore, step 1 of Proposition 5.2 can be reproduced

by word and it gives some estimates ofūX in lower conesC−(y0, α) for t � 1. Therefore, there
existsρ1 > 0 small enough such that (5.9) holds and the function

v1(t, x, y) = eρ1X−c0Y/2ūX(t, x, y)

is in L2(Ω′) for eacht � 1. To see it, divideΩ′ into the following four regions:Ω′ ∩ {X � 0}
(use here the fact that̄uX is globally bounded fort � 1), Ω′ ∩ {X � 0, Y � βX} (use the fac
that ūX is globally bounded in this region fort � 1, and choose0 < ρ1 < c0β/2), Ω′ ∩ {X �
0, |Y | � βX} (use (5.23) and chooseβ(c0/2 + ρ0| sin2 α − cos2 α|) + ρ1 < 2ρ0 sinα cosα),
and Ω′ ∩ {X � 0, Y � −βX} (use the estimates in step 1 of Proposition 5.2 and ch
again0 < ρ1 < c0β/2). Step 6 of Proposition 5.2 can be reproduced and the conclusi
Proposition 5.2 still holds.

Let now (x∞, y∞) be the unique couple of real numbers such thatτx∞,y∞φ converges to
φ0(Y + Y+∞) (respectivelyφ0(Y + Y−∞)) along the directioneα (respectivelye′α).

Let us fix anyε > 0 and let us prove that∥∥u(t, · , · − ct)− τx∞,y∞φ
∥∥

L∞(R2)
� ε

for t large enough.
First of all, as already emphasized, there existsA ∈ R such that1− ε/2 � u(t, x, y − ct) � 1

in C+(A,π − α) for t large enough, and1− ε/2 � τx∞,y∞φ � 1 in C+(A,π − α), whence∥∥u(t, · , · − ct)− τx∞,y∞φ
∥∥

L∞(C+(A,π−α))
� ε

for t large enough. Similarly, since0 � u(t, x, y − ct) � φ(x, y) (because0 � u0 � φ), there
existsB � A such that ∥∥u(t, · , · − ct)− τx∞,y∞φ

∥∥
L∞(C−(B,α))

� ε,

for all t � 0.
Let S = C+(A,π − α)\C−(B,α). Because of the estimates forūX as in the conclusion o

Proposition 5.2, and because of (5.22), there existst+ � 0 andx+ � 0 such that∣∣u(t, x, y − ct)− u+∞(t, Y )
∣∣ � ε/3

for all t � t+ and for all(x, y) ∈ S ∩ {x � x+}. On the other hand,∥∥u+∞(t, ·)− φ0(·+ Y+∞)
∥∥

L∞(B/ sinα,A/ sinα)
� ε/3
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for t large enough. Lastly, even if it means increasingx+, one can assume that∣∣τx∞,y∞φ(x, y)− φ0(Y + Y+∞)
∣∣ � ε/3

d
author

is
Young

e,

and
for all (x, y) ∈ S ∩ {x � x+}. Therefore,∥∥u(t, · , · − ct)− τx∞,y∞φ
∥∥

L∞(S∩{x�x+}) � ε

for t large enough.
Similarly, there existsx− � 0 such that∥∥u(t, · , · − ct)− τx∞,y∞φ

∥∥
L∞(S∩{x�x−}) � ε

for t large enough.
Lastly, from Theorem 1.5, there exist a sequencetn →+∞ and(h, k) ∈ R

2 such that

u(tn, x, y − ctn)→ τh,kφ(x, y)

locally uniformly in (x, y) ∈ R
2 asn → +∞. The arguments above prove that for eachε′ > 0,

there existsR = Rε′ � 0 such that‖τh,kφ− τx∞,y∞φ‖L∞(R2\BR) � ε′. As a consequence,τh,kφ
andτx∞,y∞φ have the same limits along the directionseα ande′α, whenceτh,kφ = τx∞,y∞φ.
Hence, by uniqueness of the limit, one can say that the whole familyu(t, x, y− ct) converges to
τx∞,y∞φ ast→ +∞, locally uniformly in (x, y) ∈ R

2.
Eventually, one concludes that∥∥u(t, · , · − ct)− τx∞,y∞φ

∥∥
L∞(S∩{x−�x�x+}) � ε

for t large enough.
As a conclusion, ∥∥u(t, · , · − ct)− τx∞,y∞φ

∥∥
L∞(R2)

� ε

for t large enough. That completes the proof of Theorem 1.7.�
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