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ON THE DE RHAM–WITT COMPLEX
IN MIXED CHARACTERISTIC

BY LARS HESSELHOLT1 AND IB MADSEN 2

ABSTRACT. – The purpose of this paper is twofold. Firstly, it gives a thorough treatment of the de R
Witt complex forZ(p)-algebras, a construction we first considered in [L. Hesselholt, I. Madsen, An
Math. 158 (2003) 1–113]. This complex is the natural generalization toZ(p)-algebras of the de Rham–W
complex forFp-algebras of Bloch–Deligne–Illusie [L. Illusie, Ann. Sci. École Norm. Sup. 12 (4) (19
501–661] (forp odd). We also give an explicit formula for the de Rham–Witt complex of a polyno
ring in terms of that of the coefficient ring. Secondly, we generalize the main Theorem C of [L. Hess
I. Madsen, Ann. of Math. 158 (2003) 1–113] to smooth algebras over a discrete valuation ring of
characteristic(0, p) with perfect residue field andp odd.

 2004 Elsevier SAS

RÉSUMÉ. – Le but de cet article est double. D’abord, il donne un traitement complet du comple
de Rham–Witt pour lesZ(p)-algèbres, une construction que nous avons considérée précédemme
[L. Hesselholt, I. Madsen, Ann. of Math. 158 (2003) 1–113]. Ce complexe est la généralisation na
auxZ(p)-algèbres du complexe de de Rham–Witt pour lesFp-algèbres de Bloch–Deligne–Illusie [L. Illusi
Ann. Sci. École Norm. Sup. 12 (4) (1979) 501–661] (pourp impair). Nous donnons aussi une formu
explicite pour le complexe de de Rham–Witt d’un anneau polynomial en termes de celui de l’a
des coefficients. Ensuite, nous généralisons le théorème principal de [L. Hesselholt, I. Madsen,
Math. 158 (2003) 1–113] (Theorem C) aux algèbres lisses sur un anneau de valuation discret de n
caractéristique(0, p) avec corps résiduel parfait etp impair.

 2004 Elsevier SAS

Introduction

For every ringA, the cyclotomic trace is a map of pro-abelian groups

tr :Kq(A)→TC·
q(A;p)

from the algebraicK-theory ofA to the topological cyclic homology ofA [2]. This is a highly
non-trivial invariant. For instance, it induces an isomorphism withZ/pv-coefficients in non-
negative degrees, ifA is a finite algebra over the ringW (k) of Witt vectors of a perfect field o
characteristicp > 0. There is a natural long-exact sequence

· · · →TC·
q(A;p)→TR·

q(A;p)
1−F−→TR·

q(A;p)→TC·
q−1(A;p)→ · · ·

1 The author was supported in part by a grant from the National Science Foundation.
2 The author was supported in part by the American Institute of Mathematics.
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2 L. HESSELHOLT AND I. MADSEN

and it is the pro-groupsTR·
q(A;p) which are our main object of study here. We recall from

[8, Theorem A] that the limitTRq(A;p) coincides with thep-typical curves onKq+1(A)
introduced by Bloch in [1]. Here and throughout we assume thatA is a Z(p)-algebra withp

rder.
er
a

s

n,

s

p

anoddprime.
Associated with the ringA, one has the topological Hochschild spectrumT (A). It has an

action by the circle groupT, and by definition

TRn
q (A;p) = πq

(
T (A)Cpn−1

)

is the qth homotopy group of the fixed points by the finite subgroup of the indicated o
Usually these are very large abelian groups. But they are, asn andq varies, related by a numb
of operators, and the combined algebraic structure is quite rigid. We call this structureWitt
complexoverA. By definition, this is:

(i) a pro-differential graded ringE∗
· and a strict map of pro-rings

λ :W·(A)→E0
·

from the pro-ring of Witt vectors inA;
(ii) a strict map of pro-graded rings

F :E∗
· →E∗

·−1

such thatλF = Fλ and such that for alla ∈A,

F dλ
(
[a]n

)
= λ

(
[a]n−1

)p−1
dλ

(
[a]n−1

)
,

where[a]n = (a,0, . . . ,0) ∈Wn(A) is the multiplicative representative;
(iii) a strict map of gradedE∗

· -modules

V :F∗E
∗
·−1→E∗

·

such thatλV = V λ and such that

F dV = d, FV = p.

A map of Witt complexes overA is a strict mapf :E∗
· → E′

·
∗ of pro-differential graded ring

such thatλ′ = fλ, F ′f = fF andV ′f = fV .
In the Witt complexE∗

· = TR·
∗(A;p), the mapF is induced from the obvious inclusio

V is the accompanying transfer map, and the differential is induced from theT-action. The
structure maps in the pro-system and the mapλ are harder to define. The mapλ turns out to be
an isomorphism in this case [10, Theorem F]. We writeWA for the category of Witt complexe
overA. Using standard category theory, we show:

THEOREM A. – The categoryWA has an initial objectW·Ω∗
A. Moreover, the canonical ma

π· :Ω∗
W·(A)→W·Ω∗

A is surjective.

For a ring homomorphismf :A→A′, we have the direct image functor

f∗ :WA′ →WA

4e SÉRIE– TOME 37 – 2004 –N◦ 1



ON THE DE RHAM–WITT COMPLEX IN MIXED CHARACTERISTIC 3

given by viewing a Witt complex overA′ as a Witt complex overA by replacing the mapλ by
the compositeλW·(f). We show that this functor has a left adjoint

in

of the
an

e ones
s

ne

ula
f∗ :WA→WA′ ,

the inverse image functor. The universal properties imply that the canonical map

W·Ω∗
A′→ f∗W·Ω∗

A

is an isomorphism. The proof of the existence off∗, again, is by category theory. However,
the case of the ring homomorphism

π :A→A[x]

given by the inclusion of the constant polynomials, we can give an explicit description
inverse image functor. IfE = E∗

· is a Witt complex overA, we consider the pro-graded abeli
group

P (E) = P (E)∗·
whereP (E)qn is given by the set of (finite) formal sums of the form

∑
j∈N0

a
(n)
0,j [x]

j
n +

∑
j∈N

b
(n)
0,j [x]

j−1
n d[x]n +

n−1∑
s=1

∑
j∈Ip

(
V s

(
a
(n−s)
s,j [x]jn−s

)
+ dV s

(
b
(n−s)
s,j [x]jn−s

))
,

with the componentsa(m)
s,j ∈ Eq

m andb(m)
s,j ∈ Eq−1

m and with[x]n a formal variable of degree0.
Addition is component-wise, and the structure maps in the pro-system are induced from th
in E. If E′ = E′

·
∗ is a Witt complex overA[x] and if f :E→ π∗E

′ is a map of Witt complexe
overA, there is an induced map of pro-graded abelian groups

f̃ :P (E)→E′

which maps the formal sum above to the sum∑
j∈N0

f(a(n)
0,j )λ

′([x]jn)
+

∑
j∈N

f(b(n)
0,j )λ

′([x]j−1
n

)
dλ′([x]n)

+
n−1∑
s=1

∑
j∈Ip

(
V s

(
f(a(n−s)

s,j )λ′([x]jn−s

))
+ dV s

(
f(b(n−s)

s,j )λ′([x]jn−s

)))

in E′
q
n. The requirement that for allE′ inWA′ , this be a map of Witt complexes leaves only o

possible way to define a product, a differential, and the mapsF andV on P (E). The explicit
formulas are given in Section 4.2 below.

The constructionP (E) may be explained as follows: The first two summands in the form
above form the sub-pro-differential graded ring

E∗
· ⊗Z(p) Ω

∗
Z(p)[x] ⊂ P (E)∗· ,

the Frobenius onP (E) induces the map of pro-graded rings

F = F ⊗ F :E∗
· ⊗Z(p) Ω

∗
Z(p)[x]→E∗

· ⊗Z(p) Ω
∗
Z(p)[x],

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



4 L. HESSELHOLT AND I. MADSEN

given on the second factor byF ([x]n) = [x]pn−1 and Fd[x]n = [x]p−1
n−1d[x]n−1, and the

Verschiebung onP (E) induces the (partially defined) map of pro-abelian groups

s

ial
rings.
s a

m C]
aded

of

. The
2]
V = V ⊗ F−1 :E∗
· ⊗Z(p) F (Ω∗

Z(p)[x])→E∗
· ⊗Z(p) Ω

∗
Z(p)[x].

From this point of view,P (E) is the minimal extension ofE∗
· ⊗Ω∗

Z(p)[x] that admits a globally
defined Verschiebung operator.

THEOREM B. – LetE be a Witt complex overA. ThenP (E) is a Witt complex overA[x], and
the canonical map

π∗E→ P (E)

is an isomorphism.

This gives, in particular, the promised formula for the de Rham–Witt complex ofA[x] in terms
of that ofA. Indeed, the canonical map

P (W·Ω∗
A)→W·Ω∗

A[x]

is the inverse isomorphism. We also show:

THEOREM C. –The canonical map

P
(
TR·

∗(A;p)
)
→TR·

∗
(
A[x];p

)

is an isomorphism.

The construction given in [13] of the de Rham–Witt complex forFp-algebras proceed
in two steps. Firstly, one considers a categoryW ′

A (denotedVDR(A) in op. cit.) whose
objects in essence are Witt complexes without anF -operator. This category has an init
objectW ′

·Ω
∗
A, which can be constructed somewhat more concretely. This works for all

Secondly, one constructs anF -operator onW ′
·Ω

∗
A and proves that the combined structure i

Witt complex, which then necessarily is the initial object ofWA. The proof given inop. cit.
works only forFp-algebras. For it uses that for a polynomial algebra overFp, the inverse limit
W ′ΩA = limnW

′
nΩ

∗
A is torsion free, and this is not the case for a polynomial algebra overZ(p).

We give a different proof based on Theorem B. Hence, for everyZ(p)-algebra we have:

THEOREM D. – The forgetful functorWA→W ′
A preserves initial objects.

Let V be a complete discrete valuation ring of mixed characteristic(0, p) with quotient field
K and perfect residue fieldk. Our second objective in this paper is to generalize [9, Theore
to smoothV -algebras. To state the result, we first recall the notion of a log-differential gr
ring from [14].

A log-ring (R,M) is a ring R together with a pre-log structure defined as a map
multiplicative monoidsα :M → R, and a log-differential graded ring(D,M) is a differential
graded ringD, a pre-log structureα :M → D0, and a map of monoidsD log :M → (D1,+)
such thatdα(a) = α(a)D loga, for all a ∈M . We note that a pre-log structure onR induces
one onWn(R) by composing with the multiplicative map[ ]n :R→Wn(R). The notion of
a Witt complex and Theorem A above generalize to log-rings; see [9, §3] for details
universal example is denotedW·Ω∗

(R,M). It generalizes the construction of Hyodo–Kato [1
for log-Fp-algebras.

4e SÉRIE– TOME 37 – 2004 –N◦ 1



ON THE DE RHAM–WITT COMPLEX IN MIXED CHARACTERISTIC 5

Let A be a smoothV -algebra, letAk =A⊗V k, and letAK =A⊗V K . The canonical log-
structure onA is given by the inclusion

ent

The

r

α :MA =A ∩A∗
K ↪→A.

In this situation, one has the localization sequence inK-theory,

· · · →Kq(Ak)
i!→Kq(A)

j∗→Kq(AK) ∂→Kq−1(Ak)→ · · · .

We constructed in [9, §1] a corresponding sequence

· · · →TR·
q(Ak;p)

i!→TR·
q(A;p)

j∗→TR·
q(A|AK ;p) ∂→TRq−1(Ak;p)→ · · ·

and a trace map from the sequence above. The groupsTR·
∗(A|AK ;p) form a Witt complex over

the log-ring(A,MA) with the map

d logn :MA→TRn
1 (A|AK ;p)

given by the composite

MA =A∩A∗
K ↪→A∗

K →K1(AK) tr→TRn
1 (A|AK ;p).

Hence, we have the canonical map from the universal Witt complex,

W·Ω∗
(A,MA)→TR·

∗(A|AK ;p).

If we assume thatµpv ⊂K , there is, in addition, a unique ring homomorphism

SZ/pv (µpv )→TR·
∗(A|AK ;p,Z/pv),

which takes a generatorζ ∈ µpv to the image by the trace map of the corresponding Bott elem
bζ ∈K2(K,Z/pv). In all we have a map of Witt complexes

W·Ω∗
(A,MA) ⊗Z SZ/pv (µpv )→TR·

∗(A|AK ;p,Z/pv),

where on the left, the mapsR, F , andV act as the identity on the second tensor factor.
differential acts trivially on the second tensor factor.

THEOREM E. –LetV be a discrete valuation ring of mixed characteristic(0, p) with quotient
fieldK and perfect residue fieldk, and assume thatp is odd and thatµpv ⊂K . Then for every
smoothV -algebraA, the canonical map

W·Ω∗
(A,MA) ⊗Z SZ/pv(µpv )→TR·

∗(A|AK ;p,Z/pv)

is an isomorphism of pro-abelian groups.

It appears an interesting problem to formulate and prove the analog of Theorem E forp= 2.
In this case, the right hand side of the statement isnot a Witt complex overA with the definition
given here. For(d ◦ d)(x) = η ·d(x), whereη = tr(−1) = d log·(−1). This class is non-zero, fo
instance, ifA= Z(2), but the squareη2 is always zero, see Rognes [24, Theorem 1.5].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



6 L. HESSELHOLT AND I. MADSEN

Finally, we mention that at the same time as this paper was written, A. Langer and T. Zink
introduced a relative version of the de Rham–Witt complex [15], which to a map ofZ(p)-algebras
R→A associates a Witt complexW·Ω∗

A/R. Hence, there is a canonical mapW·Ω∗
A→W·Ω∗

A/R.
re
the

by the
he

unital

prime
h
ural

, we

en
p

This map is always surjective, but it is not injective ifR= Z(p). The elements of the kernel a
important for the relation toK-theory. For example, we show in Example 1.2.5 below that
map

d log :Z∗
p/Z

∗pv

p →W·Ω1
Zp
/pvW·Ω1

Zp

is an isomorphism of the domain onto the sub-pro-abelian group of the target fixed
Frobenius operator. It takes the class ofexp(p/(p − 1)), which generates the domain, to t
class of

∑
s�1 dV s(1). ButW·Ω1

Zp/Z(p)
/pvW·Ω1

Zp/Z(p)
, in comparison, is zero. See also [4].

Unless otherwise stated, all rings considered in this paper will be commutative and
Z(p)-algebras withp an odd prime. We denote byN (respectively byN0, respectively byIp) the
set of positive integers (respectively non-negative integers, respectively positive integers
to p). By a pro-object of a categoryC we mean a functor fromN, viewed as a category wit
one arrow fromn + 1 to n, to C, and by astrict map between pro-objects we mean a nat
transformation. A general map between pro-objectsX andY of C is an element of

Hompro−C(X,Y ) = lim
n

colim
m

HomC(Xm, Yn).

We view objects ofC as constant pro-objects ofC.

1. Witt complexes

1.1. We briefly recall Witt vectors and the de Rham complex. For a fuller discussion
refer the reader to [23, Appendix] and [21], respectively.

The de Rham complex of a ringA is characterized by the following universal property: giv
a differential graded ringE∗ and a ring homomorphismλ :A→ E0, there exists a unique ma
of differential graded rings

Ω∗
A→E∗,

which in degree zero is given by the mapλ. It is also easy to construct. LetI be the kernel of the
multiplicationA⊗A→A. It is generated as anA-module by the elementsa⊗ 1− 1⊗ a,a ∈A.
The twoA-module structures onI define the sameA-module structure onΩ1

A = I/I2, and the
map

d :A→Ω1
A

which takesa to (a⊗ 1− 1⊗ a) + I2 is a derivation. This is the universal derivation fromA to
anA-module. One now defines the de Rham-complex to be the exterior algebra

Ω∗
A =Λ∗

AΩ
1
A

with differential

d(a0 da1 . . . dan) = da0 da1 . . .dan.

It is a differential graded ring and clearly has the universal property stated above.
The ringWn(A) of Witt vectors of lengthn in A is the set ofn-tuples inA but with a new

ring structure characterized by the requirement that the “ghost” map

w :Wn(A)→An

4e SÉRIE– TOME 37 – 2004 –N◦ 1



ON THE DE RHAM–WITT COMPLEX IN MIXED CHARACTERISTIC 7

which takes the vector(a0, a1, . . . , an−1) to the sequence(w0,w1, . . . ,wn−1) with

w = ap
i

+ pap
i−1

+ · · ·+ pia ,

t

ded to
ct the

ma
uence

, is

the

that
i 0 1 i

be a natural transformation of functors from rings to rings. If the ringA is p-torsion free, the
ghost map is injective. If, in addition, there exists a ring homomorphismf :A→ A with the
property thatf(a)≡ ap modulopA, then a sequence(x0, . . . , xn−1) is in the image of the ghos
map if and only if

xi ≡ f(xi−1) modulopiA,

for all 0< i < n. The latter statement, the lemma of Dwork, encodes the congruences nee
construct every map involving Witt vectors. As an example of how this works, we constru
addition onWn(A).

By naturality, it suffices to considerA = Z[a0, . . . , an−1, b0, . . . , bn−1] and define the sum
of the vectorsa= (a0, . . . , an−1) andb = (b0, . . . , bn−1). The ring homomorphismf :A→ A,
which raises the variables to thepth power, is a lift of the Frobenius, so we can use the lem
of Dwork to identify the image of the ghost map. One verifies immediately that the seq
w(a) + w(b) is in the image of the ghost map. Hence, there exists a vectors = (s0, . . . , sn−1)
such that

w(s0, . . . , sn−1) =w(a0, . . . , an−1) +w(b0, . . . , bn−1),

and sinceA is p-torsion free, the vectors is unique. The only possible definition, therefore
thata+ b= s.

The projection on the firstn− 1 factors is a ring homomorphism

R :Wn(A)→Wn−1(A),

calledrestriction, and this makesW·(A) a pro-ring. There is a second ring homomorphism,
Frobenius,

F :Wn(A)→Wn−1(A),

characterized by the formula

w
(
F (a0, . . . , an−1)

)
=

(
w1(a), . . . ,wn−1(a)

)
,

and aWn(A)-linear map, theVerschiebung,

V :F∗Wn−1(A)→Wn(A)

given by

V (a0, . . . , an−2) = (0, a0, . . . , an−1).

Here the notationF∗Wn−1(A) indicates thatWn−1(A) is considered aWn(A)-module via the
FrobeniusF :Wn(A)→Wn−1(A). Thus, the linearity of the Verschiebung is the statement
for all x ∈Wn(A) andy ∈Wn−1(A), the Frobenius reciprocity formulaxV (y) = V (F (x)y)
holds. The Frobenius and Verschiebung both commute with the restriction. TheTeichmüllermap
is the multiplicative map

[ ]n :A→Wn(A),

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



8 L. HESSELHOLT AND I. MADSEN

given by [a]n = (a,0, . . . ,0). In particular, [1]n is the multiplicative unit inWn(A). The
following relations hold ( ) p

y

g

tor
e

p

t, the

e

iebung
F [a]n = [a]n−1, FV = p,

where on the right,p denotes multiplication byp= [1] + · · ·+ [1] (p times). In general, it is ver
difficult to describe the coordinates of the vectorp · a in terms of the coordinates ofa. It is often
convenient to display a Witt vector as

(a0, . . . , an−1) =
n−1∑
i=0

V i
(
[ai]n−i

)
.

1.2. The definition of a Witt complex overA was given in the introduction. The followin
result will be used repeatedly throughout the paper.

LEMMA 1.2.1. –LetE∗
· be a Witt complex overA. Then

dF = pFd, V d= pdV, V (xdy) = V (x)dV (y).

Proof. –Let x, y ∈E∗
n. Then

V (xdy) = V
(
xF dV (y)

)
= V (x)dV (y);

dF (x) = F dV F (x) = F d
(
V (1)x

)
= F

(
dV (1)x+ V (1)dx

)
= F dV (1)F (x) +FV (1)F dx= d(1)F (x) + pF dx= pF dx;

V d(x) = V (1)dV (x) = d
(
V (1)V (x)

)
− dV (1) · V (x)

= dV
(
FV (1)x

)
− V

(
F dV (1)x

)
= dV (px)− V

(
d(1)x

)
= pdV (x).

This completes the proof.✷
Proof of Theorem A. –The existence of an initial object follows from the Freyd adjoint func

theorem, [18, p. 116]. The categoryWA clearly has all small limits, so it suffices to verify th
solution set condition. To this end, we show that for everyE =E∗

· inWA, the image of the ma
induced fromλ,

λ :Ω∗
W·(A)→E∗

· ,

is a (sub) Witt complex ofE. Since the isomorphism classes of such images form a se
proposition will follow. We must show that the Frobenius and Verschiebung ofE∗

· preserve the
image of the canonical map. To prove the statement for the Frobenius, it suffices, sincF is
multiplicative, to show that for alln � 1 and alla ∈Wn(A), F dλ(a) is in the image of the
canonical map. But, using the formula

a= [a0]n + V
(
[a1]n−1

)
+ V 2

(
[a2]n−2

)
+ · · ·+ V n−1

(
[an−1]1

)
,

we find

F dλ(a) = λ
(
[a0]n−1

)p−1
dλ

(
[a0]n−1

)
+ dλ

(
[a1]n−1

)
+ · · ·+ dV n−1λ

(
[an−1]1

)
,

and this sum clearly is in the image of the canonical map. The statement for the Versch
follows immediately from Lemma 1.2.1. This proves that an initial object exists.

4e SÉRIE– TOME 37 – 2004 –N◦ 1



ON THE DE RHAM–WITT COMPLEX IN MIXED CHARACTERISTIC 9

Finally, we show that the mapπ· is surjective, or equivalently, that the inclusion of the image
E of this map is a surjection. SinceE is a Witt complex, there is a unique mapW·Ω∗

A→E∗
· of

Witt complexes. But then also the composition

ity

s,

joint

the

e

of

d

ts
W·Ω∗
A→E∗

· →W·Ω∗
A

is a map of Witt complexes. And sinceW·Ω∗
A is the initial object, this composite is the ident

map. The statement follows.✷
Remark1.2.2. – Theorem A shows, in particular, that the canonical map

W·(A)→W·Ω0
A

is surjective. In effect, this is an isomorphism. ForE∗
· =W·(A) is a Witt complex overA. We

will prove later that also the canonical mapΩ∗
A→W1Ω∗

A is an isomorphism. The proof of thi
however, requires Theorem D.

The direct image functorf∗ :WB →WA associated with a ring homomorphismf :A→ B
takesE∗

· to E∗
· and replaces the mapλ by the compositeλW·(f).

PROPOSITION 1.2.3. –The direct image functorf∗ has a left adjoint

f∗ :WA→WB,

the inverse image functor.

Proof. –The proof, which is similar to the proof of Theorem A, is an application of the ad
functor theorem, [18, p. 116]. Given an objectE = E∗

· in WA, the objectf∗E in WB is the
initial object in the over categoryE/f∗. This category has small limits, so we must verify
solution set condition.

We first construct, for alln� 1, a non-commutative graded ringT ∗
n which depends only onE.

Assume, inductively, thatT ∗
n−1 has been constructed (we letT ∗

0 = {0}), and let

S∗
n =

{
e, de | e ∈Wn(B)⊗Wn(A) E

∗
n

}
∪

{
V (e′), dV (e′) | e′ ∈ T ∗

n−1

}

be the graded set, wheree andV (e′) are assigned the degree ofe ande′, respectively, and wher
the degree ofde anddV (e′) is one higher than the degree ofe ande′. Then we defineT ∗

n to be
the free non-commutative graded ring generated by the graded set ofS∗

n.
Given an object(D,ϕ :E→ f∗D) of the over categoryE/f∗, we recursively define maps

graded rings

ψn :T ∗
n →D∗

n.

The given map of gradedWn(A)-algebrasϕn :E∗
n → f∗D

∗
n induces a map of grade

Wn(B)-algebras

ϕ̂n :Wn(B)⊗Wn(A) E
∗
n→D∗

n,

and withψn−1 :T ∗
n−1→D∗

n−1 already defined, we letψ′
n :S∗

n→D∗
n be the map of graded se

given byψn(e) = ϕ̂n(e), ψn(de) = d(ϕ̂n(e)), for e ∈Wn(B)⊗Wn(A) E
∗
n, and by

ψn

(
V (e′)

)
= V

(
ψn−1(e′)

)
, ψn

(
dV (e′)

)
= dV

(
ψn−1(e′)

)
,
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for e′ ∈ T ∗
n−1. Thenψn :Tn→Dn is the unique map of graded rings which extendsψ′

n.
One shows, as in the proof of Theorem A, that the images

n

exact

, and in
I(D,ϕ) =
{
im(ψn)

}
n�1

form a Witt complex overB, and that the mapϕ′ :E → f∗I(D,ϕ), which takese ∈ Ed
n to

ψn(1 ⊗ e) ∈ Id(D,ϕ),n, is a map of Witt complexes overB. Hence, the canonical inclusio
I(D,ϕ)→D defines a map

(I(D,ϕ), ϕ
′ :E→ f∗I(D,ϕ))→ (D,ϕ :E→ f∗D)

in the over categoryE/f∗. Since the isomorphism classes of the objects ofE/f∗ of the form
(I(D,ϕ), ϕ

′ :E→ f∗I(D,ϕ)) form a set, the solution set condition is satisfied.✷
Example1.2.4. – We considerW·Ω∗

Z(p)
. In general, an integer invertible inA is also invertible

in Wn(A), and hence, the ringWn(Z(p)) is aZ(p)-algebra. We claim that as aZ(p)-module,

Wn(Z(p)) =
n−1∏
i=0

Z(p) · V i(1)

with the product given by

V i(1) · V j(1) = piV j(1),

for 0 � i � j < n. The first statement follows by an induction argument based on the
sequences

0→ Z(p)
V n−1

−→ Wn(Z(p))
R→Wn−1(Z(p))→ 0,

and the product formula is an immediate consequence of the relationsFV = p and
xV (y) = V (F (x)y). In general, it is difficult to find the coordinates ofa ∈Wn(Z(p)) with re-
spect to the basisV i(1), 0 � i < n.

We can use the canonical surjection

Ω∗
Wn(Z(p))

→WnΩ∗
Z(p)

to get an upper bound for the right hand side. The map is an isomorphism in degree zero
degree one we have the relations that for0 � i � j < n,

V i(1)dV j(1) = V i
(
F i dV j(1)

)
= V i dV j−i(1) = pi dV j(1),

V j(1)dV i(1) = V j
(
F j dV i(1)

)
= V jF j−i d(1) = 0.

It follows that pi dV i(1) and dV i(1)dV j(1) are zero, for all0 � i, j < n. HenceWnΩ
q
Z(p)

vanishes forq > 1, and there is canonical surjection

n−1∏
i=0

Z/piZ · dV i(1) �WnΩ1
Z(p)

.
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In fact, this is an isomorphism. To prove injectivity, it suffices to find a Witt complexE = E∗
·

such that the canonical map

image
ly by

sed
bjects

ring

e

n−1∏
i=0

Z/piZ · dV i(1)→E1
n

is injective. We show in Proposition 2.6.1 below thatTR·
∗(Z(p);p) is such a Witt complex.

Example1.2.5. – We next considerW·Ω∗
Zp

. One proves by induction onn � 1 that for all
q � 0 andv � 1, the completion map induces an isomorphism

WnΩ
q
Z(p)

/pvWnΩ
q
Z(p)

∼→WnΩ
q
Zp
/pvWnΩ

q
Zp
.

We wish to evaluate the map

d logn :Z
∗
p/Z

∗pv

p →WnΩ
q
Zp
/pvWnΩ

q
Zp
,

which to the class ofx∈ Z∗
p assigns the class of[x]−1

n d[x]n ∈WnΩ1
Zp

. We have

[x]n = x · [1]n +
∑

0<s<n

p−s
(
xp

s − xp
s−1) · V s

(
[1]n−s

)
,

where we use that theZ(p)-module structure onWnΩ1
Zp

extends to aZp-module structure
by continuity. Indeed, as one readily verifies, the two sides of the equality have the same
by the ghost map, and the ghost map is injective. If we differentiate this formula and multip
[x]−1

n = [x−1]n, we find that

d logn x=
∑

0<s<n

p−s
(
xp

s−1(p−1) − 1
)
· dV s

(
[1]n−s

)
.

In particular, the class ofexp(p/(p− 1)), which generates the domain ofd logn, is mapped to
the class of

∑
0<s<n dV s(1). It is not difficult from Example 1.2.4 to see that asn � 1 varies,

the latter class generates the sub-pro-abelian group of the target ofd logn that is fixed by the
Frobenius operator.

2. The Witt complex TR·
∗(A;p)

2.1. In this paragraph we recall the Witt complexTR·
∗(A;p) associated with a ringA. Details

may be found in [5,8–10]. See also [19].
Let G be a compact Lie group. TheG-stable category is a triangulated category and a clo

symmetric monoidal category, and the two structures are compatible, [16, II.3.13]. The o
of theG-stable category are calledG-spectra. A monoid for the smash product is called a
G-spectrum. We denote the set of maps between twoG-spectraT andT ′ by [T,T ′]G.

Associated with a pointedG-spaceX one has the suspensionG-spectrum which we denot
by suspG(X) or simply byX . If V is an orthogonalG-representation, we denote bySV the
one-point compactification. Then the suspension homomorphism

[T,T ′]G
∼→ [T ∧ SV , T ′ ∧ SV ]G

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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is an isomorphism, [16, I.6.1]. LetH ⊂G be a closed subgroup, letq be an integer, and letT be
aG-spectrum. We define the (derived) homotopy group

al

ups

topy

e

y the
f

r

l

πH
q (T ) = [G/H+ ∧ Sq, T ]G,

where the subscript+ indicates the addition of a disjointG-fixed basepoint. There is a canonic
isomorphism

πH
q (T )∼= πq(TH),

whereTH is theH-fixed pointWGH-spectrum. More generally, given a pair of closed subgro
K ⊂H ⊂G with K normal inH , there is a canonical isomorphism

πH
q (T )∼= πH/K

q (TK).

A map in theG-stable category is an isomorphism if and only if the induced map of homo
groups is an isomorphism, for allH ⊂G and allq, [16, I.5.12].

Let H ⊂G be a closed subgroup. The diagonal map of the spaceG/H induces a map in th
G-stable category

∆:G/H+→G/H+ ∧G/H+,

and ifT andT ′ areG-spectra, this gives rise to a pairing

πH
q (T )⊗ πH

q′ (T
′)→ πH

q+q′ (T ∧ T ′).

If T is a ringG-spectrum, we may compose with the map of homotopy groups induced b
multiplicationµ :T ∧ T → T . This way the homotopy groupsπH

∗ (T ) form a graded ring, and i
T is commutative, this graded ring is commutative in the graded sense.

Finally, we mention the Segal-tom Dieck splitting, [25, Satz 2]. IfH ⊂G is finite and ifX is
a pointedG-space, there is a canonical isomorphism

⊕
(K)

πq
(
susp

(
E(WHK)+ ∧WHK XK

)) ∼→ πH
q

(
suspG(X)

)
,(2.1.1)

where the sum is over conjugacy classes of subgroups ofH , andE(WHK) is the universal cove
of the classifying spaceB(WHK).

2.2. Let T be the circle group. Associated with every ringA one has the topologica
Hochschild spectrumT (A). This is a ringT-spectrum, and by definition,

TRn
q (A;p) =

[
Sq ∧T/Cpn−1+, T (A)

]
T
,

whereCpn−1 ⊂ T denotes the finite subgroup of the indicated order. The maps

F :TRn
q (A;p)→TRn−1

q (A;p),

V :TRn−1
q (A;p)→TRn

q (A;p),(2.2.1)

d :TRn
q (A;p)→TRn

q+1(A;p),

which are part of the structure of a Witt complex, are induced by maps in theT-stable category
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f :T/Cpn−2+→ T/Cpn−1+,

v :T/Cpn−1+→ T/Cpn−2+,(2.2.2)

g
al

.
tubular

p
he

h

elations

n

ors,
1.4.2,
δ :T/Cpn−1+ ∧ S1→ T/Cpn−1+,

the definition of which we briefly recall.
The mapf is induced by the canonical projection ofT-spaces, andv is the correspondin

transfer map defined as follows. Leti :T/Cpn−2 ↪→ V be an embedding into an orthogon
T-representation, and consider the product embedding(pr, i) :T/Cpn−2 ↪→ T/Cpn−1 × V . The
normal bundle of the latter is trivial, and the linear structure onV gives a preferred trivialization
Hence, by the Pontryagin–Thom construction, which collapses the complement of a
neighborhood to the base point, we have a map of pointedT-spaces

T/Cpn+ ∧ SV → T/Cpn−1+ ∧ SV ,

and (under the suspension isomorphism) this induces the mapv. Finally, the mapδ is induced
from a map of pointedT-spaces

δ :T/Cpn−1+ ∧ Sm+1→ T/Cpn−1+ ∧ Sm.

The set ofT-homotopy classes of such maps, ifm� 2, is a direct sum of an infinite cyclic grou
and a cyclic group of order2, and the mapδ is a generator of an infinite cyclic summand. T
induced map on reduced homology,

H̃m+1(T/Cpn−1+ ∧ Sm+1) δ→ H̃m+1(T/Cpn−1+ ∧ Sm),

takes the generator on the left which, under the canonical isomorphism

H̃q(X+ ∧ Sm)∼=Hq−m(X),

corresponds to class of the pointCpn−1 in H0(T/Cpn−1) to the generator on the right whic
corresponds to the fundamental class[T/Cpn−1 ] ∈H1(T/Cpn−1).

If we ignore2-torsion, these maps satisfy the following relations

vf = p · id, fδ = pδf, δv = pvδ,

vδf = δ, δδ = 0,(2.2.3)

and hence the dual relations hold among the maps (2.2.1). Moreover, there are further r
among the mapsf , v, δ, and the diagonal map∆. The relations

(f ∧ f)∆ =∆f, (f ∧ id)∆v = (id∧v)∆,

show thatF is a map of graded rings, and thatV is a map of graded modules. And the relatio

∆δ = (δ ∧ id∨ id∧δ)τ∇∆,

valid up to2-torsion, shows thatd is a derivation. Hereτ permutes the appropriate smash fact
and∇ is the fold map. The proof of these facts may be found in [10, Lemma 3.3] and [8,
1.5.1].
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Remark2.2.4. – Up to2-torsion, the full subcategory of theT-stable category with objects
T/Cpn−1+ ∧ Sq, where0 � q � 2 andn ∈ N, is equal to the ringoid generated by the maps
(2.2.2) subject to the relations (2.2.3). In more detail, ifm is the minimum ofr ands, then:

r

ries

p

of
(i) The maps fromT/Cps+ to T/Cpr+ form a free abelian group of rankm+ 1 generated by
f r−ivs−i with 0 � i � m.

(ii) The abelian group of maps fromT/Cps+ ∧ S1 to T/Cpr+ is, up to2-torsion, the sum
of a free abelian group of rankm + 1 and, for every1 � i � m, a copy ofZ/piZ. If r � s
(respectively ifr � s) thenf r−ivs−iδ (respectivelyδf r−ivs−i) is a generator of a summandZ,
and in either case,pr−mδf r−ivs−i − ps−mf r−ivs−iδ generates a summandZ/pm−iZ.

(iii) The abelian group of maps fromT/Cps+ ∧ S2 to T/Cpr+ is, up to2-torsion, the sum fo
1� i � m, of a copy ofZ/pm−iZ generated byδf r−ivs−iδ.

(iv) If q > 0 then every map fromT/Cps+ to T/Cpr+ ∧ Sq is zero.
This follows from the Segal–tom Dieck splitting, (2.1.1).

2.3. An isomorphismf :G ∼→G′ of compact Lie groups induces an equivalence of catego
f∗ from theG′-stable category to theG-stable category, [16, II.1.7]. IfH ⊂ G is a closed
subgroup, we letH ′ ⊂G′ be the closed subgroupH ′ = f(H). Then for every closed subgrou
H ⊂G and every integerq, there is a canonical isomorphism ofG-spectra

G/H+ ∧ Sq ∼= f∗(G′/H ′ ∧ Sq),

and this induces, for everyG′-spectrumT ′, a canonical isomorphism

πH
q

(
f∗(T ′)

)∼= πH′

q (T ′).

In the case of the circle group, we have the isomorphism

ρp :T
∼→ T/Cp

given by thepth root. If T is aT-spectrum, thenTCp is aT/Cp-spectrum, and hence,ρ∗p(T
Cp)

is aT-spectrum. We have the canonical isomorphisms

π
Cpn−2
q

(
ρ∗p(T

Cp)
)∼= π

Cpn−1/Cp

q (TCp)∼= π
Cpn−1
q (T ),

and these are compatible with the mapsF , V , andd induced from (2.2.2).
The topological HochschildT-spectrumT (A) is a cyclotomicspectrum in the sense

[10, Definition 2.2]. This implies that there is a map ofT-spectra

r :ρ∗p
(
T (A)Cp

)
→ T (A).

Hence, we have the map

R :TRn
q (A;p)→TRn−1

q (A;p)

defined as the composite

π
Cpn−1
q

(
T (A)

)∼= π
Cpn−2
q

(
ρ∗p

(
T (A)Cp

)) r→ π
Cpn−2
q

(
T (A)

)
,

and this map commutes with the operatorsF , V , andd. Moreover,r is a map of ringT-spectra,
and henceR is a map of graded rings.
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2.4. In order to construct theT-spectrumT (A) we need a model category for theT-stable
category. The model category we use is the category of symmetric spectra in the category of
orthogonalT-spectra, [20]. This model has a closed symmetric monoidal product which induces

ace

tric

al)

ts

ategory
maps
the smash product on theT-stable category. We first recall the topological Hochschild sp
THH(A). See [5, §1] and [10, §2] for more details.

If A is a ring andX a pointed simplicial set, the homotopy groups of the space

A(X) =
∣∣A{X}/A{x0}

∣∣
are canonically isomorphic to the reduced singular homology groups of|X | with coefficients
in A [22, Theorem 22.1]. HereA{X} denotes the degree-wise freeA-module generated byX .
LetS1 =∆[1]/∂∆[1] be the standard simplicial circle and letSi be the smash product ofi copies
of S1. Then

Ãi =A(Si)

is an Eilenberg–MacLane space forA concentrated in degreei. It has a naturalΣi-action given
by permuting the smash factors inSi. Moreover, there are natural maps

e :Si→ Ãi, µ : Ãi ∧ Ãi′ → Ãi+i′ ,

which areΣi-equivariant andΣi × Σi′ -equivariant, respectively. This constitutes a symme
ring spectrumÃ in the sense of [11], commutative ifA is. The spaceTHH(E) is defined for
every symmetric ring spectrumE.

Let I be the category with objects the finite sets

i= {1,2, . . . , i}, i � 0,

and morphisms all injective maps (0 = ∅). It is a strict monoidal (but not symmetric monoid
category under concatenation of sets and maps. LetE be a symmetric ring spectrum and letX
be a pointed space. There is a functorGk(E;X) from Ik+1 to pointed spaces, which on objec
is given by the pointed function space

Gk(E;X)(i0, . . . , ik) = F (Si0 ∧ · · · ∧ Sik ,Ei0 ∧ · · · ∧Eik ∧X).

The homotopy colimit

THHk(E;X) = holim
→

Ik+1

Gk(E;X)

is naturally the space ofk-simplices in a cyclic space, and by definition

THH(E;X) =
∣∣[k] �→THHk(E;X)

∣∣.
This is aT-space, [17, 7.1.4].

More generally, let(n) be the finite ordered set{1,2, . . . , n}. The product categoryI(n) is a
strict monoidal category under component-wise concatenation of sets and maps. (The c
I(0) is the category with one object and one morphism.) Concatenation of sets and
according to the ordering of(n) defines a functor

�n : I(n)→ I,
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16 L. HESSELHOLT AND I. MADSEN

but this doesnot preserve the monoidal structure. (The functor�0 takes the unique object to0.)
We letG(n)

k (E;X) be the functor from(I(n))k+1 to the category of pointed spaces given by

pace,

the

tric

uct.

ed
G
(n)
k (E;X) =Gk(E;X) ◦ (�n)k+1,

and define

THH(n)
k (E;X) = holim

−→
(I(n))k+1

G
(n)
k (E;X).

This again is the space ofk-simplices in a cyclic space, and we define

THH(n)(E;X) =
∣∣[k] �→THH(n)

k (E;X)
∣∣.

It is aΣn ×T-space. IfE is commutative, there is a natural product

THH(m)(E;X)∧THH(n)(E;Y )→THH(m+n)(E;X ∧ Y ),

which isΣm ×Σn ×T-equivariant withT acting diagonally on the left.
Let V be a finite dimensional orthogonalT-representation. We define the(n,V )th space in

the symmetric orthogonalT-spectrumT (E) by

T (E)n,V =THH(n)(E;SR
n⊕V ).(2.4.1)

There are twoT-actions on this space: one which comes from the topological Hochschild s
and another induced from theT-action onSV . There are also twoΣn-actions: one which
comes from theΣn-action on the topological Hochschild space, and another induced from
permutation representation ofΣn on Rn. We giveT (E)n,V the diagonalΣn ×T-action. IfE is
commutative, there is, in addition, aΣm ×Σn ×T-equivariant product

T (E)m,V ∧ T (E)n,W → T (E)m+n,V⊕W .

This product makesT (E) a monoid in the symmetric monoidal category of symme
orthogonalT-spectra.

2.5. A pointed monoid is a monoidΠ in the category of pointed spaces and smash prod
The unit and multiplication are maps

e :S0→Π, µ :Π∧Π→Π.

The(k +1)-fold smash product

N cy
k (Π) = Π∧(k+1)

is thek-simplices of a cyclic space. The geometric realization

N cy(Π) =
∣∣[k] �→N cy

k (Π)
∣∣

is a pointedT-space called the cyclic bar construction ofΠ, see [17, 7.3.10]. It comes equipp
with a naturalT-equivariant homeomorphism [2, 1.1, 2.3]

∆:N cy(Π) ∼→ ρ∗pn−1

(
N cy(Π)Cpn−1

)
.
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If E is a symmetric ring spectrum, then the0th spaceE0 is a pointed monoid. In the case
E = Ã, this is the underlying multiplicative monoid of the ringA with basepoint0. In the
symmetric orthogonalT-spectrumT (E) defined above, the(0,0)th space is

our

as

o the
T (E)0,0 =N cy(E0).

Hence, there is a canonical map

k :πq
(
ρ∗pn−1N cy(E0)Cpn−1

)
→ πq

(
ρ∗pn−1T (E)Cpn−1

)
=TRn

q (E;p).

We define a map of pointed sets

ωn :π0(E0)→TRn
0 (E;p)

to be the composite

π0(E0)→ π0

(
N cy(E0)

) ∆→ π0

(
ρ∗pn−1N cy(E0)Cpn−1

) k→ π0

(
ρ∗pn−1T (E)Cpn−1

)
,

where the left hand map is induced by the inclusion of the vertices. IfE is commutative, this is
a multiplicative map. It is proved in [8, Lemma 1.5.6] that for everyx ∈ π0(E0),

Fdωn(x) = ωn−1(x)p−1dωn−1(x).(2.5.1)

ForE = Ã, we now define the map

λ :Wn(A)→TRn
0 (A;p)(2.5.2)

by the formula

λ(a0, . . . , an) =
n−1∑
s=0

V s
(
ωn−s(as)

)
.

It is proved in [10, Theorem F] that this is an isomorphism of rings. This completes
recollection of the Witt complexTR·

∗(A;p).

2.6. Let S be the symmetric ring spectrum withSi = Si. This is the sphere spectrum. It w
proved in [2, 3.7], but see also [19, 4.4.4], that the unit for the ring spectrum structure

susp
T
(S0)→ T (S)

induces an isomorphism of homotopy groups, for all integersq and all finite subgroups ofT.
Hence, we have a canonical isomorphism

TRn
q (S;p)∼= [T/Cpn−1+ ∧ Sq, S0]T.

The groups on the right are well-known, at least for small values ofq, by (2.1.1). We will use
the result for0 � q � 2. Under the isomorphism above, the multiplicative unit corresponds t
map of suspensionT-spectra

e :T/Cpn−1+→ S0
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18 L. HESSELHOLT AND I. MADSEN

induced from the projection which collapsesT/Cpn−1 to the non-basepoint inS0. Composition
with e defines a map

r

ment.

lex,
[T/Cpn−1+ ∧ Sq,T/Cpn−1+]T→ [T/Cpn−1+ ∧ Sq, S0]T.

If 0 � q � 2, the group on the left was described, up to2-torsion, in 2.2.4 above. Sinced is a
derivation,eδ is zero. This is the only extra relation. Hence:

(i) The maps fromT/Cpn−1+ to S0 form a free abelian group of rankn generated byefsvs

with 0 � s < n.
(ii) The abelian group of maps fromT/Cpn−1+ ∧ S1 to S0 is, up to2-torsion, the sum fo

1� s < n, of a copy ofZ/psZ generated byefsvsδ.
(iii) Up to 2-torsion, every map fromT/Cpn−1+ ∧ S2 to S0 is null.
The unit mapS→ Z̃ induces an isomorphism of homotopy groups withZ(p)-coefficients in

degrees less than2p− 3. And the functorTRn(−;p) preserves connectivity. Thus we have:

PROPOSITION 2.6.1. –The groupTRn
0 (Z(p);p) is a freeZ(p)-module of rankn generated by

V s(1), 0 � s < n. The groupTRn
1 (Z(p);p) is a sum for1 � s < n, of a copy ofZ/psZ generated

bydV s(1). The groupTRn
2 (Z(p);p) is zero.

3. Polynomial extensions

3.1. In this section we prove Theorem C of the introduction. We briefly recall the state
The ring homomorphism given by the inclusion of the constant polynomials,

π :A→A[x],

induces a map of Witt complexes overA,

f :TR·
∗(A;p)→ π∗TR·

∗
(
A[x];p

)
,

where on the rightπ∗ is the direct image functor. And as part of the structure of a Witt comp
we have the map of pro-rings

λ :W·
(
A[x]

)
→TR·

0

(
A[x];p

)
.

We wish to show that for alln � 1 andq � 0, every element ofTRn
q (A[x];p) can be written

uniquely as a finite sum

f(a(n)
0,0 ) +

∑
j∈N

(
f(a(n)

0,j )λ
(
[x]jn

)
+ f(b(n)

0,j )λ
(
[x]j−1

n

)
dλ

(
[x]n

))

+
n−1∑
s=1

∑
j∈Ip

(
V s

(
f(a(n−s)

s,j )λ
(
[x]jn−s

))
+ dV s

(
f(b(n−s)

s,j )λ
(
[x]jn−s

)))
(3.1.1)

with ams,j ∈TRm
q (A;p) andb(m)

s,j ∈TRm
q−1(A;p).

We recall that, by definition, the groupTRn
q (A[x];p) is the qth homotopy group of the

T-spectrum

ρ∗pn−1T
(
A[x]

)Cpn−1
.(3.1.2)
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Let Π = {0,1, x, x2, . . .} be the sub-pointed monoid ofA[x] generated by the variablex. The
T-spaceN cy(Π) decomposes as a wedge sum

(3.1.3)

,
uces

eft
∨
i∈N0

N cy(Π, i) ∼→N cy(Π),

where theith summand is the realization of the pointed cyclic subset ofN cy
· (Π) generated by

the0-simplex1, if i= 0, and by the(i− 1)-simplexx∧ · · · ∧ x, if i > 0. Hence, theT-spectrum
(3.1.2) can then be expressed as a wedge sum∨

j∈N0

ρ∗pn−1T (A)Cpn−1 ∧N cy(Π, j)

∨
n−1∨
s=1

∨
j∈Ip

ρ∗ps

(
ρ∗pn−1−sT (A)Cpn−1−s ∧N cy(Π, j)

)Cps

.(3.1.3)

We recall below how this equivalence is defined and show that the homotopy groups of
are given by the finite sums of the form (3.1.1). This will prove Theorem C.

3.2. We prove in [10, Theorem 7.1] that the composite

T (A)∧N cy(Π)
f∧ι−→ T

(
A[x]

)
∧N cy

(
A[x]

) µ→ T
(
A[x]

)
,

whereι is the inclusion, is a natural equivalence ofT-spectra. SinceA andΠ are commutative
this equivalence is multiplicative with the componentwise multiplication on the left. This ind
an equivalence ofT-spectra

ρ∗pn−1

(
T (A)∧N cy(Π)

)Cpn−1 ∼→ ρ∗pn−1T
(
A[x]

)Cpn−1
,

and the wedge decomposition of theT-spaceN cy(Π) induces one ofT-spectra

∨
i∈N0

ρ∗pn−1

(
T (A)∧N cy(Π, i)

)Cpn−1 ∼→ ρ∗pn−1

(
T (A)∧N cy(Π)

)Cpn−1
.

Regrouping the wedge summands after thep-adic valuation of the index, we can write the l
hand side in the following way.∨

j∈N0

ρ∗pn−1

(
T (A)∧N cy(Π, pn−1j)

)Cpn−1

∨
n−1∨
s=1

∨
j∈Ip

ρ∗ps

(
ρ∗pn−1−s

(
T (A)Cpn−1−s ∧N cy(Π, pn−1−sj)

)Cpn−1−s
)Cps

.

Finally, we have the equivalence ofT-spectra given by the pairing

ρ∗pvT (A)Cpv ∧ ρ∗pvN cy(Π, pvj)Cpv ∼→ ρ∗pv

(
T (A)∧N cy(Π, pvj)

)Cpv

and theT-equivariant homeomorphism

∆:N cy(Π, j) ∼→ ρ∗pvN cy(Π, pvj)Cpv .
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20 L. HESSELHOLT AND I. MADSEN

This gives the desired equivalence ofT-spectra from the wedge sum (3.1.3) to theT-spectrum
(3.1.2).

mand

nce,

ng on

nd

n of

motopy

ed

ential
3.3. We first consider the restriction of the equivalence described above to the top sum
in (3.1.3). This amounts to a map ofT-spectra

ρ∗pn−1T (A)Cpn−1 ∧N cy(Π)→ ρ∗pn−1T
(
A[x]

)Cpn−1
,

which is multiplicative, if the left hand side is given the componentwise multiplication. He
the induced map on homotopy groups

π∗
(
ρ∗pn−1T (A)Cpn−1 ∧N cy(Π)

)
→TRn

∗
(
A[x];p

)

identifies the left hand side with a sub-differential graded ring of the differential graded ri
the right.

We recall the structure of theT-spacesN cy(Π, i), but see also [10, Section 7.2] a
[8, Section 2.2]. The spaceN cy(Π,0) is the discrete space{0,1}, and for i > 0, there is
a canonicalT-equivariant homeomorphismΛi−1/Ci

∼→ N cy(Π, i). Here Λi−1 is the cyclic
standard(i− 1)-simplex, and the cyclic groupCi acts through the (co)cyclic operatorτi−1.
We show in [10, Section 7.2] that there is aT-equivariant homeomorphismΛi−1 ≈ T ×∆i−1

such that, on the right, the cocyclic operator acts onT by multiplication bye2π
√
−1/i and on

∆i−1 by the affine map which cyclically permutes the vertices. It follows that the inclusio
the barycenter of∆i−1 gives rise to a strong deformation retract ofT-spaces

T/Ci+
∼→N cy(Π, i).

The multiplication onN cy(Π) restricts to a pairing of theith andi′th summands to the(i+ i′)th
summand. The equivalences above are compatible with this pairing in that there is a ho
commutative diagram of pointedT-spaces

N cy(Π, i)∧N cy(Π, i′)
µ

N cy(Π, i+ i′)

T/Ci+ ∧ T/Ci′+

∼

T/C(i+i′)+,

∼

where the lower horizontal map takes(zCi, z
′Ci′ ) to (ziz′i

′
)1/(i+i′)Ci+i′ .

LEMMA 3.3.1. –The map of differential graded rings

TRn
∗ (A;p)⊗Ω∗

Z[x]→TRn
∗
(
A[x];p

)

which takesa⊗1 to f(a) and1⊗x toλ([x]n) is an isomorphism onto the sub-differential grad
ring π∗(ρ∗pn−1T (A)Cpn−1 ∧N cy(Π)).

Proof. –We first show that the map of the statement lands in the indicated sub-differ
graded ring. The map of components induced from the composite

Π→N cy(Π) ∆→ ρpn−1N cy(Π)Cpn−1 → ρ∗pn−1T
(
A[x]

)Cpn−1
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takesxi to λ([x]in). For by definition, the mapA[x]→TRn
0 (A[x];p), which takesg to λ([g]n),

is the map of components induced by the composite

from

p
fices to

the

s
as the

ent. It

.

3.1.3)
owing
A[x]→N cy
(
A[x]

) ∆→ ρpn−1N cy
(
A[x]

)Cpn−1 → ρ∗pn−1T
(
A[x]

)Cpn−1
.

And the composite

ρ∗pn−1T (A)Cpn−1 ∼→ ρ∗pn−1T (A)Cpn−1 ∧N cy(Π,0)→ ρ∗pn−1T
(
A[x]

)Cpn−1
,

where the left hand map is the canonical isomorphism, is equal to the map induced
π :A→A[x].

Let xi ∈ H̃0(N cy(Π) be the image of the generator ofH̃0(T/Ci+) given by the pointCi. We
show that the map of differential graded rings

Ω∗
Z[x]

∼→ H̃∗
(
N cy(Π)

)
,

which takesx to x1 is an isomorphism. The map in homology induced by the product

T/Ci+ ∧ T/Ci′+→ T/C(i+i′)+

takes the cyclesCi ⊗Ci′ to the cycleCi+i′ , and hence,xixi′ = xi+i′ . This proves that the ma
is an isomorphism in degree zero. To prove that it is an isomorphism in degree one, it suf
show thatxi−1 dx is a generator of̃H1(N cy(Π, i)). But ixi−1 dx= d(xi) andd(xi) is i times a
generator; compare [9, (2.1.2)] and (2.2.1) and (2.2.2) above.

Since the homology ofN cy(Π) is torsion free, the spectral sequence obtained from
skeleton filtration ofN cy(Π) takes the form

E2 =TRn
∗ (A;p)⊗ H̃∗

(
N cy(Π)

)
⇒ π∗

(
ρ∗pn−1T (A)Cpn−1 ∧N cy(Π)

)
.

The spectral sequence is concentrated on the linesE2
0,∗ andE2

1,∗, and hence all differential
are zero. In particular, the edge homomorphism is an isomorphism. We can write this
composite

TRn
∗ (A;p)⊗Z[x]→TRn

∗ (A;p)⊗Ω∗
Z[x]→ π∗

(
ρ∗pn−1T (A)Cpn−1 ∧N cy(Π)

)
,

where the left hand map is the inclusion and the right hand map is the map of the statem
remains to show that the induced map

(
TRn

∗ (A;p)⊗Ω∗
Z[x]

)
/
(
TRn

∗ (A;p)⊗Z[x]
)
→TR∗(A;p)⊗ H̃1

(
N cy(Π)

)

is an isomorphism. The domain and range are both freeTR∗(A;p)⊗Z[x]-modules of rank one
And the generator1⊗ dx= d(1⊗ x) on the left maps to the generator1⊗ dx on the right. This
completes the proof. ✷

3.4. It remains to prove that the homotopy groups of the lower wedge summands in (
correspond to the lower summands in (3.1.1). This follows from Lemma 3.3.1 and the foll

LEMMA 3.4.1. –Let T be a T-spectrum, letj ∈ Ip, and let ι :Cj/Cj → T/Cj be the
canonical inclusion. Then for all integersq andv � 0, the map

V vι+ dV vι :πq(T )⊕ πq−1(T )
∼→ πq(T ∧T/Cj+)Cpv
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22 L. HESSELHOLT AND I. MADSEN

is an isomorphism.

Proof. –If X is a pointedCpv -CW-complex, the skeleton filtration gives rise to a spectral

e

rewitz

ns

an

rd

hence,

pectral

xes
sequence

E1
s,t = πs+t

(
(T ∧Xs/Xs−1)Cpv

)
⇒ πs+t

(
(T ∧X)Cpv

)
.

And if theCpv -action onX is free away from the base point, the canonical map

πs+t

(
(T ∧X)Cpv

) ∼→
(
πs+t(T ∧X)

)Cpv

is an isomorphism. And since, non-equivariantly,Xs/Xs−1 is a wedge ofs-spheres, there ar
Cpv -equivariant isomorphisms

πs+t(T ∧Xs/Xs−1)
∼← πt(T )⊗ πs(Xs/Xs−1)

∼→ πt(T )⊗ H̃s(Xs/Xs−1).

Here the left hand map is the natural pairing and the right hand map is the Hu
homomorphism. Hence, we have a natural isomorphism of chain complexes

E1
∗,t
∼=

(
πt(T )⊗ C̃∗(X)

)Cpv

,

whereC̃∗(X) is the reduced cellular complex ofX .
In the case at hand, we giveX = T/Cj aCpv -CW-structure with one free cell in dimensio

zero and one. Letg be the generatore2πi/pv ∈Cpv . Then the attaching maps

αs :Ds ×Cpv →Xs

are given byα0(gn) = gnCj andα1(x, gn) = gneπi(x+1)/pv

Cj , respectively. We defineW (j)
to be the complex ofZ[Cpv ]-modules which in degreess = 0,1 is a freeZ[Cpv ]-module on
a single generatorys with differentiald(y1) = (gj − 1)y0. Then the attaching maps define
isomorphism of complexes

W (j) ∼→C∗(T/Cj),

which takesys to the image of the generator ofHs(Ds, ∂Ds) corresponding to the standa
orientation ofDs. SinceT is aT-spectrum the action ofCpv onπt(T ) is trivial. Hence

E1
s,t
∼= πt(T ) ·Nys, s= 0,1,

whereN ∈ Z[Cpv ] is the norm element. Moreover,

(gj − 1)N =N −N = 0,

so thed1-differential vanishes. The higher differentials are zero for degree reasons, and
the groupsπq((T ∧ T/Cj+)Cpv ) are as stated, at least up to an extension.

It remains to show that the map of the statement is an isomorphism. We also have a s
sequence

E1
s,t = πs+t(T ∧Xs/Xs−1)⇒ πs+t(T ∧X).

In the case at hand, the same reasoning as above gives a natural isomorphism of comple

E1
∗,t
∼= πt(T )⊗W (j).

4e SÉRIE– TOME 37 – 2004 –N◦ 1



ON THE DE RHAM–WITT COMPLEX IN MIXED CHARACTERISTIC 23

It follows thatE2
0,t
∼= πt(T ) · y0 andE2

1,t
∼= πt(T ) ·Ny1. The map

V v :π (T ∧T/C )→ π
(
(T ∧ T/C )Cpv

)

to

ote

py
ite

he
∗ j+ ∗ j+

induces a map of spectral sequences. With our identification of theE1-terms, this corresponds
the norm map

N :πt(T )⊗W (j)→
(
πt(T )⊗W (j)

)Cpv

.

The induced map onE2
0,t mapsx · y0 to x ·Ny0, and hence, is an isomorphism. We also n

that the induced map onE2
1,t mapsx ·Ny1 to x ·NNy1 = pvx ·Ny1.

Finally, we show that under the above identifications, the composite

E2
0,t � πt

(
(T ∧ T/Cj+)Cpv

) d→ πt+1

(
(T ∧ T/Cj+)Cpv

)
�E2

1,t

takesx ·Ny0 to jx ·Ny1. By naturality, we may assume thatπt(T ) is torsion free. For given
x∈ πt(T ), we can find a map ofT-spectraSt∧T+→ T such that the induced map on homoto
groups maps a generator ofπt(St ∧T+)∼= Z to x. Hence, it suffices to show that the compos

E2
0,t � πt

(
(T ∧T/Cj+)Cpv

) pvd−→ πt+1

(
(T ∧T/Cj+)Cpv

)
�E2

1,t

takesx ·Ny0 to pvjx ·Ny1. But x ·Ny0 = V v(x · y0), and hence it suffices to show that t
composite

E2
0,t � πt(T ∧ T/Cj+)

d→ πt+1(T ∧ T/Cj+)� E2
1,t

takesx · y0 to jx ·Ny1. This is the statement that the map

H1(T)⊗H0(T/Cj)
×→H1(T×T/Cj)

µ→H1(T/Cj)

takes[T]⊗ y0 to jNy1, which is standard. ✷

4. The functor P (−)

4.1. We first evaluate the Witt ringWn(A[x]).

LEMMA 4.1.1. –Let A be a ring. Then every elementf (n) ∈ Wn(A[x]) may be written
uniquely

f (n) =
∑
j∈N0

a
(n)
0,j [x]

j
n +

n−1∑
s=1

∑
j∈Ip

V s
(
a
(n−s)
s,j [x]jn−s

)

with a
(n−s)
s,j ∈Wn−s(A), and where all but finitely manya(n−s)

s,j are zero.

Proof. –Let Qn be the set of expressions of the form

f (n) =
∑
j∈N0

a
(n)
0,j [x]

j
n +

n−1∑
s=1

∑
j∈Ip

V s
(
a
(n−s)
s,j [x]jn−s

)
,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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with the componentsa(n−s)
s,j ∈Wn−s(A), all but finitely many of which are zero. We consider

Qn an abelian group under componentwise addition. Moreover, interpreting the expressionf (n)

as an element ofW (A[x]) defines an additive map

ion

by the
triction

t

, we

up

re
n

Qn→Wn

(
A[x]

)
,

and it is clear that this is an isomorphism, forn= 1. The proof of the general case is by induct
onn based on the diagram

0 Q1
V n−1

Qn
R

Qn−1 0

0 A[x] V n−1

Wn

(
A[x]

) R
Wn−1

(
A[x]

)
0.

The lower sequence is exact and the right and left vertical maps are isomorphisms
inductive hypothesis. It thus suffices to show that the upper sequence is exact. The res
R :Qn→Qn−1,

Rf (n) =
∑
j∈N0

Ra
(n)
0,j [x]

j
n−1 +

n−2∑
s=1

∑
j∈Ip

V s
(
Ra

(n−s)
s,j [x]n−1−s

)
,

is surjective sinceR :Wn(A)→Wn−1(A) is surjective, andV n−1 :Q1→Qn,

V n−1(f (1)) =
∑
j∈N0

V n−1(a(1)
0,pn−1j)[x]

j
n +

n−1∑
s=1

∑
j∈Ip

V s
(
V n−1−s(a(1)

0,pn−1−sj)[x]
j
n−s

)
,

is injective since the mapsV m :A→Wm(A), 1 � m < n, are injective. It is also clear tha
the compositeRV n−1 is zero. Finally,Rf (n) vanishes if and only if eacha(n−s)

s,i is in the

kernel ofR :Wn−s(A)→ Wn−1−s(A), or equivalently, ifa(n)
s,j = V n−1−s(a(1)

pn−1−sj). Hence

f (n−1) = V n−1(
∑

j∈N0
a
(1)
j xj). ✷

4.2. Let π :A→ A[x] be the inclusion of the constant polynomials. In this paragraph
give an explicit construction of the inverse image functor

π∗ :WA→WA[x].

Let E = E∗
· be a Witt complex overA, we letP (E) = P (E)∗· be the pro-graded abelian gro

with P (E)qn equal to the set of all (finite) formal sums of the form∑
j∈N0

a
(n)
0,j [x]

j
n +

∑
j∈N

b
(n)
0,j [x]

j−1
n d[x]n

n−1∑
s=1

∑
j∈Ip

(
V s

(
a
(n−s)
s,j [x]jn−s

)
+ dV s

(
b
(n−s)
s,j [x]jn−s

))
,(4.2.1)

with componentsa(m)
s,j ∈ Eq

m andb(m)
s,j ∈ Eq−1

m . Addition is component-wise, and the structu
maps in the pro-system are induced from the ones inE. Given a Witt complexE′ = E′

·
∗ over
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A[x] and a mapf :E→ π∗E
′ of Witt complexes overA, the induced strict map of pro-graded

abelian groups

nly

r, and to
ulas are
f̃ :P (E)→E′(4.2.2)

maps the formal sum (4.2.1) to the sum∑
j∈N0

f(a(n)
0,j )λ

′([x]jn)
+

∑
j∈N

f(b(n)
0,j )λ

′([x]j−1
n

)
dλ′([x]n)

n−1∑
s=1

∑
j∈Ip

(
V s

(
f(a(n−s)

s,j )λ′([x]jn−s

))
+ dV s

(
f(b(n−s)

s,j )λ′([x]jn−s

)))

in E′
q
n. The requirement that for allE′ in WA′ , this be a map of Witt complexes leaves o

one possible way to define a product, a differential, and the mapsF andV on P (E). We give
the formulas which define these operations. There are several special cases to conside
enhance readability, we suppress all non-essential indices. It is understood that the form
valid for all possible values of non-restricted indices.

The differential

d :P (E)qn→ P (E)q+1
n(4.2.3)

is given by the following formulas:

d
(
V s

(
a[x]j

))
= (da)[x]j + (−1)qja[x]j−1d[x], if s= 0,

= dV s
(
a[x]j

)
, if s > 0;

d
(
b[x]j−1d[x]

)
= (db)[x]j−1d[x];

d
(
dV s

(
b[x]j

))
= 0.

The Frobenius

F :P (E)qn→ P (E)qn−1(4.2.4)

is given by

F
(
V s

(
a[x]j

))
= F (a)[x]pj , if s= 0,

= pV s−1
(
a[x]j

)
, if s > 0;

F
(
b[x]j−1d[x]

)
= F (b)[x]pj−1d[x];

F
(
dV s

(
b[x]j

))
= dV s−1

(
b[x]j

)
.

The Verschiebung

V :P (E)qn−1→ P (E)qn(4.2.5)

is given by

V
(
V s

(
a[x]j

))
= V s+1

(
a[x]j

)
,

V
(
b[x]j−1 d[x]

)
= (−1)q−1 p

j
dV

(
b[x]j

)
− (−1)q−1 1

j
V

(
(db)[x]j

)
, if vp(j) = 0,

= V (b)[x]p
−1j−1 d[x], if vp(j)> 0;

V
(
dV s

(
b[x]j

))
= pdV s+1

(
b[x]j

)
.
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The product

µn :P (E)qn ⊗P (E)q
′

n → P (E)q+q′

n(4.2.6)
is given by

V s
(
a[x]j

)
V s′

(
a′[x]j

′)
= psV s′

(
F s′−s(a)a′[x]p

s′−sj+j′
)
, if 0 � s < s′,

= psV s′−v
(
V v(aa′)[x]p

−v(j+j′)
)
, if 0� s= s′ andv = vp(j + j′)< s′,

= psV s′(aa′)[x]p
−s′ (j+j′), if 0 � s= s′ andv = vp(j + j′) � s′;

V s
(
a[x]j

)
b′[x]j

′−1d[x] = ab′[x]j+j′−1d[x], if s= 0,

= (−1)q+q′ 1
j + psj′

V s
(
d
(
aF s(b′)

)
[x]j+psj′

)

− (−1)q+q′ ps

j + psj′
dV s(aF s(b′)[x]j+psj′), if 0< s;

dV s
(
b[x]j

)
V s′

(
a′[x]j

′)

= V s′
(
F s′−s(db)a′[x]p

s′−sj+j′
)
+

ps
′
j

ps′−sj + j′
dV s′

(
F s′−s(b)a′[x]p

s′−sj+j′
)

− j

ps′−sj + j′
V s′

(
d
(
F s′−s(b)a′

)
[x]p

s′−sj+j′
)
, if 0� s < s′,

= V s′−v
(
V v

(
d(b)a′

)
[x]p

−v(j+j′)
)
+

ps
′
j

j + j′
dV s′−v

(
V v(ba′)[x]p

−v(j+j′)
)

− pvj

j + j′
V s′−v

(
dV v(ba′)[x]p

−v(j+j′)
)
, if 0< s= s′ andv = vp(j + j′)< s′,

= V s′
(
d(b)a′

)
[x]p

−s′ (j+j′)

− (−1)q+q′jV s′(ba′)[x]p
−s′ (j+j′)−1d[x], if 0< s= s′ andv = vp(j + j′)� s′,

= (−1)qV s
(
bF s−s′(da′)[x]j+ps−s′ j′

)
+

ps
′
j

j + ps−s′j′
dV s

(
bF s−s′(a′)[x]j+ps−s′ j′

)

+
j′

j + ps−s′j′
V s

(
d
(
bF s−s′(a′)

)
[x]j+ps−s′ j′

)
, if 0 � s′ < s;

b[x]j−1d[x]b′[x]j
′−1d[x] = 0;

dV s
(
b[x]j

)
b′[x]j

′−1d[x] = (−1)q−1+q′ 1
j + psj′

dV s
(
dbF s(b′)[x]j+psj′

)

+ (−1)q
′ 1
j + psj′

V s
(
dbF s(db′)[x]j+psj′

)
, if 0< s;

dV s
(
b[x]j

)
dV s′

(
b′[x]j

′)
= (−1)q dV s′

(
F s′−s(db)b′[x]p

s′−sj+j′
)

− (−1)q j

ps′−sj + j′
dV s′

(
d
(
F s′−s(b)b′

)
[x]p

s′−sj+j′
)
, if 0< s< s′.

Finally, the map
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λ :Wn

(
A[x]

)
→ P (E)0n(4.2.7)

is given by ( ( )) ( )
m

e

. It is

al

es,

e and
λ V s a[x]j = V s λ(a)[x]j .

Here we use Lemma 4.1.1 to write every element ofWn(A[x]) as a sum of elements of the for
V s(a[x]j) with a ∈Wn−s(A).

THEOREM 4.2.8. –The formulas(4.2.3)–(4.2.7)makeP (W·Ω∗
A) a Witt complex overA[x].

Moreover, the canonical map

W·Ω∗
A[x]→ P (W·Ω∗

A)

is an isomorphism.

Proof. –Suppose thatP (W·Ω∗
A) is a Witt complex overA[x]. Then the composition of th

map of the statement and the map

P (W·Ω∗
A)→W·Ω∗

A[x]

induced from the unique mapW·Ω∗
A→ π∗W·Ω∗

A[x] is a self map ofW·Ω∗
A[x]. But the only self

map of an initial object is the identity, and hence the map of the statement is injective
surjective because the composition

Ω∗
W·(A[x])→W·Ω∗

A[x]→ P (W·Ω∗
A)

is surjective. We proceed to prove thatP (W·Ω∗
A) is a Witt complex. The proof is in two steps.

Suppose first thatA is a finitely generated polynomial algebra overZ(p). We prove by
induction on the number of variables thatP (W·Ω∗

A) is a Witt complex and that the canonic
map

W·Ω∗
A[x]→TR·

∗
(
A[x];p

)
is injective. The proof of the basic caseA= Z(p) and the induction step are similar. In both cas
the starting point is the fact that the canonical map

W·Ω∗
A→TR·

∗(A;p)

is injective. We proved in Example 1.2.4. and Proposition 2.6.1 that this is true ifA= Z(p), and
in the induction step, it follows from the previous case. It follows that the induced map

P (W·Ω∗
A)→ P

(
TR·

∗(A;p)
)

is injective. But the canonical map

P
(
TR·

∗(A;p)
)
→TR·

∗
(
A[x];p

)

is an isomorphism by Theorem C, and hence the canonical map

P (W·Ω∗
A)→TR·

∗
(
A[x];p

)

is injective. The definitions (4.2.3)–(4.2.7) were made such that this map is multiplicativ
commutes with the mapsd, F , V , andλ. Hence, sinceTR·

∗(A[x];p) is a Witt complex over
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A[x], so isP (W·Ω∗
A). Finally, in the diagram

P (W Ω∗ ) P
(
TR· (A;p)

)

lower

from

old

way
on

s zero.
the

it

ith
· A

∼

∗

∼

W·Ω∗
A[x] TR·

∗
(
A[x];p

)

the top horizontal map is injective and the vertical maps are isomorphisms. Hence the
horizontal map is injective.

Let A be a generalZ(p)-algebra. To show thatP (W·Ω∗
A) is a Witt complex overA[x] we

must verify a number of relations. Each relation involves only a finite number of elements
W·Ω∗

A. Hence, it suffices to show that given a finite set of elements ofW·Ω∗
A, we can find a ring

homomorphismA′→ A from a finitely generated polynomial algebra overZ(p) such that this
finite set of elements is in the image of the induced map

W·Ω∗
A′ →W·Ω∗

A.

Indeed, we already know thatP (W·Ω∗
A′) is a Witt complex, so the corresponding relations h

there. It is clear that given a finite set of elements ofΩ∗
W·(A), we can findA′→A, whereA′ is a

finitely generatedZ(p)-algebra, such that these elements are in the images ofΩ∗
W·(A′)→Ω∗

W·(A).
And sinceΩ∗

W·(A)→W·Ω∗
A is surjective, we are done.✷

PROPOSITION 4.2.9. –Let E be a Witt complex overA. Then the product(4.2.6)and the
differential (4.2.3)makeP (E) a pro-differential graded ring, and the map(4.2.7) is a map of
pro-rings. The Frobenius(4.2.4) is multiplicative, and the Frobenius(4.2.4)and Verschiebung
(4.2.5)satisfy Frobenius reciprocity.

Proof. –This is a long straightforward but tedious calculation which we omit. Along the
one uses the relations amongF , d andV in E. As an example, we verify the associativity relati

(
dV s

(
a[x]j

)
b′[x]j

′−1d[x]
)
b′′[x]j

′′−1d[x] = dV s
(
a[x]j

)(
b′[x]j

′−1d[x]b′′[x]j
′′−1d[x]

)
.

The right hand side, by definition, is zero, so we must show that the left hand side, too, i
This is easy ifs= 0, so we consider the cases > 0. The product in the parenthesis is equal to
unit (−1)q′/(j + psj′) times

(−1)q−1 dV s
(
dbF s(b′)[x]j+psj′

)
+ V s

(
dbF s(db′)[x]j+psj′

)
.

If we multiply the first summand byb′′[x]j
′′−1d[x] from the right, we get the un

(−1)q′′/(j + psj′ + psj′′) times

(−1)q′ dV s
(
d
(
dbF s(b′)

)
F s(b′′)[x]j+psj′+psj′′

)
+ (−1)q−1V s

(
d
(
dbF s(b′)

)
F s(db′′)[x]j+psj′+psj′′

)
= (−1)q+q′ps dV s

(
dbF s(db′)F s(b′′)[x]j+psj′+psj′′

)
− psV s

(
dbF s(db′)F s(db′′)[x]j+psj′+psj′′

)
.

Here we use the relationdF s = psF sd in E. Similarly, the product of the second summand w
b′′[x]j

′′−1d[x] is the same unit(−1)q′′/(j + psj′ + psj′′) times
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(−1)q+q′V s
(
d
(
dbF s(db′)

)
F s(b′′)[x]j+psj′+psj′′

)
− (−1)q+q′ps dV s

(
dbF s(db′)F s(b′′)[x]j+psj′+psj′′

)

o

p

f

xact

e of
= psV s
(
dbF s(db′)F s(db′′)[x]j+psj′+psj′′

)
− (−1)q+q′ps dV s

(
dbF s(db′)F s(b′′)[x]j+psj′+psj′′

)
.

The sums cancel as desired.✷
Proof of Theorem B. –To show thatP (E) is a Witt complex overA[x], it remains to verify

that for allf ∈A[x],

F dλ
(
[f ]n

)
= λ

(
[f ]n−1

)p−1
dλ

(
[f ]n−1

)
.

This is a relation between elements in the image of the mapP (W·Ω∗
A)→ P (E) induced by the

unique mapW·Ω∗
A→ E. And the relation holds inP (W·Ω∗

A) by Theorem 4.2.8. Hence it als
holds inP (E).

The second part of the theorem is equivalent to the statement that the map

HomWA(E,π∗E
′)→HomWA[x]

(
P (E),E′),

which takesf :E → π∗E
′ to the induced map̃f :P (E)→ E′ is a bijection. The inverse ma

takesg :P (E)→E′ to the composite

E
η→ π∗P (E)

π∗g→ π∗E
′,

where the right hand map takesa ∈Eq
n to a[x]0 ∈ P (E)qn. ✷

Remark4.2.10. – The proof of [15, Proposition 1.3] shows that

r(f) = F dλ
(
[f ]n

)
− λ

(
[f ]n−1

)p−1
dλ

(
[f ]n−1

)

is anadditive function of f . This makes it possible to prove thatr(f) = 0 without the use o
Theorem 4.2.8, hence completing a purely algebraic proof of Theorem B.

We conclude with the following result, which we shall need in Section 7 below.

LEMMA 4.2.11. –Let E′, E, andE′′ be Witt complexes and suppose there is a long-e
sequence of strict maps of pro-abelian groups

· · · →E′
·
q fq

→Eq
·

gq

→E′′
·
q hq

→E′
·
q−1→ · · ·

such that the maps commute withF , d, andV . Then there is an induced long-exact sequenc
strict maps of pro-abelian groups

· · · → P (E′)q·
fq

→ P (E)q·
gq

→ P (E′′)q·
hq

→ P (E′)q−1
· → · · ·

and the maps commute withF , d, andV .

Proof. –Indeed, as an abelian groupP (E)qn is the direct sum of copies ofEq
m andEq−1

m with
1� m� n. ✷
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5. The de Rham–Witt complex of Bloch–Deligne–Illusie

5.1. For Fp-algebras, [13] contains a construction of the de Rham–Witt complex that is
extend

e
o we

p

somewhat more concrete than the construction in Theorem A. In this paragraph we
Illusie’s method toZ(p)-algebras. We recall from [13, I] that aV -pro-complexoverA consists
of:

(i) a pro-differential graded ringD∗
· and a strict map of pro-rings

λ :W·(A)→D0
· ;

(ii) a strict map of pro-graded abelian groups

V :D∗
·−1→D∗

·

such thatλV = V λ and such that for allx, y ∈D∗
· anda ∈A,

V (xdy) = V (x)dV (y), V (x)dλ
(
[a]n

)
= V

(
xλ

(
[a]n−1

)p−1)
dV

(
λ
(
[a]n−1

))
.

A map ofV -pro-complexes overA is a strict map of pro-differential graded ringsf :D∗
· →D′

·
∗

such thatλ′ = fλ andV ′f = fV .
There is a natural forgetful functor from the category of Witt complexes overA to the category

of V -pro-complexes overA,

WA→W ′
A.

Indeed, the calculation

V (xdy) = V (xF dV y) = V (x)dV (y),

V (y)dλ
(
[a]n

)
= V

(
yF dλ

(
[a]n

))
= V

(
yλ

(
[a]p−1

n−1

)
dλ

(
[a]n−1

))
= V

(
yλ

(
[a]p−1

n−1

))
dV

(
λ
(
[a]n−1

))
,

shows that a Witt complex is aV -pro-complex upon forgetting the Frobenius.
The proof of Theorem A shows that the categoryW ′

A has an initial object. A more constructiv
proof is given by Illusie in [13, Theorem I.1.3]. We will need this construction later on, s
include it here.

PROPOSITION 5.1.1. –The categoryW ′
A has an initial objectW ′

·Ω∗
A, and the canonical ma

Ω∗
W·(A)→W ′

·Ω
∗
A is surjective.

Proof. –One recursively defines the differential graded ringsW ′
mΩ∗

A and the mapsR, V , and
λ, starting fromW ′

1Ω∗
A =Ω∗

A. So suppose that for alln <m, the differential graded ringW ′
nΩ∗

A

and the maps

R :W ′
nΩ

∗
A→W ′

n−1Ω
∗
A, V :W ′

n−1Ω
∗
A→W ′

nΩ
∗
A, λ :Wn(A)→W ′

kΩ
0
A,

have been constructed such thatR is a map of differential graded rings,V is additive,λR=Rλ,
λV = V λ, and such that for allx, y ∈W ′

n−1Ω∗
A anda ∈A,

V (xdy) = V (x)dV (y), V (x)dλ
(
[a]n

)
= V

(
xλ

(
[a]n−1

)p−1)
dV

(
λ
(
[a]n−1

))
.
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Suppose, in addition, that for alln <m, the canonical map

Ω∗
Wn(A)→W ′

nΩ
∗
A

in
is surjective. Then, one defines

W ′
mΩ∗

A =Ω∗
Wm(A)/N

∗
m,

whereN∗
m is the differential graded ideal generated by the elements∑

α

V
(
λ(xα)

)
dV

(
λ(y1,α)

)
. . . dV

(
λ(yi,α)

)
,(5.1.2)

for all xα, yi,α ∈Wm−1(A) such that the sum

∑
α

λ(xα)dλ(y1,α) . . .dλ(yi,α)

is equal to zero inW ′
m−1Ω

∗
A, and by the elements

V
(
λ(x)

)
dλ

(
[a]m

)
− V

(
λ(x)λ

(
[a]m−1

)p−1)
dV

(
λ
(
[a]m−1

))
,(5.1.3)

for all a ∈A andx ∈Wm−1(A). The unique map of differential graded rings

Ω∗
Wm(A)→W ′

m−1Ω
∗
A,

which extendsλR :Wm(A)→W ′
m−1Ω

0
A, factors to give a map of differential graded rings

R :W ′
mΩ∗

A→W ′
m−1Ω

∗
A.

The additive map

V :W ′
m−1Ω

∗
A→W ′

mΩ∗
A

given by

V
(
λ(x)dλ(y1) . . .dλ(yi)

)
= V

(
λ(x)

)
dV

(
λ(y1)

)
. . . dV

(
λ(yi)

)
is well-defined and satisfies thatλV = V λ and that for allx, y ∈W ′

m−1Ω
∗
A anda ∈A,

V (xdy) = V (x)dV (y), V (x)dλ
(
[a]m

)
= V

(
xλ

(
[a]m−1

)p−1)
dV

(
λ
(
[a]m−1

))
.

This gives aV -pro-complexW ′
·Ω

∗
A. One verifies immediately that this is the initial object

W ′
A. ✷
LEMMA 5.1.4. –The relationV d= pdV holds inW ′

·Ω∗
A.

Proof. –It follows from the construction above that the mapV is a map of graded
Wn(A)-modules

V :F∗W
′
n−1Ω

∗
A→W ′

nΩ
∗
A,

where on the left,W ′
n−1Ω

∗
A is considered aWn(A)-module via the Frobenius

F :Wn(A)→Wn−1(A).
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Hence,

V (dx) = V (1)dV (x) = d
(
V (1)V (x)

)
− dV (1) · V (x)

f the

hat the

e

,

= dV
(
FV (1)x

)
− V

(
d(1)x

)
= pdV (x).

This proves the lemma.✷
LEMMA 5.1.5. –Suppose that for the ringA, the canonical map

W ′
·Ω

∗
A→W·Ω∗

A

is an isomorphism. Then the same is true forA[x].

Proof. –Only the injectivity of the map of the statement is at issue. The assumption o
lemma implies that the induced map

P (W ′
·Ω

∗
A)→ P (W·Ω∗

A)

is an isomorphism of pro-graded abelian groups. We proved in Theorem 4.2.8 above t
right hand side is a Witt complex overA[x]. Therefore, the left hand side is aV -pro-complex
overA[x]. But then the canonical map

W ′
·Ω

∗
A[x]→ P (W ′

·Ω
∗
A)

is an inverse of the map

π̃ :P (W ′
·Ω

∗
A)→W ′

·Ω
∗
A[x]

induced fromW ′
·Ω

∗
A→ π∗W

′
·Ω

∗
A[x]. ✷

Proof of Theorem D. –We must construct a map

F :W ′
nΩ

∗
A→W ′

n−1Ω
∗
A

and show that this makesW ′
·Ω

∗
A a Witt complex overA.

Suppose first thatA is a polynomial algebra overZ(p) in a finite number of variables. Then w
claim that the canonical map

W ′
·Ω

∗
A→W·Ω∗

A

is an isomorphism. By Lemma 5.1.5 it suffices to consider the caseA= Z(p). And in this case
the statement follows from Example 1.2.4.

In the general case, we first construct a derivation

δ :Wn(A)→W ′
n−1Ω

∗
A

such that, onceF is defined,δ = F dλ. Given a Witt vector

a= [a0]n + V
(
[a1]n−1

)
+ · · ·+ V n−1

(
[an−1]1

)
,

we define

δ(a) = λ
(
[a0]n−1

)p−1
dλ

(
[a0]n−1

)
+ dλ

(
[a1]n−1]

)
+ · · ·+ dV n−2

(
λ
(
[an−1]1

))
.
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In order to verify thatδ is a derivation, we may assume thatA is a polynomial algebra overZ(p)

in a finite number of variables. But in this case, the canonical map

l

f

s

and

pter III,
W ′
·Ω

∗
A→W·Ω∗

A

is an isomorphism, and the composite

Wn(A)
δ→W ′

n−1Ω
∗
A

∼→Wn−1Ω∗
A

is equal toF dλ, which is indeed a derivation.
There is a unique map of gradedWn(A)-algebras

F ′ :Ω∗
Wn(A)→ F∗W

′
n−1Ω

∗
A

such thatF ′ dλ = δ :Wn(A) → W ′
n−1Ω1

A, and we claim thatF ′ annihilates the differentia
graded idealN∗

n . Indeed, it follows immediately from the definition ofδ that δ(V (a)) = da,
and hence,F ′ annihilates elements of the form (5.1.2). And the calculation

F ′(V (
λ(x)

)
dλ

(
[a]n−1

)
− V

(
λ(x)λ

(
[a]n−1

)p−1)
dV

(
λ
(
[a]n−1

)))
= p

(
λ(x)δ

(
[a]n−1

)
− λ(x)λ

(
[a]n−1

)p−1
d
(
λ
(
[a]n−1

)))
= 0,

shows thatF ′ annihilates the elements (5.1.3), too. Hence, the mapF ′ factors to give a map o
gradedWn(A)-algebras

F :W ′
nΩ

∗
A→W ′

n−1Ω
∗
A.

It is clear from the way thatF was constructed that the canonical map

W ′
·Ω

∗
A→W·Ω∗

A

commutes with Frobenius operators. The map is an isomorphism, ifA is a polynomial algebra
in finitely many variables overZ(p). Hence, in this case, the operatorF satisfies the relation
which makesW ′

·Ω∗
A a Witt complex. But then it satisfies these relations for everyZ(p)-algebra;

compare the proof of 4.2.8.✷

6. Étale extensions

6.1. A map of ringsf :A→B, we recall, is étale if it is finitely presented, flat, and ifΩ1
B/A

vanishes; see [6, §17]. LetA be a ring in whichp is a non-zero-divisor, and letWn,v(A) be the
reduction modulopv of the Witt ringWn(A). We show in Proposition 6.2.2 below that ifA→B
is étale, then the induced map

Wn,v(A)→Wn,v(B)

is étale. The analogous statement forFp-algebras was proved in [13, Proposition 0.1.5.8],
the proof in the case we consider is similar.

We need a slight generalization of standard results about flatness and filtrations, [3, Cha
§5]. LetA be a ring and letFilsA, 0 � s < n, be a finite descending filtration by ideals,

A=Fil0 A⊃ Fil1 A⊃ · · · ⊃ FilnA= 0.
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The filtration is calledmultiplicativeif for 0� s, t < n, the multiplication maps

FilsA⊗A FiltA→ Fils+tA.

he

e

he
If N is anA-module, we have the induced filtrationFilsN , 0 � s < n, whereFilsN is the image
of the canonical mapFilsA⊗A N →N .

LEMMA 6.1.1. –LetFilsA, 0 � s < n, be a finite descending multiplicative filtration of t
ring A, and letM be anA-module. Suppose thatgr0M is a flat gr0 A-module and that the
canonical map

Fil1 A⊗A M → Fil1 M

is an isomorphism. ThenM is a flatA-module.

Proof. –The sequence

TorA1 (A,M)→TorA1 (gr
0 A,M)→ Fil1A⊗A M →M

shows thatTorA1 (gr
0 A,M) vanishes. Sincegr0 M is assumedgr0 A-flat, this implies that

TorA1 (N,M) vanishes for everyA-moduleN which is annihilated byFil1A. Indeed, the chang
of rings spectral sequence

E2
s,t =Torgr

0 A
p

(
N,TorAq (gr

0 A,M)
)
⇒TorAs+t(N,M)

has vanishingE2-term in total degree one. In general, the short exact sequences

0→ Fils+1 N → FilsN → grsN → 0

give rise to exact sequences

TorA1 (Fil
s+1 N,M)→TorA1 (Fil

sN,M)→TorA1 (gr
sN,M).

The right hand term vanishes by the above, since the modulegrsN is annihilated byFil1 A.
But FilnN is zero, and hence by easy induction,TorA1 (N,M) vanishes. ThusM is a flat
A-module. ✷

LEMMA 6.1.2. –LetFilsA, 0 � s < n, be a finite descending multiplicative filtration of t
ring A, and letM be anA-module. Suppose that for0 � s < n, the canonical map

grsA⊗gr0 A gr0 M → grsM

is an isomorphism. ThenFilsA⊗A M
∼→ FilsM is an isomorphism,0 � s < n.

Proof. –The assumptions imply that the canonical map

grsA⊗A M → grsM

is an isomorphism. Indeed, the left hand map in the exact sequence

grsA⊗A Fil1 M → grsA⊗A M → grsA⊗A gr0 M → 0
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is zero. The statement now follows from the diagram

s+1 s s

ce,
Fil A⊗A M Fil A⊗A M gr A⊗A M

∼

0

0 Fils+1 M FilsM grsM 0

by induction, starting froms= n− 1. ✷
LEMMA 6.1.3. –Let f :A→B be a ring homomorphism, letI ⊂A be a nilpotent ideal, and

suppose thatΩ1
(B/IB)/(A/I) vanishes. ThenΩ1

B/A vanishes.

Proof. –In the short-exact sequence

0→ IΩ1
B/A→Ω1

B/A→Ω1
B/A ⊗A A/I→ 0,

the right hand term is isomorphic toΩ1
(B⊗AA/I)/(A/I), which vanishes by assumption. Hen

the left hand map is an isomorphism. By simple induction, so is

InΩ1
B/A

∼→Ω1
B/A,

for all n� 0, and sinceI is nilpotent,Ω1
B/A is zero. ✷

6.2. If p is a non-zero-divisor inA and iff :A→B is flat, thenp is a non-zero-divisor inB.
Indeed, this follows from the diagram

0 A⊗A B
p

∼

A⊗A B

∼

A/p⊗A B 0

B
p

B B/p 0.

We recall from [7, XIV, §1, Proposition 2] that iff :A→B is an étale map ofFp-algebras, then
the following diagram, whereϕ is the Frobenius, is cocartesian.

A
ϕ

f

A

f

B
ϕ

B.

(6.2.1)

This means that we can write everyb ∈B as a sum

b=
∑
i

bpi f(ai)

with bi ∈B andai ∈A.
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PROPOSITION 6.2.2. –Let f :A→ B be an étale map and suppose thatp is a non-zero-
divisor inA. Then for alln, v � 1 and all0 � s < n, Wn,v(f) is étale and the diagrams

that

atement

se

e

osition

it
Wn,v(A)
Rn−s

Wn,v(f)

Ws,v(A)

Ws,v(f)

Wn,v(A)
Fn−s

Wn,v(f)

Ws,v(A)

Ws,v(f)

Wn,v(B) Rn−s

Ws,v(B) Wn,v(B) Fn−s

Ws,v(B)

are cocartesian in the category of commutative rings.

Proof. –Suppose first thatv = 1. TheV -filtrations ofWn,1(A) andWn,1(B) are finite and
multiplicative. But in order to apply the results of the previous section, we must first show
theV -filtration of Wn,1(B) is equal to the filtration induced by theV -filtration of Wn,1(A), or
equivalently, that the canonical map

Wn,1(B)⊗Wn,1(A) V
sWn,1(A)→ V sWn,1(B)

is surjective. This, we note, is equivalent to the statement that the left hand square in the st
of the proposition is cocartesian. Indeed, there is a natural short-exact sequence ofWn,v(A)-
modules

0→ F s
∗Wn−s,1(A)

V s

→Wn,1(A)
Rn−s

−→ Rn−s
∗ Ws,1(A)→ 0,

and the left hand map has imageV sWn,1(A). In particular, it will suffice to consider the ca
s= n− 1. But the map

Wn,1(B)⊗Wn,1(A) F
n−1
∗ A1→ Fn−1

∗ B1

takes[b]n ⊗ a to bp
n−1

f(a), and hence, is surjective by (6.2.1). Indeed,f1 :A1 → B1 is étale
sincef :A→B is. Hence, theV -filtration ofWn,1(B) is equal to the filtration induced from th
V -filtration ofWn,1(A). We can now conclude from Lemma 6.1.2 that the canonical map

Wn,1(B)⊗Wn,1(A) V
sWn,1(A)→ V sWn,1(B)

is an isomorphism, or equivalently, that the right hand square in the statement of the prop
is cocartesian (withs andn− s interchanged). Indeed, the map

grsV Wn,1(A)⊗gr0
V
Wn,1(A) gr

0
V Wn,1(B)→ grsV Wn,1(B)

is naturally identified with the canonical map

ϕs
∗A1 ⊗A1 B1→ ϕs

∗B1,

and the latter is an isomorphism by (6.2.1).
We can now show thatWn,1(f) is étale. First,Wn,1(f) is finitely presented. To see this,

suffices to show thatgr·V Wn,1(f) is finitely presented. But this follows from the isomorphism

B1 ⊗A1 gr
·
V Wn,1(A)

∼→ gr·V Wn,1(B),
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sincef1 :A1→B1 is finitely presented. Next, it follows from Lemma 6.1.1 thatWn,1(f) is flat;
for f1 :A1→B1 is flat and the canonical map

e

rtesian.

t

r

]: to

5.5].
Wn,1(B)⊗Wn,1(A) VWn,1(A)→ VWn,1(B)

is an isomorphism. Finally, sinceVWn,1(A)⊂Wn,1(A) is a square-zero ideal, and sinceΩ1
B1/A1

vanishes, Lemma 6.1.3 shows thatΩ1
Wn,1(B)/Wn,1(A) is zero. This completes the proof of th

proposition, ifv = 1.
In the general casev � 1, we consider thep-adic filtration ofWn,v(A), which is finite and

multiplicative. Moreover, the canonical map

psWn,v(A)⊗Wn,v(A) Wn,v(B)→ psWn,v(B),

clearly, is an isomorphism. Hence, one can easily conclude from the casev = 1 thatWn,v(f) is
étale. It remains to prove that the two squares in the statement of the proposition are coca
As we noted earlier, this is equivalent to the statement that for all0 � s < n, the canonical map

V sWn,v(A)⊗Wn,v(A) Wn,v(B)→ V sWn,v(B)

is an isomorphism. Injectivity follows immediately from the fact thatWn,v(f) is flat. For
surjectivity it suffices to prove the cases = n − 1. It follows by induction from (6.2.1) tha
everyb ∈B can be written

b=
∑

aib
pn−1

i + pvb′

with ai ∈A andbi, b′ ∈B. Hence

V n−1(b) =
∑

V n−1(ai)[bi] + pvV n−1(b′),

which proves surjectivity. ✷
PROPOSITION 6.2.3. –LetA→ B be an étale map and suppose thatp is a non-zero-diviso

in A. Then for alln, v � 1 andq � 0, the canonical map

Wn,v(B)⊗Wn,v(A) Wn,vΩ
q
A→Wn,vΩ

q
B

is an isomorphism.

Proof. –This is proved from Proposition 6.2.2 by the argument of [13, Proposition I.1.14
produce the inverse of the map of the statement one shows that the left hand side is aV -pro-
complex. ✷

PROPOSITION 6.2.4. –Let f :A→ B be an étale map and suppose thatp is a non-zero-
divisor inA. Then for alln, v � 1 andq � 0, the canonical map

Wn,v(B)⊗Wn,v(A) TR
n
q (A;p,Z/p

v)→TRn
q (B;p,Z/pv)

is an isomorphism.

Proof. –The proof is by induction onn starting from the casen = 1, which was proved in
[5, Proposition 3.2.1]. The proof of the induction step is similar to the proof of [10, Theorem

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



38 L. HESSELHOLT AND I. MADSEN

In brief, there is a natural long exact sequence ofWn,v(A)-modules

· · · → hTRn(A;p,Z/pv)→TRn(A;p,Z/pv) R→R∗TRn−1(A;p,Z/pv)→ · · · .

6.2.2 is

nce of

sm now
.2 is

e

e

nce of
q q q

The base-change of this sequence alongWn,v(f), which is exact sinceWn,v(f) is flat, maps to
the long-exact sequence ofWn,v(B)-modules

· · · → hTRn
q (B;p,Z/pv)→TRn

q (B;p,Z/pv) R→R∗TRn−1
q (B;p,Z/pv)→ · · · .

The map of the right hand terms,

Wn,v(B)⊗Wn,v(A) R∗TRn−1
q (A;p,Z/pv)→R∗TRn−1

q (B;p,Z/pv),

inductively, is an isomorphism, since the left hand square in the statement of Proposition
cocartesian. In order to show that the map of left hand terms,

Wn,v(B)⊗Wn,v(A) hTRn
q (A;p,Z/p

v)→ hTRn
q (B;p,Z/pv),

is an isomorphism, we recall that there is a natural first quadrant spectral seque
Wn,v(A)-modules

E2
s,t =Hs

(
Cpn , Fn−1

∗ TR1
∗(A;p,Z/p

v)
)
⇒ hTRn

s+t(A;p,Z/p
v);

see the discussion preceding [10, Theorem 5.5] and also [9, §4]. The desired isomorphi
follows from the casen= 1, since the left hand square in the statement of Proposition 6.2
cocartesian. ✷

7. Smooth V -algebras

7.1. In this paragraph we prove Theorem E of the introduction. LetV be a complete discret
valuation ring of mixed characteristic(0, p) with quotient fieldK and perfect residue fieldk. Let
A be a smoothV -algebra, letAK =A⊗V K , and letAk =A⊗V k.

LEMMA 7.1.1. –LetA be a smoothV -algebra and letf :A→B be an étale map. Then th
canonical map is an isomorphism:

Wn,v(B)⊗Wn,v(A) TR
n
q (A|AK ;p,Z/pv) ∼→ TRn

q (B|BK ;p,Z/pv).

Proof. –We recall from Proposition 6.2.4 that the canonical map

Wn,v(B)⊗Wn,v(A) TR
n
q (A;p,Z/p

v)→TRn
q (B;p,Z/pv)

is an isomorphism. We proved in [9, Remark 1.5.8] that there is a long-exact seque
Wn,v(A)-modules

· · · →TRn
q (Ak;p,Z/pv)

i!→TRn
q (A;p,Z/p

v)
j∗→ TRn

q (A|AK ;p,Z/pv)→ · · · ,

where the left hand term is aWn,v(A)-module viai∗ :Wn,v(A)→Wn,v(Ak). We claim that also
the canonical map

Wn,v(B)⊗Wn,v(A) TR
n
q (Ak;p,Z/pv)→TRn

q (Bk;p,Z/pv)
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is an isomorphism. SinceWn,v(A)→Wn,v(B) is flat by Proposition 6.2.2, the obvious five-
lemma argument completes the proof. To prove the claim, we first recall from [8, Proposi-
tion 2.4.4] that the canonical map

emma

at
n
act

e

phism,
on that

he

e

Wn(Bk)⊗Wn(Ak) TR
n
q (Ak;p)→TRn

q (Bk;p)

is an isomorphism; the proof is analogous to the proof of Proposition 6.2.4 above. A five-l
argument based on the coefficient sequence

· · · →TRn
q (Ak;p)

pv

→TRn
q (Ak;p)→TRn

q (Ak;p,Z/pv)
β→TRn

q−1(Ak;p)→ · · ·

shows that the canonical map

Wn,v(Bk)⊗Wn,v(Ak) TR
n
q (Ak;p,Z/pv)→TRn

q (Bk;p,Z/pv)

is an isomorphism. Hence, it suffices to show that

Wn,v(B)⊗Wn,v(A) Wn,v(Ak)→Wn,v(Bk)

is an isomorphism. The statement forv implies the statement forv − 1, so we can assume th
n � v. ThenWn,v(Ak) = Wn(Ak) andWn,v(Bk) = Wn(Bk). We proceed by induction o
1 � n� v starting from the trivial casen= 1. In the induction step, we consider the short ex
sequence ofWn,v(A)-modules

0→ Fn−1
∗ Ak

V n−1

−→ Wn(Ak)
R→R∗Wn−1(Ak)→ 0

(the corresponding sequence forWn,v(Ak) is not exact, ifv < n). We wish to show that th
upper horizontal map in the diagram

Wn,v(B)⊗Wn,v(A) F
n−1
∗ Ak Fn−1

∗ Bk

Wn,v(B)⊗Wn,v(A) F
n−1
∗ A⊗A Ak

∼

∼

Fn−1
∗ B ⊗A Ak,

∼

is an isomorphism. But Proposition 6.2.2 shows that the lower horizontal map is an isomor
and the vertical maps are isomorphisms for trivial reasons. One shows in a similar fashi
the map

Wn,v(B)⊗Wn,v(A) R∗Wn−1(Ak)
∼→R∗Wn−1(Bk)

is an isomorphism. This completes the proof.✷
We recall from the introduction thatW·Ω∗

(A,MA) denotes the universal Witt complex over t
log ring (A,MA); see also [9, Section 3.2].

LEMMA 7.1.2. –LetA be a smoothV -algebra and letf :A→B be an étale map. Then th
canonical map is an isomorphism:

Wn,v(B)⊗Wn,v(A) Wn,vΩ
q
(A,MA)

∼→Wn,vΩ
q
(B,MB).
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Proof. –This is similar to the proof of Proposition 6.2.3.✷
LEMMA 7.1.3. –LetA be a smoothV -algebra. Then the canonical map

aining

d

has
t the
P
(
TR·

∗(A|AK ;p,Z/pv)
)
→TR·

∗
(
A[x]|A[x]K ;p,Z/pv

)

is an isomorphism.

Proof. –By Theorem C, the canonical map

P
(
TR·

∗(R;p)
)
→TR·

∗
(
R[x];p

)

is an isomorphism, for everyZ(p)-algebraR. The coefficient sequence

· · · →TRn
q (R;p)

pv

→TRn
q (R;p)→TRn

q (R;p,Z/pv)
β→TRn

q−1(R;p)→ · · · ,

by Lemma 4.2.11, gives rise to a long-exact sequence

· · · → P
(
TR·

∗(R;p)
)n
q

pv

→ P
(
TR·

∗(R;p)
)n
q
→ P

(
TR·

∗(R;p,Z/pv)
)n
q
→ · · ·

which maps to the coefficient sequence

· · · →TRn
q

(
R[x];p

) pv

→TRn
q

(
R[x];p

)
→TRn

q

(
R[x];p,Z/pv

)
→ · · · .

By Theorem C, this map is an isomorphism of two out of three terms, and hence, of the rem
terms. This shows that for everyZ(p)-algebraR, the canonical map

P
(
TR·

∗(R;p,Z/pv)
)
→TR·

∗
(
R[x];p,Z/pv

)

is an isomorphism. This applies, in particular, toR=A andR=Ak. A similar argument base
on the sequence

· · · →TRn
q (Ak;p,Z/pv)

i!→TRn
q (A;p,Z/p

v)
j∗→TRn

q (A|AK ;p,Z/pv)→ · · ·

completes the proof. ✷
LEMMA 7.1.4. –LetA be aV -algebra. Then the canonical map

P
(
W·Ω∗

(A,MA) ⊗Z SZ/pv (µpv )
)
→W·Ω∗

(A[x],MA[x])
⊗Z SZ/pv(µpv )

is an isomorphism.

Proof. –Let π :A→ A[x] be the inclusion of the constant polynomials. A functor which
a right adjoint preserves colimits; in particular, it preserves initial objects. It follows tha
canonical map

W·Ω∗
(A[x],MA[x])

→ π∗W·Ω∗
(A,MA)

is an isomorphism. Hence, by Theorem B, we have a canonical isomorphism

W·Ω∗
(A[x],MA[x])

∼→ P (W·Ω∗
(A,MA)).
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Finally, the canonical map

P (W·Ω∗
(A,MA))⊗Z SZ/pv(µpv )→ P

(
W·Ω∗

(A,MA) ⊗Z SZ/pv(µpv )
)

on

n

ap of

ps,

map
s

umber
we

ctively,
hat the

rem
is an isomorphism, sinceF (respectivelyd) is the identity map (respectively the zero map)
the factorSZ/pv (µpv ). For instance,

V s(ω)⊗ ζ = V s
(
ω⊗F s(ζ)

)
= V s(ω⊗ ζ).

The lemma follows. ✷
A pro-abelian groupD is Mittag–Leffler zero, if for alln � 1, there existsm � n such that

the structure mapDm → Dn is zero. A strict mapf :D → D′ of pro-abelian groups is a
isomorphism of pro-abelian groups if and only if the kernel and cokernel off are Mittag–Leffler
zero.

LEMMA 7.1.5. –Let f :E→ E′ be a map of Witt complexes and suppose that, as a m
pro-abelian groups,f is an isomorphism. Then, as a map of pro-abelian groups,

P (f) :P (E)→ P (E′)

is an isomorphism.

Proof. –Let K be the kernel off :E→ E′ considered as a strict map of pro-abelian grou
and, by slight abuse of notation, letP (K) denote the kernel ofP (f) :P (E)→ P (E′) considered
as a strict map of pro-abelian groups. Forn � 1, we can findt � 0 such that for all1 � s � n,
the structure mapEs+t → Es is equal to zero. By inspection, we see that the structure
P (K)n+t→ P (K)n is zero, and hence,P (K) is Mittag–Leffler zero. A similar argument show
that also the cokernel ofP (f) :P (E)→ P (E′) is Mittag–Leffler zero. ✷

Proof of Theorem E. –We recall from [6, Corollary 17.11.4] that aV -algebraA is smooth if
and only if there exist relatively prime elementsf1, . . . , fr ∈A and étale maps

V [x1, . . . , xn]→Afi =A

[
1
fi

]
.

We first prove the statement for polynomial algebras. The proof is by induction on the n
of variables; the basic caseA= V is the statement of [9, Theorem C]. In the induction step,
assume the statement forA and consider the following diagram of pro-abelian groups.

P
(
W·Ω∗

(A,MA) ⊗Z SZ/pv (µpv )
) ∼

∼

P
(
TR·

∗(A|AK ;p,Z/pv)
)

∼

W·Ω∗
(A[x],MA[x])

⊗Z SZ/pv(µpv ) TR·
∗
(
A[x]|A[x]K ;p,Z/pv

)
.

The left and right hand vertical maps are isomorphism by Lemmas 7.1.4 and 7.1.3, respe
and the top horizontal map is an isomorphism by Lemma 7.1.5 and by the assumption t
theorem holds forA. This proves the induction step.

Let A be a smoothV -algebra, letf :A→ B be an étale map, and suppose that the theo
holds forA such that the canonical map

W·Ω∗
(A,MA) ⊗Z SZ/pv(µpv )→TR·

∗(A|AK ;p,Z/pv)
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is an isomorphism of pro-gradedW·,v(A)-modules. Then the map obtained by base-change along
W·,v(f) again is an isomorphism, and hence, Lemmas 7.1.2 and 7.1.1 show that the canonical
map

ap

we

d on

the

f

es
hism

,

g,

t,

,

t des
W·Ω∗
(B,MB) ⊗Z SZ/pv (µpv )→TR·

∗(B|BK ;p,Z/pv)

is an isomorphism.
The proof is completed by the following covering argument. LetEn be a functor, which to a

smoothV -algebraA associates aWn,v(A)-moduleEn(A), and suppose that for allf ∈ A, the
canonical map

Wn,v(Af )⊗Wn,v(A) En(A)→En(Af )

is an isomorphism. Letf1, . . . , fr ∈ A be relatively prime elements. Then the canonical m
A→

∏
1�i�r Afi is faithfully flat, and hence, the Koszul complex

C∗ =
⊗

1�i�r

(A→Afi)

is exact. Here we viewA→ Afi as a cochain complex ofA-modules withA located in degree
zero. The maps in this complex are alternating sums ofA-algebra homomorphisms. Hence,
obtain complexesWn,v(C∗) andEn(C∗) by applyingWn,v(−) andEn(−), respectively, to
each term of the complexC∗. The former complex is exact by an induction argument base
the natural exact sequences

0→W1,v(Af )
V n−1

−→ Wn,v(Af )
R→Wn−1,v(Af )→ 0.

The terms of this complex are flatWn,v(A)-modules by Proposition 6.2.2. Hence, also
common complex

Wn,v(C∗)⊗Wn,v(A) En(A)
∼→En(C∗)

is exact. We now consider the map of Witt complexesE∗
· → E′

·
∗ from the statement o

Theorem E. Then the complexesEq
· (C∗) andE′

·
q(C∗) are exact, for allq � 0, by Lemmas 7.1.2

and 7.1.1, respectively. We can choosef1, . . . , fr ∈ A such that the map of cochain complex
Eq

· (C∗)→E′
·
q(C∗) is an isomorphism in positive degrees. But then this map is an isomorp

also in degree zero.✷
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