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MAGNETIC BOTTLES FOR THE NEUMANN PROBLEM:
CURVATURE EFFECTS IN THE CASE OF DIMENSION3

(GENERAL CASE)

BY BERNARD HELFFER1 AND ABDEREMANE MORAME

ABSTRACT. – In a recent paper Lu and Pan have analyzed the asymptotic behavior, in the semi-c
regime, of the ground state energy of the Neumann realization of the Schrödinger operator in t
of dimension3. Although these results are rather satisfactory when the magnetic field is non-co
and satisfies some generic conditions, they are not sufficient in the case of a constant magnetic
understanding phenomena like the onset of superconductivity and more accurate results should be
In the two-dimensional case, the effects due to the curvature of the boundary were predicted by a
analysis of Bernoff–Sternberg and finally proved by the joint efforts of Lu–Pan, Del Pino–Felmer–Ste
and Helffer–Morame. Our aim is to analyze similar effects in dimension3. As known from physicists an
roughly analyzed by Lu–Pan, it turns out that the results depend on the geometry of the boundary es
at the points where the magnetic field is tangent at the boundary. We present here the analog of the
Sternberg conjecture (also formulated in a different form by Pan) and prove it in the generic situatio
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RÉSUMÉ. – Récemment Lu et Pan ont analysé le comportement asymptotique, en régime semi-cl
de la plus petite valeur propre de la réalisation de Neumann d’un opérateur de Schrödinger ma
dans le cas de la dimension3. Si les résultats obtenus sont satisfaisants lorsque le champ magnétiq
variable et vérifie quelques conditions génériques, ils ne permettent pas, dans le cas d’un champ ma
constant, de comprendre des phénomènes comme la localisation d’une fonction propre associée. D
de la dimension2, Bernoff et Sternberg avaient conjecturé, sur la base de constructions formelles, que
la courbure du bord qui allait être la clef de cette localisation. Ceci fut finalement prouvé par Lu–Pa
Pino–Sternberg et Helffer–Morame. Nous nous proposons ici d’analyser le même problème en dime3.
La littérature physique indique (et les premiers résultats dans cette direction furent démontrés p
Pan) que tout dépend de la géométrie de la frontière et plus précisément de la courbe (générique
le champ magnétique est tangent au bord. Nous présentons ici l’analogue de la conjecture de
Sternberg dans le cas de la dimension3 (conjecture aussi formulée sous une forme un peu différente
Pan) et en donnons la démonstration sous des hypothèses génériques.
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106 B. HELFFER AND A. MORAME

1. Introduction

Our study is motivated by a question in superconductivity.2 Let us roughly explain how the
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question occurs in this context (see [10] or [22] for a review on this aspect and references th
Given a bounded open setΩ⊂ R3 with smooth boundary, we are interested in the propertie
the minimizers of the so called Ginzburg–Landau functional

H1(Ω;C)×H1(Ω;R3) � (ψ, Ã) �→ G(ψ, Ã)

with:

G(ψ, Ã) =
∫
Ω

{∣∣(∇− iκÃ)ψ
∣∣2 +

κ2

2
(
|ψ|2 − 1

)2}
dx+ κ2

∫
Ω

| curl Ã− σ curlA|2 dx.(1.1)

HereA is a given applied magnetic potential inH1(Ω;R3), σ is a positive parameter introduc
for permitting a variation of its intensity and the parameterκ > 0 reflects the properties of th
sampleΩ which will be assumed to be large. AsΩ is bounded, the existence of a minimiz
is rather standard. It is also easy to observe that the pair(0, σA) is a trivial critical point of
the functionalG which is called a normal solution. It has also be shown, that this pair is, w
curlA := H does not vanish, a global minimum forσ large enough. It is therefore natural
discuss in function ofσ, if this pair is a local or a global minimizer. By looking at the Hessian
the functional at this point, this question is immediately related to the positivity of the oper

−(∇− iκσA)2 − κ2 in Ω,

where we get from the minimization of the functional a “magnetic” Neumann condition a
boundary.

It can be seen that the change of sign of the lowest eigenvalue of this operator occurσ
of the order ofκ. To get a more precise information, we are immediately let to analyz
groundstate energy (that is the lowest eigenvalue) of the Neumann realization of the Schr
operator with magnetic potential in an open setΩ in R

3:

P h
A =

3∑
j=1

(
hDxj −Aj(x)

)2
,(1.2)

whereh = 1
κσ will be a small parameter.This is this problem which will be the main object

the paper.We recall that an elementu in H2(Ω) satisfies the (magnetic) Neumann condition
the boundary, if

N(x) ·
(
(hD−A)u

)
(x) = 0, ∀x ∈ ∂Ω,

whereN(x) is the normal atx to ∂Ω.

2 One can find in Chapter 4 of [30] a physical presentation of the problem we are considering. We part
emphasize on their Section 4.3 where they analyze (with partially heuristic arguments) the angular dependen
nucleation field. We will give a mathematical proof of, what they describe for example p. 87: “For type II supercond
(The authors meanκ � 1/

√
2, but we treat onlyκ large) the above calculation shows that superconductivity is

entirely destroyed forHc2 < H < Hc3 . A superconducting sheath remains close to the surface parallel to the a
field. Conversely, when the field is decreased belowHc3 , a superconducting sheath appears at the surface b
superconductivity is restored in the bulk atH = Hc2 . If the sample is a long cylinder with the applied field paralle
the axis, the sheath will cover all the surface of the cylinder. If it is a sphere, the sheath will be restricted to a sm
near the equatorial plane whenH is close toHc3 . When the field is decreased towardsHc2 the sheath will progressivel
extend up to the poles”.

4e SÉRIE– TOME 37 – 2004 –N◦ 1



MAGNETIC BOTTLES FOR THE NEUMANN PROBLEM 107

This realization will be denoted byP h,N
A,Ω but we will sometimes use shorter notations

when there is no ambiguity. Ifλ(h) is the lowest eigenvalue anduh(x) is a corresponding
normalized eigenstate, we would like to discuss the asymptotic ofλ(h) as h → 0, with the
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hope to analyze in a future work the localization ofuh. This problem was treated in the ca
of dimension2 by Bernoff–Sternberg [3], Lu–Pan [19–21], Del Pino–Felmer–Sternberg [28
Helffer–Morame [12] in a rather complete way. Later a recent work by Lu–Pan [23] was st
the analysis of the dimension3 and this was complemented slightly in [13]. So this paper is
continuation of the program, with a particular emphasis on the constant magnetic field ca

We start by establishing rough estimates, but sufficiently accurate for determining the ef
order of the curvature effect.

THEOREM 1.1. – Let Ω be a bounded open set ofR3 with C∞ boundary∂Ω. LetP h,N
A,Ω be

the Neumann operator onL2(Ω) associated to the Schrödinger operator with constant magn
field (hD−A)2 and let us assume that the vector magnetic fieldH = curl(A) is constant and o
intensity equal tob= |H |.

If

λ(h) = inf Sp(P h,N
A,Ω )

is the first eigenvalue ofP h,N
A,Ω , then there exists a constantC0 such that∣∣λ(h)− bΘ0h

∣∣�C0h
4/3,(1.3)

whereΘ0 ∈ ]0,1[ is an universal constant, which will be defined in(2.4).

We observe that in the case of dimension2, the corresponding error was inO(h3/2).
We then continue with the analysis of the curvature effects, which are the ana

dimension3 of the results first conjectured by Bernoff–Sternberg (see [3]) in the ca
dimension2. Before establishing the corresponding conjecture in the case of dimension3, let
us describe the main ingredients appearing in the assumptions.

It has been observed by [23] and this will be recalled in Section 4, that the ground statuh is
localized (ash→ 0) near the boundary∂Ω but more precisely on the set:

ΓH =
{
x ∈ ∂Ω |

〈
H |N(x)

〉
= 0
}
,(1.4)

that is the set of points in∂Ω whereH is tangent.
It is natural to assume that:

ΓH is a regular submanifold of∂Ω,(1.5)

that is a disjoint union of regular curves. From now on, we choose an orientation on
curve. At each pointx of ΓH , we will associate the normal curvature along the magnetic
H =H(B) by:

κn,B(x) :=Kx

(
T (x) ∧N(x),

H

|H |

)
,(1.6)

whereK denotes the second fundamental form on the surface∂Ω (see Section 8) andT (x) is
the unit oriented tangent vector toΓH atx. It is natural to assume that:

κn,B �= 0, onΓH .(1.7)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



108 B. HELFFER AND A. MORAME

The last generic assumption is:

The set of points whereH is tangent toΓH is isolated.(1.8)
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The following function onΓH will play an important role:

γ̃0(x) =
(
1
2

)2/3

ν̂0δ
1/3
0

(∣∣κn,B(x)
∣∣2/3(δ0 + (1− δ0)

∣∣∣∣〈T (x)
∣∣∣∣ H

|H |

〉∣∣∣∣2)1/3)
,(1.9)

where ν̂0 > 0 and δ0 ∈ ]0,1[ are universal constants attached to spectral invariants relat
two model Hamiltonians respectively defined onR andR+ and which will be defined in (2.15
and (2.7).

Associated to this function, which will play the role of effective curvature, we define:

γ̂0 = inf
x∈ΓH

γ̃0(x).(1.10)

Our main theorem is:

THEOREM 1.2. – LetP h,N
A,Ω be the Neumann realization onL2(Ω) of the magnetic Laplacia

(hD−A)2, whereh ∈ ]0,1[ is a small parameter andA corresponds to constant magnetic fie
Under assumptions(1.5), (1.7)and (1.8), there existη > 0 and γ̂0 > 0 such that:

inf Sp(P h,N
A,Ω ) = bΘ0h+ γ̂0b

2/3h4/3 +O(h
4
3+η),(1.11)

whereγ̂0 is defined in(1.10).

We conjectured this theorem in September 2001, simultaneously with Pan [26] (who pro
another equivalent3 formulation and obtained the upper bound). A first complete proof was g
in mp_arc [14] under additional non generic conditions. This paper, which is a slightly mo
version of the preprint [15], gives now a complete proof in the general generic case. Alt
the methods of proof can also lead to localization results for the ground state (see [12,
more generally for minimizers of the Ginzburg–Landau functional (see [19–23,17]), this w
be discussed here. This was actually explored in [26], under the assumption that the con
was true.

The paper is organized as follows.
In Sections 2 and 3, we recall previous results extracted from [6,12,23,13], which wil

an important role in the analysis. In Section 4, we recall the results of [23] devoted to th
when the magnetic field is not constant. It is also shown there that the problem is reduce
constant magnetic case to a neighborhood of the boundary. In Section 5, we make exp
choice of coordinates near the boundary. Section 6 gives rough upper bounds for the grou
energy by constructing quasimodes. In Section 7, we present our first lower bounds wh
sufficiently accurate for giving the right order for the remainder. In Section 8, we go furth
the choice of adapted coordinates, taking in particular account of the fact that the magne
is constant. This permits to introduce our magnetic invariants attached toΓH and to present ou
main results in a more precise form. Section 9 is devoted to the research of simpler mod
the magnetic potentials obtained in the adapted coordinates by suitable gauge transfor
and by neglecting “small” terms. Section 10 is devoted to the estimate of the errors done

3 See the appendix in [15].
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use of the previous models. In Section 11, we start by some heuristics which lead to the spectral
analysis of a simplified model which will be used in the general case. Section 12 is devoted
to the proof of the accurate upper bounds. Section 13 gives complementary lower bounds for

rding to
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s are
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on
the model. Section 14 presents the structure of the proof of accurate lower bounds acco
different zones and treats the easy zones. Sections 15 and 16 correspond to the treatme
difficult zones.

2. The case of dimension 2

2.1. Main results for the models with constant magnetic fields

We first consider the operator:

P h
A := (hDx1 −A1)2 + (hDx2 −A2)2,

with

A=
(
− b

2
x2,

b

2
x1

)
, h > 0 and b > 0,

and analyze the spectrum of its realization inR2 or of its Neumann realization inR2
+.

We observe that by homogeneity, one can reduce the analysis toh = 1 andb = 1. It is well
known that in the case ofR2 the spectrum is a point spectrum and that the eigenvalue
given by(2n+ 1) with (n ∈ N), each eigenvalue being of infinite multiplicity. One way, to
this is to show the unitary equivalence (via a gauge transformation, a partial Fourier tran
and a translation) with the harmonic oscillator(D2

t + t2) but seen as an unbounded opera
onL2(R2

t,s).
The case of the Neumann realization inR2

+ is a little more delicate. By unitary transformati
we get the Neumann realization of the operator of

Q(t,Dt; s) :=D2
t + (t− s)2 onL2(R+ ×R),(2.1)

which is reduced to the analysis of the family (s∈R) of operators:

Q(s) :=D2
t + (t− s)2,(2.2)

defined onL2(R+).
Let µ(s) be defined by:

µ(s) is the lowest eigenvalue of the Neumann realization ofQ(s) in R
+.(2.3)

One easily shows (cf. [29])

PROPOSITION 2.1. – The infimum of the spectrum of the Neumann realization ofPh
A is given

by bhΘ0 with

Θ0 := inf
s∈R

µ(s).(2.4)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



110 B. HELFFER AND A. MORAME

2.2. An important one-dimensional family of operators on R

We recall the main properties of the groundstate energy of the Neumann realization onR+ of

nn

entity,

ty for
llowing

e of the
,

Q(s) :=D2
t + (t− s)2,(2.5)

in function of the parameters ∈ R. Let us just list some properties ofµ(s) and of the
corresponding normalized eigenvectorϕs and refer to [6,12] for proofs or details. The Neuma
eigenvalueµ(s) satisfies the following properties:

1. lims→−∞ µ(s) = +∞;
2.µ is decreasing fors < 0;
3.µ(0) = 1;
4. lims→+∞ µ(s) = 1;
5.µ admits in]0,+∞[ a unique minimumΘ0 < 1 at someξ0 > 0. So

Θ0 := inf
s∈R

µ(s) = µ(ξ0)< 1.(2.6)

This minimum is nondegenerate and more precisely:

0< δ0 :=
1
2
µ′′(ξ0)< 1.(2.7)

6. We introduceϕ0 = ϕξ0 . We have:∫
R+

(t− ξ0)
∣∣ϕ0(t)

∣∣2 dt= 0,(2.8)

which just corresponds to the conditionµ′(ξ0) = 0.
7.ϕ0 is rapidly decreasing at∞.
Let us just mention that the proof of some of these properties is based on the following id

relating the first eigenfunctionϕs andµ(s):

‖ϕs‖2µ′(s) =
(
s2 − µ(s)

)(
ϕs(0)

)2
.(2.9)

2.3. Applications: main results in dimension 2

As an application of the analysis of the models, one gets (cf. [21]) via a partition of uni
the lower bound and a suitable construction of quasimodes for the upper bound, the fo
general result (in the two-dimensional case):

THEOREM 2.2. – If λ(h) is the lowest eigenvalue of the Neumann realization ofP h
A in Ω,

then we have:

lim
h→0

λ(h)
h

=min
(
inf
x∈Ω

∣∣B(x)
∣∣,Θ0 inf

x∈∂Ω

∣∣B(x)
∣∣),(2.10)

whereB = curlA.

We emphasize that there is no assumption that the magnetic field is constant. In the cas
constant magnetic field, one can actually have more precise results forλ(h). WhenB is constant
the minimum in (2.10) is obtained by the second term and we showed in [3,28,12] the

4e SÉRIE– TOME 37 – 2004 –N◦ 1



MAGNETIC BOTTLES FOR THE NEUMANN PROBLEM 111

THEOREM 2.3. –If the magnetic field is constant of intensityb, then:

λ(h) = bΘ0h− c1b
1/2
(
sup κ(x)

)
h3/2 +o(h3/2),(2.11)

It first
:

al

s

x∈∂Ω

wherec1 is a universal strictly positive universal constant andκ(x) is the curvature of∂Ω at
x∈ ∂Ω.

2.4. The Montgomery’s model and a second important family of operators on R

We just discuss a model that we shall meet indirectly later and which is interesting.
appears in [24] but see also [11]. We consider inR2

x,y, and for some parameterκ > 0 the operator

P := h2D2
x +

(
hDy −

κ

2
x2

)2

.(2.12)

The magnetic potential is&A= (0, κ2x
2) and we have:

curlA= κx.

So the magnetic field vanishes along the line{x = 0}. Let us briefly describe the spectr
analysis. After a Fourier transform in they-variable, we first get:

P̂ = h2D2
x +

(
hη− κ

2
x2

)2

,

and this leads to the analysis of the family, parametrized byη ∈ R, of selfadjoint operator
onL2(R):

P̂ (η) = h2D2
x +

(
hη − κ

2
x2

)2

.

Using a simple dilation, we get:

inf Sp(P̂ ) = inf
η

inf Sp
(
P̂ (η)

)
= h4/3

∣∣∣∣κ2
∣∣∣∣2/3 infρ inf Sp

(
D2

r + (r2 − ρ)2
)
.(2.13)

Let us recall some properties of the family of operators

S(ρ) =D2
r + (r2 − ρ)2,(2.14)

and of the corresponding ground stateψρ, which were established in [24,11] and [27].
1. There exists a uniqueρ= ρmin such that:

ν̂0 := inf
ρ

inf Sp
(
D2

r + (r2 − ρ)2
)
= inf Sp

(
D2

r + (r2 − ρmin)2
)
.(2.15)

2.ψρ belongs toS(R) and is even.
We shall later use the notation:

ψ0 = ψρmin .(2.16)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



112 B. HELFFER AND A. MORAME

3. Constant magnetic field: models in R3 and in R3
+

As in the case of dimension2, where the first thing was to understand the model with constant

agnetic

ld is
magnetic field inR2 andR2
+, we shall discuss the case ofR3 andR3

+.

3.1. Model in R3

We start (after some gauge transformation) of the Schrödinger operator with constant m
field in dimension3.

P h( &H) := h2D2
x1

+ (hDx2 −H3x1)2 + (hDx3 +H2x1 −H1x2)2.(3.1)

The following lemma has the age of quantum mechanics:

LEMMA 3.1. –The bottom of the spectrum of the selfadjoint realization ofP h( &H) in R3 is

inf Sp
(
P h,N

R3 ( &H)
)
= bh,(3.2)

where

b= |H |=
√

H2
1 +H2

2 +H2
3

is the intensity ofH .

3.2. Models in halfspaces

We refer to [23] and [13] for the proof of the results presented in this subsection. IfN is a unit
vector inR3, we now consider the Neumann realization inΩ := {x ∈ R3 | x ·N > 0}. After a
rotation, we can assume in the proofs thatN = (1,0,0), soΩ is R3

+ := {x1 > 0}.
After scaling, we can assume thath= 1 and|H |= 1.
After some rotation in the(x2, x3) variables, we can assume that the new magnetic fie

(β1, β2,0) and we are reduced to the problem of analyzing:

P (β1, β2) :=D2
x1

+D2
x2

+ (Dx3 + β2x1 − β1x2)2,

in {x1 > 0}, where:

β2
1 + β2

2 = 1.

We introduce:

β2 = cosϑ, β1 = sinϑ,

and we observe that, ifN is the external normal tox1 = 0, we have:

〈 &H |N〉=− sinϑ.(3.3)

By partial Fourier transform, we arrive to:

L(ϑ, τ) =D2
x1

+D2
x2

+ (τ + cosϑx1 − sinϑx2)2,(3.4)

in x1 > 0 and with Neumann condition onx1 = 0. The bottom of the spectrum ofL(ϑ, τ) is
given by:

σ(ϑ) := inf Sp
(
L(ϑ,Dt)

)
= inf

τ

(
inf Sp

(
L(ϑ, τ)

))
.(3.5)

4e SÉRIE– TOME 37 – 2004 –N◦ 1



MAGNETIC BOTTLES FOR THE NEUMANN PROBLEM 113

PROPOSITION 3.2. – The bottom of the spectrum of the Neumann realization ofPh( &H) in
Ω := {x∈R3 | x ·N > 0} is:

is

ic

e

inf SpP h,N
Ω ( &H) = σ(ϑ)bh,(3.6)

whereϑ ∈ [−π
2 ,

π
2 ] is defined by(3.3).

By symmetry considerations, we observe also that:

σ(ϑ) = σ(−ϑ) = σ(π − ϑ).(3.7)

It is consequently enough to look at the restriction to[0, π2 ].

3.3. Properties of ϑ �→ σ(ϑ)

Let us now list the main properties of the functionϑ �→ σ(ϑ) on [0, π2 ]. Most of them are
established in [23] but see also [13].

1.σ is continuous on[0, π2 ].
2.

σ(0) = Θ0 < 1.(3.8)

3.

σ

(
π

2

)
= 1.(3.9)

4.

σ(ϑ) � Θ0(cosϑ)2 + (sinϑ)2.(3.10)

5. If ϑ ∈ ]0, π2 [, the spectrum ofL(ϑ, τ) is independent ofτ and its essential spectrum
contained in[1,+∞[.

6. Forϑ ∈ ]0, π2 [, σ(ϑ) is an isolated eigenvalue ofL(ϑ, τ), with multiplicity one.
7. The functionσ is strictly increasing on[0, π2 [.
8. The functionσ has the following expansion forϑ small:

σ(ϑ)∼Θ0 +
∑
n�1

αn|ϑ|n,(3.11)

with α1 =
√
δ0 =

√
µ′′(ξ0)/2> 0.

A first consequence of this analysis is

PROPOSITION 3.3. – Whenb = |H | is fixed the bottom of the spectrum ofP h,N
Ω ( &H) in

Ω := {x ·N > 0} is minimal whenϑ = 0 that is, according to(3.3), that is when the magnet
field vector satisfies&H ·N = 0.

4. First results for general magnetic fields

In the case of dimension2, under the assumption thatcurlA :=B(x)> 0, the basic estimat
at the interior was the inequality:

h

∫
B(x)

∣∣u(x)∣∣2 dx �
∫ ∣∣(h∇− iA)u

∣∣2 dx, ∀u ∈C∞
0 (Ω).(4.1)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



114 B. HELFFER AND A. MORAME

This was not enough for understanding the Neumann problem. One should more carefully
analyze the case ofR2

+ and, in the case of the constant magnetic field, one should also analyze
more complicate models (like for example the case of the disk). The most spectacular result was:

mann
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r each
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d

THEOREM 4.1. – When the magnetic field is constant, the groundstate of the Neu
realization ofP h

A in an open regular bounded setΩ ⊂ R2 is localized in the neighborhood o
the points of the boundary of maximal curvature.

In the case of dimension3, estimate (4.1) should be replaced by the weaker esti
established in [11] (Theorem 3.1)

THEOREM 4.2. – There existC andh0 > 0 such that, for allh ∈ ]0, h0], we have:

h

∫
Ω

(∣∣H(x)
∣∣−Ch1/4

)∣∣u(x)∣∣2 dx �
∫
Ω

∣∣(h∇− iA)u
∣∣2 dx, ∀u ∈C∞

0 (Ω).(4.2)

If this result is essentially sufficient for analyzing the Dirichlet problem inΩ, it is necessary to
implement the analysis given in the first part in order to treat the Neumann problem. Nea
point of the boundaryx, we have to use the lower bound obtained for the model with con
magnetic fieldH =H(x). Following for example the proof in [12] and using the same parti
of unity, we get:

THEOREM 4.3. –

h

∫
Ω

Wh(x)
∣∣u(x)∣∣2 dx �

∫ ∣∣(h∇− iA)u
∣∣2 dx, ∀u ∈H1(Ω),(4.3)

where

Wh(x) =
{
|H(x)| −Ch1/4, if d(x, ∂Ω) � 2h3/8,

|H(s(x))|σ(ϑ(x)) −Ch1/4 if d(x, ∂Ω) � 2h3/8.
(4.4)

Here we recall thatϑ(x) satisfies:∣∣H(s(x))∣∣ · sinϑ(x) =−〈H(s(x)) |N(s(x))〉,(4.5)

wheres(x) is, for x near∂Ω, the point in∂Ω such that:

d(x, ∂Ω) = d
(
x, s(x)

)
,

and we observe that, due to (3.7),σ(ϑ(x)) is well defined by (4.5).
The first consequence (compare with Theorem 2.2) is:

THEOREM 4.4. –

lim
h→0

(
λ(h)/h

)
=min

(
inf
x∈Ω

∣∣H(x)
∣∣, inf

x∈∂Ω

∣∣H(x)
∣∣σ(ϑ(x))).(4.6)

The lower bound is a direct consequence of Theorem 4.3 and the proof of the upper b
sketched in [23]. WhenH(x) is constant of intensityb, then the minimum in (4.6) is obtaine
for the second term and we have:

lim
h→0

(
λ(h)/h

)
= b
(

inf
x∈∂Ω

σ
(
ϑ(x)

))
.(4.7)
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In view of (6.3), there exists a pointx such thatϑ(x) = 0. So we get:

lim
(
λ(h)/h

)
=Θ0b.(4.8)

). In
points

ary

, it is
ce

onstant
in the

t

d

h→0

Remark4.5. – As in [12], this leads to localization theorems ([23,13], see also [28]
particular, if the magnetic field is constant, then the ground state is localized near the
of the boundary where the magnetic field is parallel to the tangent space.

Application. An interesting case is the case whenH is constant and whenΩ is the ellipsoid:

a1x
2
1 + a2x

2
2 + a3x

2
3 � 1.

The set of points where&H = (H1,H2,H3) is parallel is obtained by intersecting the bound
of the ellipsoid with the plane:

a1x1H1 + a2x2H2 + a3x3H3 = 0.

More generally, if the surface is strictly convex and if the magnetic field is constant
possible to show that the set of points of the boundary whereH is parallel to the tangent spa
is aC∞ curve.

We emphasize that Theorem 4.4 does not explain all the situation. In the case with c
magnetic field it would be nice to show the role of some curvature in the localization as
case of dimension2. This is actually our goal to give an answer to this question.

5. Adapted coordinates

5.1. Magnetic geometrical invariants

The standard coordinates onR3 will be denoted byx = (x1, x2, x3) and the standard fla
metric byg0. We will also use〈. | .〉 for g0(. , .) or for g�0(. , .), and|X | for (〈X |X〉)1/2, (if X is
a vector field or a one-form). The standard volume onR3 will be denoted by

ω3 = dx3 = dx1 ∧ dx2 ∧ dx3

and will fix also the orientation ofR3.
Let A be a smooth magnetic potential one-form onΩ:

A=
3∑

j=1

Aj(x)dxj , Aj ∈C∞(Ω;R).

The magnetic fieldB is the two-form:

B = dA=
∑

1�i<j�3

Bij(x)dxi ∧ dxj , Bij(x) =
∂Aj

∂xi
(x)− ∂Ai

∂xj
(x).(5.1)

If neededBij(x) is extended as an antisymmetric matrixBx. The intensity of the magnetic fiel
is the non-negative function

|B|(x) = sup
{
|Bx(X,Y )|; X,Y ∈ TxΩ, |X |= |Y |= 1

}
, ∀x ∈Ω.(5.2)
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One associates to the magnetic fieldB, a vector field&H :=H(B) ∈ TΩ by

Bx(X,Y ) = ω3

(
X,Y,Hx(B)

)
, ∀X,Y ∈ TxΩ.(5.3)

lacian

nt
s

In the initial coordinates, we have:

H(B) =
3∑

j=1

bj(x)
∂

∂xj
, with b1 =B23, b2 =B31 andb3 =B12.(5.4)

Then the magnetic intensity satisfies:

|B|=
∣∣H(B)

∣∣.(5.5)

We associate to the magnetic potentialA the sesquilinear form onH1(Ω):

u �→ qhA(u) =
∫
Ω

∣∣√−1hdu+ uA
∣∣2 dx3.(5.6)

Hereh ∈ ]0,+∞[ is a parameter. The associated differential operator is the magnetic Lap
which is given in the standard coordinates by

P h
A = (hD−A)2 =

3∑
j=1

(
hDxj −Aj(x)

)2
.(5.7)

5.2. Local coordinates

If y = (y1, y2, y3) are new local coordinates, that is, ifVx0 is a neighborhood of some poi
x0 ∈ Ω and if x �→ y = Φ(x) is a diffeomorphism ofVx0 ontoO ⊂ R

3, then in the new basi
( ∂
∂y1

, ∂
∂y2

, ∂
∂y3

) of TVx0 , the standard metricg0 and the volumeω3 become

g0 =
∑

1�i,j�3

gij dyi ⊗ dyj ,(5.8)

and

ω3 = |g|1/2dy1 ∧ dy2 ∧ dy3,(5.9)

with

gij =
〈

∂x

∂yi

∣∣∣∣ ∂x

∂yj

〉
, 〈X |Y 〉=

∑
1�i,j�3

gijX̃iỸj , |g|= det(gij),

where

X =
∑
j

X̃j
∂

∂yj
and Y =

∑
j

Ỹj
∂

∂yj
.

The magnetic potential is given in the new coordinates by

A=
3∑

j=1

Ãj dyj with Ãj =
3∑

k=1

Ak
∂xk

∂yj
.(5.10)
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The magnetic field is also given by

∑ ∂Ãj ∂Ãi

B =

1�i<j�3

B̃ij dyi ∧ dyj with B̃ij =
∂yi

−
∂yj

.(5.11)

So the vector magnetic field becomes

H(B) =
3∑

j=1

b̃j
∂

∂yj
,(5.12)

with

b̃1 = |g|−1/2B̃23, b̃2 = |g|−1/2B̃31, b̃3 = |g|−1/2B̃12,(5.13)

and the intensity of the magnetic field becomes:

|B|=
(∑

i,j

gij b̃ib̃j

)1/2

.(5.14)

The sesquilinear form takes the following form, foru supported inVx0 ,

qhA(u) =
∫

Vx0

|g|1/2
∑

1�i,j�3

gij [hDyiu− Ãiu]× [hDyju− Ãju]dy3,(5.15)

and the associated differential operator is

P h
A = |g|−1/2

∑
1�i,j�3

(hDyj − Ãj) · |g|1/2gij(hDyi − Ãi).(5.16)

Heregij is the inverse matrix of the matrixgij .

5.3. Adapted local coordinates near the boundary

Let φ(x) = (y1, y2) be local coordinates on the boundary andG the induced metric byg0

on ∂Ω in these coordinates. Then forε > 0 small enough (and modifying a littleVx0 if
necessary), we can define local coordinates onVx0 ,

Φ:Vx0 →S × ]0, ε[, Φ(x) = (y1, y2, y3),

whereS is an open set inR2, such that

y3(x) = dist
(
x,φ−1(y1, y2)

)
= dist(x, ∂Ω);(5.17)

so

x= φ−1(y1, y2) + y3N
(
φ−1(y1, y2)

)
, ∀x ∈ Vx0 ,(5.18)

whereN(x) is the interior unit normal to∂Ω at the pointx ∈ ∂Ω.
Then we get by simple computation the form of the standard flat metricg0 in these new

coordinates,
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g0 =
∑

1�i,j�3

gijdyi ⊗ dyj

∑ 〈
∂N

∣∣ ∂x
〉

take

of the

ant

roof of

ind

ix

is
= dy3 ⊗ dy3 +G+2y3

1�i,j�2
∂yi

∣∣ ∂yj dyi ⊗ dyj

+ y2
3

∑
1�i,j�2

〈
∂N

∂yi

∣∣∣∣ ∂N∂yj
〉
dyi ⊗ dyj .(5.19)

In this case we have, using (5.10) and (5.18),

Ã3 =
3∑

j=1

AjNj .

Remark5.1. – In the following, we choose a finite family of open setsVxj (xj ∈ ∂Ω) covering
a tubular neighborhood of∂Ω. When we speak later of local coordinates, we mean that we
some element belonging to this family.

6. Rough upper bounds

To prove our results, we need some rough preliminary estimates (with some control
remainder) of the ground state energy.

PROPOSITION 6.1. – Let Ω be a bounded open set ofR3 with smooth boundary∂Ω. Let
P h,N
A,Ω be the Neumann operator onL2(Ω) associated to the Schrödinger operator with const

magnetic field(hD − A)2 and let us assume that the vector magnetic fieldH = curl(A) is
constant of intensityb.

If λ(h) = inf Sp(P h,N
A,Ω ) is the first eigenvalue ofP h,N

A,Ω , then there exists a constantC0 such
that

λ(h) � bΘ0h+C0h
4/3.(6.1)

Remark6.2. – It is not necessary to assume that the magnetic field is constant as the p
this proposition will show. If one choose a pointx0 such thatH(x0) is tangent to∂Ω, one can
get the same result withb = |H(x0)|. One can then optimize by choosing a point of this k
such that|H(x0)| is minimal. IfΓH is the set introduced in (1.4) we will prove:

λ(h) � Θ0 inf
x∈ΓH

∣∣H(x)
∣∣h+C0h

4/3.(6.2)

This kind of estimate, with a more explicit, but not optimalC0, appears already in the append
of [23].

Proof of Proposition 6.1. –As the flux of the magnetic field through the boundary is zero,∫
∂Ω

〈
curl

(
A(x)

)
|N(x)

〉
ds=

∫
Ω

div curl(A)dx= 0,(6.3)

if N is the interior normal unit of∂Ω, there existsx0 ∈ ∂Ω such that the vector magnetic field
tangent to∂Ω atx0: 〈

curl
(
A(x0)

)
|N(x0)

〉
= 0.
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We take local coordinates(y1, y2) in a neighbourhood ofW0 of x0 in ∂Ω such that the metric is
δij atx0 and ∂

∂y1
is parallel to the vector magnetic field.

We consider the adapted coordinatesy = (y1, y2, y3), with y3(x) = d(x, ∂Ω), and then

gij(x0) = δij . If Ã is the magnetic potential in the new coordinates,A · dx= Ã · dy, then

∂Ã3

∂y2
(x0)−

∂Ã2

∂y3
(x0) = b,

∂Ã1

∂y3
(x0)−

∂Ã3

∂y1
(x0) = 0,(6.4)

∂Ã2

∂y1
(x0)−

∂Ã1

∂y2
(x0)) = 0.

We can find a gauge transformexp iϕh , with ϕ real, such that, in (8.27),

Ã1(x0) = 0, Ã2(x0) = 0, Ã3 = 0.

We first estimate the error occuring when eliminating the terms vanishing to order3.
If u ∈H1(Ω) is such that

supp(u)⊂
{
x; |x− x0|� hδ

}
(6.5)

with δ > 0, and ifh is small enough, then, for someC > 0,

qhA(ei
ϕ
h u) � (1 + hδC)qhA0(u) +C

[
h3δ
(
qhA0(u)

)1/2 · ‖u‖+ h6δ‖u‖2
]
,(6.6)

where

A0
1 =R1(y), A0

2 =−by3 +R2(y), A0
3 = 0,

theRj(y) are polynomial functions, homogeneous of order two,

Rj(y) =
∑
|α|=2

aj,αy
α,

and

qhA0(u) =
∫

|y|�Chδ, y3>0

∣∣(hDyu−A0(y)u
∣∣2 dy.(6.7)

We take the functionu in the form

u(y1, y2, y3) := e−ib1/2y2ξ0/h
1/2

v(y)

with

v(y1, y2, y3) = h− 1
4−δϕ0(b1/2h−1/2y3)χ(4h−δy3)χ

(
4h−δ(y2

1 + y2
2)

1/2
)
.(6.8)

Hereχ is a cut off function equal to one on[− 1
2 ,

1
2 ] and supported in[−1,1], ϕ0 is introduced in

Section 2.2 andδ ∈ ]0, 1
2 [.
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Observing that:∫ (∣∣ ∣∣2 ∣∣ ∣∣2) ∫ ∣∣ ∣∣2

d

refully

undary
of the

the
R+

Dtϕ0(t) + (t− ξ0)ϕ0(t) dt=Θ0

R+

ϕ0(t) dt,

and thatt �→ ϕ0(t) is an exponentially decreasing function at infinity, we get whenδ = 1
3 ,

qh
Â0(u) � (bΘ0h+Ch4/3)‖u‖2,(6.9)

where

Â0
1 = 0, Â0

2 =−by3, Â0
3 = 0.

We then have to compareqh
Â0(u) andqhA0(u). The first try could be to use:

qhA0(ei
ϕ
h u) � (1 + hδC)qh

Â0(u) +C
[
h2δ
(
qh
Â0(u)

)1/2 · ‖u‖+ h4δ‖u‖2
]
.(6.10)

This leads to error terms of sizeh1+δ, h
1
2+2δ, h4δ andh2−2δ. But this leads only, using (6.9) an

(6.10) withδ = 1
3 , to (6.1) withO(h7/6) instead ofO(h4/3) as expected.

In order to get effectively (6.1), we need to use (2.8). We have indeed to analyze more ca
the term which was bounded from above in (6.10) byh2δ(qh

Â0(u))
1/2 · ‖u‖.

The terms which were estimated byh
1
2+2δ are of the form

h− 1
2−2δ

∫
yjyk

(
ξ0 −

b1/2y3

h1/2

)
ϕ2

0(b
1/2h−1/2y3)χ2

(
4h−δ(y2

1 + y2
2)

1/2
)
dy,

with j andk equal to1 or 2. But they actually vanish due to (2.8).
The other terms have actually better upper bounds. For example:

h− 1
2−2δ

∫
y2y3

(
ξ0 −

b1/2y3

h1/2

)
ϕ2

0(b
1/2h−1/2y3)χ(4h−δy3)χ2

(
4h−δ(y2

1 + y2
2)

1/2
)
dy,

can be estimated byO(h1+δ). This achieves the proof of Proposition 6.1.✷
This suggests strongly that the next term in the expansion ofλ(h) isO(h4/3), but to go further

we need to analyze the model more carefully in the neighborhood of the points of the bo
where〈H(x) |N(x)〉 vanishes. For this we need to enter more deeply into the geometry
boundary in connection with the magnetic vector field, and this will be done in Section 8.

7. Rough lower bounds

We assume that the magnetic field is constant. Letuh be an eigenfunction associated to
eigenvalueλ(h) = inf Sp(P h,N

A,Ω ).

7.1. A priori estimates

As proved in [12], we have, without the assumption (1.5), the following behavior ofuh.
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PROPOSITION 7.1. – If t = t(x) = d(x, ∂Ω), then, for anyk ∈ N, there exists a constantCk

depending only onk, such that

],

e can
‖tk/2uh‖� Ckh
k/4‖uh‖(7.1)

and ∥∥tk/2(hD−A)uh
∥∥� Ckh

(k+2)/4‖uh‖.(7.2)

Proof. –Proposition 6.1 and the fact thatΘ0 < 1 give the existence of constantsh0 > 0 and
C0 > 1 such that

C−1
0 bh � bh− λ(h) � C0bh, ∀h ∈ ]0, h0].(7.3)

Of course this is a very rough estimate.
Let us remark that (7.1) and (7.2) are valid whenk = 0. As for the2-dimensional case in [11

we proceed by recursion.
By changingt away from the boundary, we can assume thatx �→ t(x) = d(x, ∂Ω) is extended

as aC1(Ω) function. By choosing suitable coordinates and after a gauge transform, w
assume that

A1(x) = 0, A2(x) =−
b

2
x3, A3(x) =

b

2
x2.

As t/∂Ω= 0, we have by integrating by parts and fork > 0,

ihb

∫
Ω

tk|uh|2 dx=
∫
Ω

tk
[
(hD2 −A2), (hD3 −A3)

]
uh · ūh dx

=
∫
Ω

tk
{
(hD3 −A3)uh(hD2 −A2)uh − (hD2 −A2)uh(hD3 −A3)uh

}
dx

+ ihk

∫
Ω

tk−1

{
∂t

∂x2
(hD3 −A3)uh − ∂t

∂x3
(hD2 −A2)uh

}
ūh dx(7.4)

and ∫
Ω

tk
∣∣(hD−A)uh

∣∣2 dx=
∫
Ω

{
λ(h)tk|uh|2 − ihktk−1

(
(∇xt) · (hD−A)uh

)
ūh
}
dx.(7.5)

If k = 1 we get from (7.4)

hb

∫
Ω

t|uh|2 dx �
∫
Ω

t
∣∣(hD−A)uh

∣∣2 dx+Ch
∥∥(hD−A)uh

∥∥ · ‖uh‖,(7.6)

and then, we use (7.5) to get

hb

∫
Ω

t|uh|2 dx � λ(h)
∫
Ω

t|uh|2 dx+Ch
∥∥(hD−A)uh

∥∥ · ‖uh‖.(7.7)

So (
hb− λ(h)

)∫
Ω

t|uh|2 dx � Ch
√

λ(h)‖uh‖2.(7.8)
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We obtain (7.1) withk = 1 from (7.3) and (7.8), and then it is easy to get (7.2) fork = 1
from (7.5) by using (7.3), (7.1) withk = 1 and (7.2) withk = 0.

If k � 2, we get in the same way

h

(
hb− λ(h)

) ∫
Ω

tk|uh|2 dx � hkC
∥∥t−1+ k

2 (hD−A)uh
∥∥ · ‖tk/2uh‖,(7.9)

which gives, using (7.3),

‖tk/2uh‖� Ck
∥∥t−1+ k

2 (hD−A)uh
∥∥.(7.10)

Using (7.10) and (7.5) we get∥∥tk|(hD−A)uh
∥∥2 � Ckh

[
‖tk/2uh‖2 +

∥∥t−1+ k
2 |(hD−A)uh

∥∥2]
.(7.11)

Then we can proceed by recursion. (7.2) fork = j − 2 and (7.10) fork = j give (7.1) fork = j.
Formulas (7.11) withk = j and (7.2) fork = j − 2 give (7.2) withk = j. ✷
7.2. A partition of unity

Let (χγ(z))γ∈Z3 be a partition of unity ofR3. For example we can take

χγ ∈C∞(R3;R) and supp(χγ)⊂ γ + [−1,1]3, ∀γ ∈ Z
3,

∑
γ

χ2
γ(z) = 1 and

∑
γ

∣∣�χγ(z)
∣∣2 <∞.(7.12)

If τ(h) is a function ofh such thatτ(h) ∈ ]0, ε(Ω)[, whereε(Ω) is the geometric constant whic
is the maximalε for the property that{d(x, ∂Ω) < ε} is a regular tubular neighborhood inΩ
of ∂Ω, we will define the functions

χγ,τ(h)(z) = χγ

(
z/τ(h)

)
, ∀γ ∈ Z

3.(7.13)

So we get a new partition of unity such that∑
γ

χ2
γ,τ(h)(z) = 1,

∑
γ

∣∣∇χγ,τ(h)(z)
∣∣2 � Cτ(h)−2,(7.14)

and

supp(χγ,τ(h))⊂ τ(h)γ +
[
−τ(h), τ(h)

]3
.

Then, for anyu∈H1(Ω), we have:

qhA(u) =
∑
γ

[
qhA(χγ,τ(h)u)− h2

∥∥|∇χγ,τ(h)|u
∥∥2]

.(7.15)

Let us define
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Γτ(h)(Ω) =
{
γ ∈ Z

3; supp(χγ,τ(h))∩Ω �= ∅
}
,

Γ0
τ(h)(Ω) =

{
γ ∈ Γτ(h)(Ω); dist

(
supp(χγ,τ(h)), ∂Ω

)
> τ(h)

}
,(7.16) { ( ) }

onstant

unity
Γ1
τ(h)(Ω) = γ ∈ Γτ(h)(Ω); dist supp(χγ,τ(h)), ∂Ω � τ(h) .

7.3. Proof of Theorem 1.1: lower bounds

For the moment, we give a rough lower bound of the ground state energy in the case of c
magnetic field.

PROPOSITION 7.2. – Under the assumptions of Proposition6.1,there existsC0 such that:

bΘ0h−C0h
4/3 � λ(h).(7.17)

Proof. –We proceed as in the proof of Proposition 9.2 of [12] and use the partition of
introduced in the previous subsection.

Far from the boundary.As curlA is constant, the standard estimate gives:∥∥(hD−A)w
∥∥2

L2(R3)
� bh‖w‖2L2(R3), ∀w ∈C∞

0 (R3).

So

qhA(χγ,τ(h)u) � bh‖χγ,τ(h)u‖2, ∀γ ∈ Γ0
τ(h)(Ω).(7.18)

Near the boundary.Supposeγ ∈ Γ1
τ(h)(Ω); then there exist local coordinates4 adapted to the

boundaryy = (y1, y2, y3) such thaty3(x) = d(x, ∂Ω).
Then, forτ(h)< 1 and for some integerk ∈N�,

qhA(χγ,τ(h)u)�
(
1−Cτ(h)

)
qh
Ã(k)

(χγ,τ(h)u)

−C
(
τ(h)

)k+1‖χγ,τ(h)u‖ ·
(
qhA(χγ,τ(h)u)

)1/2
−C

(
τ(h)

)2k+2‖χγ,τ(h)u‖2,(7.19)

with, for somey0 ∈ ∂Ω∩ {[−τ(h), τ(h)]3 + supp(χγ,τ(h))},

Ã(k) = Ã(y0) +
∑

1�|α|�k

(y− y0)α
∂αÃ

∂yα
(y0)(7.20)

and

qh
Ã(k)

(w) = |g|1/2(y0)
∫

R2×R+

[∣∣(hDy3 − Ã
(k)
3 )w

∣∣2
+

∑
1�i,j�2

gij(y0)(hDyi − Ã
(k)
i )w · (hDyj − Ã

(k)
j )w

]
dy.(7.21)

Let us remark that

‖χγ,τ(h)u‖2 �
(
1 +Cτ(h)

)
|g|1/2(y0)

∫
R2×R+

|χγ,τ(h)u|2 dy,(7.22)

4 Belonging to the family introduced in Section 5.3.
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and by (5.12)

b2 = |g|−1(y0)
[
(H̃0

3 )
2 +

∑
gjk(y0)H̃0

j H̃
0
k

]
(7.23)

ecisely
exists

me,
1�j,k�2

if

H̃0
1 =

∂Ã3

∂y2
(y0)−

∂Ã2

∂y3
(y0),

H̃0
2 =

∂Ã1

∂y3
(y0)−

∂Ã3

∂y1
(y0),(7.24)

H̃0
3 =

∂Ã2

∂y1
(y0)−

∂Ã1

∂y2
(y0).

We observe that by (3.3)

sinϑ(y0) =−|g|−1/2(y0)H̃0
3/b.

So, the study of the constant magnetic field in a half-space done in Section 2, (more pr
(3.10), property7 in Section 3.3 and Theorem 3.11), (7.23) and (7.24) show that there
ε1 > 0, such that for allw ∈C∞(R3

+) with compact support,

qh
Ã(1)

(w) � bh

(
Θ0 + ε1|g|−1/2(y0)

|H̃0
3 |
b

)
|g|1/2(y0)

∫
R2×R+

|w|2 dy.(7.25)

We will consider two cases. LetC1 > 1 to be chosen later. For more simplicity, we can assu
after a rotation and a dilation in(y1, y2), that the metricg is standard aty0:

g(y0) = (δij).(7.26)

First case: |H̃0
3 |
b � C1

ε1
h−1/2τ(h)2.

We takek = 1. Then (7.19), (7.22) and (7.25) prove that

qhA(χγ,τ(h)u) +C
(
τ(h)

)2‖χγ,τ(h)u‖ ·
(
qhA(χγ,τ(h)u)

)1/2
�
[
bh
(
Θ0 +C1h

−1/2τ(h)2
)
−C

(
hτ(h) +

(
τ(h)

)4)] · ‖χγ,τ(h)u‖2.(7.27)

This implies: ((
qhA(χγ,τ(h)u)

)1/2 +Cτ(h)2‖χγ,τ(h)u‖
)2

� bh
(
Θ0 +C1h

−1/2τ(h)2
)
·
(
1−Cτ(h)

)
‖χγ,τ(h)u‖2.(7.28)

Taking the square root, we get:(
qhA(χγ,τ(h)u)

)1/2
�
(
(bh)1/2

(
Θ0 +C1h

−1/2τ(h)2
)1/2 · (1−Cτ(h)

)
−Cτ(h)2

)
‖χγ,τ(h)u‖.(7.29)

This finally gives, ifC1 is large enough and if, for someε0 > 0, the weightτ(h) satisfies the
conditionh1/4+ε0 � τ(h) � h1/2,

qhA(χγ,τ(h)u) � h

(
b

(
Θ0 +

1
2
C1h

−1/2τ(h)2
)
−Cτ(h)

)
‖χγ,τ(h)u‖2.(7.30)
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So if h1/4+ε0 � τ(h) � h1/2 andC1 is large enough, there existsh0 > 0 such that

qhA(χγ,τ(h)u) � bhΘ0‖χγ,τ(h)u‖2, ∀h ∈ ]0, h0].(7.31)

sis of
We now keepC1 fixed such that (7.31) is satisfied.

Second case: |H̃0
3 |
b < C1

ε1
h−1/2τ(h)2.

We proceed by steps:
Step1: We use (7.23) but we takek = 2. This leads to:

qhA(χγ,τ(h)u)�
(
1−Cτ(h)

)
qh
Ã(k)

(χγ,τ(h)u)

−C
(
τ(h)

)3‖χγ,τ(h)u‖ ·
(
qhA(χγ,τ(h)u)

)1/2
−C

(
τ(h)

)4‖χγ,τ(h)u‖2.(7.32)

Step2: Let us now remark that

qh
Ã(2)

(χγ,τ(h)u) � qh
Ã(2,1)

(χγ,τ(h)u)

−C
[
τ(h)‖y3χγ,τ(h)u‖+ ‖y2

3χγ,τ(h)u‖
]
·
(
qhA(χγ,τ(h)u)

)1/2
−C

[
τ(h)2‖y3χγ,τ(h)u‖2 + ‖y2

3χγ,τ(h)u‖2
]
,(7.33)

with

Ã(2,1) = Ã(y0) +
3∑

j=1

(yj − y0j)
∂Ã

∂yj
(y0)

+
2∑

j=1

(yj − y0j)2
∂2Ã

∂y2
j

(y0) + 2(y1 − y01)(y2 − y02)
∂2Ã

∂y1∂y2
(y0).(7.34)

Step3: But it is easy to find a real polynomial functionp(y) such that

qh
Ã(2,1)

(χγ,τ(h)u) = qh
Ã(2,1,0)

(ei
p
h χγ,τ(h)u),(7.35)

with

Ã
(2,1,0)
1 = H̃0

2y3 + a1y
2
2 + b1(y),

Ã
(2,1,0)
2 =−H̃0

1y3 + H̃0
3y1 + a2y

2
1 + b2(y),(7.36)

Ã
(2,1,0)
3 = 0,

where:

b1(y) = c11y1y3 + c12y2y3, b2(y) = c21y1y3 + c22y2y3.

Step4: Modulo an error like in the right hand side of (7.33), we are reduced to the analy

Ã
(2,1,1)
1 = H̃0

2y3 + a1y
2
2,

Ã
(2,1,1)
2 =−H̃0

1y3 + H̃0
3y1 + a2y

2
1 ,(7.37)

Ã
(2,1,1)
3 = 0.

We write
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qh
Ã(2,1,1)

(w) = h2‖Dy3w‖2 + b̃2
∥∥(y3 − b̃−1(sinθL1 − cosθL2)

)
w
∥∥2

+
∥∥(cosθL1 + sinθL2)w

∥∥2
,(7.38)

n

d

stence
with

b̃=
[
(H̃0

1 )
2 + (H̃0

2 )
2
]1/2

, H̃0
1 = b̃ cosθ, H̃0

2 = b̃ sin θ,

and

L1 = hDy1 − a1y
2
2 , L2 = hDy2 − H̃0

3y1 − a2y
2
1 .(7.39)

As the operatorsinθL1 − cosθL2, a priori defined onS(R2), has a self-adjoint realizatio
onL2(R2). This is indeed, after rotation, an operator of the form1

i ∂t + φ(t, y) which is unitary
equivalent to1

i ∂t. Hence, we can consider the spectral representation ofsinθL1 − cosθL2 and
the analysis of Section 2.1 to see that

h2‖Dy3w‖2 + b̃2
∥∥(y3 − b̃−1(sin θL1 − cosθL2)

)
w
∥∥2 � hb̃Θ0‖w‖2.(7.40)

Step5: We now compareb andb̃. We are in the case when|H̃
0
3 |
b <C1h

−1/2τ(h)2. So

|b− b̃|� CC2
1h

−1τ(h)4.(7.41)

Step6: Then (7.32), (7.26) and (7.33)–(7.41) prove that, ifuh is the eigenfunction associate
to the ground state energy ofP h,N

A,Ω and if τ(h) = h1/3, then

qhA(χγ,τ(h)u
h) � [hbΘ0−Ch4/3]‖χγ,τ(h)u

h‖2

−Ch2/3‖tχγ,τ(h)u
h‖2−C‖t2χγ,τ(h)u

h‖2

−Ch1/3‖tχγ,τ(h)u
h‖
[
qhA(χγ,τ(h)u

h)
]1/2

−C‖t2χγ,τ(h)u
h‖
[
qhA(χγ,τ(h)u

h)
]1/2

.(7.42)

We now eliminate the two last lines at the price of a worse error term. We get first the exi
of C such that:

(1 +Ch1/3)qhA(χγ,τ(h)u
h) � (hbΘ0 −Ch4/3)‖χγ,τ(h)u

h‖2

−Ch1/3‖tχγ,τ(h)u
h‖2 −Ch−1/3‖t2χγ,τ(h)u

h‖2,(7.43)

which leads to the existence ofC such that:

qhA(χγ,τ(h)u
h) � (hbΘ0 −Ch4/3)‖χγ,τ(h)u

h‖2

−Ch1/3‖tχγ,τ(h)u
h‖2 −Ch−1/3‖t2χγ,τ(h)u

h‖2.(7.44)

The last two terms will be controlled by summation using Proposition 7.1.
End of the proof.With τ(h) = h1/3, we get from (7.31) and (7.44) that

qhA(χγ,τ(h)u
h) � [bΘ0h−Ch4/3] · ‖χγ,τ(h)u

h‖2

−Ch1/3‖tχγ,τ(h)u
h‖2 −Ch−1/3‖t2χγ,τ(h)u

h‖2,(7.45)

if γ ∈ Γ1
τ(h)(Ω).
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Using Proposition 7.1, we verify that:∑ (
h1/3‖tχγ,τ(h)u

h‖2 + h−1/3‖t2χγ,τ(h)u
h‖2
)
� Ch4/3.(7.46)

usly

t
ifically
in
γ∈Γ1
τ(h)

So we get ∑
γ∈Γ1

τ(h)

qhA(χγ,τ(h)u
h) � (bΘ0h) ·

∑
γ∈Γ1

τ(h)

‖χγ,τ(h)u
h‖2 −Ch4/3‖uh‖2.(7.47)

Then (7.17) is deduced from (7.13)–(7.16) withτ(h) = h1/3, (7.18) and from (7.47). ✷
Proof of Theorem 1.1. –Theorem 1.1 follows from the lower bound (7.17) and the previo

obtained upper bound (6.1).✷
8. Refined adapted coordinates on the boundary and curvatures

8.1. Curvatures

For the following geometric properties of embedded surface inR3, we refer mainly to the firs
chapter of [7] (see also the volume two of Spivak’s book [31]). Let us suppose more spec
thatx0 is a point of the boundary∂Ω. The neighborhood ofx0 Vx0 can be chosen such that,
Wx0 := ∂Ω ∩ Vx0 , there exist local coordinates(y1, y2), i.e. there exist an open subsetS of R

2

and a diffeomorphism

φ :∂Ω∩ Vx0 →S, φ(x) = (y1, y2).(8.1)

We denote byy �→ x(y) its inverse. Then{ ∂x
∂y1

, ∂x
∂y2
} is a basis ofTWx0 .

The first fundamental form of∂Ω is the restriction ofg0 to ∂Ω and it is denoted byG. In the
local coordinates(y1, y2), G is given by:

G=
∑

1�i,j�2

Gijdyi ⊗ dyj , Gij =
3∑

k=1

∂xk

∂yi
· ∂xk

∂yj
.(8.2)

The element of area is given by

ds2 = |G|1/2dy1 ∧ dy2,

with

|G|=det(Gij)1�i,j�2.

The unit normal vector to∂Ω is defined by

N =
∂x
∂y1

∧ ∂x
∂y2

| ∂x∂y1
∧ ∂x

∂y2
|
.(8.3)

For any vector fieldsX andY , X ∧ Y is the vector field defined by

ω3(X,Y,X ∧ Y ) = |X |2 · |Y |2 − 〈X | Y 〉2,
〈X |X ∧ Y 〉= 〈Y |X ∧ Y 〉= 0.

(8.4)
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When ∂Ω is the boundary of a bounded regular domain, we can choose moreover these
coordinates such thatN is the interior normal unit vector, and we observe, using (8.4), that:

e its
ω3

(
∂x

∂y1
,
∂x

∂y2
,N

)
> 0.

Remembering that|N |2 = 1, we get that, forj = 1,2,

∂N

∂yj
∈ T∂Ω.

This permits us to introduce the Weingarten mapk from T∂Ω into T∂Ω, by:

k

(
2∑

j=1

λj
∂x

∂yj

)
=−

2∑
j=1

λj
∂N

∂yj
.

This map is independent of the choice of the coordinates respecting (8.3) withN inner normal.
The second fundamental formK onT∂Ω is defined, forX andY in T∂Ω, by

K(X,Y ) =G
(
X,k(Y )

)
=

∑
1�i,j�j

KijXiYj ,(8.5)

where

Kij =−
〈

∂x

∂yi

∣∣∣∣ ∂N∂yj
〉
,(8.6)

andXj andYj are the components ofX andY in the local basis( ∂
∂yj

).
Observing that〈 ∂x

∂yi
|N〉= 0, it is easy to see, by differentiating this equality, that

Kij =
〈

∂2x

∂yi∂yj

∣∣∣∣N〉.(8.7)

In particularK is symmetric. We recall that the Gauss curvature is

κG = det(k) = (K11K22 −K2
12)/(G11G22 −G2

12),(8.8)

and that the mean curvature is

κM =
1
2
tr(k) =

1
2
(k11 + k22),(8.9)

where(kij)ij is the matrixG−1K .
Let a < b. If [a, b] � τ �→ γ(τ) ∈ ∂Ω defines a parametrized closed curve, we denot

oriented image byΓ. We assume moreover that it is parametrized by arc length, that is:∣∣γ′(τ)
∣∣= 1.(8.10)
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The curvature vector(κg, κn) of Γ at the pointγ(τ) is defined5 by

γ′′(τ) =−κg

(
γ(τ)

)
N
(
γ(τ)

)
∧ γ′(τ) + κn

(
γ(τ)

)
N
(
γ(τ)

)
.(8.11)

t

s
he

gn.
The functionκg is called the geodesic curvature andκn the normal curvature ofΓ, at the
pointγ(τ). We observe that this is well defined once an orientation ofΓ is chosen.

As shown in [7] (formula (18)), the normal curvature is given by the equation

κn

(
γ(τ)

)
=K

(
γ′(τ), γ′(τ)

)
.(8.12)

Remark8.1. – Note (cf. [7]) that the geodesic curvature vanishes whenγ is a geodesic. Le
us also recall that the scalar curvature ofΓ is

κs = |γ′′|= (κ2
g + κ2

n)
1/2.

8.2. Local coordinates near a curve inside the boundary

Let Γ be a curve in∂Ω parametrized by arc lengths on some intervalI = [−a1,+a2]:
Γ = {γ(s); s ∈ I}. So we have|γ′(s)|= 1. Then, there exists a neighborhoodWx0 of x0 = γ(0)
in ∂Ω, such that, for anyz ∈Wx0 ∩ Γ, there exists a unique geodesicΛz throughz and normal
to Γ. The neighborhoodWx0 of x0 can also be choosen such that

∀x ∈Wx0 , ∃!z = z(x) ∈ Γ∩Wx0 s.t.d∂Ω(x, z) = d∂Ω(x,Γ),(8.13)

whered∂Ω(. , .) denotes the distance on∂Ω.
Then, there exists an open setS of R2 and a regular diffeomorphism

φ :Wx0 → S, φ(x) = (r, s) with ± r = d∂Ω(x,Γ) = d∂Ω

(
x, γ(s)

)
.(8.14)

We observe that:

x(0, s) = γ(s).

We choose a positive orientation (and this determines the choice of the sign ofr), by imposing:

∂x

∂r
(0, s)∧ ∂x

∂s
(0, s) =N

(
γ(s)

)
,(8.15)

whereN(x) is the interior normal of∂Ω at the pointx ∈ ∂Ω. Then(r, s) are local coordinate
inWx0 and observing that, for any fixeds, r �→ x(r, s) is a parametrization by arc lengths of t
geodesicΛγ(s), we have ∣∣∣∣∂x∂r (r, s)

∣∣∣∣= 1,(8.16)

and 〈
∂x

∂r
(0, s)

∣∣∣∣ ∂x∂s (0, s)
〉

= 0.(8.17)

More precisely we have the following lemma.

5 The definition of the geodesic curvature is not uniform in the literature. Some authors [7] use the opposite si
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LEMMA 8.2. – In the above local coordinates, the metricG on∂Ω is diagonal:

G= dr⊗ dr +α(r, s)ds⊗ ds.(8.18)

he
On the curveΓ, we have

α(0, s) = 1,
∂α

∂r
(0, s) =−2κg

(
γ(s)

)
and

∂α

∂s
(0, s) = 0(8.19)

whereκg(γ(s)) denotes the geodesic curvature of the curveΓ at γ(s).

Proof. –As for any fixeds, the mapr �→ x(r, s) is a parametrization by arc lengths of t
geodesicΛγ(s), the curvature ofΛγ(s) is given, using (8.11), (8.12) and Remark 8.1, by

∂2x

∂r2
(r, s) =K

(
∂x

∂r
(r, s),

∂x

∂r
(r, s)

)
N
(
x(r, s)

)
.(8.20)

Then, we get from (8.20) that

∂

∂r

〈
∂x

∂s

∣∣∣∣ ∂x∂r
〉

=
〈

∂2x

∂s∂r

∣∣∣∣ ∂x∂r
〉

=
1
2

∂

∂s

〈
∂x

∂r

∣∣∣∣ ∂x∂r
〉
.(8.21)

So, using in addition (8.16), we have

∂

∂r

〈
∂x

∂s

∣∣∣∣ ∂x∂r
〉

= 0.(8.22)

But Λγ(s) is normal toΓ; so〈∂x∂s (0, s) |
∂x
∂r (0, s)〉= 0. Then, using (8.22), we get:〈

∂x

∂s
(r, s)

∣∣∣∣ ∂x∂r (r, s)
〉

= 0.(8.23)

This shows that the metric is diagonal as announced in (8.18) with

α(r, s) =
〈
∂x

∂s
(r, s)

∣∣∣∣ ∂x∂s (r, s)
〉
.

We get also from the orthogonality ofγ′ andγ′′ that

∂α

∂s
(0, s) = 0.

But, differentiating the identity (8.23) with respect tos, we have

∂α

∂r
(r, s) = 2

〈
∂2x

∂s∂r

∣∣∣∣ ∂x∂s
〉

=−2
〈
∂x

∂r

∣∣∣∣ ∂2x

∂s2

〉
.(8.24)

But, by (8.11), we have:

∂2x

∂s2
(0, s) = κn

(
γ(s)

)
N
(
γ(s)

)
+ κg

(
γ(s)

)∂x
∂s

(0, s)∧N
(
γ(s)

)
,
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so (8.15) and (8.17) lead to

∂2x ( ) ( ) ( )∂x

ntal

ear
∂s2
(0, s) = κn γ(s) N γ(s) + κg γ(s)

∂r
(0, s).(8.25)

The formulas (8.24) and (8.25) give the non-obvious part of (8.19)

∂α

∂r
(0, s) =−2κg

(
γ(s)

)
. ✷

Remark8.3. – In the coordinates(r, s) introduced in Lemma 8.2, the second fundame
form is given (see (8.7)) by:

K =K11 dr⊗ dr+K12 dr⊗ ds+K21 ds⊗ dr+K22 ds⊗ ds,

with:

K11(r, s) =
〈
∂2x

∂r2
(r, s)

∣∣∣∣N(x(r, s))〉,
K22(r, s) =

〈
∂2x

∂s2
(r, s)

∣∣∣∣N(x(r, s))〉,
K12(r, s) =

〈
∂2x

∂r∂s
(r, s)

∣∣∣∣N(x(r, s))〉,
K21(r, s) =K12(r, s).

The functionK11(r, s) is the normal curvature of the geodesicΛγ(s) atx(r, s) and the function
K22(0, s) = κn(γ(s)) is the normal curvature of the curveΓ atx(0, s) = γ(s).

8.3. Local coordinates near a curve in the boundary

We come back to previous computations and relate them to the curvatures. Letφ(x) = (y1, y2)
be local coordinates of the boundary as defined in (8.1). We have observed in (5.19), that

g0 = dy3 ⊗ dy3 +
∑

1�i,j�2

[
Gij(y1, y2)− 2y3Kij(y1, y2) + y2

3Lij

]
dyi ⊗ dyj ,(8.26)

where
• G=

∑
1�i,j�2 Gij dyi ⊗ dyj ,

• K =
∑

1�i,j�2 Kij dyi ⊗ dyj ,

• L=
∑

1�i,j�2 Lij dyi ⊗ dyj =
∑

1�i,j�2〈 ∂N∂yi
| ∂N
∂yj
〉dyi ⊗ dyj .

G, K andL are respectively called the first, second and third fundamental forms on∂Ω. If we
take local coordinates(y1, y2) = (r, s) on the boundary given by Lemma 8.2, the sesquilin
form introduced in (5.15) becomes

qhA(u) =
∫

Vx0

|g|1/2
[
|hDy3 − Ã3u|2 +

∑
1�i,j�2

gij(hDyiu− Ãiu) · (hDyju− Ãju)
]
dy3,

(8.27)
for u supported inVx0 , the associated differential operator is
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P h
A = (hDy3 − Ã3)2 +

h

2i
|g|−1

(
∂

∂y3
|g|
)
(hDy3 − Ã3)

−1/2
∑ ˜ (

1/2 ij ˜ )

s of

is
a

cal
+ |g|
1�i,j�2

(hDyj −Aj) |g| g (hDyi −Ai) .(8.28)

If we now consider the coordinates introduced in Section 8.2, that is(y1, y2) = (s, t) and
complete byt= y3 introduced in Section 5.3, then

|g|= α(r, s)− 2t
[
α(r, s)K11(r, s) +K22(r, s)

]
+ t2ε3(r, s, t),(8.29)

and, for1 � i, j � 2,

(gij)1�i,j�2 =
(
1 0
0 α−1

)
+2t

(
K11 α−1K12

α−1K21 α−2K22

)
+ t2R,(8.30)

whereε3 andRij are smooth functions.

8.4. More magnetic geometry: discussion around our invariants

We assume that the magnetic fieldH = curlA is constant and we can assume, without los
generality, that:

A(x) =
b

2
(0,−x3, x2)(8.31)

for some fixedb > 0.
Let Ω be bounded open set ofR3 with regular boundary∂Ω. We now assume that (1.5)

satisfied. We observe that this assumption is satisfied whenΩ is strictly convex. We consider
parametrizations �→ γ(s) of ΓH by arc length, and

θ(s) = Arcsin
(〈

γ′(s)
∣∣∣∣ H(B)
|H(B)|

〉)
.(8.32)

We have already introducedκn,B in (1.6). Similarly, we can define:

κt,B

(
γ(s)

)
=K

(
γ′(s),

H(B)
|H(B)|

)
.(8.33)

We observe that we have:

κn,B

(
γ(s)

)
=K

(
∂

∂r
,
H(B)
|H(B)|

)
= cosθ(s)K11(0, s) + sinθ(s)K12(0, s);

κt,B

(
γ(s)

)
=K

(
∂

∂s
,
H(B)
|H(B)|

)
= cosθ(s)K12(0, s) + sinθ(s)K22(0, s).

(8.34)

Let us observe that the angleθ(s) is not “free” in our picture. In fact we have the geometri
fact:

PROPOSITION 8.4. – The assumptionH(B) is constant and tangent to the surface∂Ω along
the curveΓH implies that

κt,B(x) = 0, ∀x ∈ ΓH .(8.35)
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Moreover, we have:

θ′(s) = κg

(
γ(s)

)
, ∀s.(8.36)

,

Proof. –Let us write:

H(B) = sin
(
θ(s)

)
γ′(s) + cos

(
θ(s)

)[
γ′(s)∧N(γ(s)

]
.(8.37)

As H(B) is constant, we can differentiate with respect tos (8.37) and we get:

θ′(s)
[
cos
(
θ(s)

)
γ′(s)− sin

(
θ(s)

)
γ′(s) ∧N

(
γ(s)

)]
+ sin

(
θ(s)

)
γ′′(s)

+ cos
(
θ(s)

)[
γ′′(s)∧N

(
γ(s)

)
+ γ′(s)∧ (N ◦ γ)′(s)

]
= 0.

But using the coordinates of Lemma 8.2, formula (8.6) gives

(N ◦ γ)′ =−(K12 ◦ γ)γ′ ∧N(γ)− (K22 ◦ γ)γ′,

and (8.25) becomes

γ′′ = (κg ◦ γ)γ′ ∧ (N ◦ γ) + (κn ◦ γ)(N ◦ γ).

So

θ′
[
cosθγ′ − sin θγ′ ∧ (N ◦ γ)

]
+ sinθ

[
(κg ◦ γ)γ′ ∧ (N ◦ γ) + (κn ◦ γ)(N ◦ γ)

]
+ cosθ

[
−(κg ◦ γ)γ′ + (K12 ◦ γ)(N ◦ γ)

]
= 0,

and then, expressing the previous equality on the basisγ′ ∧ (N ◦ γ), γ′, N ◦ γ,

cosθ
[
θ′ − (κg ◦ γ)

]
= 0,

sin θ
[
−θ′ + (κg ◦ γ)

]
= 0,(8.38)

sin θ(κn ◦ γ) + cosθ(K12 ◦ γ) = 0.

We get (8.36), and using (8.12) we get also (8.35) fromκn ◦ γ =K22 ◦ γ and from (8.34). ✷
Remark8.5. – In the case when∂Ω is strictly convex, (K > 0), then (8.35) implies that

κn,B �= 0, ∀x ∈ ΓH .(8.39)

One can also meet degenerate cases whereK is not invertible (locally cylindric domains).
When θ(s) = 0, we deduce from (8.34) and (8.35) thatK12(x(s)) = 0. So the curvature

matrixK becomes diagonal.

Proof. –We observe that (8.34) can be rewritten at a pointx= γ(s) in the form:(
κn,B(x)
κt,B(x)

)
=Kx

(
cosθ(s)
sin θ(s)

)
.(8.40)

Observing thatKx is inversible whenΩ is strictly convex (Kx is actually strictly positive), we
immediately see that|κn,B(x)|+ |κt,B(x)| �= 0.

Remark8.6. – The condition thatθ′ = κg ◦γ is obtained also in the caseθ ≡ 0. So in this case
we have effectivelyκg = 0. SoΓH should be a geodesic. Conversely, whenΓH is a geodesic
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we should haveθ ≡ 0 if H(B) is constant. We observe indeed that by computing the circulation
of H(B) alongΓH and using Stokes Lemma (or more simply that〈H(B) | γ′〉= d

ds〈H(B) | γ〉),
we should have:

e

re
at
al

using

s only
b∫
a

sin θ(s)ds= 0.

Whenθ is constant, this impliesθ = 0.

Example8.7. – Let us consider the case of the ellipsoid:

a1x
2
1 + a2x

2
2 + a3x

2
3 = 1.

It is interesting to compute our invariants. Take for simplification, the case whenB = (0,0,1).
ThenΓH is the intersection of the ellipsoid withx3 = 0. So we get an ellipse in this plane. W
can now observe that the vector fieldH is orthogonal toΓH . We observe that:

〈H |N〉=−|B|a3x3

ν
,

with

ν =
√

a2
1y

2
1 + a2

2y
2
2 + a2

3x
2
3.

This leads to: ∣∣κn,B(y1, y2)
∣∣= a3

ν
.

The minimum ofκn,B (which appears in formula (1.10)) is then obtained at the point wheν
is maximal. If we assume for example thata1 > a2, we get that this maximum is obtained
x2 = x3 = 0 and equal toa1. This differs from the intuition we got from the two-dimension
case.

Remark8.8. – Using (8.32), we observe that we have:

sin2
(
θ(x)

)
=
〈
T (x)

∣∣∣∣ H(B)
|H(B)|

〉2

,

and this permits to compare various formulations of the constantγ̂0 introduced in (1.10).

Remark8.9. – The expression in (1.10) can be related more directly to the curvature by
the following formula:

κn,B(x)2
(
1
2
µ′′(ξ0) sin2 θ(x) + cos2 θ(x)

)
= κG(x)2

(
κn(x)2 +

1
2
µ′′(ξ0)Kx

(
T (x), T (x)∧N(x)

))
×
(
κn(x)2 +Kx

(
T (x), T (x)∧N(x)

))−2
.(8.41)

The proof is left to the reader. The interest of this formula is that its computation depend
on invariants related toΓH .
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Remark8.10. – IfκG �= 0, thenκn,B is different from0. We have indeed:

κG

)

ant,

a

ion

a more

a

lways
κn,B =
κn

cosθ.(8.42)

Note that if we assume in addition that

κn(x) �= 0,

thenH can not be tangent toΓH . This would mean indeed thatθ = π
2 , and by (8.34) and (8.35

thatK22 = 0.

9. Towards the model: new normal forms

In this section, the vector magnetic fieldH(B), introduced in (5.3), is assumed to be const
more precisely

H(B) = b
∂

∂x1
,(9.1)

with b = |H(B)| > 0. Moreover the setΓH = {x ∈ ∂Ω; H(B) ∈ Tx(∂Ω)} is assumed to be
regular curve.

The angle between the normal toΓH in Tx∂Ω andH(B) will be denoted byθ(x).
We will work near a point ofΓH x0 to be determined and will look for a good approximat

of the operator in a small box aroundx0.
We consider local coordinates(r, s, t) in a neighborhoodVx0 of x0, such that(r, s) are the

coordinates of Lemma 8.2, andt is such that

t= t(x) = distance(x, ∂Ω).

9.1. Normal form for the magnetic potential

In this subsection we shall show how after a suitable gauge transform, we can arrive to
tractable model. We assume that the magnetic field is constant.

LEMMA 9.1. – Let Ã be the magnetic potential defining̃B, in the coordinates(r, s, t) defined
near x0 = (0, s0,0). Let Ã(2) be the Taylor expansion to order2 of Ã. Then there exists
polynomial function ofy = (r, s− s0, t), p0(y) such that,

Ã(2) =A0 + grady p
0,(9.2)

with

A0
1 = bt

[
sinθ0 + κg(x0) cosθ0(s− s0)− sinθ0κ

M (x0)t
]
,

A0
2 =−bt

[
cosθ0 − κg(x0) cosθ0r− κg(x0) sinθ0(s− s0)− cosθ0κ

M (x0)t
]

− 1
2
bκn,B(x0)r2,

A0
3 = 0.

(9.3)

Remark9.2. – The proof will use assumption (1.8). We recall that this assumption is a
satisfied in the strictly convex case. In this caseH(B) cannot be tangent toΓH .
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Proof. –To prove this lemma, we have just to determine the Taylor expansion up to order1
of the magnetic field in the coordinates(r, s− s0, t) at the point(0, s0,0). Let us first recall that
we have assumed thatA was given by (8.31) and that the corresponding vectorH(B) is defined

t
a 8.2.
by (9.1). Let us analyze its expression in the new coordinates(r, s, t):

H(B) = b
∂

∂x1
= b̃1

∂

∂r
+ b̃2

∂

∂s
+ b̃3

∂

∂t
,(9.4)

and, by (8.26), (8.18) and (9.4), we get

b
∂x1

∂r
=
〈
H(B)

∣∣∣∣ ∂

∂r

〉
= b̃1(1− 2tK11)− 2tb̃2K12 +O(t2),(9.5)

b
∂x1

∂s
=
〈
H(B)

∣∣∣∣ ∂

∂s

〉
= b̃2(α− 2tK22)− 2tb̃1K12 +O(t2),(9.6)

and

b
∂x1

∂t
=
〈
H(B)

∣∣∣∣ ∂

∂t

〉
= b̃3.(9.7)

Using (8.19), (9.5), (9.6) and Schwarz Lemma forx1, we get:

∂b̃1
∂s

=
∂

∂r
(αb̃2) =−2(κg ◦ γ) b̃2 +

∂b̃2
∂r

,(9.8)

whent= r = 0.
We have:

b̃1 = b cosθ(s), b̃2 = b sinθ(s), b̃3 = 0,(9.9)

whent= r = 0.
This leads by differentiation with respect tos to:

∂b̃1
∂s

=−b sinθ(s)θ′(s),

∂b̃2
∂s

= b cosθ(s)θ′(s),(9.10)

∂b̃3
∂s

= 0,

whent= r = 0. Then we get by coming back to (9.8) that (9.9) leads to:

∂b̃2
∂r

=−b sinθθ′ +2(κg ◦ γ)b sinθ.(9.11)

Using (8.36), we get:

∂b̃2
∂r

= (κg ◦ γ)b sinθ.(9.12)

We would like now to have an expression for∂b̃1
∂r . We shall again use thatH(B) is a constan

vector field and compute the square of its norm, using (5.14), formula (5.19) and Lemm
This leads to:

b2 = b̃21 +α(r, s)b̃22 + b̃23,(9.13)
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on t= 0.
Differentiating (9.13) with respect tor, we get forr = t= 0,
b̃1
∂b̃1
∂r

+
1
2
∂α

∂r
(b̃2)2 + b̃2

∂b̃2
∂r

= 0.(9.14)

But we can now use (8.19) and (9.9) and we get:

cosθ(s)
∂b̃1
∂r

(0, s,0) = 0.

This gives finally, using (1.8):

∂b̃1
∂r

= 0,(9.15)

whent= r = 0.
Let us now use (9.7) to write that

∂b̃3
∂r

=
∂

∂r

〈
H(B) |N

〉
=
〈
H(B)

∣∣∣∣ ∂N∂r
〉
,

whent= 0.
Then, using also (9.4), (9.9) and (8.6), we obtain:〈

H(B)
∣∣∣∣ ∂N∂r

〉
= b cosθ(s)

〈
∂

∂r

∣∣∣∣ ∂N∂r
〉

+ b sinθ(s)
〈

∂

∂s

∣∣∣∣ ∂N∂r
〉
.

This leads to

∂b̃3
∂r

=−b cosθ(s)K11 − b sinθ(s)K12,(9.16)

whent= r = 0.
But by (9.5), (9.7) and Schwarz Lemma, we have

∂b̃3
∂r

=
∂b̃1
∂t
− 2b̃1K11 − 2b̃2K12(9.17)

whent= r = 0.
So, from (9.16), we get:

∂b̃1
∂t

= b cosθ(s)K11 + b sinθ(s)K12,(9.18)

whent= r = 0.
Once again, Schwarz Lemma, (9.6) and (9.7) lead to

∂b̃3
∂s

= α
∂b̃2
∂t
− 2b̃2K22 − 2b̃1K12,(9.19)

whent= 0.
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Then, (8.19), (9.9) and (9.10) lead to

∂b̃2

∂t

= 2b cosθK12 +2b sinθK22,(9.20)

whent= r = 0.
It remains to determine∂b̃3∂t whent= r = 0. Let us denote the magnetic field

B̃ = B̃23 ds∧ dt+ B̃31 dt∧ dr+ B̃12 dr ∧ ds.

So by (5.11) and using the property that:

∂B̃23

∂r
+

∂B̃31

∂s
+

∂B̃12

∂t
= 0,

we get from (5.13) that

|g|1/2
[
∂b̃1
∂r

+
∂b̃2
∂s

+
∂b̃3
∂t

]
+

1
2
|g|−1/2

[(
∂t|g|

)
b̃3 +

(
∂r|g|

)
b̃1 +

(
∂s|g|

)
b̃2
]
= 0.(9.21)

Let us now use this formula ont= r = 0. Using (9.15), (9.10), we get first:

∂b̃3
∂t

+ b cosθ(s)θ′(s) =−1
2
|g|−1

((
∂t|g|

)
b̃3 +

(
∂r|g|

)
b̃1 +

(
∂s|g|

)
b̃2
)
,

on t= r = 0.
We now use (8.29) and Lemma 8.2 (more precisely (8.19)), we obtain, using (9.9):(

∂r|g|
)
=−2κg

(
γ(s)

)
, whent= r = 0.(9.22)

This leads to:

∂b̃3
∂t

= b(κg ◦ γ − θ′) cosθ whent= r = 0.(9.23)

We actually need a more complete expansion of|g|. We have:

|g|= 1− 2κg

(
γ(s0)

)
r− 2

(
K11(0, s0) +K22(0, s0)

)
t+O

(
(t, r, s− s0)2

)
.(9.24)

We can establish the Taylor expansion of the magnetic field in the coordinates(r, s, t).
We can now establish the formulas in full generality. Fort= r = 0, we have, withθ = θ(s):

b̃1 = b cosθ,

∂b̃1
∂r

= 0,

∂b̃1
∂s

=−b sinθ,

∂b̃1
∂t

= b cosθK11 + b sinθK12;

(9.25)
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b̃2 = b sinθ(s),

∂b̃2 = b(2κg ◦ γ − θ′) sinθ,

∂r

∂b̃2
∂s

= b cosθθ′,

∂b̃2
∂t

= 2b cosθK12 +2b sinθK22;

(9.26)

b̃3 = 0,

∂b̃3
∂r

=−b cosθK11 − b sinθK12,

∂b̃3
∂s

= 0,

∂b̃3
∂t

= b cosθ(κg ◦ γ − θ′).

(9.27)

Using the Taylor extension (to order1) of |g|1/2,

|g|1/2 = 1− κg

(
γ(s0)

)
r−

(
K11(0, s0) +K22(0, s0)

)
t+O

(∣∣(r, s− s0, t)
∣∣2),

we obtain the model:

b̃01 = b cosθ(s0)− b sinθ(s0)θ′(s0)(s− s0) +
(
b cosθ(s0)K11(0, s0)

+ b sinθ(s0)K22(0, s0)
)
t,

b̃02 = b sinθ(s0)− b cosθ(s0)θ′(s0)(s− s0) + b sinθ
(
2κg

(
γ(s0)

)
− θ′(s0)

)
r

+
(
2b cosθK12 +2b sinθ(s0)K22

)
t,

b̃03 =−
(
b cosθ(s0)K11 + b sinθ(s0)K12

)
r+ b cosθ(s0)

(
κg

(
γ(s0)

)
− θ′(s0)

)
t.

(9.28)

These formulas lead to the introduction of the “model” corresponding magnetic field:

B̃0
23 = b cosθ0 − b sinθ0 θ

′(s0)(s− s0)− b cosθ0κg

(
γ(s0)

)
r

+ b
(
(cosθ0 − 1)K11 + (sin θ0 − 1)K22

)
t,

B̃0
31 = b sinθ0 − b cosθ0θ

′(s0)(s− s0) + b sinθ0

(
κg

(
γ(s0)

)
− θ′(s0)

)
r(9.29)

+ b(2 cosθ0K12 + sin θ0K22)t,

B̃0
12 =−b(cosθ0K11 + sin θ0K12)r+ b cosθ0

(
κg

(
γ(s0)

)
− θ′(s0)

)
t,

with θ0 = θ(s0), Kij =Kij(0, s0).
This corresponds to the Taylor expansion up to order1 of B̃ at the point(0, s0,0).

b̃1 = b
[
cos
(
θ(s0)

)
− θ′(s0) sin

(
θ(s0)

)
(s− s0) + κn,B(x0)t

]
+O

(
|y|2
)
,

b̃2 = b
[
sin
(
θ(s0)

)
+ sin

(
θ(s0)

)(
2κg(x0)− θ′(s0)

)
r

+ θ′(s0) cos
(
θ(s0)

)
(s− s0) + 2κt,B(x0)t

]
+O

(
|y|2
)
,

b̃3 = b
[
−κn,B(x0)r+

(
κg(x0)− θ′(s0)

)
cos
(
θ(s0)

)
t
]
+O

(
|y|2
)
.

(9.30)
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As from (8.29)

|g|1/2 = 1− κg(x0)r− 2κM t+O
(
|y|2
)
,

(5.11)

y:

l

we get using the relation between the magnetic field and the vector magnetic field given by
and (5.12)

B̃23 = b
[
cosθ0 − κg(x0) cosθ0r− θ′(s0) sinθ0(s− s0)

]
+ b(κn,B(x0)− 2 cosθ0κ

M (x0))t+O
(
|y|2
)
,

B̃31 = b
[
sin θ0 + sinθ0

(
κg(x0)− θ′(s0)

)
r+ θ′(s0) cosθ0(s− s0)

]
(9.31)

+ 2bt
[
κt,B(x0)− sinθ0κ

M (x0)
]
+O

(
|y|2
)
,

B̃12 = b
[
−κn,B(x0)r+ (κg(x0)− θ′(s0)) cosθ0t

]
+O

(
|y|2
)
,

with θ0 := θ(s0).
If we write that|H(B)|= b, using the relationθ′(s0) = κg(x0), this leads first to:

b̃1 = b
[
cosθ0 − κg(x0) sinθ0(s− s0) + κn,B(x0)t

]
+O

(
|y|2
)
,

b̃2 = b
[
sinθ0 + sin θ0κg(x0)r+ κg(x0) cosθ0(s− s0)

]
+O

(
|y|2
)
,(9.32)

b̃3 =−bκn,B(x0)r +O
(
|y|2
)
,

and then to:

B̃23 = b
[
cosθ0 − κg(x0) cosθ0r− κg(x0) sin θ0(s− s0)

+
(
κn,B(x0)− 2 cosθ0κ

M (x0)
)
t
]
+O

(
|y|2
)
,

B̃31 = b
[
sin θ0 + κg(x0) cosθ0(s− s0)− 2 sinθ0κ

M (x0)t
]
+O

(
|y|2
)
,

B̃12 =−bκn,B(x0)r+O
(
|y|2
)
.

(9.33)

By comparison of the curls on the left and right hand side of (9.2) we get the lemma.✷
9.2. Towards simplified models

If we neglect the terms of ordert2, we get the potentialA00 whose components are given b

A00
1 = bt

[
sin θ0 + κg(x0) cosθ0(s− s0)

]
,(9.34)

A00
2 =−bt

[
cosθ0 − κg(x0) cosθ0r− κg(x0) sinθ0(s− s0)

]
− b

κn,B(x0)
2

r2,(9.35)

and

A00
3 = 0.(9.36)

The corresponding magnetic field is:

B00
23 = b cosθ0 − b cosθ0κg(x0)r− b sinθ0κg(x0)(s− s0),

B00
31 = b sinθ0 − b cosθ0κg(x0)(s− s0),(9.37)

B00
12 =−bκn,B(x0)r.

If we neglect in addition the terms corresponding tot(s− s0), we get the magnetic potentia
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A01
1 = bt sinθ0,

A01
2 =−bt

[
cosθ0 − κg(x0) cosθ0r

]
− b

κn,B(x0)
r2,(9.38)

xplicit
ounds)
odels.
2
A01

3 = 0.

The corresponding magnetic field is:

B01
23 = b cosθ0 − b cosθ0κg(x0)r,

B01
31 = b sinθ0,(9.39)

B01
12 =−bκn,B(x0)r.

But we will start our analysis with the model, where we neglect also the terms inO(|rt|):

Â1 = b sinθ0t,

Â2 =−b cosθ0t−
b

2
κn,B(s0)r2,(9.40)

Â3 = 0.

Neglecting also the geodesic curvature, this leads to the model:

Pmod := (hDr − Â1)2 + (hDs − Â2)2 + h2D2
t .(9.41)

10. Comparison lemmas near ΓH

Although the problem is easier in the case of upper bounds where we work with e
quasimodes, we need in the two cases (proof of upper bounds and proof of lower b
comparison lemmas permitting to control the error made when considering the simplified m
Further comparison lemmas will be needed later.

10.1. A first comparison lemma

We are interested in the energyqhA(u), introduced in (8.27), of some functionu in H2(Ω) such
that

supp(u)⊂Q(x0),(10.1)

where

Q(x0) =
{
x ∈Ω;

(
r(x), s(x)

)
∈ (r0, s0) + [−hδ, hδ]2, t(x) ∈ [0, ε2]

}
,(10.2)

for someδ ∈ ]0,1[.
From now on, we assume in this section that(r(x0), s(x0)) = (0, s0).

LEMMA 10.1. – If (10.1)is satisfied, then

(1−C h2δ)qh
Ã(2)

(u)−C
∥∥t1/2(hDx −A)u

∥∥2

−C
[
qh
Ã(2)

(u)
]1/2 · ∥∥(h3δ + h2δt+ hδt2 + t3)u

∥∥−C
∥∥(h3δ + h2δt+ hδt2 + t3)u

∥∥2

� qhA(u)

� (1 +Ch2δ)qh
Ã(2)

(u) +C
∥∥t1/2(hDx −A)u

∥∥2
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+C
[
qh
Ã(2)

(u)
]1/2 · ∥∥(h3δ + h2δt+ hδt2 + t3)u

∥∥
+C

∥∥(h3δ + h2δt+ hδt2 + t3)u
∥∥2

,(10.3)

r

chwarz

n
sure.
where:

qh
Ã(2)

(u) =
∫

Q(x0)

(
1− rκg(x0)

)[∣∣(hDt − Ã
(2)
3 )u

∣∣2
+
(
1 + 2rκg(x0)

)∣∣(hDs − Ã
(2)
2 )u

∣∣2 +
∣∣(hDr − Ã

(2)
1 )u

∣∣2]dr dsdt.(10.4)

Ã(2) is the quadratic part of the Taylor expansion atx0 of Ã defined in(8.27):

Ã(2)(y) =
∑
|β|�2

∂βÃ

∂yβ
(0, s0,0)

yβ

β!
,

with y = (y1, y2, y3) = (r, s− s0, t).
The functionκg(x0) is the geodesic curvature atx0 introduced in(8.11).

We have actually two types of errors in order to control the comparison ofqhA(u) andqh
Ã(2)

(u).
The first erroris that we replace the initial metric in the coordinates(r, s, t) by the new metric

(see Lemma 8.2):

gnew
0 = dt⊗ dt+ dr ⊗ dr+

(
1− 2rκg(x0)

)
ds⊗ ds,

with the corresponding approximation of|gnew|1/2 by (1− rκg(x0)), and we consider a simila
linearization (with respect tor andt) for gij .

We then observe that, on the support ofu, we have:

|g|1/2 = 1− κg(x0)r+O(t) +O(h2δ),

gijnew − gij =O(t) +O(h2δ).

The second erroroccurs when replacingA by Ã(2) and this leads to an error estimated by:

A− Ã(2) =O
(
|y|3
)
=O

((
|t|+ hδ

)3)
.

Once these estimates are satisfied, the lemma follows easily using the Cauchy–S
inequality, after having written:

(hDy −A) = (hDy − Ã(2)) + (A− Ã(2)).

10.2. A second comparison lemma

We now perform a gauge transform. We also decide to consider as remainder the term iO(t2)
in A. In addition we need to change of unknown in order to go back to the Lebesgue mea

LEMMA 10.2. – If (10.1)is satisfied, then

qhA00(ũ)−C
∥∥t1/2(hDx−A)u

∥∥2
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−C
[
qhA00(ũ)

]1/2 · ∥∥(h3δ + h+ h2δt+ t2)u
∥∥

−C
∥∥(h3δ + h+ h2δt+ t2)u

∥∥2

d

med

on the

s

� qhA(u)

� qhA00(ũ) +C
∥∥t1/2(hDx−A)u

∥∥2

+C
[
qhA00(ũ)

]1/2 · ∥∥(h3δ + h+ h2δt+ t2)u
∥∥

+C
∥∥(h3δ + h+ h2δt+ t2)u

∥∥2
,(10.5)

where

ũ=
(
1− rκg(x0)

)1/2
e−ip0/hu,(10.6)

qhA00(ũ) =
∫

Q(x0)

[∣∣hDtũ
∣∣2+(1+2rκg(x0)

)∣∣(hDs−A00
2 )ũ

∣∣2+ ∣∣(hDr−A00
1 )ũ

∣∣2]dr dsdt,
(10.7)
whereA00 was introduced in(9.34)–(9.36)and wherep0 is the polynomial function introduce
in Lemma9.1.

We recall that in the particular case whenθ≡ 0, it results from (8.36) that:

κg(x0) = 0,

for x0 ∈ ΓH .

11. Spectral theory for a simple model

11.1. Heuristics

We would like to understand the following simplified model considered in (9.41):

P0 := (hDr − sinθ t)2 +
(
hDs + cosθt+ κ

r2

2

)2

+ h2D2
t(11.1)

onR2×R+. Hereθ is assumed to be fixed andκ is a real parameter. We have moreover assu
for simplicity that

b= 1.

We will take later

κ= κn,B(s0), θ = θ(s0),(11.2)

but it is better to keep them as an independent parameter for the first part of the analysis.
We are interested in the analysis of the bottom of the spectrum but will concentrate

research ofL2 normalized solutionsuh such that:〈P0u
h, uh〉 is minimal.

Scaling. We first introduce the following scaling:t = h1/2t̃, r = h1/3r̃ and the coefficient
of the operator being independent ofs we take a Fourier transform ins.
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Dividing by h, we get thatP0/h is unitary equivalent to:

1/6 2

(
1/2 1/6 r̃

2
)2

2

r to

e
blem,

e

P1 := (h Dr̃ − sin θt̃ ) + h σ + cosθt̃+ κh
2

+Dt̃(11.3)

onR2 ×R+. We can rewrite the operator in the form:

P1 =D2
t̃ +

(
t̃− h1/6

[
sin θDr̃ − cosθ

(
h1/3σ+

κ

2
r̃2

)])2

+ h1/6

(
cosθDr̃ + sinθ

(
h1/3σ+

κ

2
r̃2

))2

.(11.4)

We note that we have “formally” a lower bound of the type:

P1 � P2,(11.5)

where:

P2 := µ

(
h1/6 sinθDr̃ − cosθ

(
h1/3σ +

κ

2
r̃2

))
+
(
h1/6 cosθDr̃ + sinθ

(
h1/3σ +

κ

2
r̃2

))2

,(11.6)

now considered as an operator onL2(R2
r̃,σ). In order to find a suitable quasimode, it is bette

first decompose it as an Hilbertian integral of operatorsP2(σ), this time defined onL2(R), and to
look for a minimization onσ. In this context, it is natural to replaceµ by its approximation at th
bottom. We recover a differential model, which will give a good understanding of the pro
modulo an error term which has to be controlled.

We consequently analyze the family (depending onσ)

P3(σ) :=Θ0 + δ0

(
h1/6

(
sinθDr̃ − cosθ

(
h1/3σ +

κ

2
r̃2

))
− ξ0

)2

+ h1/3

(
cosθDr̃ + sinθ

(
h1/3σ +

κ

2
r̃2

))2

(11.7)

with δ0 = 1
2µ

′′(ξ0).
It is now better to introduce

σ(θ) =−ξ0 cosθ, ρ(θ) =−ξ0 sin θ,(11.8)

σ = σ(θ)h−1/2 + h−1/3σ̂,(11.9)

which permits to rewriteP3(σ) in the form:

P3(σ) :=Θ0 + δ0

(
h1/6

(
sin θ

(
Dr̃ + ρ(θ)h−1/6

)
− cosθ

(
σ̂ +

κ

2
r̃2

)))2

+ h1/3

(
cosθ(Dr̃ + ρ(θ)h−1/6) + sinθ

(
σ̂+

κ

2
r̃2

))2

.

A translation inσ̂ and a gauge transform byexp ih−1/6ρ(θ)r leads then to the analysis of th
family:
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P4(σ̂) :=Θ0 + h1/3δ0

(
sinθDr̃ − cosθ

(
σ̂ +

κ

2
r̃2

))2

( ( ))2
+ h1/3 cosθDr̃ + sin θ σ̂ +
κ

2
r̃2 .(11.10)

11.2. Analysis of the simplified model

It is then natural to introduce:

P5(σ̂) := h−1/3
(
P4(σ̂)−Θ0

)
,(11.11)

which becomes independent ofh:

P5(σ̂) = δ0

(
− cosθ

(
κ

2
r2 + σ̂

)
+ sin θDr

)2

+
(
cosθDr + sin θ

(
κ

2
r2 + σ̂

))2

.(11.12)

Here we have omitted the tilde’s for the next computations.
Our aim is to first minimize over̂σ and then to minimize over the points ofΓH , remembering

thatκ= κn,B(x) andθ = θ(x) with x in ΓH .
Let us now show, that by a gauge transform, we can rewriteP5(σ̂) in the form:

P6(σ̂) = cD2
r + d(r2 − ρ)2.(11.13)

We look for a gauge transformation of the form:

t(θ, r) = α(θ)
(
κ

6
r3 + σ̂r

)
.(11.14)

We consider

P6(σ̂) := exp−it(θ, r) ·P5(σ̂) · exp it(θ, r).(11.15)

The functionα(θ) in (11.14) is chosen such that the coefficients of the operator(
κ

2
r2 + σ̂

)
Dr +Dr

(
κ

2
r2 + σ̂

)
vanish. This leads to:

α(θ) =
sinθ cosθ(1− δ0)
δ0 sin2 θ+ cos2 θ

.(11.16)

Of course, we have

c= cos2 θ+ δ0 sin2 θ,(11.17)

and

ρ= 2σ̂/κ.(11.18)
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But for this value ofα(θ), we get:(
κ
)2( ( )2 ( )2)

ty.
d=
2

δ0 cosθ+ α(θ) sin θ + − sinθ+ α(θ) cos θ .

After computation, this gives:

d=
(
δ0

(
κ

2

)2)
/(δ0 sin2 θ + cos2 θ).(11.19)

We now rescale the operatorcD2
r+d(r2−ρ)2. We recall that we deleted the tilde’s for simplici

But we come back to the former writing6 and consider:

P6(σ̂) = cD2
r̃ + d(r̃2 − ρ)2.

This means that we perform a new scaling:

r̃ =
(
c

d

)1/6

r′,

such thatP6(σ̂) becomes in the new coordinates:

P7(σ̂) = d1/3c2/3
(
D2

r′ +
(
(r′)2 − ρ′

)2)
,(11.20)

with

ρ′ =
(
c

d

)−1/3

ρ.

We observe thatc andd are independent of̂σ. So in order to minimize overσ the bottom of the
spectrum of the initial operator, we will have to minimize overρ′, the bottom of the spectrum
of the operator(D2

r′ + ((r′)2 − ρ′)2) which is obtained forρ′ = ρmin and take the valuêν0

introduced in (2.15). This corresponds to

σ̂ =
κ

2

(
c

d

)1/3

ρmin,(11.21)

with

c

d
= (cos2 θ + δ0 sin2 θ)2

(
δ0

(
κ

2

)2)−1

.(11.22)

So, the bottom of the spectrum ofP7, is given for this value of̂σ by:

d1/3c2/3ν̂0 =
(
1
2

)2/3

δ
1/3
0 |κ|2/3(δ0 sin2 θ + cos2 θ)1/3ν̂0.(11.23)

If we now remember the values ofκ andθ in our application, this leads to:

6 This is better, if we want to follow all the scalings we have done in the construction of quasimodes.
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PROPOSITION 11.1. –The ground state energy of the model operatorP4 is given by:(
1
)2/3

1/3

t
st

o find
inf
σ̂

inf SpP4(σ̂) = Θ0 + h1/3ν̂0 2
δ0 |κ|2/3(δ0 sin2 θ + cos2 θ)1/3.(11.24)

Moreover the minimum is obtained forσ̂ defined in(11.21).

In our applicationκ and θ are not independent but satisfy (11.2) for somex in ΓH . This
suggests that we have to look for a minimum overΓH of the expression:

κn,B(x)2
(
δ0 sin2 θ(x) + cos2 θ(x)

)
,

that is:

F2 := inf
x∈ΓH

((
κn,B(x)

)2(
δ0 sin2 θ(x) + cos2 θ(x)

))
.(11.25)

Here we recall that we use in this subsection a slightly different notation:θ(x) was previously
writtenθ(s) with x= γ(s).

12. Proof of Theorem 1.2: upper bounds in general

We give now the rigorous proof of the upper bound. This is reformulated in the

PROPOSITION 12.1. – Let P h,N be the Neumann magnetic Laplace operator onL2(Ω)
(hD −A)2, whereΩ is a bounded open set ofR3 with smooth boundary∂Ω. We assume tha
the magnetic fieldH = curlA is constant and that(1.5)and (1.7)are satisfied. Then there exi
η > 0 andC0 > 0 such that, for allh ∈ ]0,1],

inf Sp(P h,N) � hbΘ0 + h4/3b2/3γ̂0 +C0h
4
3+η,(12.1)

whereb= |H | and γ̂0 is defined in(1.10).

Proof. –This is based on the MiniMax principle. We use Lemma 10.2 and we have just t
anL2 normalized functioñu, supported inhδQ, with Q= ]−C,C[2 × [0,C[, such that

qhA00(ũ) :=
∫

hδQ

[∣∣(hDr−A00
1 )ũ

∣∣2 +(1+2κ0
gr)
∣∣(hDs−A00

2 )ũ
∣∣2 +h2|Dtũ|2

]
dr dsdt(12.2)

satisfies

qhA00(ũ) � Θ0bh+ b2/3ν̂0

(
µ′′(ξ0)

)1/3
γ̂0, h

4/3 +Chη+ 4
3 ,(12.3)

for someδ ∈ ] 5
18 ,

1
3 [ and someη > 0, and

h−1
∥∥(1 + h−1/4t1/2)(hDy − Ã)u

∥∥2 +
∥∥(1 + h−1/2t)2u

∥∥2 � C,(12.4)

with u related toũ through (10.6),

A00
1 (r, s, t) = bt[sinθ0 + κ0

g cosθ0s],

A00
2 (r, s, t) = bt[− cosθ0 + κ0

g cosθ0r+ κ0
g sinθ0s]−

b

2
κ0
n,Br2,

(12.5)
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θ0 = θ(x0) = Arcsin
(∣∣∣∣〈T (x0)

∣∣∣∣ Hb
〉∣∣∣∣),

κ0 = κ (x ),(12.6)
 g g 0

κ0
n,B = κn,B(x0),

and wherex0 ∈ ΓH is chosen such that

γ̃0(x0) = γ̂0,

where we recall that̃γ0 was defined in (1.9). We have chosen a system of coordinates(r, s, t)
such that:x0 = (0,0,0). We recall thatA00 was introduced in (9.34)–(9.36).

We search for a function of the form

ũ(r, s, t;h) = c1h
−δ/2 exp

(
− i

h1/3
ρκ0

n,Bs

)
× exp

(
i

h1/2
(sin θ0r− cosθ0s)b1/2ξ0

)
· χ(h−δC−1s)v(r, t),(12.7)

wherec1 is a normalization constant,ρ is a constant to be determined later,χ is an even function
onR supported on[− 1

2 ,
1
2 ] and equal to1 on [− 1

4 ,
1
4 ].

As s �→ χh(s) := ch−δ/2χ(h−δC−1s) is an even function and∥∥(hDs − bκ0
g sin θ0st)χh

∥∥2

L2(Rs)
� C(h2−2δ + h2δt2),

we only have to search for a normalized functionv(r, t) satisfying

qhM00 (v) � hbΘ0 + h4/3b2/3ν̂0

(
µ′′(ξ0)

)1/3
γ0 +Chη+ 4

3 ,(12.8)

with

qhM00(v) :=
∫

hδQ2

[∣∣(hDr −M00
1 )v

∣∣2 + |M00
2 v|2 + h2|Dtv|2

]
dr dt,(12.9)

Q2 = ]−C,C[× [0,C[, and

M00
1 (r, t) = b1/2 sin θ0(b1/2t− h1/2ξ0),

M00
2 (r, t) = (1 + 2κ0

gr)
1/2

[
−b1/2 cosθ0(b1/2t− h1/2ξ0) + κ0

g cosθ0brt(12.10)

− b

2
κ0
n,B(r2 − h2/3b−1ρ)

]
.

Moreoverv must satisfy

h−1

∫
hδQ2

(1 + h−1/2t)
[∣∣(hDr −M00

1 )v
∣∣2 + |M00

2 v|2 + h2|Dtv|2
]
dr dt � C,(12.11)

and ∥∥(1 + h−1/2t)2v
∥∥2 � C.(12.12)
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So we can neglect thetr2 andr3 terms inM00
2 which will lead to error terms in (12.8), and we

get the new

01 1/2 1/2 1/2
M1 (r, t) := b sin θ0(b t− h ξ0),

M01
2 (r, t) :=−b1/2 cosθ0(b1/2t− h1/2ξ0) + h1/2b1/2ξ0κ

0
g cosθ0r(12.13)

− b

2
κ0
n,B(r2 − h2/3b−1ρ).

We introduce the scalingb1/2(h−1/3r, h−1/2t) = (r̂, t̂ ) and takev in the form:

v(r, t) = b1/2h−5/12v0(r̂, t̂ ).

We then delete the hats and we get easily that

qhM01 (v) = bhq̃h(v0)(12.14)

with

q̃h(v0) :=
∫
Qh

[
|Dtv0|2 +

∣∣(t− ξ0 − h1/6Lh
1(r,Dr)

)
v0

∣∣2 + h1/3
∣∣Lh

2 (r,Dr)v0

∣∣2]dr dt,
Qh = ]−Cb1/2hδ− 1

3 ,Cb1/2hδ− 1
3 [× [0, hδ− 1

2 b1/2[,

(12.15)

and with

Lh
1 (r,Dr) = sinθ0Dr − cosθ0

b−1/2

2
[
κ0
n,B(r2 − ρ)− 2h1/6ξ0κ

0
g cosθ0r

]
;

Lh
2 (r,Dr) = cosθ0Dr + sinθ0

b−1/2

2
[
κ0
n,B(r2 − ρ)− 2h1/6ξ0κ

0
g cosθ0r

]
.

(12.16)

We search for a functionv0 such that∥∥(1 + r2)v0

∥∥� C‖v0‖.

We can neglect terms withh1/6 in factor, and theLh
j are replaced by:

L0
1(r,Dr) = sin θ0Dr − cosθ0

b−1/2

2
[
κ0
n,B(r2 − ρ)

]
;

L0
2(r,Dr) = cosθ0Dr + sin θ0

b−1/2

2
[
κ0
n,B(r2 − ρ)

]
.

(12.17)

Let ϕ0(t) be the normalized eigenfunction ofQ(ξ0) associated to the groundstate energyΘ0

(cf. Section 2.2). Then one can check easily as in [12] that there existsCe such that∥∥∥∥Q(ξ)φξ −
[
Θ0 +

1
2
(ξ − ξ0)2µ′′(ξ0)

]
φξ

∥∥∥∥� Ce|ξ − ξ0|3,(12.18)

where

φξ(t) = ϕ0(t) + (ξ − ξ0)ϕ1(t) + (ξ − ξ0)2ϕ2(t),(12.19)
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ϕ1 = 2
[
Q(ξ0)−Θ0

]−1,r[(t− ξ0)ϕ0

]
(12.20)

and

e
ide

,

lus. For
h
the

e the
n

ed
ϕ2 = 2
[
Q(ξ0)−Θ0

]−1,r[(t− ξ0)ϕ1 −
〈
(t− ξ0)ϕ1|ϕ0

〉
ϕ0

]
.(12.21)

Here(Q(ξ0)−Θ0)−1,r is the regularized resolvent defined by:(
Q(ξ0)−Θ0

)−1,r
ϕ0 = 0,(

Q(ξ0)−Θ0

)−1,r
u=

(
Q(ξ0)−Θ0

)−1
u if 〈u|ϕ0〉= 0.

The inequality (12.18) is first proved forτ = ξ − ξ0 small enough by perturbation, but w
then claim that it is also true for|τ |> τ0 > 0, if we observe that the square of the left hand s
of (12.18) is a polynomial of degree4 with respect to theτ variable.

By (12.18) and using Fourier transform, we know that there exist functionsϕj(t)
(j = 0, . . . ,2), which are exponentially decreasing at infinity on[0,+∞[ with their derivatives
such that, for anyψ ∈ S(R), if

wh(r, t) = ϕ0(t)ψ(r) + ϕ1(t)h1/6L0
1(r,Dr)ψ(r) + ϕ2(t)h1/3

(
L0

1(r,Dr)
)2
ψ(r),(12.22)

then we get,∥∥∥∥[D2
t +

(
t− ξ0 − h1/6L0

1(r,Dr)
)2 −(Θ0 +

1
2
µ′′(ξ0)h1/3

(
L0

1(r,Dr)
)2)]

wh

∥∥∥∥
�Ceh

1/2
∥∥(L0

1(r,Dr)
)3
wh
∥∥.(12.23)

This is indeed a consequence of the estimate (12.18) and of a suitable functional calcu
defining this functional calculus, we can, for example, whenθ0 �= 0, use a gauge transform whic
transformsL0

1 into sinθ0Dr and the proof can then be done by partial Fourier transform. In
case whenθ0 = 0 a direct proof can be done. Note that the constantCe is independent ofθ0.

Let us define

M(r,Dr) :=
1
2
µ′′(ξ0)L0

1(r,Dr)2 +L0
2(r,Dr)2.(12.24)

At this point, we have justified the heuristic part of the previous section and can us
results obtained for the model (11.12) in Section 11.2. Letψ0 be the normalized eigenfunctio
(cf. Section 2.4) associated to the groundstate energyν̂0 (cf. (2.15)) of the Hamiltonian
D2

r + (r2 − ρmin)2 onL2(R). We recall thatr �→ ψ0(r) is an even function.
Let

ψ0(r) =
(
c

d

)−1/12

exp iϕ(r)ψ0

((
c

d

)−1/6

r

)
,(12.25)

whereϕ(r) corresponds (modulo the scaling leading tob= 1) to the gauge transform introduc
in (11.14), and

ψ = ψ0 · χ(C−1h−δ+ 1
3 r).(12.26)

We take (see (12.7)):

ρ= b1/3
(
c

d

)1/3

ρmin,(12.27)

with c andd as in (11.22),γ = κ0
n,B andθ = θ0.
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We then consider, withwh(r, t) defined in (12.22) andψ therein defined in (12.26),

h

(
1 −δ+ 1

)

exists
l

in the

for
r

v0(r, t) =w (r, t)χ
C
h 2 t .(12.28)

We recall thatψ0 is exponentially decreasing at infinity with all its derivatives.
Then we get easily from (12.23) and (11.24) that

q̃hA00(v0) � [Θ0 + h1/3γ̂0b
−1/3 +Ch1/2] · ‖v0‖2. ✷(12.29)

Remark12.2. – It is possible to treat more degenerate situations, for example if there
x0 ∈ ∂Ω such that the Gauss curvature atx0 vanishes,H is tangent to∂Ω atx0 and the norma
curvature atx0 along the vectorH vanishes:

H ∈ Tx0∂Ω, κG(x0) = 0, Kx0(H,H) = 0.(12.30)

We refer to [15] for a result in this direction.

13. New lower bounds for generic models

13.1. Introduction

We come back to the model analyzed in Section 11. We recall that we were interested
model:

P0 = (hDr − sinθt)2 +
(
hDs + cosθt+

κ

2
r2

)2

+ h2D2
t .(13.1)

It is useful to consider the dilationt= h1/2t̂, r = h1/3r̂ and to divide the operator byh.
This leads to:

P̂0 = (h1/6Dr̂ − sin θt̂ )2 +
(
h1/2Ds + cosθt̂+

κ

2
h1/6r̂2

)2

+D2
t̂
.(13.2)

We look at functions supported in̂I(h)×R×R+, where

Î(h) = ]−Chδ− 1
3 ,Chδ− 1

3 [.(13.3)

Hereδ ∈ ]14 ,
1
3 [, but other restrictions will appear during the proof.

After a new dilation and a partial Fourier transform with respect to the variables, the starting
point is the operator:

P (h,σ, θ) :=D2
t +

(
t− h1/6

[
sinθDr − cosθ

(
σ+

κ

2
r2

)])2

+ h1/3

(
cosθDr + sinθ

(
σ+

κ

2
r2

))2

,(13.4)

that we would like to analyze in̂I(h) × R× R+. We choose to consider first the problem
a family of operators depending on a parameterσ and we would like to have a uniform lowe
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bound (with respect toσ, of 〈P (h,σ, θ)u,u〉 for u’s supported in{(r, t) | r ∈ Î(h), t � 0}. It is
convenient to rewriteP (h,σ, θ) in the form:

ng

ase
first

uting
ank
t

use a

y

P (h,σ, θ) =D2
t + (t− ξ0 − h1/6L1)2 + h1/3L2

2,(13.5)

HereL1 andL2 are the differential operators of order1 defined by

L1 := sin θDr − cosθ
(
σ+

κ

2
r2

)
− ξ0h

−1/6,

L2 := cosθDr + sinθ
(
σ+

κ

2
r2

)
.

(13.6)

Remark13.1. – We have subtractedξ0h−1/6 for simplicity. Note that because everythi
should be uniform with respect toσ, this is not really important, because the bracket ofL1 and
L2 is unchanged. A gauge transform byexp i(ξ0 sinθh−1/6r) gives indeed:

Lnew
1 := sin θDr − cosθ

(
σ+

κ

2
r2 + ξ0h

−1/6 cosθ
)
,

Lnew
2 := cosθDr + sinθ

(
σ+

κ

2
r2 + ξ0h

−1/6 cosθ
)
.

(13.7)

13.2. Proof of the lower bound

We will have to treat two cases:θ = 0 andθ ∈ ]0, π2 ]. Because we can recover the first c
from the caseθ �= 0 by a continuity argument (see [14] for a direct proof) we always treat
the caseθ ∈ ]0, π2 ] but we control the constants uniformly with respect toθ.

The operator we would like to study has the following structure.

P := µ(h1/6L1 + ξ0)−Θ0 + h1/3L2
2.(13.8)

What follows is based on a variant of the functional calculus of two non comm
operatorsL1 andL2. This is related to operators appearing in the representation theory of r3
nilpotent groups. We observe indeed that all the brackets of order4 vanish (see Helffer–Nourriga
[16]).

Remark13.2. – For the justification of some abstract formulas, it could be useful to
gauge transformation (which is singular forθ = 0), and leading to

L̂1 := sinθDr,

L̂2 := cosθDr +
1

sin θ

(
σ + ξ0h

−1/6 cosθ +
κ

2
r2

)(13.9)

but it is better, at least at the beginning, to remain “abstract” noting that for any boundedχ one
can associate by a functional calculus a bounded operatorχ(L1) defined onL2.

A partition of unity.Let χ1, χ2 on R, with χ1 equal to1 in a neighborhood of the origin, sa
on ]−1,+1[ and with support in]−2,+2[, that we dilate by some factorhτ :

χj,h(ρ) = χj(hτρ).
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We keep of course the property:

χ2
1,h + χ2

2,h = 1,(13.10)

rm

r

3.14) is
and we can obtain the following commutator formula:

L2χj,h(L1)u= χj,h(L1)L2u+ ihτκχ′
j(h

τL1)r + h2τ κ

2
sin(θ)χ′′

j (h
τL1).(13.11)

We first write, withP defined in (13.8):

〈Pu,u〉=
〈
Pχ1,h(L1)u,χ1,h(L1)u

〉
+
〈
Pχ2,h(L1)u,χ2,h(L1)u

〉
− h2τ+ 1

3 κ sin(θ)Re
{∑

j

[〈
χ′′
j (h

τL1)u,χj,h(L1)L2u
〉

− ihτκ
〈
χ′′
j (h

τL1)u,χ′′
j,h(L1)ru

〉]}
− h2τ+ 1

3
κ2

4

∑
j

[∥∥χ′
j(h

τL1)ru
∥∥2 + h2τ sin2(θ)

∥∥χ′′
j (h

τL1)u
∥∥2]

.(13.12)

We have used here that
∑2

j=1 χ
′
j,hχj,h = 0.

Step1. We first observe that, by the properties ofµ and estimating from below the second te
of P , in (13.8) by0, we have, ifτ ∈ ]0, 1

6 [:〈
Pχ2,h(L1)u,χ2,h(L1)u

〉
� 1

C
h

1
3−2τ

∥∥χ2,h(L1)u
∥∥2

, ∀u ∈ S(R).

Everything is uniform, with respect toθ ∈ ]0, π2 ] and is valid forh small enough. We get that, fo
anyC′, there existsh0(C′) such that,∀h ∈ ]0, h0(C′)],〈

Pχ2,h(L1)u,χ2,h(L1)u
〉

� C′h1/3
∥∥χ2,h(L1)u

∥∥2
.(13.13)

Step2. We consider now the first term. Using now the Taylor expansion ofµ at ξ0, we get:〈
Pχ1,h(L1)u,χ1,h(L1)u

〉
� h1/3

(
δ0
∥∥L1χ1,h(L1)u

∥∥2 +
∥∥L2χ1,h(L1)u

∥∥2)
−Ch1/2

〈
|L1|3χ1,h(L1)u,χ1,h(L1)u

〉
.

This is first transformed into:〈
Pχ1,h(L1)u,χ1,h(L1)u

〉
� h1/3

(
δ0
∥∥L1χ1,h(L1)u

∥∥2 +
∥∥L2χ1,h(L1)u

∥∥2)
−Ch

1
2−3τ

∥∥χ1,h(L1)u
∥∥2

.(13.14)

The analysis of this term is then reduced to the analysis of the simplified model:

δ0L
2
1 +L2

2

which is done in Section 11.2 and we also have to observe that a good remainder in (1
obtained if12 − 3τ > 1

3 :

τ ∈
]
0,

1
18

[
.(13.15)
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Again, we emphasize thatC is independent ofh, θ, κ and ofσ.〈
Pχ1,h(L1)u,χ1,h(L1)u

〉

3.3) we

ion of
� h1/3cconj(κ, θ)
∥∥χ1,h(L1)u

∥∥2 −Ch
1
2−3τ

∥∥χ1,h(L1)u
∥∥2

,(13.16)

where

cconj(κ, θ) := ν̂0

(
1
2

)2/3

δ
1/3
0 (κ)2/3

(
δ0 sin2 θ + cos2 θ

)1/3
.(13.17)

We now glue together the estimates (13.12), (13.13) and (13.16), then using that by (1
have

∀u ∈C∞
0

(
Î(h)

)
, ‖ru‖� Chδ− 1

3 ‖u‖,

we get the following lemma.

LEMMA 13.3. –For anyτ ∈ ]0, 1
18 [, there exists a constantC, such that, for anyθ, for anyσ,

for anyu ∈C∞
0 (Î(h)), we have〈(
h−1/3

(
µ(ξ0 + h1/6L1)−Θ0

)
+L2

2

)
u,u
〉

� cconj(κ, θ)‖u‖2−Ch2(τ+δ− 1
3 )‖u‖2−Ch

1
6−3τ‖u‖2−Ch2τ‖u‖ · ‖L2u‖.(13.18)

Herecconj(κ, θ) is the constant introduced in (13.17).
It is clear that the above inequality implies:〈(

h−1/3
(
µ(ξ0 + h1/6L1)−Θ0

)
+L2

2

)
u,u
〉

� cconj(κ, θ)‖u‖2 −C
(
h2(τ+δ− 1

3 ) + hτ + h
1
6−3τ

)
‖u‖2.

We also see that this is satisfactory if (13.19)

δ− 1
3
+ τ > 0,(13.19)

is satisfied.
Takingτ = 1

24 we conclude with the following lemma.

LEMMA 13.4. – For anyδ ∈ ]0, 1
3 [, there exists a constantC, such that, for anyθ, for anyσ,

for anyu ∈C∞
0 (]−Chδ,Chδ[×R×R+ ), we have

〈P0u,u〉�
[
hΘ0 + h4/3cconj −C(h11/8 + hδ+ 13

12 )
]
‖u‖2.(13.20)

Here we recall thatP0 is the operator defined in(13.1).

14. Proof of Theorem 1.2: preliminaries for the lower bounds

14.1. Decomposition in four zones

Before to enter into the technicalities, let us explain the ideas which lead to the partit
unity we shall consider.

We cutΩ in different zones.
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• The first zone corresponds to the points which are far from the boundary. They are treated
rather easily, exactly as in the case of dimension2. Here the model with constant magnetic
field in R3 is relevant. This corresponds to the introduction ofΓ0

τ(h) already done in (7.16).

d

s

t. This

ion of
eed

tion 16.
e errors

y.

d in the
The other zones correspond to a finer decomposition ofΓ1
τ(h) also already introduce

in (7.16).
• The second zoneΓ11

τ(h) corresponds to the points which are nearΓH at a distance which i

O(hδ). The model which was analyzed in the previous section is essentially relevan
will be treated in Section 15.

• The third zoneΓ13
τ(h) corresponds to the points which are near∂Ω but far fromΓH . Here

the model analyzed in Section 3 is relevant.
• Unfortunately, we need an intermediate zone. This will correspond to the introduct

Γ12
τ(h) corresponding to points nearΓH but not in the second zone. In some sense, we n

to interpolate between the second zone and the third zone. This will be treated in Sec
Then, we have to glue together the estimates introduced in each zone and to control th
related to the partition.

14.2. A partition of unity

We proceed as in the proof of Proposition 7.2. In the partition of unity (7.14), we take

τ(h) = hδ with δ ∈
]

5
18

,
1
3

[
.(14.1)

Let us denote byuh a normalized eigenfunction associated to the ground state energyλ(h)
of P h,N . We recall that:

λ(h) = qhA(uh) � qhA(v)/‖v‖2, ∀v ∈H1(Ω).(14.2)

As announced in Section 14.1, we splitΓ1
τ(h), which was defined by (7.16), in the following wa

ForC1 > 1 fixed large enough, let us define

Γ11
τ(h) =

{
γ ∈ Γ1

τ(h); dist
(
supp(χγ,τ(h)),ΓH

)
<C1τ(h)

}
,

Γ12
τ(h) =

{
γ ∈ Γ1

τ(h); C1τ(h) � dist
(
supp(χγ,τ(h)),ΓH

)
<C−1

1

}
,(14.3)

Γ13
τ(h) =

{
γ ∈ Γ1

τ(h); C
−1
1 � dist

(
supp(χγ,τ(h)),ΓH

)}
.

14.3. First zone: Γ0
τ(h)

This was already analyzed in Section 7.3. We established in (7.18), that:

LEMMA 14.1. – ∑
γ∈Γ0

τ(h)

qhA(χγ,τ(h)u
h) � hb

∑
γ∈Γ0

τ(h)

‖χγ,τ(h)u‖2.(14.4)

14.4. Third zone: Γ13
τ(h)

We use the proof of Proposition 7.2. We observe that we are in the first case considere
proof of this proposition. We use (7.25) and get (7.27) in the following modified form:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



156 B. HELFFER AND A. MORAME

qhA(χγ,τ(h)u) +C
(
τ(h)

)2‖χγ,τ(h)u‖ ·
(
qhA(χγ,τ(h)u)

)1/2
�
[
bh(Θ0 + c3)−C

(
hτ(h) + (τ(h))4

)]
· ‖χγ,τ(h)u‖2,(14.5)

r the

tation)
wherec3 > 0. This leads to the existence ofc4 > 0 andh0 > 0 such that, for anyu ∈H1(Ω) and
anyh ∈ ]0, h0],

qhA(χγ,τ(h)u) � hb(Θ0 + c4)‖χγ,τ(h)u‖2, ∀γ ∈ Γ13
τ(h).(14.6)

Takingu= uh and summing overγ ∈ Γ13
τ(h), we get

LEMMA 14.2. – There existc3 > 0 andh0 > 0 such that, for anyh ∈ ]0, h0],∑
γ∈Γ13

τ(h)

qhA(χγ,τ(h)u
h) � hb(Θ0 + c3)

∑
γ∈Γ13

τ(h)

‖χγ,τ(h)u‖2.(14.7)

15. Proof of Theorem 1.2: lower bounds in the second zone

15.1. A new comparison lemma

We start from the conclusion (10.7) of Lemma 10.2. Omitting the tilda’s, we conside
quadratic formqhm (which was denoted byqhA00 there) onL2(Ωh), whereΩh = Qh × ]0, hδ[,
with Qh = ]−hδ, hδ[× ]−hδ, hδ[, which is defined by:

qhm(u) =
∫
Ωh

[
|hDru−A1u|2 + α(r)|hDsu−A2u|2 + h2|Dtu|2

]
dr dsdt,(15.1)

for all u ∈D0, where

D0 =
{
v ∈H1(Ωh), v/(∂Qh)×]0,hδ[ = 0, v/Qh×{hδ} = 0

}
.

Here

A1 =A1(s, t) = bta1(s),

A2 =A2(r, s, t) = bta2(r, s)−
b

2
κn,Br2,

(15.2)

with

a1(s) = sin θ+ κg cosθs,

a2(r, s) =− cosθ+ κg cosθr+ κg sin θs,(15.3)

α(r) = 1 + 2κgr.

Here

κg = κg(x0), θ = θ(x0) and κn,B = κn,B(x0).

The coordinates ofx0 are(0, s0,0) and we take in what followss0 = 0 (after a change of origin in
thes-variable). As already mentioned these formulas coincide (modulo some change of no
with the formulas (9.34)–(9.36). We assume thatb > 0, δ > 0 and thath ∈ ]0, h0] with h0 small
enough. We assume also thatα(r)> 1/2.

We denote byP h
m the associated self-adjoint operator onL2(Ωh).
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As beforeC will denote some constant independent ofh, which can change from a line to
another.

Let us remark for future use that
‖hDru‖2 + ‖hDsu‖2 � C
[
qhm(u) + ‖tu‖2 + h4δ‖u‖2

]
, ∀u ∈D0.(15.4)

LEMMA 15.1. – For anyτ1 > 0, there existsC > 0 such that, for anyu ∈D0,

(1 +Ch2δ)qhm(u) � (1−Chτ1)qhm,0(u)−C
[
(h2δ + hτ1)‖tu‖2 + h6δ−τ1‖u‖2

]
,(15.5)

with

qhm,0(u) =
∫
Ωh

[
h2|Dtu|2 + |btu−Lh

0u|2 + |Lh
1u|2

]
dr dsdt,(15.6)

and

Lh
0 = a1hDr + a0

2hDs −
b

2
cosθκn,Br2,

Lh
1 = a1

2hDr + a1
1hDs +

b

2
sinθκn,Br2,

a0
2 =− cosθ− κg cosθr+ κg sinθs,(15.7)

a1
1 = sin θ+ κg sinθr+ κg cosθs,

a1
2 = cosθ− κg sinθs.

Remark15.2. – In order to have a right remainder, that is at least inO(h4/3+η), for some
η > 0, the constantτ1 should satisfy the conditionτ1 > 1/3 and6δ − τ1 > 4/3. So surely, we
will impose:1/3< τ1 < 2/3. The constantδ should also satisfy:1/3> δ > 1/6 and will be later
chosen to be quite near1/3.

We will for example take:

τ1 = 3δ− 1
2
,(15.8)

under the condition that

δ >
5
18

.(15.9)

Proof. –Let us write

|hDru−A1u|2 + α|hDsu−A2u|2

= b2t2(a2
1 + αa2

2)|u|2 + h2|Dru|2 + α

∣∣∣∣hDsu+
b

2
κn,Br2u

∣∣∣∣2
− 2btRe

([
a1hDru+ αa2

(
hDsu+

b

2
κn,Br2u

)]
ū

)
.(15.10)

Using (15.3), we verify that:∣∣1− (a2
1 + αa2

2)
∣∣� C

[
(r2 + s2) + (r2 + s2)3/2

]
,(15.11)

and this leads to ∣∣1− (a2
1 + αa2

2)
∣∣� Ch2δ,(15.12)

on the support ofu.
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As a consequence, we obtain:

|hDru−A1u|2 + α|hDsu−A2u|2
= b2t2|u|2 + h2|Dru|2 + α

∣∣∣∣hDsu+
b

2
κn,Br2u

∣∣∣∣2
− 2btRe

([
a1hDru+αa2

(
hDsu+

b

2
κn,Br2u

)]
ū

)
−Ch2δ|tu|2.(15.13)

Similarly to the decomposition of (15.10), we observe that:∣∣∣∣btu− [a1hDru+ αa2

(
hDsu+

b

2
κn,Br2u

)]∣∣∣∣2
+ α

∣∣∣∣a2hDru− a1

(
hDsu+

b

2
κn,Br2u

)∣∣∣∣2
= b2t2|u|2 − 2btRe

([
a1hDru+ αa2

(
hDsu+

b

2
κn,Br2u

)]
ū

)
+
∣∣∣∣a1hDru+ αa2

(
hDsu+

b

2
κn,Br2u

)∣∣∣∣2
+ α

∣∣∣∣a2hDru− a1

(
hDsu+

b

2
κn,Br2u

)∣∣∣∣2.(15.14)

Using again (15.3), we get

b2t2|u|2 − 2btRe
([

a1hDru+ αa2

(
hDsu+

b

2
κn,Br2u

)]
ū

)
+
∣∣∣∣a1hDru+ αa2

(
hDsu+

b

2
κn,Br2u

)∣∣∣∣2
+ α

∣∣∣∣a2hDru− a1

(
hDsu+

b

2
κn,Br2u

)∣∣∣∣2
� b2t2|u|2 − 2btRe

([
a1hDru+ αa2

(
hDsu+

b

2
κn,Br2u

)]
ū

)
+ |hDru|2 + α

∣∣∣∣hDsu+
b

2
κn,Br2u

∣∣∣∣2
+Ch2δ

[
|hDru|2 +

∣∣∣∣hDsu+
b

2
κn,Br2u

∣∣∣∣2].(15.15)

Combining the previous inequalities, we get, for any functionu ∈D0,

|hDru−A1u|2 + α|hDsu−A2u|2

�
∣∣∣∣btu− [a1hDru+ αa2

(
hDsu+

b

2
κn,Br2u

)]∣∣∣∣2
+ α

∣∣∣∣a2hDru− a1

(
hDsu+

b

2
κn,Br2u

)∣∣∣∣2
−Ch2δ|tu|2 −Ch2δ

[
|hDru|2 +

∣∣∣∣hDsu+
b

2
κn,Br2u

∣∣∣∣2].(15.16)
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Writing that

|hDru|� |hDru−A1u|+C|tu|

of

ixed

m the

ying
and ∣∣∣∣hDsu+
b

2
κn,Br2u

∣∣∣∣� |hDsu−A2u|+C|tu|,

we get easily from (15.10)–(15.16) that for anyu ∈D0,

(1 +Ch2δ)
[
|hDru−A1u|2 +α|hDsu−A2u|2

]
�
∣∣∣∣btu− [a1hDru+ αa2

(
hDsu+

b

2
κn,Br2u

)]∣∣∣∣2
+α

∣∣∣∣−a2hDru+ a1

(
hDsu+

b

2
κn,Br2u

)∣∣∣∣2 −Ch2δ|tu|2

=
∣∣∣∣btu− [a1hDru+ αa2

(
hDsu+

b

2
κn,Br2u

)]∣∣∣∣2
+
∣∣∣∣−α1/2a2hDru+ α1/2a1

(
hDsu+

b

2
κn,Br2u

)∣∣∣∣2 −Ch2δ|tu|2.(15.17)

We now observe that:

|αa2 − a0
2|+ |α1/2a2 + a1

2|+ |α1/2a1 − a1
1|�C(r2 + s2)(15.18)

and

|α1/2a1 − sinθ|+ |αa2 + cosθ|� C(r2 + s2)1/2.(15.19)

Implementing these inequalities in (15.17), we get easily (15.5) from (15.17)–(15.19).
More precisely the estimate (15.18) permits indeed the comparison of the coefficientsDr

andDs and the estimate (15.19) permits the treatment of the coefficients ofκn,Br2. Let us show
how the parameterτ1 appears in the conclusion. As a typical error (corresponding to m
terms), we get:

O
(
r2(r2 + s2)1/2

)
|u|
(
|tu|+ |hDru|+ |hDsu|

)
=O(h3δ)|u|

(
|tu|+ |hDru|+ |hDsu|

)
.

This can be controlled by:

h6δ−τ1 |u|2 + hτ1
(
|tu|2 + |hDru|2 + |hDsu|2

)
,

and using (15.4) (or a similar estimate withqhm,0), we arrive to the right conclusion.
This ends the proof of the lemma.✷
Remark15.3. – Of course, we will also have to add the previous remainders coming fro

other comparison lemmas.

15.2. Some “linearizing” change of variable

We are now looking for a change of variables permitting to “eliminate” the slightly var
coefficient ofDr or Ds in (15.7). We introduce:

κ̂ := κg = κg(x0).(15.20)
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Let us make the change of variables

(r, s) = Φκ̂(p, q),

seen
d

t:
r = sin θp+ cosθq − κ̂

2
[− cosθp+ sinθq]2,(15.21)

s=− cosθp+ sinθq − κ̂

2
[
sin(2θ)(p2 − q2) + 2 cos(2θ)pq

]
.

The mapΦκ̂ is a perturbation of a rotation and, by the local inversion Theorem, is easily
as a local diffeomorphism sending a fixed neighborhood of(0,0) onto another neighborhoo
of (0,0).

Then, forh small enough,Qh becomes byΦ−1
κ̂ a setQh

0 satisfying:

Qh
0 =Φ−1

κ̂ (Qh)⊂ ]−Chδ,Chδ[× ]−Chδ,Chδ[.(15.22)

If we write

Dp = c11Dr + c12Ds, Dq = c21Dr + c22Ds,(15.23)

we have:

c11 =
∂r

∂p
= sin θ+ κ̂ cosθ(− cosθp+ sin θq);

c12 =
∂s

∂p
=− cosθ− κ̂

(
sin(2θ)p+ cos(2θ)q

)
;

c21 =
∂r

∂q
= cosθ− κ̂ sinθ(− cosθp+ sinθq);

c22 =
∂s

∂q
= sinθ− κ̂

(
− sin(2θ)q + cos(2θ)p

)
.

Using again (15.21), we get

c11 = sinθ+ κ̂ cosθs+O(r2 + s2);

c12 =− cosθ− κ̂(cosθr− sin θ s) +O(r2 + s2);

c21 = cosθ− κ̂ sinθs+O(r2 + s2);

c22 = sinθ+ κ̂(sin θr+ cosθs) +O(r2 + s2).

(15.24)

Let us now control the measure in the change of variable. By an easy computation, we ge

dr ds= α1 dpdq with |α1 − 1− κ̂r|� C(r2 + s2).(15.25)

Similarly to Lemma 15.1, we also get the following one.

LEMMA 15.4. –For anyτ1 > 0, there exists a constantC > 0, such that, for allu ∈D0,

(1 +Ch2δ)qhm,0(u) � (1−Chτ1)qhm,1(u)−C
[
(h2δ + hτ1)‖tu‖2 + h6δ−τ1‖u‖2

]
;(15.26)

with

qhm,1(u) =
∫
Ωh

0

[
h2|Dtu|2 + |btu−Mh

0 u|2 + |Mh
1 u|2

]
α1 dpdq dt,(15.27)
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Ωh
0 =Qh

0 × ]0, hδ[,

and

er. As a
-
s
on.

ing
3.20)

s

,

a

Mh
0 = hDp −

b

2
cosθκn,B(sin θp+ cosθq)2,

Mh
1 = hDq +

b

2
sin θκn,B(sin θp+ cosθq)2.

(15.28)

By a unitary transformation, and after control of a commutator, we get

(1 +Ch1/2)qhm,1(u) +Ch3/2‖u‖2

� qhm,2(v) =
∫
Ωh

0

[
h2|Dtv|2 + |btv−Mh

0 v|2 + |Mh
1 v|2

]
dpdq dt,(15.29)

for all u in D0, with v associated tou by v = α
1/2
1 u.

Let us consider the new model. We first observe that the result is independent ofκ̂ considered
as an independent parameter. The proof is moreover uniform with respect to this paramet
consequence, ifΦ=Φκ̂ was the transformation used above,Φ−1

0 , more explicitely the transfor
mation(p, q) �→ (r̃ = sinθp+ cosθq, s̃ =− cosθp+ sinθq) will bring us (in the new variable
(r̃, s̃, t)) to the initial model witĥκ replaced by0. This can also be done by explicit computati

15.3. End of the proof relative to the second zone

So, for finding a lower bound forqhm,2(v) in (15.29), we have only to look at the correspond
model which was exactly the model analyzed in Section 13. Implementing inequality (1
and (13.17), we get

LEMMA 15.5. – There existsδ1 ∈ ] 5
18 ,

1
3 [ such that, for anyδ ∈ ]δ1, 1

3 [, there exist constant
C > 0, h0 > 0 andη > 0 such that, for anyu ∈D0 and anyh ∈ ]0, h0],[

1+C(h2δ + h3δ− 1
2 )
]
qhm(u) +C(h2δ + h

1
3+η)‖tu‖2

+C(h
4
3 +η + h3δ+ 1

2 + hδ+ 13
12 )‖u‖2

�
[
hbΘ0 + h4/3b2/3ν̂0κ

2/3
n,B(δ0 sin2 θ+ cos2 θ)2/3

(µ′′(ξ0))1/3

2

]
‖u‖2,(15.30)

with Θ0, ξ0, µ(ξ) defined in(2.6)and ν̂0 defined in(2.15).

Then, using a modified version of Lemma 10.1, whereqh
Ã(2)

(u) andqhA(u) are interchanged

and also Lemma 10.2 (withqhA00(u) andqhA(u) interchanged), we get easily the following lemm

LEMMA 15.6. – Let δ ∈ ]14 ,
1
3 [, C0 > 0. Then there exists̃C0 such that, for anyx0 ∈ ΓH , for

anyu ∈H1(Ω) such that

supp(u)⊂
{
x ∈Ω; |x− x0|� C0h

δ
}
,

for anyh ∈ ]0,1], we have:

qhA(u) �
[
hbΘ0 + h4/3 ν̂0

2
[
µ′′(ξ0)κ2

n,B(x0)
]1/3]‖u‖2

− C̃0

∥∥t1/2(hDx −A)u
∥∥2 − C̃0

[
qhA(u)

]1/2 · ∥∥(h3δ + h+ h2δt+ t2)u
∥∥

− C̃0

∥∥(hδ+ 1
2 + h3δ + h+ h2δt+ t2)u

∥∥2 − C̃0h
1
3+η‖tu‖2− C̃0h

4
3+η‖u‖2.(15.31)
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This lemma and (7.1) prove that for the ground state eigenfunction defined in (14.2), we have,
for anyε > 0, [ ]

treated
qhA(χγ,τ(h)u
h) � hbΘ0 + h4/3γ̂0b

2/3 ‖χγ,τ(h)u
h‖2 −C(h1+ε + h6δ−ε)‖χγ,τ(h)u

h‖2

−C
∥∥t1/2(hD−A)χγ,τ(h)u

h
∥∥2 −Ch−ε‖t2χγ,τ(h)u

h‖2

−Ch
1
3+η‖tχγ,τ(h)u

h‖2 −Ch
4
3+η‖χγ,τ(h)u

h‖2.(15.32)

So, choosingε= 3δ − 1
2 , we have proved that there existsC > O, such that, for anyγ ∈ Γ11

τ(h)

defined by (14.3), we have

qhA(χγ,τ(h)u
h) �

[
hbΘ0 + h4/3γ̂0b

2/3 −Ch17/12
]
‖χγ,τ(h)u

h‖2

−Ch3δ+ 1
2 ‖χγ,τ(h)u

h‖2 −C
∥∥t1/2(hD−A)χγ,τ(h)u

h
∥∥2

−Ch
1
2−3δ‖t2χγ,τ(h)u

h‖2.(15.33)

Summing overγ ∈ Γ11
τ(h), we will obtain

LEMMA 15.7. –There existsδ1 ∈ ] 5
18 ,

1
3 [, such that, for anyδ ∈ ]δ1, 1

3 [, there existC, η > 0
andh0 such that, for allh ∈ ]0, h0],∑

γ∈Γ11
τ(h)

qhA(χγ,τ(h)u
h) � [hbΘ0 + h4/3γ̂0b

2/3]
∑

γ∈Γ11
τ(h)

‖χγ,τ(h)u
h‖2

−Ch3δ+ 1
2 −Ch

4
3+η.(15.34)

Proof. –Let

r11
γ (h) :=C(h3δ+ 1

2 + h
4
3+η)‖χγ,τ(h)u

h‖2 +C‖t1/2(hD−A)χγ,τ(h)u
h‖2

+Ch
1
2−3δ‖t2χγ,τ(h)u

h‖2 +Ch
1
3+η‖χγ,τ(h)tu

h‖2.

We obtain:∑
γ∈Γ11

τ(h)

r11
γ (h) � Ch3δ+ 1

2

∑
γ∈Γ11

τ(h)

‖χγ,τ(h)u
h‖2 +Ch

1
2−3δ

∑
γ∈Γ11

τ(h)

‖t2χγ,τ(h)u
h‖2

+C
∑

γ∈Γ11
τ(h)

∥∥t1/2(hD−A)χγ,τ(h)u
h
∥∥2

.

We use then Proposition 7.1 for the first two terms of the right hand side. The last term is
in the following way. As for (7.15), we have also

∥∥t1/2(hD−A)uh
∥∥2 =

∑
γ

[∥∥t1/2(hD−A)χγ,τ(h)u
h
∥∥2 − h2

∥∥t1/2|∇χγ,τ(h)|uh
∥∥2]

.(15.35)

So ∑
γ∈Γ11

τ(h)

∥∥t1/2(hD−A)χγ,τ(h)u
h
∥∥2 � C(h3/2 + h3−2δ). ✷(15.36)
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16. Lower bounds in the fourth zone and end of the proof of Theorem 1.2

16.1. Introduction

en
e

egion
roof
the

).

der
As for the second zone, we assume that:supp(χγ,τ(h)) ⊂ Q(x0), but with x0 = (r0,0, s0),
r0 �= 0. For simplicity of notation, we takes0 = 0. We have also to consider the case wh
J = [−Chδ,Chδ] and I = r0 + [−hδ, hδ], with |r0| small enough. We will also impos
|r0|� C1h

δ, with C1 large enough in order to have the property that the correspondingI(h)
is always sufficiently far from0.

16.2. Comparison

One first observes that the proof of the rough lower bound will permit to treat the r
r � hδ1 (but the conditions onδ1 are too bad for what we need). We proceed as in the p
of Proposition 9.2 of [12] and use the partition of unity introduced in Section 7. We follow
first steps of Section 7.3 till (7.25). We recall that there exist local coordinates7 adapted to the
boundaryy = (y1, y2, y3) such thaty3(x) = d(x, ∂Ω) and that, forτ(h)< 1 and for anyk ∈N

�,

qhA(χγ,τ(h)u)�
(
1−Cτ(h)

)
qh
Ã(k)

(χγ,τ(h)u)

−C
(
τ(h)

)k+1‖χγ,τ(h)u‖ ·
(
qhA(χγ,τ(h)u)

)1/2
−C

(
τ(h)

)2k+2‖χγ,τ(h)u‖2,(16.1)

with, for somey0 ∈ ∂Ω ∩ {τ(h) + supp(χγ,τ(h))}, Ã(k) andqh
Ã(k)

defined in (7.20) and (7.21

If we takeτ(h) = hδ andk = 1 the estimate we got in Section 7 is good when

d(y0,ΓH) � C0h
2δ−1/2,

with C0 large enough. So we have to takek = 2 for the general case, and we will then consi
the condition:

d(y0,ΓH) � C1h
δ.

16.3. Adapted normal forms

We can always by a change of variable

(y1, y2) �→ (cosωy1− sinωy2, sinωy1 + cosωy2),

with

cosωH̃0
2 + sinωH̃0

1 = 0,

arrive to a situation where the new second component ofH̃ vanishes:

H̃0
2 = 0.

Then, for suitable gauge,

7 Belonging to the family introduced in Section 5.3.
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Ã
(2)
1 (y) = c̃0

1 y
2
2 + R̃1,2y2y3 + R̃1,3y

2
3 ,

Ã
(2)
2 (y) =−H̃0

1y3 + H̃0
3y1 + c̃0

2 y
2
1 + R̃2,1y1y3 + R̃2,3y

2
3 ,(16.2)
Ã
(2)
3 (y) = R̃3,1y1y3 + R̃3,2y2y3.

Let us defineÃ(2,0) asÃ(2) defined above but withRij = 0:

Ã
(2,0)
1 (y) = c̃0

1 y
2
2 ,

Ã
(2,0)
2 (y) =−H̃0

1y3 + H̃0
3y1 + c̃0

2 y
2
1 ,(16.3)

Ã
(2,0)
3 (y) = 0.

As for (16.1), we have

qhA(χγ,τ(h)u)�
(
1−Cτ(h)

)
qh
Ã(2,0)

(χγ,τ(h)u)

−Cτ(h)‖tχγ,τ(h)u‖ ·
(
qhA(χγ,τ(h)u)

)1/2
−C(τ(h))3‖χγ,τ(h)u‖ ·

(
qhA(χγ,τ(h)u)

)1/2
−C(τ(h))2‖tχγ,τ(h)u‖2

−C(τ(h))6‖χγ,τ(h)u‖2.(16.4)

We recall thatt= y3. So(
1 +Cτ(h)

)
qhA(χγ,τ(h)u)�

(
1−Cτ(h)

)
qh
Ã(2,0)

(χγ,τ(h)u)

−Cτ(h)‖tχγ,τ(h)u‖2

−C
(
τ(h)

)5‖χγ,τ(h)u‖2.(16.5)

If we assume thatd(y0,ΓH) ∈ [C1h
δ,1/C1[, using that in (16.2) we have:

(H̃0
1 )

2 + (H̃0
3 )

2 = b2

and the hypothesis (1.7), then, in (16.2), we get

d(y0,ΓH)
C

� |H̃0
3 |� Cd(y0,ΓH),

‖H̃0
1 | − b|�Cd2(y0,ΓH),(16.6)

|c̃0
1 |+ |c̃0

2 |� C.

16.4. Analysis of the model

LEMMA 16.1. – For all δ ∈ ]0, 1
3 [, for all C > 0, there existc1 andC1

1 such that ifC1 � C1
1 ,

then, if

d(y0,ΓH) ∈
[
C1h

δ,
1
C1

[
(16.7)

is satisfied,

qh
Ã(2,0)

(v) � hb
[
Θ0 + c1d(y0,ΓH)

]
‖v‖2,(16.8)

for any functionv in C∞
0 (]−Chδ,Chδ[2×R+ ).
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Proof. –Making the dilation

r = h−1/3b
1/2

r̃, s= h−1/3b
1/2

s̃, t= h−1/2b
−1/2

t̃

it is
0 0 0

with b0 = |H̃0
1 |, we get that

qh
Ã(2,0)

(v) = hb0q0(w) = hb0
[
‖Dtw‖2 +

∥∥(t−Lh
1 )w

∥∥2 + ‖Lh
2w‖2

]
,(16.9)

with

Lh
1 = h1/6Ds̃ + h−1/6d1r̃+ h1/6d2r̃

2 + h1/6d3r̃s̃,

Lh
2 = h1/6Ds̃,

(16.10)

C−1d(y0,ΓH) � |d1|� Cd(y0,ΓH),
|d2|+ |d3|� C,

(16.11)

andw ∈C∞
0 (]−Chδ−1/3,Chδ−1/3[2 ×R+ ), related tov by:

w(r̃, s̃, t̃ ) = h7/12b
−1/4
0 v(r, s, t).

We now omit the tilda’s. Here we observe that:

[Lh
1 ,L

h
2 ] = i(d1 +2h1/3d2r+ h1/3d3s),(16.12)

and [
[Lh

1 ,L
h
2 ],L

h
1

]
=−h1/2d2.(16.13)

But

q0(w) �
〈
µ(Lh

1 + ξ0)w,w
〉
+ ‖Lh

2w‖2.(16.14)

As the functionµ is of classC∞ on R and satisfies the properties recalled in Section 2.2,
easy to find a realC∞ functionf satisfying

µ(t)−Θ0 � f2(t),

f ′(t) � 0, with strict inequality in a neighborhood ofξ0,(16.15)

f is constant at±∞.

The main property is here that there existsρ1 > 0 such that:

f ′(t) + f(t)2 � ρ1.(16.16)

Writing that

q0(w)−Θ0‖w‖2 �
∥∥f(Lh

1 + ξ0)w
∥∥2 + ‖Lh

2w‖2,(16.17)

we use a standard bracket argument to get that

q0(w)−Θ0‖w‖2 �
∣∣〈[f(Lh

1 + ξ0),Lh
2

]
w,w

〉∣∣.(16.18)
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But this bracket can be computed as:

[
h h

] ′ h h h 1 ′′ h
[

h h h
]

n of a

at, for

e plan
f(L1 + ξ0),L2 = f (L1 + ξ0)[L1 ,L2 ]− 2
f (L1 + ξ0) [L1 ,L2 ],L1 .(16.19)

One way to get this formula is to use a gauge transformation for having:

Lh,new
1 = h1/6Ds,

Lh,new
2 = h1/6Dr − h−1/6d1s− 2h1/6d2rs− h1/6d3s

2.
(16.20)

Taking the Fourier transform with respect to all variables, we are left with the commutatio
second order differential operator with a function and the proof is easy.

So, for anyw ∈C∞
0 (]−Chδ−1/3,Chδ−1/3[3)∣∣〈[f(Lh

1 + ξ0),Lh
2

]
w,w

〉∣∣� |d1|
〈
(Lh

1 + ξ0)f ′(Lh
1 + ξ0)w,w

〉
−Chδ‖w‖2.(16.21)

Then, by (16.11) and (16.14), we obtain:

q0(w) � Θ0‖w‖2 +C−1d(y0,ΓH)
〈
f ′(Lh

1 + ξ0)w,w
〉
−Chδ‖w‖2.(16.22)

But, remembering that:

q0(w) �
〈
µ(Lh

1 + ξ0)w,w
〉
,(16.23)

the properties (16.21), (16.22) and (16.23) combined with (16.15) and (16.16), prove th
somec1 > 0 and ifC1h

δ � d(y0,ΓH) � C−1
1 , then

q0(w) �
(
Θ0 + c1d(y0,ΓH)

)
‖w‖2.(16.24)

The lemma follows. ✷
From the estimate (16.8) of Lemma 16.1, we can recover in the fourth zone.

LEMMA 16.2. –There exist̂c0 > 0, C2 andC1
1 , such that, ifC−1

1 � d(τ(h)γ,ΓH) � C1h
δ,

with C1 � C1
1 then, for anyu∈H1(Ω),

qhA(χγ,τ(h)u) � h
(
bΘ0 + ĉ0d

(
τ(h)γ,ΓH

))
‖χγ,τ(h)u‖2 −C2h

δ‖tχγ,τ(h)u‖2,(16.25)

for all γ ∈ Γ12
τ(h).

16.5. Control of the remainders

We have now to control the remainders appearing in the right hand side of (16.25). W
indeed to use this estimate withu= uh and to sum over theγ’s in Γ12

τ(h). More precisely, we will
show:

LEMMA 16.3. – Let δ ∈ ]14 ,
1
3 [. There exist̃c0 > 0, C and C1

1 , such that, ifC1 satisfies
C1 � C1

1 then

qhA(χγ,τ(h)u) � h(bΘ0 + c̃0C1h
δ)‖χγ,τ(h)u

h‖2 − r12
γ (h),(16.26)
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for all γ ∈ Γ12
τ(h), with ∑

r12
γ � Ch2−2δ.(16.27)

unt
γ∈Γ12
τ(h)

Proof. –Using Lemma 16.2, the remaining problem is with the termhδ
∑

γ ‖tχγu
h‖2.

Proposition 7.1 indeed gives that:

hδ
∑
γ

‖tχγu
h‖2 � hδ‖tuh‖2 � Ch1+δ,

but this error is too large. One could think that one could get instead the better:

hδ
∑

γ∈Γ12
τ(h)

‖tχγu
h‖2 � Ch1+δ

∑
γ∈Γ12

τ(h)

‖χγu
h‖2,

but this is probably not true. We will actually show the weaker:

hδ
∑

γ∈Γ12
τ(h)

‖tχγu
h‖2 � C′h1+δ

∑
γ∈Γ12

τ(h)

‖χγu
h‖2 +O(h2−δ).(16.28)

In order to get this more accurate upper bound, we need a:
Local control of‖tχuh‖. We follow the proof of Proposition 7.1, but we have to take acco

of the presence ofχ. One first obtains (see (7.4)) that:

hb

∫
t2χ2|uh|2 dx �

∫
t2
∣∣(hD−A)χuh

∣∣2 dx+Ch
∥∥(hD−A)χuh

∥∥ · ‖tχuh‖.

Commutingχ and(hD−A) in the second term of the right hand side, we get:

hb

∫
t2χ2|uh|2 dx�

∫
t2
∣∣(hD−A)χuh

∣∣2 dx+Ch
∥∥χ(hD−A)uh

∥∥ · ‖tχuh‖

+Ch
∥∥t|∇χ|(hD−A)uh

∥∥ · ‖tχuh‖.(16.29)

Let us now analyze
∫
t2|(hD−A)χuh|2. Starting from:∫

t2
∣∣(hD−A)χuh

∣∣2dx=
∫

t2
(
χ(hD−A)uh + h∇χuh

)
·
(
χ(hD−A)uh + h∇χuh

)
dx,

we get:∫
t2
∣∣(hD−A)χuh

∣∣2 dx�
∫

t2χ2(hD−A)2uhuh dx+ h2

∫
t2|∇χ|2|uh|2 dx

+2h‖tχuh‖
∥∥t(∇χ) · (hD−A)uh

∥∥
+Ch‖tχuh‖

∥∥χ(hD−A)uh
∥∥.

This leads to∫
t2
∣∣(hD−A)χuh

∣∣2 dx� λ(h)
∫

t2|χuh|2 dx+ h2

∫
t2|∇χ|2|uh|2 dx

+ 2h‖tχuh‖
∥∥t(∇χ) · (hD−A)uh

∥∥
+Ch‖tχuh‖

∥∥tχ(hD−A)uh
∥∥.
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We then get:(
hb− λ(h)

)∫
t2|χuh|2 dx� h2

∫
t2|∇χ|2|uh|2 dx

e of

rnberg
ion
+Ch‖tχuh‖
∥∥tχ(hD−A)uh

∥∥
+Ch

∥∥t|∇χ|(hD−A)uh
∥∥ · ‖tχuh‖.

This leads to the estimate:

‖tχuh‖2 � C
[∥∥χ(hD−A)uh

∥∥+ ∥∥t|∇χ|(hD−A)uh
∥∥]‖tχuh‖+ h

∫
t2|∇χ|2|uh|2 dx

and consequently

‖tχuh‖2 � C

[∥∥χ(hD−A)uh
∥∥2 +

∥∥t|∇χ|(hD−A)uh
∥∥2 + h

∫
t2|∇χ|2|uh|2 dx

]
.(16.30)

On the other hand, we have:∥∥χ(hD−A)uh
∥∥2 � λ(h)‖χuh‖2 + 2

∥∥χ(hD−A)uh
∥∥ · ‖|∇χ|uh‖

and consequently to:∥∥χ(hD−A)uh
∥∥2 � C

[
h‖χuh‖2 + h2

∥∥|∇χ|uh
∥∥2]

.(16.31)

Finally the two estimates (16.30) and (16.31) give

‖tχuh‖2 � C
[
h‖χuh‖2 + h2

∥∥|∇χ|uh
∥∥2 + h

∥∥t|∇χ|uh
∥∥2 +

∥∥t|∇χ|(hD−A)uh
∥∥2]

.(16.32)

We now takeχ= χγ and sum overγ ∈ Γ12
τ(h). Using Proposition 7.1, we get, with

r1
γ := h2

∥∥|∇χγ |uh
∥∥2 + h

∥∥t|∇χγ |uh
∥∥2 +

∥∥t|∇χγ |(hD−A)uh
∥∥2

,(16.33)

∑
γ∈Γ12

τ(h)

r1
γ � Ch2−2δ.(16.34)

16.6. End of the proof

Then (14.1), (14.7), (14.4), (16.26), (15.34) and (7.15) prove that, for a suitable choicδ
(δ = 3

10 is enough), there existη > 0, C andh0 such that, for allh ∈ ]0, h0],

λ(h) � [hbΘ0 + h4/3γ̂0b
2/3]−Ch

4
3+η.(16.35)

This corresponds to the announced lower bound in Theorem 1.2.

17. Conclusion

In this article, we have established and proved a new conjecture extending Bernoff–Ste
conjecture in the case of dimension3. As in [12], one can expect applications to the localizat
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of the ground states which was mentioned in the introduction as our main motivation. We hope
to come back to these points in a near future (see [26]). We observe also that the possible role of
these lower bounds for problems in superconductivity is, in the same spirit of what was done in

fore
inary
ops or
noble
Munich

an

ains,

par un

d

tors,

lica-

(after
lis
4.
an et
math.

inger

of

case

case

ps de
the case of dimension2 in Helffer and Pan [17], developed in [26].
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