
Ann. I. H. Poincaré – AN 27 (2010) 1017–1054
www.elsevier.com/locate/anihpc

Well-posed elliptic Neumann problems involving irregular data and
domains

Angelo Alvino a, Andrea Cianchi b,∗, Vladimir G. Maz’ya c,d, Anna Mercaldo a

a Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Federico II”, Complesso Monte S. Angelo, Via Cintia,
80126 Napoli, Italy

b Dipartimento di Matematica e Applicazioni per l’Architettura, Università di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy
c Department of Mathematical Sciences, M&O Building, University of Liverpool, Liverpool L69 3BX, UK

d Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden

Received 19 March 2009; accepted 23 December 2009

Available online 21 January 2010

Abstract

Non-linear elliptic Neumann problems, possibly in irregular domains and with data affected by low integrability properties, are
taken into account. Existence, uniqueness and continuous dependence on the data of generalized solutions are established under
a suitable balance between the integrability of the datum and the (ir)regularity of the domain. The latter is described in terms of
isocapacitary inequalities. Applications to various classes of domains are also presented.
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons des problèmes de Neumann pour des équations elliptiques non linéaires dans des domaines éventuellement
non réguliers et avec des données peu régulières. Un équilibre entre l’intégrabilité de la donnée et l’(ir)régularité du domaine nous
permet d’obtenir l’existence, l’unicité et la dépendance continue de solutions généralisées. L’irrégularité du domaine est décrite
par des inégalités « isocapacitaires ». Nous donnons aussi des applications à certaines classes de domaines.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

The present paper deals with existence, uniqueness and continuous dependence on the data of solutions to non-
linear elliptic Neumann problems having the form
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{−div
(
a(x,∇u)

) = f (x) in Ω,

a(x,∇u) · n = 0 on ∂Ω.
(1.1)

Here:
Ω is a connected open set in Rn, n � 2, having finite Lebesgue measure |Ω|;
a : Ω × Rn → Rn is a Carathéodory function;
f ∈ Lq(Ω) for some q ∈ [1,∞] and satisfies the compatibility condition∫

Ω

f (x)dx = 0. (1.2)

Moreover, “·” stands for inner product in Rn, and n denotes the outward unit normal on ∂Ω .
Standard assumptions in the theory of non-linear elliptic partial differential equations amount to requiring that there

exist an exponent p > 1, a function h ∈ Lp′
(Ω), where p′ = p

p−1 , and a constant C such that, for a.e. x ∈ Ω :

a(x, ξ) · ξ � |ξ |p for ξ ∈ Rn; (1.3)∣∣a(x, ξ)
∣∣ � C

(|ξ |p−1 + h(x)
)

for ξ ∈ Rn; (1.4)[
a(x, ξ) − a(x, η)

] · (ξ − η) > 0 for ξ, η ∈ Rn with ξ �= η. (1.5)

The p-Laplace equation, corresponding to the choice a(x, ξ) = |ξ |p−2ξ , and, in particular, the (linear) Laplace
equation when p = 2, can be regarded as prototypal examples on which our analysis provides new results.

When Ω is sufficiently regular, say with a Lipschitz boundary, and q is so large that f belongs to the topological
dual of the classical Sobolev space W 1,p(Ω), namely q >

np
np−n+p

if p < n, q > 1 if p = n, and q � 1 if p > n, the
existence of a unique (up to additive constants) weak solution to problem (1.1) under (1.2)–(1.5) is well known, and
quite easily follows via the Browder–Minthy theory of monotone operators.

In the present paper, problem (1.1) will be set in a more general framework, where these customary assumptions
on Ω and f need not be satisfied. Of course, solutions to (1.1) have to be interpreted in an extended sense in this
case. The notion of solution u, called approximable solution throughout this paper, that will be adopted arises quite
naturally in dealing with problems involving irregular domains and data. Loosely speaking, it amounts to demanding
that u be a distributional solution to (1.1) which can be approximated by a sequence of solutions to problems with
the same differential operator and boundary condition, but with regular right-hand sides. A precise definition can be
found in Section 2.3. We just anticipate here that an approximable solution u need not be a Sobolev function in the
usual sense; nevertheless, a generalized meaning to its gradient ∇u can be given.

Definitions of solutions of this kind, and other definitions which, a posteriori, turn out to be equivalent, have been
extensively employed in the study of elliptic Dirichlet problems with a right-hand side f affected by low integrability
properties. Initiated in [53,54] and [63] in the linear case, and in [12,13] in the non-linear case, this study has been
the object of several contributions in the last twenty years, including [5,9,25,27,28,30,31,36,39,47,58,59]. These in-
vestigations have pointed out that, when dealing with (homogeneous) Dirichlet boundary conditions, existence and
uniqueness of solutions can be established as soon as f ∈ L1(Ω), whatever Ω is. In fact, the regularity of Ω does not
play any role in this case, the underlying reason being that the level sets of solutions cannot reach ∂Ω .

The situation is quite different when Neumann boundary conditions are prescribed. Inasmuch as the boundary of
the level sets of solutions and ∂Ω can actually meet, the geometry of the domain Ω comes now into play. We shall
prove that problem (1.1) is still uniquely solvable, provided that the (ir)regularity of Ω and the integrability of f are
properly balanced. In fact, even if f highly integrable, in particular essentially bounded, some regularity on Ω has
nevertheless to be retained. In the special case when Ω is smooth, or at least with a Lipschitz boundary, our results
overlap with contributions from [7,8,15,29,32,33,60,61].

Our approach relies upon isocapacitary inequalities, which have recently been shown in [22] to provide suitable
information on the regularity of the domain Ω in the study of problems of the form (1.1). In fact, isocapacitary
inequalities turn out to be more effective than the more popular isoperimetric inequalities in this kind of applications.
The use of the standard isoperimetric inequality in the study of elliptic Dirichlet problems, and of relative isoperimetric
inequalities in the study of Neumann problems, was introduced in [53,54]. The isoperimetric inequality was also
independently employed in [64,65] in the proof of symmetrization principles for solutions to Dirichlet problems.
Ideas from these papers have been developed in a rich literature, including [1–3,43]. Specific contributions to the
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study of Neumann problems are [4,11,19,34,35,49,50]. We refer to [42,44,66,67] for an exhaustive bibliography on
these topics.

The relative isoperimetric inequality in Ω tells us that

λ
(|E|) � P(E;Ω) for every measurable set E ⊂ Ω with |E| � |Ω|/2, (1.6)

where P(E;Ω) denotes the perimeter of a measurable set E relative to Ω , and λ : [0, |Ω|/2] → [0,∞) is the isoperi-
metric function of Ω .

Replacing the relative perimeter by a suitable p-capacity on the right-hand side of (1.6) leads to the isocapacitary
inequality in Ω . Such inequality reads

νp

(|E|) � Cp(E,G) for every measurable sets E ⊂ G ⊂ Ω with |G| � |Ω|/2, (1.7)

where Cp(E,G) is the p-capacity of the condenser (E,G) relative to Ω , and νp : [0, |Ω|/2[→ [0,∞[ is the isoca-
pacitary function of Ω .

Precise definitions concerning perimeter and capacity, together with their properties entering in our discussion,
are given in Section 2.4. Let us emphasize that although (1.6) and (1.7) are essentially equivalent for sufficiently
smooth domains Ω , the isocapacitary inequality (1.7) offers, in general, a finer description of the irregularity of
bad domains Ω . Accordingly, our main results will be formulated and proved in terms of the function νp . Their
counterparts involving λ will be derived as corollaries – see Section 5. Special instances of bad domains and data will
demonstrate that the use of νp instead of λ can actually lead to stronger conclusions in connection with existence,
uniqueness and continuous dependence on the data of solutions to problem (1.1).

Roughly speaking, the faster the function νp(s) decays to 0 as s → 0+, the worse is the domain Ω , and, obviously,
the smaller is q , the worse is f . Accordingly, the spirit of our results is that problem (1.1) is actually well posed,
provided that νp(s) does not decay to 0 too fast as s → 0+, depending on how small q is. Our first theorem provides
us with conditions for the unique solvability (up to additive constants) of (1.1) under the basic assumptions (1.2)–(1.5).

Theorem 1.1. Let Ω be an open connected subset of Rn, n � 2, having finite measure. Assume that f ∈ Lq(Ω) for
some q ∈ [1,∞] and satisfies (1.2). Assume that (1.3)–(1.5) are fulfilled, and that either

(i) 1 < q � ∞ and

|Ω|/2∫
0

(
s

νp(s)

) q′
p

ds < ∞, (1.8)

or
(ii) q = 1 and

|Ω|/2∫
0

(
s

νp(s)

) 1
p ds

s
< ∞. (1.9)

Then there exists a unique (up to additive constants) approximable solution to problem (1.1).

The second main result of this paper is concerned with the case when the differential operator in (1.1) is not merely
strictly monotone in the sense of (1.5), but fulfills the strong monotonicity assumption that, for a.e. x ∈ Ω ,

[
a(x, ξ) − a(x, η)

] · (ξ − η) �
{

C|ξ − η|p if p � 2,

C
|ξ−η|2

(|ξ |+|η|)2−p if 1 < p < 2,
(1.10)

for some positive constant C and for ξ, η ∈ Rn. In addition to the result of Theorem 1.1, the continuous dependence of
the solution to (1.1) with respect to f can be established under the reinforcement of (1.5) given by (1.10). In fact, when
(1.10) is satisfied, a partially different approach can be employed, which also simplifies the proof of the statement of
Theorem 1.1.
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Observe that, in particular, assumption (1.10) certainly holds provided that, for a.e. x ∈ Ω , the function a(x, ξ) =
(a1(x, ξ), . . . , an(x, ξ)) is differentiable with respect to ξ , vanishes for ξ = 0, and satisfies the ellipticity condition

n∑
i,j=1

∂ai

∂ξj

(x, ξ)ηiηj � C|ξ |p−2|η|2 for ξ, η ∈ Rn,

for some positive constant C.

Theorem 1.2. Let Ω , p, q and f be as in Theorem 1.1. Assume that (1.3), (1.4) and (1.10) are fulfilled. Assume that
either 1 < q � ∞ and (1.8) holds, or q = 1 and (1.9) holds.

Then there exists a unique (up to additive constants) approximable solution to problem (1.1) depending continu-
ously on the right-hand side of the equation. Precisely, if g is another function from Lq(Ω) such that

∫
Ω

g(x)dx = 0,
and v is the solution to (1.1) with f replaced by g, then

‖∇u − ∇v‖Lp−1(Ω) � C‖f − g‖
1
r

Lq(Ω)

(‖f ‖Lq(Ω) + ‖g‖Lq(Ω)

) 1
p−1 − 1

r (1.11)

for some constant C depending on p, q and on the left-hand side either of (1.8) or (1.9). Here, r = max{p,2}.

Let us notice that the balance condition between q and νp in Theorems 1.1 and 1.2 requires a separate formulation
according to whether q > 1 or q = 1. In fact, assumption (1.9) is a qualified version of the limit as q → 1+ of (1.8).
This is as a consequence of the different a priori (and continuous dependence) estimates upon which Theorems 1.1
and 1.2 rely. Actually, L1(Ω) is a borderline space, and when f ∈ L1(Ω) the natural sharp estimate involves a weak
type (i.e. Marcinkiewicz) norm of the gradient of the solution u. Instead, when f ∈ Lq(Ω) with q > 1, a strong type
(i.e. Lebesgue) norm comes into play in a sharp bound for the gradient of u. This gap is intrinsic in the problem, as
witnessed by the basic case of the Laplace (or p-Laplace) operator in a smooth domain.

The paper is organized as follows. In Section 2 we collect definitions and basic properties concerning spaces of
measurable (Section 2.1) and weakly differentiable functions (Section 2.2), solutions to problem (1.1) (Section 2.3),
perimeter and capacity (Section 2.4). Section 3 is devoted to the proof of Theorem 1.1, which is accomplished in
Section 3.2, after deriving the necessary a priori estimates in Section 3.1. Continuous dependence estimates under the
strong monotonicity assumption (1.10) are established in Section 4.1; they are a key step in the proof of Theorem 1.2
given in Section 4.2. Finally, Section 5 contains applications of our results to special domains and classes of domains.
Versions of Theorems 1.1 and 1.2 involving the isoperimetric function are also preliminarily stated. With their help,
the advantage of using isocapacitary inequalities instead of isoperimetric inequalities is demonstrated in concrete
examples.

2. Background and preliminaries

2.1. Rearrangements and rearrangement invariant spaces

Let us denote by M(Ω) the set of measurable functions in Ω , and let u ∈ M(Ω). The distribution function
μu : [0,∞) → [0,∞) of u is defined as

μu(t) = ∣∣{x ∈ Ω:
∣∣u(x)

∣∣ � t
}∣∣, for t � 0. (2.1)

The decreasing rearrangement u∗ : [0, |Ω|] → [0,∞] of u is given by

u∗(s) = sup
{
t � 0: μu(t) � s

}
, for s ∈ [

0, |Ω|]. (2.2)

We also define u∗ : [0, |Ω|] → [0,∞], the increasing rearrangement of u, as

u∗(s) = u∗(|Ω| − s
)
, for s ∈ [

0, |Ω|].
The operation of decreasing rearrangement is neither additive nor subadditive. However,

(u + v)∗(s) � u∗(s/2) + v∗(s/2), for s ∈ [
0, |Ω|], (2.3)

for any u,v ∈ M(Ω), and hence, via Young’s inequality,
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(uv)∗(s) � u∗(s/2)v∗(s/2), for s ∈ [
0, |Ω|]. (2.4)

A basic property of rearrangements is the Hardy–Littlewood inequality, which tells us that

|Ω|∫
0

u∗(s)v∗(s) ds �
∫
Ω

∣∣u(x)v(x)
∣∣dx �

|Ω|∫
0

u∗(s)v∗(s) ds (2.5)

for any u,v ∈ M(Ω).
A rearrangement invariant (r.i., for short) space X(Ω) on Ω is a Banach function space, in the sense of Luxemburg,

equipped with a norm ‖ · ‖X(Ω) such that

‖u‖X(Ω) = ‖v‖X(Ω) whenever u∗ = v∗. (2.6)

Since we are assuming that |Ω| < ∞, any r.i. space X(Ω) fulfills

L∞(Ω) → X(Ω) → L1(Ω),

where the arrow “→” stands for continuous embedding.
Given any r.i. space X(Ω), there exists a unique r.i. space X(0, |Ω|), the representation space of X(Ω) on (0, |Ω|),

such that

‖u‖X(Ω) = ∥∥u∗∥∥
X(0,|Ω|) (2.7)

for every u ∈ X(Ω). A characterization of the norm ‖ · ‖X(0,|Ω|) is available (see [10, Chapter 2, Theorem 4.10 and

subsequent remarks]). However, in our applications, an expression for X(0, |Ω|) will be immediately derived via basic
properties of rearrangements. In fact, besides the standard Lebesgue spaces, we shall only be concerned with Lorentz
and Marcinkiewicz type spaces. Recall that, given σ,	 ∈ (0,∞), the Lorentz space Lσ,	(Ω) is the set of all functions
u ∈ M(Ω) such that the quantity

‖u‖Lσ,	(Ω) =
( |Ω|∫

0

(
s

1
σ u∗(s)

)	 ds

s

)1/	

(2.8)

is finite. The expression ‖ · ‖Lσ,	(Ω) is an (r.i.) norm if and only if 1 � 	 � σ . When σ ∈ (1,∞) and 	 ∈ [1,∞), it
is always equivalent to the norm obtained on replacing u∗(s) by 1

s

∫ s

0 u∗(r) dr on the right-hand side of (2.8); the
space Lσ,	(Ω), endowed with the resulting norm, is an r.i. space. Note that Lσ,σ (Ω) = Lσ (Ω) for σ > 0. Moreover,
Lσ,	1(Ω) � Lσ,	2(Ω) if 	1 < 	2, and, since |Ω| < ∞, Lσ1,	1(Ω) � Lσ2,	2(Ω) if σ1 > σ2 and 	1, 	2 ∈ (0,∞].

Let ω : (0, |Ω|) → (0,∞) be a bounded non-decreasing function. The Marcinkiewicz space Mω(Ω) associated
with ω is the set of all functions u ∈ M(Ω) such that the quantity

‖u‖Mω(Ω) = sup
s∈(0,|Ω|)

ω(s)u∗(s) (2.9)

is finite. The expression (2.9) is equivalent to a norm, which makes Mω(Ω) an r.i. space, if and only if
sups∈(0,|Ω|)

ω(s)
s

∫ s

0
dr

ω(r)
< ∞.

2.2. Spaces of Sobolev type

Given any p ∈ [1,∞], we denote by W 1,p(Ω) the standard Sobolev space, namely

W 1,p(Ω) = {
u ∈ Lp(Ω): u is weakly differentiable in Ω and |∇u| ∈ Lp(Ω)

}
.

The space W
1,p

loc (Ω) is defined analogously, on replacing Lp(Ω) by L
p

loc(Ω) on the right-hand side.
Given any t > 0, let Tt : R → R be the function defined as

Tt (s) =
{

s if |s| � t,

t sign(s) if |s| > t.
(2.10)
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For p ∈ [1,∞], we set

W
1,p
T (Ω) = {

u: u ∈ M(Ω) and Tt (u) ∈ W 1,p(Ω) for every t > 0
}
. (2.11)

The space W
1,p

T ,loc(Ω) is defined accordingly, on replacing W 1,p(Ω) by W
1,p

loc (Ω) on the right-hand side of (2.11). If

u ∈ W
1,p

T ,loc(Ω), there exists a (unique) measurable function Zu : Ω → Rn such that

∇(
Tt (u)

) = χ{|u|<t}Zu a.e. in Ω (2.12)

for every t > 0 [9, Lemma 2.1]. Here χE denotes the characteristic function of the set E. One has that u ∈ W
1,p

loc (Ω)

if and only if u ∈ W
1,p

T ,loc(Ω) ∩ L
p

loc(Ω) and Zu ∈ L
p

loc(Ω,Rn), and, in this case, Zu = ∇u. An analogous property

holds provided that “loc” is dropped everywhere. In what follows, with abuse of notation, for every u ∈ W
1,p

T ,loc(Ω) we
denote Zu by ∇u.

Given p ∈ (0,∞], define

V 1,p(Ω) = {
u: u ∈ W

1,1
T ,loc(Ω) and |∇u| ∈ Lp(Ω)

}
.

Note that, if p � 1, then

V 1,p(Ω) = {
u: u ∈ W

1,1
loc (Ω) and |∇u| ∈ Lp(Ω)

}
,

a customary space of weakly differentiable functions. Moreover, if p � 1, the set Ω is connected, and B is any ball
such that B ⊂ Ω , then V 1,p(Ω) is a Banach space equipped with the norm

‖u‖V 1,p(Ω) = ‖u‖Lp(B) + ‖∇u‖Lp(Ω).

Note that, replacing B by another ball results in an equivalent norm. The topological dual of V 1,p(Ω) will be denoted
by (V 1,p(Ω))′.

Given any ball B as above, define the subspace V
1,p
B (Ω) of V 1,p(Ω) as

V
1,p
B (Ω) =

{
u ∈ V 1,p(Ω):

∫
B

udx = 0

}
.

Proposition 2.1. Let p ∈ [1,∞]. Let Ω be a connected open set in Rn having finite measure, and let B be any ball
such that B ⊂ Ω . Then the quantity

‖u‖
V

1,p
B (Ω)

= ‖∇u‖Lp(Ω) (2.13)

defines a norm in V
1,p
B (Ω) equivalent to ‖ ·‖V 1,p(Ω). Moreover, if p ∈ (1,∞), then V

1,p
B (Ω), equipped with this norm,

is a separable and reflexive Banach space.

Proof (Sketched). The only non-trivial property that has to be checked in order to show that ‖ · ‖
V

1,p
B (Ω)

is actually a

norm is the fact that ‖u‖
V

1,p
B (Ω)

= 0 only if u = 0. This is a consequence of the Poincaré type inequality which tells

us that, for every smooth open set Ω ′ such that B ⊂ Ω ′ and Ω ′ ⊂ Ω ,

‖u‖Lp(Ω ′) � C‖∇u‖Lp(Ω ′) (2.14)

for some constant C = C(p,Ω ′, |B|) and for every u ∈ V
1,p
B (Ω) (see e.g. [69, Chapter 4]). The same inequality plays

a role in showing that V
1,p
B (Ω), equipped with the norm ‖ · ‖

V
1,p
B (Ω)

, is complete. When p ∈ (1,∞), the separability

and the reflexivity of V
1,p
B (Ω) follow via the same argument as for the standard Sobolev space W 1,p(Ω), on making

use of the fact that the map L : V 1,p
B (Ω) → (Lp(Ω))n given by Lu = ∇u is an isometry of V

1,p
B (Ω) into (Lp(Ω))n,

and that (Lp(Ω))n is a separable and reflexive Banach space. �
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2.3. Solutions

When f ∈ (V 1,p(Ω))′, and (1.2)–(1.4) are in force, a standard notion of solution to problem (1.1) is that of weak
solution. Recall that a function u ∈ V 1,p(Ω) is called a weak solution to (1.1) if∫

Ω

a(x,∇u) · ∇Φ dx =
∫
Ω

f Φ dx for every Φ ∈ V 1,p(Ω). (2.15)

An application of the Browder–Minthy theory for monotone operators, resting upon Proposition 2.1, yields the follow-
ing existence and uniqueness result. The proof can be accomplished along the same lines as in [68, Proposition 26.12
and Corollary 26.13]. We omit the details for brevity.

Proposition 2.2. Let p ∈ (1,∞) and let Ω be a bounded connected open set in Rn having finite measure. If f ∈
(V 1,p(Ω))′, then under assumptions (1.2)–(1.5) there exists a unique (up to additive constants) weak solution u ∈
V 1,p(Ω) to problem (1.1).

The definition of weak solution does not fit the case when f /∈ (V 1,p(Ω))′, since the right-hand side of (2.15) need
not be well defined. This difficulty can be circumvented on restricting the class of test functions Φ to W 1,∞(Ω), for
instance. This leads to a counterpart, in the Neumann problem setting, of the classical definition of solution to the
Dirichlet problem in the sense of distributions. It is however well known [62] that such a class of test functions may
be too poor for the solution to be uniquely determined, even under an appropriate monotonicity assumption as (1.5).

In order to overcome this drawback, we adopt a definition of solution, in the spirit e.g. of [25] and [27], obtained
in the limit from solutions to approximating problems with regular right-hand sides. The idea behind such a definition
is that the additional requirement of being approximated by solutions to regular problems identifies a distinguished
proper distributional solution to problem (1.1). Specifically, if Ω is an open set in Rn having finite measure, and
f ∈ Lq(Ω) for some q ∈ [1,∞] and fulfills (1.2), then a function u ∈ V 1,p−1(Ω) will be called an approximable
solution to problem (1.1) under assumptions (1.3) and (1.4) if

(i) ∫
Ω

a(x,∇u) · ∇Φ dx =
∫
Ω

f Φ dx for every Φ ∈ W 1,∞(Ω), (2.16)

and
(ii) a sequence {fk} ⊂ Lq(Ω) ∩ (V 1,p(Ω))′ exists such that

∫
Ω

fk(x) dx = 0 for k ∈ N,

fk → f in Lq(Ω),

and the sequence of weak solutions {uk} ⊂ V 1,p(Ω) to problem (1.1), with f replaced by fk , satisfies

uk → u a.e. in Ω.

A few brief comments about this definition are in order. Customary counterparts of such a definition for Dirichlet
problems [25,27] just amount to (a suitable version of) property (ii). Actually, the existence of a generalized gradient
of the limit function u, in the sense of (2.12), and the fact that u is a distributional solution directly follow from
analogous properties of the approximating solutions uk . This is due to the fact that, whenever f ∈ L1(Ω), a priori
estimates in suitable Lebesgue spaces for the gradient of approximating solutions to homogeneous Dirichlet problems
are available, irrespective of whether Ω is regular or not. As a consequence, one can pass to the limit in the equations
fulfilled by uk , and hence infer that u is a distributional solution to the original Dirichlet problem. When Neumann
problems are taken into account, the existence of a generalized gradient of u and the validity of (i) is not guaranteed
anymore, inasmuch as a priori estimates for |∇uk| depend on the regularity of Ω . The membership of u in V 1,p−1(Ω)

and equation (i) have consequently to be included as part of the definition of solution.
Let us also mention that the definition of approximable solution can be shown to be equivalent to other definitions

patterned on those of entropy solution [9] and of renormalized solution [47,58,59] given for Dirichlet problems.
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2.4. Perimeter and capacity

The isoperimetric function λ : [0, |Ω|/2] → [0,∞) of Ω is defined as

λ(s) = inf
{
P(E,Ω): s � |E| � |Ω|/2

}
for s ∈ [

0, |Ω|/2
]
. (2.17)

Here, P(E;Ω) is the perimeter of E relative to Ω , which agrees with Hn−1(∂ME ∩ Ω), where Hn−1 denotes the
(n − 1)-dimensional Hausdorff measure, and ∂ME stands for the essential boundary of E (see e.g. [6,55]).

The relative isoperimetric inequality (1.6) is a straightforward consequence of definition (2.17). On the other hand,
the isoperimetric function λ is known only for very special domains, such as balls [14,55] and convex cones [48].
However, various qualitative and quantitative properties of λ have been investigated, in view of applications to Sobolev
inequalities [40,52,55,56], eigenvalue estimates [17,19,37], a priori bounds for solutions to Neumann problems (see
the references in Section 1).

In particular, the function λ is known to be strictly positive in (0, |Ω|/2] when Ω is connected [55, Lemma 3.2.4].
Moreover, the asymptotic behavior of λ(s) as s → 0+ depends on the regularity of the boundary of Ω . For instance,
if Ω has a Lipschitz boundary, then

λ(s) ≈ s1/n′
as s → 0+ (2.18)

[55, Corollary 3.2.1/3]. Here, and in what follows, the relation ≈ between two quantities means that they are bounded
by each other up to multiplicative constants. The asymptotic behavior of the function λ for sets having a Hölder
continuous boundary in the plane was established in [18]. More general results for sets in Rn whose boundary has an
arbitrary modulus of continuity follow from [46]. Finer asymptotic estimates for λ can be derived under additional
assumptions on ∂Ω (see e.g. [16,20]).

The approach of the present paper relies upon estimates for the Lebesgue measure of subsets of Ω via their relative
condenser capacity instead of their relative perimeter. Recall that the standard p-capacity of a set E ⊂ Ω can be
defined for p � 1 as

Cp(E) = inf

{∫
Ω

|∇u|p dx: u ∈ W
1,p

0 (Ω), u � 1 in some neighborhood of E

}
, (2.19)

where W
1,p

0 (Ω) denotes the closure in W 1,p(Ω) of the set of smooth compactly supported functions in Ω . A property
concerning the pointwise behavior of functions is said to hold Cp-quasi everywhere in Ω , Cp-q.e. for short, if it is
fulfilled outside a set of p-capacity zero.

Each function u ∈ W 1,p(Ω) has a representative ũ, called the precise representative, which is Cp-quasicontinuous,
in the sense that for every ε > 0, there exists a set A ⊂ Ω , with Cp(A) < ε, such that f|Ω\A is continuous in Ω \ A.
The function ũ is unique, up to subsets of p-capacity zero. In what follows, we assume that any function u ∈ W 1,p(Ω)

agrees with its precise representative.
A standard result in the theory of capacity tells us that, for every set E ⊂ Ω ,

Cp(E) = inf

{∫
Ω

|∇u|p dx: u ∈ W
1,p

0 (Ω), u � 1 Cp-q.e. in E

}
(2.20)

– see e.g. [26, Proposition 12.4] or [51, Corollary 2.25]. In the light of (2.20), we adopt the following definition of
capacity of a condenser. Given sets E ⊂ G ⊂ Ω , the capacity Cp(E,G) of the condenser (E,G) relative to Ω is
defined as

Cp(E,G) = inf

{∫
Ω

|∇u|p dx: u ∈ W 1,p(Ω), u � 1 Cp-q.e. in E and u � 0 Cp-q.e. in Ω \ G

}
. (2.21)

Accordingly, the p-isocapacitary function νp : [0, |Ω|/2) → [0,∞) of Ω is given by

νp(s) = inf
{
Cp(E,G): E and G are measurable subsets of Ω such that

E ⊂ G ⊂ Ω , s � |E| and |G| � |Ω|/2
}

for s ∈ [
0, |Ω|/2

)
. (2.22)



A. Alvino et al. / Ann. I. H. Poincaré – AN 27 (2010) 1017–1054 1025
The function νp is clearly non-decreasing. In what follows, we shall always deal with the left-continuous representa-
tive of νp , which, owing to the monotonicity of νp , is pointwise dominated by the right-hand side of (2.22).

The isocapacitary inequality (1.7) immediately follows from definition (2.22). The point is again to get information
about the behavior of νp(s) as s → 0+. Such a behavior is known to be related, for instance, to the validity of Sobolev
embeddings for V 1,p(Ω) – see [55,56], where further results concerning νp can also be found. In particular, a slight
variant of the results of [56, Section 8.5] tells us that

V 1,p(Ω) → Lσ (Ω) (2.23)

if and only if either 1 � p � σ < ∞ and

sup
0<s<|Ω|/2

s
p
σ

νp(s)
< ∞, (2.24)

or 1 � σ � p and

|Ω|/2∫
0

(
sp/σ

νp(s)

) σ
p−σ ds

s
< ∞. (2.25)

As far as relations between λ and νp are concerned, given any connected open set Ω with finite measure one has
that

ν1(s) ≈ λ(s), as s → 0+, (2.26)

as shown by an easy variant of [55, Lemma 2.2.5]. When p > 1, the functions λ and νp are related by

νp(s) �
( |Ω|/2∫

s

dr

λ(r)p
′

)1−p

, for s ∈ (
0, |Ω|/2

)
(2.27)

[55, Proposition 4.3.4/1]. Hence, in particular, νp is strictly positive in (0, |Ω|/2) for every connected open set having
finite measure, and

lim
s→(|Ω|/2)−

νp(s) = ∞. (2.28)

A reverse inequality in (2.27) does not hold in general, even up to a multiplicative constant. This accounts for the
fact that the results on problem (1.1) which can be derived in terms of νp are stronger, in general, than those resting
upon λ. However, the two sides of (2.27) are equivalent when Ω is sufficiently regular. This is the case, for instance, if
Ω is bounded and has a Lipschitz boundary. In this case, combining (2.18) and (2.27), and choosing small concentric
balls as sets E and G to estimate the right-hand side in definition (2.22) easily show that

νp(s) ≈ s
n−p

n as s → 0+, (2.29)

if p ∈ [1, n), whereas

νn(s) ≈
(

log
1

s

)1−n

as s → 0+. (2.30)

3. Strictly monotone operators

3.1. A priori estimates

In view of their use in the proofs of Theorems 1.1 and 1.2, we collect here a priori estimates for the solution u to
problem (1.1) and for its gradient ∇u, under assumptions (1.3)–(1.5). Both pointwise estimates for their decreasing
rearrangements, and norm estimates are presented. Our results are stated for weak solutions to (1.1) under the assump-
tion that f ∈ (V 1,p(Ω))′, this being sufficient for them to be applied to the approximating problems. We emphasize,
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however, that these results continue to hold for approximable solutions when f /∈ (V 1,p(Ω))′, as it is easily shown
on adapting the approximation arguments that will be exploited in the proof of Theorem 1.1. Thus, the results of the
present section can also be regarded as regularity results for approximable solutions to problem (1.1).

We begin with estimates for u, which are contained in Theorems 3.1 and 3.2 below. In what follows, we set

med(u) = sup
{
t ∈ R:

∣∣{u > t}∣∣ � |Ω|/2
}
, (3.1)

the median of u. Hence, if

med(u) = 0, (3.2)

then ∣∣{u > 0}∣∣ � |Ω|/2 and
∣∣{u < 0}∣∣ � |Ω|/2. (3.3)

Moreover, we adopt the notation u+ = |u|+u
2 and u− = |u|−u

2 for the positive and the negative part of a function u,
respectively.

Theorem 3.1. Let Ω , p and a be as in Theorem 1.1. Assume that f ∈ L1(Ω) ∩ (V 1,p(Ω))′ and fulfills (1.2). Let u be
the weak solution to problem (1.1) such that med(u) = 0. Then

u∗±(s) �
|Ω|/2∫
s

( r∫
0

f ∗±(ρ) dρ

) 1
p−1

d
(−Dν

1
1−p
p

)
(r), for s ∈ (

0, |Ω|/2
)
. (3.4)

Here, Dν
1

1−p
p denotes the derivative in the sense of measures of the non-increasing function ν

1
1−p
p .

Theorem 3.2. Let Ω , p and a be as in Theorem 1.1. Assume that f ∈ Lq(Ω) ∩ (V 1,p(Ω))′ for some q ∈ [1,∞] and
fulfills (1.2). Let u be the weak solution to problem (1.1) such that med(u) = 0. Let σ ∈ (0,∞). Then there exists a
constant C such that

‖u‖Lσ (Ω) � C‖f ‖
1

p−1
Lq(Ω), (3.5)

if either

(i) 1 < q < ∞, q(p − 1) � σ < ∞ and

sup
0<s<|Ω|/2

s
p−1
σ

+ 1
q′

νp(s)
< ∞, (3.6)

or
(ii) 1 < q < ∞, 0 < σ < q(p − 1) and

|Ω|/2∫
0

(
s

νp(s)

) σq
q(p−1)−σ

ds < ∞, (3.7)

or
(iii) 0 < σ � 1, q = ∞ and

|Ω|/2∫
0

(
s

νp(s)

) σ
p−1

ds < ∞. (3.8)

Moreover the constant C in (3.5) depends only on p, q , σ and on the left-hand side either of (3.6), or (3.7), or (3.8),
respectively.
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Theorem 3.1 is proved in [22]. Theorem 3.2 can be derived from Theorem 3.1, via suitable weighted Hardy type in-
equalities. In particular, a proof of cases (i) and (ii) can be found in [22, Theorem 4.1]. Case (iii) follows from case (vi)
of [22, Theorem 4.1], via a weighted Hardy type inequality for non-increasing functions [41, Theorem 3.2(b)].

We are now concerned with gradient estimates. A counterpart of Theorem 3.1 for |∇u| is the content of the next
result.

Theorem 3.3. Let Ω , p and a be as in Theorem 1.1. Assume that f ∈ L1(Ω) ∩ (V 1,p(Ω))′ and fulfills (1.2). Let u be
the weak solution to (1.1) satisfying med(u) = 0. Then

|∇u±|∗(s) �
(

2

s

|Ω|/2∫
s
2

( r∫
0

f ∗±(ρ) dρ

)p′

d
(−Dν

1
1−p
p

)
(r)

) 1
p

for s ∈ (
0, |Ω|). (3.9)

The proof of Theorem 3.3 combines lower and upper estimates for the integral of |∇u|p−1 over the boundary of
the level sets of u. The relevant lower estimate involves the isocapacitary function νp . Given u ∈ V 1,p(Ω), we define
ψu : [0,∞) → [0,∞) as

ψu(t) =
t∫

0

dτ

(
∫
{u=τ } |∇u|p−1 dHn−1(x))1/(p−1)

for t � 0. (3.10)

As a consequence of [55, Lemma 2.2.2/1], one has that

Cp

({u � t}, {u > 0}) � ψu(t)
1−p for t > 0. (3.11)

Thus, if u ∈ V 1,p(Ω) and fulfills (3.2), then on estimating the infimum on the right-hand side of (2.22) by the choice
E = {u± � t} and G = {u± > 0}, and on making use of (3.11) applied with u replaced by u+ and u−, we deduce that

νp

(∣∣{u± � t}∣∣) � ψu±(t)1−p for t > 0. (3.12)

The upper estimate is contained in the following lemma from [22], a version for Neumann problems of a result of
[54,64,65].

Lemma 3.4. Under the same assumptions as in Theorem 3.1,

∫
{u±=t}

|∇u|p−1 dHn−1(x) �
μu± (t)∫

0

f ∗±(r) dr for a.e. t > 0. (3.13)

Proof of Theorem 3.3. We shall prove (3.9) for u+, the proof for u− being analogous. Consider the function U :
(0, |Ω|/2] → [0,∞) given by

U(s) =
∫

{u+�u∗+(s)}
|∇u+|p dx, for s ∈ (

0, |Ω|/2
]
. (3.14)

Since u ∈ W 1,p(Ω), the function u∗+ is locally absolutely continuous (a.c., for short) in (0, |Ω|/2) – see e.g.
[21, Lemma 6.6]. The function

(0,∞)  t �→
∫

{u+�t}
|∇u+|p dx

is also locally a.c., inasmuch as, by the coarea formula,

∫
|∇u+|p dx =

t∫
0

∫
{u =τ }

|∇u+|p−1 dHn−1(x) dτ, for t > 0. (3.15)
{u+�t} +
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Thus, U is locally a.c., for it is the composition of monotone a.c. functions, and by (3.15)

U ′(s) = −u∗ ′+ (s)

∫
{u+=u∗+(s)}

|∇u+|p−1 dHn−1(x), for a.e. s ∈ (
0, |Ω|/2

)
. (3.16)

Similarly, the function(
0, |Ω|/2

)  s �→ ψu+
(
u∗+(s)

)
,

where ψu+ is defined as in (3.10), is locally a.c., and

d

ds

(
ψu+

(
u∗+(s)

)) = u∗ ′+ (s)∫
{u+=u∗+(s)} |∇u+|p−1 dHn−1(x)

for a.e. s ∈ (
0, |Ω|/2

)
. (3.17)

Let us set

W(s) = d

ds

(
ψu+

(
u∗+(s)

))
for a.e. s ∈ (

0, |Ω|/2
)
.

From (3.16), (3.17) and (3.13), we obtain that

−U ′(s) � W(s)

( s∫
0

f ∗+(r) dr

)p′

, for a.e. s ∈ (
0, |Ω|/2

)
. (3.18)

Note that in deriving (3.18) we have made use of the fact that μu+(u∗+(s)) = s if s does not belong to any interval
where u∗+ is constant, and that u∗ ′+ = 0 in any such interval. Since ψu+(u∗+(|Ω|/2)) = ψu+(0) = 0, from (3.12) we
obtain that

|Ω|/2∫
s

W(r) dr = ψu+
(
u∗+(s)

)
� ν

1
1−p
p (s) =

|Ω|/2∫
s

d
(−Dν

1
1−p
p

)
(r), for s ∈ (

0, |Ω|/2
)
. (3.19)

Owing to Hardy’s lemma (see e.g. [10, Chapter 2, Proposition 3.6]), inequality (3.19) entails that

|Ω|/2∫
0

φ(r)W(r) dr �
|Ω|/2∫
0

φ(r) d
(−Dν

1
1−p
p

)
(r) (3.20)

for every non-decreasing function φ : (0, |Ω|/2) → [0,∞). In particular, fixed any such function φ, we have that

|Ω|/2∫
0

φ(r)

( r∫
0

f ∗+(ρ) dρ

)p′

W(r)dr �
|Ω|/2∫
0

φ(r)

( r∫
0

f ∗+(ρ) dρ

)p′

d
(−Dν

1
1−p
p

)
(r). (3.21)

Coupling (3.18) and (3.21) yields

|Ω|/2∫
0

−U ′(r)φ(r) dr �
|Ω|/2∫
0

φ(r)

( r∫
0

f ∗+(ρ) dρ

)p′

d
(−Dν

1
1−p
p

)
(r). (3.22)

Next note that

|Ω|/2∫
s

−U ′(r) dr = U(s) =
∫

{u+�u∗(s)}
|∇u+|p dx �

|Ω|/2∫
s

|∇u+|∗(r)p dr (3.23)

for s ∈ (0, |Ω|/2), where the inequality follows from the first inequality in (2.5) and from the inequality |{0 < u+ �
u∗+(s)}| � |Ω|/2 − s. Inequality (3.23), via Hardy’s lemma again, ensures that
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|Ω|/2∫
0

|∇u+|∗(r)pφ(r) dr �
|Ω|/2∫
0

−U ′(r)φ(r) dr. (3.24)

Fixed any s ∈ (0, |Ω|/2), we infer from (3.22) and (3.24) that

|∇u+|∗(s)p
s∫

0

φ(r) dr �
|Ω|/2∫
0

φ(r)

( r∫
0

f ∗+(ρ) dρ

)p′

d
(−Dν

1
1−p
p

)
(r). (3.25)

Inequality (3.9) follows from (3.25) on choosing φ = χ[s/2,|Ω|/2]. �
Estimates for Lebesgue norms of |∇u| are provided by the next result.

Theorem 3.5. Let Ω , p and a be as in Theorem 1.1. Assume that f ∈ Lq(Ω) ∩ (V 1,p(Ω))′ for some q ∈ [1,∞] and
fulfills (1.2). Let u be a weak solution to problem (1.1). Let 0 < σ � p. Then there exists a constant C such that

‖∇u‖Lσ (Ω) � C‖f ‖
1

p−1
Lq(Ω), (3.26)

if either

(i) q > 1, q(p − 1) � σ and

sup
0<s<

|Ω|
2

s
1+ p(p−1)

σ
− p

q

νp(s)
< ∞, (3.27)

or
(ii) 1 < q < ∞, 0 < σ < q(p − 1) and

|Ω|/2∫
0

(
s

νp(s)

) σq
p[q(p−1)−σ ]

ds < ∞, (3.28)

or
(iii) q = ∞ and

|Ω|/2∫
0

(
s

νp(s)

) σ
p(p−1)

ds < ∞, (3.29)

or
(iv) q = 1 and

|Ω|/2∫
0

(
s

νp(s)

) σ
p(p−1) ds

s
σ

p−1
< ∞. (3.30)

Moreover the constant C in (3.26) depends only on p, q , σ and on the left-hand side either of (3.27), or (3.28), or
(3.29) or (3.30), respectively.

Cases (i)–(iii) of Theorem 3.5 are proved in [22, Theorem 5.1]; an alternative proof can be given by an argument
analogous to that of Theorem 4.1, Section 4. Case (iv) is a straightforward consequence of the following proposition.

Proposition 3.6. Let Ω , p and a be as in Theorem 1.1. Assume that f ∈ L1(Ω) ∩ (V 1,p(Ω))′ and fulfills (1.2). Let u

be a weak solution to (1.1). Let ωp : (0, |Ω|) → [0,∞) be the function defined by

ωp(s) = (
sνp

1
p−1 (s/2)

) 1
p , for s ∈ (

0, |Ω|). (3.31)
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Then there exists a constant C = C(p,n) such that

‖∇u‖Mωp (Ω) � C‖f ‖
1

p−1

L1(Ω)
, (3.32)

where Mωp(Ω) is the Marcinkiewicz space defined as in (2.9).

Proof. If u is normalized in such a way that med(u) = 0, by estimate (3.9) one gets that

|∇u±|∗(s) � ‖f±‖
1

p−1

L1(Ω)

(
2

s

|Ω|/2∫
s
2

d
(−Dν

1
1−p
p

)
(r)

) 1
p

� 2
1
p ‖f±‖

1
p−1

L1(Ω)

(
1

s
ν

1
1−p
p (s/2)

) 1
p

for s ∈ (0, |Ω|). Inequality (3.32) follows. �
Let us note that Theorem 3.3 can also be used to provide a further alternate proof of cases (i)–(iii) of Theorem 3.5

when σ < p. In fact, these cases are special instances of Theorem 3.9 below, dealing with a priori estimates for
Lorentz norms of the gradient. Theorem 3.9 in turn rests upon the following corollary of Theorem 3.3.

Corollary 3.7. Let Ω , p and a be as in Theorem 1.1. Let X(Ω) be an r.i. space and let f ∈ X(Ω) ∩ (V 1,p(Ω))′. Let
u be a weak solution to problem (1.1). Assume that Y(Ω) is an r.i. space such that

∥∥∥∥∥
(

1

s

|Ω|∫
s

( r∫
0

φ(ρ)dρ

)p′

d
(−Dν

1
1−p
p

)
(r)

) 1
p
∥∥∥∥∥

Y (0,|Ω|)
� C‖φ‖

1
p−1

X(0,|Ω|), (3.33)

for some constant C and every non-negative and non-increasing function φ ∈ X(0, |Ω|). Then there exists a constant
C1 = C1(C) such that

‖∇u‖Y(Ω) � C1‖f ‖
1

p−1
X(Ω). (3.34)

Proof. Inequality (3.34) immediately follows from (3.9), (3.33) and the fact that the dilation operator H defined on
any function φ ∈ M(0, |Ω|) by

Hφ(s) = φ(s/2), for s ∈ (
0, |Ω|),

is bounded in any r.i. space on (0, |Ω|) (see e.g. [10, Chapter 3, Proposition 5.11]). �
Remark 3.8. If X(Ω) is such that the Hardy type inequality∥∥∥∥∥1

s

s∫
0

φ(r) dr

∥∥∥∥∥
X(0,|Ω|)

� C2‖φ‖X(0,|Ω|) (3.35)

holds every non-negative and non-increasing function φ ∈ X(0, |Ω|) and for some constant C2, and

∥∥∥∥∥
(

1

s

|Ω|∫
s

φ(r)p
′
rp′

d
(−Dν

1
1−p
p

)
(r)

) 1
p
∥∥∥∥∥

Y(0,|Ω|)
� C3‖φ‖

1
p−1

X(0,|Ω|), (3.36)

for some constant C3 and every φ as above, then (3.34) holds with C1 = C1(C2,C3).
Indeed, if (3.36) is in force, then (3.33) holds with φ replaced by 1

s

∫ s

0 φ(r) dr on the right-hand side. Inequality
(3.34) then follows via (3.35).

Theorem 3.9. Let Ω , p and a be as in Theorem 1.1. Let 0 < σ < p, 1 < q < ∞, 0 < γ,	 < ∞. Let f ∈ L
q,

γ
p−1 (Ω)∩

(V 1,p(Ω))′ and let u be a weak solution to problem (1.1). Then there exists a constant C such that
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‖∇u‖Lσ,	(Ω) � C‖f ‖
1

p−1

L
q,

γ
p−1 (Ω)

(3.37)

if either

(i) γ � 	 and

sup
0<s<

|Ω|
2

s
1+ p(p−1)

σ
− p

q

νp(s)
< ∞, (3.38)

or
(ii) γ > 	 and

|Ω|/2∫
0

(
s

1+ p(p−1)
σ

− p
q

νp(s)

) 	γ
p(γ−	)(p−1) ds

s
< ∞. (3.39)

Moreover the constant C in (3.37) depends only on p, q , σ , 	, γ and on the left-hand side either of (3.38) or (3.39),
respectively.

The proof of Theorem 3.9 relies upon Corollary 3.7 and on a sufficient condition for weighted one-dimensional
Hardy type inequalities for non-increasing functions established in [38]. The arguments to be used are similar to those
exploited in the proof of [22, Theorem 4.1]. The details are omitted for brevity. Let us mention that estimates for local
solutions in the spirit of (3.37), including the borderline case when σ = p, have recently been established in [57].

3.2. Proof of Theorem 1.1

A key step in our proof of Theorem 1.1 is the following uniform integrability result for the gradient of weak
solutions to (1.1) with f ∈ (V 1,p(Ω))′, which relies upon Theorem 3.3.

Lemma 3.10. Let Ω , p and a be as in Theorem 1.1. Assume that f ∈ Lq(Ω) ∩ (V 1,p(Ω))′ for some q ∈ [1,∞] and
fulfills (1.2). Then there exists a function ς : (0,∞) → [0,∞), depending on Ω , p and q , satisfying

lim
s→0+ ς(s) = 0, (3.40)

and such that, if u is a weak solution to (1.1) satisfying (3.2), then∫
F

|∇u±|p−1 dx � ς
(|F |)‖f±‖Lq(Ω) (3.41)

for every measurable set F ⊂ Ω .

Proof. By the Hardy–Littlewood inequality (2.5) and Theorem 3.3, we have that

∫
F

|∇u±|p−1 dx �
|F |∫
0

|∇u±|∗(s)p−1 ds

� 21/p

|F |/2∫
0

(
1

s

|Ω|/2∫
s

( r∫
0

f ∗±(ρ) dρ

)p′

d
(−Dν

1
1−p
p

)
(r)

) 1
p′

ds

� 21/p

|F |/2∫ (
1

s

|F |/2∫ ( r∫
f ∗±(ρ) dρ

)p′

d
(−Dν

1
1−p
p

)
(r)

) 1
p′

ds
0 s 0
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+ p21/p

( |F |
2

)1/p
( |Ω|/2∫

|F |/2

( r∫
0

f ∗±(ρ) dρ

)p′

d
(−Dν

1
1−p
p

)
(r)

) 1
p′

. (3.42)

Assume first that 1 < q � ∞ and (1.8) is in force. Let us preliminarily observe that

lim
s→0+

(
s

νp(s)

) q′
p

s = 0, (3.43)

since

s∫
0

(
r

νp(r)

) q′
p

dr � 1

νp(s)
q′
p

s∫
0

r
q′
p dr = p

q ′ + p

s
q′
p

+1

νp(s)
q′
p

for s ∈ (
0, |Ω|/2

)
.

Consider the second addend on the rightmost side of (3.42). We claim that there exists a function κ : (0,∞) → [0,∞)

such that

lim
s→0+ s1/pκ(s) = 0, (3.44)

and ( |Ω|/2∫
s

( r∫
0

f ∗+(ρ) dρ

)p′

d
(−Dν

1
1−p
p

)
(r)

) 1
p′

� κ(s)
∥∥f ∗±

∥∥
Lq(0,|Ω|/2)

, for s ∈ (
0, |Ω|/2

)
. (3.45)

To verify this claim, assume first that p′ � q . By a weighted Hardy inequality [55, Section 1.3], inequality (3.45)
holds with

κ(s) = C sup
s�r�|Ω|/2

νp(r)−1/pr
1
q′ , (3.46)

for some constant C = C(p,q). Moreover, κ fulfills (3.44), since

lim
s→0+ s1/p sup

s�r�|Ω|/2
νp(r)−1/pr

1
q′ = 0. (3.47)

Indeed, Eq. (3.47) holds trivially if sup0<r�|Ω|/2 νp(r)−1/pr
1
q′ < ∞. If this is not the case, then for each s ∈ (0, |Ω|/2)

define

r(s) = inf
{
r ∈ [

s, |Ω|/2
]
: 2νp(r)−1/pr

1
q′ � sup

s�ρ�|Ω|/2
νp(ρ)−1/pρ

1
q′

}
and observe that the function r(s) converges monotonically to 0 as s goes to 0, and that

lim
s→0+

(
s1/p sup

s�r�|Ω|/2
νp(r)−1/pr

1
q′

)
� 2 lim

s→0+ s1/pνp

(
r(s)

)−1/p
r(s)

1
q′

� 2 lim
s→0+

(
r(s)

νp(r(s))

) 1
p

r(s)1/q ′ = 0, (3.48)

by (3.43).
Consider next the case when p′ < q . An appropriate weighted Hardy inequality [55, Section 1.3] now tells us that

inequality (3.45) holds with

κ(s) = C

( |Ω|/2∫ (
r

1
p−1

|Ω|/2∫
χ(s,|Ω|/2)(ρ) d

(−Dν
1

1−p
p

)
(ρ)

) q

q−p′
dr

) q−p′
qp′

, (3.49)
0 r
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for some constant C = C(p,q). Here, the exponents q
q−p′ and q−p′

qp′ are replaced by 1 and 1
p′ , respectively, when

q = ∞. We have that

κ(s) = C

( s∫
0

(
r

1
p−1 νp(s)

1
1−p

) q

q−p′ dr +
|Ω|/2∫
s

(
r

1
p−1 νp(r)

1
1−p

) q

q−p′ dr

) q−p′
qp′

� C
s1/q ′

νp(s)1/p
+ C

( |Ω|/2∫
s

(
r

νp(r)

) q

(p−1)(q−p′)
dr

) q−p′
qp′

, for s ∈ (
0, |Ω|/2

)
. (3.50)

Thus,

s1/pκ(s) � C

(
s

νp(s)

) 1
p

s1/q ′ + Cs1/p

( |Ω|/2∫
s

(
r

νp(r)

) q

(p−1)(q−p′)
dr

) q−p′
qp′

� C

(
s

νp(s)

) 1
p

s1/q ′ + Cs1/p sup
s�r�|Ω|/2

(
r

νp(r)

) q′
p2

( |Ω|/2∫
s

(
r

νp(r)

) q′
p

dr

) q−p′
qp′

, for s ∈ (
0, |Ω|/2

)
,

(3.51)

and hence κ(s) fulfills (3.44) also in this case, by (3.43), (1.8) and the fact that

lim
s→0+ s1/p

(
sup

s�r�|Ω|/2

(
r

νp(r)

) q′
p2

)
= 0,

as an analogous argument as in the proof of (3.48) shows.
We have thus proved that

s1/p

( |Ω|/2∫
s

( r∫
0

f ∗+(ρ) dρ

)p′

d
(−Dν

1
1−p
p

)
(r)

) 1
p′

� ς
(|E|)∥∥f ∗±

∥∥
Lq(0,|Ω|/2)

for s ∈ (
0, |Ω|/2

)
, (3.52)

for some function ς as in the statement.
Let us now take into account the first addend on the rightmost side of (3.42). We shall show that

s∫
0

r−1/p′
( s∫

r

f ∗∗± (ρ)p
′
ρp′

d
(−Dν

1
1−p
p

)
(ρ)

) 1
p′

dr

� C

( s∫
0

(
r

νp(r)

) q′
p

dr

) 1
q′ ∥∥f ∗∗±

∥∥
Lq(0,s)

for s ∈ (
0, |Ω|/2

)
, (3.53)

for some constant C = C(p,q). It suffices to establish (3.53) for some fixed number s, say 1, since the general case
then follows by scaling. As a consequence of [38, Theorem 1.1 and Remark 1.4], the inequality

1∫
0

r−1/p′
( 1∫

r

φ(ρ)p
′
ρp′

d
(−Dν

1
1−p
p

)
(ρ)

) 1
p′

dr � C‖φ‖Lq(0,1) (3.54)

holds for every non-negative non-increasing function φ in (0,1) if

( 1∫ ( r∫ (
ρp′

νp(ρ)
1

1−p +
r∫ (

θ

νp(θ)

) 1
p−1

dθ

) 1
p′

ρ
− 1

p′ dρ

)q ′

r−q ′
dr

) 1
q′

< ∞. (3.55)
0 0 ρ
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Moreover, the constant C on the right-hand side of (3.54) does not exceed the integral on the left-hand side of (3.55)
(up to a multiplicative constant depending on p and q). Thus, inequality (3.53) will follow if we show that

1∫
0

( r∫
0

(
ρp′

νp(ρ)
1

1−p +
r∫

ρ

(
θ

νp(θ)

) 1
p−1

dθ

) 1
p′

ρ
− 1

p′ dρ

)q ′

r−q ′
dr � C

1∫
0

(
r

νp(r)

) q′
p

dr, (3.56)

for some constant C = C(p,q). The standard Hardy inequality entails that

1∫
0

( r∫
0

(
ρ

νp(ρ)

) 1
p

dρ

)q ′

r−q ′
dr � C

1∫
0

(
r

νp(r)

) q′
p

dr, (3.57)

for some constant C = C(q). Thus, it only remains to prove that

1∫
0

( r∫
0

( r∫
ρ

(
θ

νp(θ)

) 1
p−1

dθ

) 1
p′

ρ
− 1

p′ dρ

)q ′

r−q ′
dr � C

1∫
0

(
r

νp(r)

) q′
p

dr, (3.58)

for some constant C = C(p,q). Consider first the case when p < q . By a Hardy type inequality again, we have that

1∫
0

( r∫
0

( r∫
ρ

(
θ

νp(θ)

) 1
p−1

dθ

) 1
p′

ρ
− 1

p′ dρ

)q ′

r−q ′
dr

�
1∫

0

( r∫
0

( 1∫
ρ

(
θ

νp(θ)

) 1
p−1

dθ

) 1
p′

ρ
− 1

p′ dρ

)q ′

r−q ′
dr

� C

1∫
0

( 1∫
r

(
θ

νp(θ)

) 1
p−1

dθ

) q′
p′

r
− q′

p′ dr. (3.59)

On the other hand, since νp is a non-increasing function, by [38, Theorem 1.1 and Remark 1.4], the right-hand side of
(3.59) does not exceed the right-hand side of (3.58), and hence (3.58) follows. Assume now that p � q . Then

1∫
0

( r∫
0

( r∫
ρ

(
θ

νp(θ)

) 1
p−1

dθ

) 1
p′

ρ
− 1

p′ dρ

)q ′

r−q ′
dr

�
1∫

0

( r∫
0

(
θ

νp(θ)

) 1
p−1

dθ

) q′
p′ ( r∫

0

ρ
− 1

p′ dρ

)q ′

r−q ′
dr

� C

1∫
0

(
r

νp(r)

) q′
p

dr, (3.60)

for some constant C = C(p,q), where the last inequality holds by the Hardy inequality. Inequality (3.58) is established
also in this case. Thus, inequality (3.56), and hence (3.53), is fully proved. Combining (3.42), (3.52) and (3.53), and
making use of the fact that∥∥f ∗∗±

∥∥
Lq(0,s)

� C
∥∥f ∗±

∥∥
Lq(0,s)

for some constant C = C(q), by the Hardy inequality, conclude the proof in the case when 1 < q � ∞.
Let us finally focus on the case when q = 1. The counterpart of (3.43) is now

lim+
s

ν (s)
= 0. (3.61)
s→0 p
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Inequality (3.45) holds with

κ(s) = Cνp(s)−1/p, (3.62)

and hence, by (3.61), the function κ fulfills (3.44). Inequality (3.52) is thus established. On the other hand,

s∫
0

r−1/p′
( s∫

r

f ∗∗± (ρ)p
′
ρp′

d
(−Dν

1
1−p
p

)
(ρ)

) 1
p′

dr

�
∥∥f ∗±

∥∥
L1(0,|Ω|/2)

s∫
0

r−1/p′
( s∫

r

d
(−Dν

1
1−p
p

)
(ρ)

) 1
p′

dr

�
∥∥f ∗±

∥∥
L1(0,|Ω|/2)

s∫
0

(
r

νp(r)

)1/p
dr

r
. (3.63)

The conclusion follows via (3.42), (3.52) and (3.63). �
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Our assumptions ensure that a sequence {fk} ⊂ Lq(Ω) ∩ (V 1,p(Ω))′ exists such that

fk → f in Lq(Ω) (3.64)

and ∫
Ω

fk dx = 0 for k ∈ N. (3.65)

Indeed, if 1 � q < ∞, any sequence {fk} of continuous compactly supported functions fulfilling (3.64) and (3.65)
does the job; when q = ∞, it suffices to take fk = f for k ∈ N, since V 1,p(Ω) → L1(Ω) provided that (1.9) is in
force, by (2.25). We may also clearly assume that

‖fk‖Lq(Ω) � 2‖f ‖Lq(Ω), for k ∈ N. (3.66)

By Proposition 2.2, for each k ∈ N there exists a unique weak solution uk ∈ V 1,p(Ω) to the problem{−div
(
a(x,∇uk)

) = fk(x) in Ω,

a(x,∇uk) · n = 0 on ∂Ω
(3.67)

fulfilling

med(uk) = 0. (3.68)

Hence,∫
Ω

a(x,∇uk) · ∇Φ dx =
∫
Ω

fkΦ dx, (3.69)

for every Φ ∈ V 1,p(Ω).
We split the proof of the existence of an approximable solution to (1.1) in steps. The outline of the argument is

related to that of [9,28].

Step 1. There exists a measurable function u : Ω → R such that

uk → u a.e. in Ω, (3.70)

up to subsequences. Hence, property (ii) of the definition of approximable solution holds.
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Given any t, τ > 0, one has that∣∣{|uk − um| > τ
}∣∣ �

∣∣{|uk| > t
}∣∣ + ∣∣{|um| > t

}∣∣ + ∣∣{∣∣Tt (uk) − Tt (um)
∣∣ > τ

}∣∣, (3.71)

for k,m ∈ N. By (3.4) and (3.66),

(uk)
∗±(s) � νp(s)

1
1−p

∥∥(fk)±
∥∥ 1

p−1

L1(Ω)
� 2

1
p−1 |Ω| 1

q′(p−1) νp(s)
1

1−p ‖f ‖
1

p−1
Lq(Ω)

for s ∈ (
0, |Ω|/2

)
, (3.72)

and for k ∈ N, whence

μ(uk)±(t) � ν−1
p

(
2|Ω| 1

q′ ‖f ‖Lq(Ω)

tp−1

)
, for t > 0, (3.73)

and for k ∈ N. Here, ν−1
p denotes the generalized left-continuous inverse of νp . Thus, fixed any ε > 0, the number t

can be chosen so large that∣∣{|uk| > t
}∣∣ < ε and

∣∣{|um| > t
}∣∣ < ε. (3.74)

Next, fix any smooth open set Ωε � Ω such that

|Ω \ Ωε| < ε. (3.75)

On choosing Φ = Tt (uk) in (3.69) and making use of (3.66) we obtain that∫
Ω

∣∣∇Tt (uk)
∣∣p dx =

∫
{|uk |<t}

|∇uk|p dx �
∫

{|uk |<t}
a(x,∇uk) · ∇uk dx � 2t |Ω| 1

q′ ‖f ‖Lq(Ω), (3.76)

for k ∈ N. In particular the sequence {Tt (uk)} is bounded in W 1,p(Ωε). By the compact embedding of W 1,p(Ωε)

into Lp(Ωε), Tt (uk) converges (up to subsequences) to some function in Lp(Ωε). In particular, {Tt (uk)} is a Cauchy
sequence in measure in Ωε . Thus,∣∣{∣∣Tt (uk) − Tt (um)

∣∣ > τ
}∣∣ � |Ω \ Ωε| +

∣∣Ωε ∩ {∣∣Tt (uk) − Tt (um)
∣∣ > τ

}∣∣ < 2ε (3.77)

provided that k and m are sufficiently large. By (3.71), (3.74) and (3.77), {uk} is (up to subsequences) a Cauchy
sequence in measure in Ω , and hence there exists a measurable function u : Ω → R such that (3.70) holds.

Step 2.

{∇uk} is a Cauchy sequence in measure. (3.78)

Fix any t > 0. Given any τ, δ > 0, we have that∣∣{|∇uk − ∇um| > t
}∣∣ �

∣∣{|∇uk| > τ
}∣∣ + ∣∣{|∇um| > τ

}∣∣ + ∣∣{|uk − um| > δ
}∣∣

+ ∣∣{|uk − um| � δ, |∇uk| � τ, |∇um| � τ, |∇uk − ∇um| > t
}∣∣, (3.79)

for k,m ∈ N. Either assumption (1.8) or (1.9), according to whether q ∈ (1,∞] or q = 1, and Theorem 3.5 ensure, via
(3.66), that

‖∇uk‖Lp−1(Ω) � C‖f ‖
1

p−1
Lq(Ω), (3.80)

for some constant C independent of k. Hence,

∣∣{|∇uk| > τ
}∣∣ �

(
C‖f ‖

1
p−1
Lq(Ω)

τ

)p−1

, (3.81)

for k ∈ N and for some constant C independent of k. Thus τ can be chosen so large that∣∣{|∇uk| > τ
}∣∣ < ε, for k ∈ N. (3.82)
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For such a choice of τ , set

G = {|uk − um| � δ, |∇uk| � τ, |∇um| � τ, |∇uk − ∇um| � t
}
. (3.83)

We claim that there exists δ > 0 such that

|G| < ε. (3.84)

To verify our claim, observe that, if we define

S = {
(ξ, η) ∈ R2n: |ξ | � τ, |η| � τ, |ξ − η| � t

}
,

and l : Ω → [0,∞) as

l(x) = inf
{[

a(x, ξ) − a(x, η)
] · (ξ − η): (ξ, η) ∈ S

}
,

then l(x) � 0 and∣∣{l(x) = 0
}∣∣ = 0. (3.85)

Actually, this is a consequence of (1.5) and of the fact that S is compact and a(x, ξ) is continuous in ξ for every x

outside a subset of Ω of Lebesgue measure zero.
Now,∫

G

l(x) dx �
∫
G

[
a(x,∇uk) − a(x,∇um)

] · (∇uk − ∇um)dx

�
∫

{|uk−um|�δ}

[
a(x,∇uk) − a(x,∇um)

] · (∇uk − ∇um)dx

=
∫
Ω

[
a(x,∇uk) − a(x,∇um)

] · ∇(
Tδ(uk − um)

)
dx

=
∫
Ω

(fk − fm)Tδ(uk − um)dx � 4|Ω| 1
q′ δ‖f ‖Lq(Ω), (3.86)

where the last equality follows on making use of Tδ(uk −um) as test function in (3.69) for k and m and subtracting the
resulting equations. Thanks to (3.85), one can show that for every ε > 0 there exists θ > 0 such that if a measurable set

F ⊂ Ω fulfills
∫
F

l(x) dx < θ , then |F | < ε. Thus, choosing δ so small that 4|Ω| 1
q′ δ‖f ‖Lq(Ω) < θ , inequality (3.84)

follows.
Finally, since, by Step 1, {uk} is a Cauchy sequence in measure in Ω ,∣∣{|uk − um| > δ

}∣∣ < ε, (3.87)

if k and m are sufficiently large. Combining (3.79), (3.82), (3.84) and (3.87) yields∣∣{|∇uk − ∇um| > t
}∣∣ < 4ε,

for sufficiently large k and m. Property (3.78) is thus established.

Step 3. u ∈ W
1,p
T (Ω), and

∇uk → ∇u a.e. in Ω, (3.88)

up to subsequences, where ∇u is the generalized gradient of u in the sense of (2.12).

Since {∇uk} is a Cauchy sequence in measure, there exists a measurable function Z : Ω → Rn such that

∇uk → Z a.e. in Ω (3.89)
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(up to subsequences). Fix any t > 0. By (3.76), {Tt (uk)} is bounded in W 1,p(Ω). Thus, there exists a function ut ∈
W 1,p(Ω) such that

Tt (uk) ⇀ ut weakly in W 1,p(Ω) (3.90)

(up to subsequences). By Step 1, Tt (uk) → Tt (u) a.e. in Ω , and hence

ut = Tt (u) a.e. in Ω. (3.91)

Thus,

Tt (uk) ⇀ Tt(u) weakly in W 1,p(Ω). (3.92)

In particular, u ∈ W
1,p
T (Ω), and

∇(
Tt (u)

) = χ{|u|<t}∇u a.e. in Ω. (3.93)

By (3.70) and (3.89),

∇(
Tt (uk)

) = χ{|uk |<t}∇uk → χ{|u|<t}Z a.e. in Ω.

Hence, by (3.92)

∇(
Tt (u)

) = χ{|u|<t}Z a.e. in Ω. (3.94)

Owing to the arbitrariness of t , coupling (3.93) and (3.94) yields

Z = ∇u a.e. in Ω. (3.95)

Eq. (3.88) is a consequence of (3.89) and (3.95).

Step 4. u ∈ V 1,p−1(Ω) and satisfies property (i) of the definition of approximable solution.

From (3.88) and (3.80), via Fatou’s lemma, we deduce that

‖∇u‖Lp−1(Ω) � C‖f ‖
1

p−1
Lq(Ω)

,

for some constant C independent of f . Hence, u ∈ V 1,p−1(Ω).
As far as property (i) of the definition of approximable solution is concerned, by (3.88)

a(x,∇uk) → a(x,∇u) for a.e. x ∈ Ω. (3.96)

Fix any Φ ∈ W 1,∞(Ω) and any measurable set F ⊂ Ω . Owing to Lemma 3.10 and (3.66),∫
F

∣∣a(x,∇uk) · ∇Φ
∣∣dx � ‖∇Φ‖L∞(Ω)

∫
F

(|∇uk|p−1 + h(x)
)
dx

� ‖∇Φ‖L∞(Ω)

(
ς
(|F |)‖f ‖Lq(Ω) +

∫
F

h(x)dx

)
(3.97)

for some function ς : (0,∞) → [0,∞) such that lims→0+ ς(s) = 0. From (3.96) and (3.97), via Vitali’s convergence
theorem, we deduce that the left-hand side of (3.69) converges to the left-hand side of (2.16) as k → ∞. The right-
hand side of (3.69) trivially converges to the right-hand side of (2.16), by (3.64). This completes the proof of the
present step, and hence also the proof of the existence of an approximable solution to (1.1).

We are now concerned with the uniqueness of the solution to (1.1). Assume that u and u are approximable solutions
to problem (1.1). Then there exist sequences {fk} and {f k} ⊂ Lq(Ω) ∩ (V 1,p(Ω))′ having the following properties:∫
Ω

fk dx = ∫
Ω

f k dx = 0; fk → f and f k → f in Lq(Ω); the weak solutions uk to problem (3.67) and the weak
solutions uk to problem (3.67) with fk replaced by f k , fulfill uk → u and uk → u a.e. in Ω . Fix any t > 0 and
choose the test function Φ = Tt (uk − uk) in (3.69), and in the same equation with uk and fk replaced by uk and f k ,
respectively. Subtracting the resulting equations yields
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∫
Ω

χ{|uk−uk |�t}
[
a(x,∇uk) − a(x,∇uk)

] · (∇uk − ∇uk) dx =
∫
Ω

(fk − f k)Tt (uk − uk) dx (3.98)

for k ∈ N. Since |Tt (uk − uk)| � t in Ω and fk − f k → 0 in Lq(Ω), the right-hand side of (3.98) converges to 0 as
k → ∞. On the other hand, arguments analogous to those exploited above in the proof of the existence tell us that
∇uk → ∇u and ∇uk → ∇u a.e. in Ω , and hence, by (1.5) and Fatou’s lemma,∫

{|u−u|�t}

[
a(x,∇u) − a(x,∇u)

] · (∇u − ∇u)dx = 0.

Thus, owing to (1.5), we have that ∇u = ∇u a.e. in {|u − u| � t} for every t > 0, and hence

∇u = ∇u a.e. in Ω. (3.99)

When p � 2, Eq. (3.99) immediately entails that u − u = c in Ω for some c ∈ R. Indeed, since u,u ∈ V 1,p−1(Ω) and
p − 1 � 1, u and u are Sobolev functions in this case.

The case when 1 < p < 2 is more delicate. Consider a family {Ωε}ε>0 of smooth open sets invading Ω . A version
of the Poincaré inequality [55,69] tells us that a constant C(Ωε) exists such that(∫

Ωε

∣∣v − medΩε(v)
∣∣n′

dx

) 1
n′

� C(Ωε)

∫
Ωε

|∇v|dx, (3.100)

for every v ∈ W 1,1(Ωε). Fix any t, τ > 0. An application of (3.100) with v = Tτ (u − Tt (u)), and the use of (3.99)
entail that(∫

Ωε

∣∣Tτ

(
u − Tt (u)

) − medΩε

(
Tτ

(
u − Tt (u)

))∣∣n′
dx

) 1
n′

� C(Ωε)

( ∫
{t<|u|<t+τ }

|∇u|dx +
∫

{t−τ<|u|<t}
|∇u|dx

)
. (3.101)

We claim that, for each τ > 0, the right-hand side of (3.101) converges to 0 as t → ∞. To verify this claim, choose
the test function Φ = Tτ (uk − Tt (uk)) in (3.69) and exploit (1.3) to deduce that∫

{t<|uk |<t+τ }
|∇uk|p dx �

∫
{t<|uk |<t+τ }

a(x,∇uk) · ∇uk dx � τ

∫
{|uk |>t}

|fk|dx. (3.102)

On passing to the limit as k → ∞ in (3.102) one can easily deduce that∫
{t<|u|<t+τ }

|∇u|p dx � τ

∫
{|u|>t}

|f |dx. (3.103)

Hence, the first integral on the right-hand side of (3.101) approaches 0 as t → ∞. An analogous argument shows that
also the last integral in (3.101) goes to 0 as t → ∞. Since

lim
t→∞

(
Tτ

(
u − Tt (u)

) − medΩε

(
Tτ

(
u − Tt (u)

))) = Tτ (u − u) − medΩε

(
Tτ (u − u)

)
, a.e. in Ω,

from (3.101), via Fatou’s lemma, we obtain that∫
Ωε

∣∣Tτ (u − u) − medΩε

(
Tτ (u − u)

)∣∣n′
dx = 0 (3.104)

for τ > 0. Thus, the integrand in (3.104) vanishes a.e. in Ωε for every τ > 0, and hence also its limit as τ → ∞
vanishes a.e. in Ωε . Therefore, a constant c(ε) exists such that u − u = c(ε) in Ωε for every ε > 0. Consequently,
u − u = c in Ω for some c ∈ R. �
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4. Strongly monotone operators

4.1. Continuous dependence estimates

The present subsection is concerned with a norm estimate for the difference of the gradients of weak solutions to
problem (1.1), with different right-hand sides in (V 1,p(Ω))′, under the strong monotonicity assumption (1.10). Such
an estimate is a crucial ingredient for a variant (a simplification in fact) in the approach to existence presented in
Section 3, and leads to the continuous dependence result of Theorem 1.2.

Theorem 4.1. Let Ω , p, q , a, f and g be as in Theorem 1.2. Assume, in addition, that f,g ∈ (V 1,p(Ω))′. Let u be
a weak solution to problem (1.1), and let v be a weak solution to problem (1.1) with f replaced by g. Let 0 < σ � p

and let r = max{p,2}. Then, there exists a constant C such that

‖∇u − ∇v‖Lσ (Ω) � C‖f − g‖
1
r

Lq(Ω)

(‖f ‖Lq(Ω) + ‖g‖Lq(Ω)

) 1
p−1 − 1

r , (4.1)

if either

(i) q > 1, q(p − 1) � σ and (3.27) holds, or
(ii) 1 < q < ∞, 0 < σ < q(p − 1) and (3.28) holds, or

(iii) q = ∞ and (3.29) holds, or
(iv) q = 1 and (3.30) holds.

Moreover, the constant C in (4.1) depends only on p, q , σ and on the left-hand side either of (3.27), or (3.28), or
(3.29), or (3.30), respectively.

Proof. Throughout the proof, C and C′ will denote constants which may change from equation to equation, but which
depend only on the quantities specified in the statement.

We shall focus on the case where σ < p, the case where σ = p being analogous, and even simpler.
First, assume that 1 < q < ∞, and hence that we are dealing either with case (i) or (ii). We may suppose, without

loss of generality, that u and v are normalized in such a way that medΩ(u) = medΩ(v) = 0. Given any γ ∈ (−1,0)

and ε > 0, define (u − v)ε,γ : Ω → R as

(u − v)ε,γ = max
{
(u − v)+, ε

}γ+1 − max
{
(u − v)−, ε

}γ+1
.

The chain rule for derivatives in Sobolev spaces ensures that (u − v)ε,γ ∈ V 1,p(Ω), and that

∇(u − v)ε,γ = (γ + 1)|u − v|γ χ|u−v|>ε∇(u − v) a.e. in Ω .

Thus, the function (u− v)ε,γ can be used as test function Φ in the definition of weak solution for u and v. Subtracting
the resulting equations yields

(γ + 1)

∫
{|u−v|>ε}

|u − v|γ [
a(x,∇u) − a(x,∇v)

] · ∇(u − v)dx =
∫
Ω

(u − v)ε,γ (f − g)dx. (4.2)

If 1 < p < 2, making use of (1.10) and passing to the limit as ε → 0+ in (4.2) tell us that∫
Ω

|u − v|γ |∇u − ∇v|2
(|∇u| + |∇v|)2−p

dx � C

∫
Ω

|u − v|γ+1|f − g|dx. (4.3)

If p � 2, then the same argument yields∫
Ω

|u − v|γ |∇u − ∇v|p dx � C

∫
Ω

|u − v|γ+1|f − g|dx. (4.4)

Consider first the case when 1 < p < 2. Let (α,β,	) be the solution to the system
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(p − 2)
β

2 − β
= σ, (4.5)

1 − α

α

σβ

β − σ
= 	, (4.6)

α	

α	 − 2α + 1
= q. (4.7)

Namely,

α = σq + pq − 2σ

2pq − 2σ
, (4.8)

β = 2σ

2 + q − p
, (4.9)

	 = 2σq

qσ + pq − 2σ
. (4.10)

Observe that α ∈ (1/2,1), β > σ and

α	 = σq

pq − σ
. (4.11)

Now, choose γ = 2(α − 1) in (4.3), and note that actually γ ∈ (−1,0). Thus, the following chain holds:∫
Ω

(|∇u − ∇v||u − v|α−1)β
dx

�
(∫

Ω

(|∇u − ∇v||u − v|α−1)2

(|∇u| + |∇v|)2−p
dx

) β
2
(∫

Ω

(|∇u| + |∇v|)σ
dx

)1− β
2

(by Hölder’s inequality)

�
(∫

Ω

|f − g||u − v|2(α−1)+1 dx

) β
2
(∫

Ω

(|∇u| + |∇v|)σ
dx

)1− β
2 (

by (4.3) and (4.5)
)

�
(∫

Ω

|u − v|α	 dx

) 2(α−1)+1
α	

β
2
(∫

Ω

|f − g| α	
α	−2(α−1)−1 dx

) α	−2(α−1)−1
α	

β
2
(∫

Ω

(|∇u| + |∇v|)σ
dx

)1− β
2

(by Hölder’s inequality)

=
(∫

Ω

|u − v| σq
pq−σ dx

) β

2q′ (∫
Ω

|f − g|q dx

) β
2q

(∫
Ω

(|∇u| + |∇v|)σ
dx

)1− β
2 (

by (4.7) and (4.11)
)
.

(4.12)

Next, observe that σ � q(p −1) if and only if σq
pq−σ

� q(p −1). Thus, an application of Theorem 3.2 with σ replaced

by σq
pq−σ

tells us that, either under (2.10) or (2.11), according to whether σ � q(p − 1) or σ < q(p − 1), one has that

‖u‖
L

σq
pq−σ (Ω)

� C‖f ‖
1

p−1
Lq(Ω) and ‖v‖

L
σq

pq−σ (Ω)
� C‖g‖

1
p−1
Lq(Ω). (4.13)

Moreover, by Theorem 3.5,

‖∇u‖Lσ (Ω) � C‖f ‖
1

p−1
Lq(Ω) and ‖∇v‖Lσ (Ω) � C‖g‖

1
p−1
Lq(Ω). (4.14)

Combining (4.12)–(4.14) yields

∫ ∣∣∇|u − v|α∣∣β dx � C

(∫
|f − g|q dx

) β
2q (‖f ‖Lq(Ω) + ‖g‖Lq(Ω)

) σ
p−1 (1− β

2 )+ σ(q−1)
(p−1)(pq−σ)

β
2 . (4.15)
Ω Ω
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By Hölder’s inequality, (4.6), (4.11) and (4.13),∫
Ω

|∇u − ∇v|σ dx = 1

ασ

∫
Ω

∣∣∇|u − v|α∣∣σ |u − v|(1−α)σ dx

� 1

ασ

(∫
Ω

∣∣∇|u − v|α∣∣β dx

) σ
β
(∫

Ω

|u − v| σq
pq−σ dx

)1− σ
β

� C

(∫
Ω

∣∣∇|u − v|α∣∣β dx

) σ
β (‖f ‖Lq(Ω) + ‖g‖Lq(Ω)

) (β−σ)σq
(p−1)β(pq−σ) . (4.16)

Inequality (4.1) follows from (4.15) and (4.16).
Assume now that p � 2. Let (α,	) be the solution to the system

α	

α	 − p(α − 1) − 1
= q, (4.17)

1 − α

α

σp

p − σ
= 	, (4.18)

namely

	 = qσp

pq(p − 1) + σ(q − p)
and α = pq(p − 1) + σ(q − p)

p(pq − σ)
.

In particular,

α	 = σq

pq − σ
(4.19)

also in this case. Take γ = p(α −1) in (4.4), an admissible choice since p(α −1) ∈ (−1,0). From (4.4), (4.19), (4.17)
and (4.13) one deduces that∫

Ω

∣∣∇|u − v|α∣∣p dx = αp

∫
Ω

(|∇u − ∇v||u − v|α−1)p
dx

� C

∫
Ω

|f − g||u − v|p(α−1)+1 dx

� C

(∫
Ω

|u − v| σq
pq−σ dx

) 1
q′ (∫

Ω

|f − g|q dx

) 1
q

� C′(‖f ‖Lq(Ω) + ‖g‖Lq(Ω)

) σ(q−1)
(p−1)(pq−σ) ‖f − g‖Lq(Ω). (4.20)

Analogously to (4.16), we have that∫
Ω

|∇u − ∇v|σ dx � 1

ασ

(∫
Ω

∣∣∇|u − v|α∣∣β dx

) σ
p
(∫

Ω

|u − v| σq
pq−σ dx

)1− σ
p

� C

(∫
Ω

∣∣∇|u − v|α∣∣p dx

) σ
p (‖f ‖Lq(Ω) + ‖g‖Lq(Ω)

) σq
(p−1)(pq−σ)

(1− σ
p

)

� C′(‖f ‖Lq(Ω) + ‖g‖Lq(Ω)

) σ
p(p−1) ‖f − g‖

σ
p

Lq(Ω), (4.21)

where the second inequality holds owing to (4.13) and the last one to (4.20). This completes the proof of (4.1) in
cases (i) and (ii).

Case (iii) can be dealt with an analogous argument, requiring easy modifications. The details are omitted for brevity.
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Finally, consider case (iv). As above, we may assume that medΩ(u) = medΩ(v) = 0. Let us set

w = (u − v)+.

Given any integrable function ζ : (0, |Ω|/2) → [0,∞), define Λ : [0, |Ω|/2] → [0,∞) as

Λ(r) =
r∫

0

ζ(ρ)dρ, for r ∈ [
0, |Ω|/2

]
. (4.22)

Moreover, for any fixed s ∈ [0, |Ω|/2], define I : [0, |Ω|/2] → [0,∞) as

I (r) =
{

Λ(r) if 0 � r � s,

Λ(s) if s < r � |Ω|/2,
(4.23)

and Φ : Ω → [0,∞) as

Φ(x) =
w(x)∫
0

I
(
μw(t)

)
dt, for x ∈ Ω. (4.24)

Since I ◦ μw is a bounded function, the chain rule for derivatives in Sobolev spaces tells us that Φ ∈ V 1,p(Ω) and

∇Φ = χ{u−v>0}I
(
μw(w)

)
(∇u − ∇v) a.e. in Ω. (4.25)

Choosing Φ as test function in the definitions of weak solution for u and v and subtracting the resulting equations
yields ∫

{u−v>0}
I
(
μw

(
w(x)

))[
a(x,∇u) − a(x,∇v)

] · (∇u − ∇v)dx =
∫
Ω

(f − g)Φ dx. (4.26)

Observe that

‖Φ‖L∞(Ω) �
∞∫

0

I
(
μw(t)

)
dt

=
∞∫

w∗(s)

Λ
(
μw(t)

)
dt +

w∗(s)∫
0

Λ(s)dt

=
∞∫

w∗(s)

μw(t)∫
0

ζ(ρ)dρ dt + Λ(s)w∗(s)

=
s∫

0

(
w∗(ρ) − w∗(s)

)
ζ(ρ)dρ + Λ(s)w∗(s)

=
s∫

0

w∗(ρ)ζ(ρ)dρ

�
s∫

0

(
u∗+(ρ/2) + v∗−(ρ/2)

)
ζ(ρ)dρ

�
(‖f+‖

1
p−1

L1(Ω)
+ ‖g−‖

1
p−1

L1(Ω)

) s∫
νp(ρ/2)

1
1−p ζ(ρ) dρ, for s ∈ (

0, |Ω|/2
)
, (4.27)
0
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where the third equality holds by Fubini’s theorem, the last but one inequality by (2.3), and the last inequality by
estimate (3.4) and by the corresponding estimate for v. Combining (4.26) and (4.27) entails that∫

{u−v>0}
I
(
μw

(
w(x)

))[
a(x,∇u) − a(x,∇v)

] · (∇u − ∇v)dx

�
∥∥(f − g)+

∥∥
L1(Ω)

(‖f+‖
1

p−1

L1(Ω)
+ ‖g−‖

1
p−1

L1(Ω)

) s∫
0

νp(r/2)
1

1−p ζ(r) dr, for s ∈ (
0, |Ω|/2

)
. (4.28)

Let us distinguish the cases when 1 < p < 2 and p � 2.
First, assume that p � 2. By (1.10) and (4.28),

C

∫
{u−v>0}

|∇w|pI
(
μw

(
w(x)

))
dx

�
∥∥(f − g)+

∥∥
L1(Ω)

(‖f+‖
1

p−1

L1(Ω)
+ ‖g−‖

1
p−1

L1(Ω)

) s∫
0

νp(r/2)
1

1−p ζ(r) dr, for s ∈ (
0, |Ω|/2

)
. (4.29)

Since w and w∗ are equidistributed functions and I is non-decreasing,

(I ◦ μw ◦ w)∗(r) = (
I ◦ μw ◦ w∗)

∗(r) � I∗(r) = I (r), for r ∈ (
0, |Ω|/2

)
. (4.30)

Hence, by (2.5),

∫
{u−v>0}

|∇w|pI
(
μw

(
w(x)

))
dx �

|Ω|
2∫

0

|∇w|∗(r)p(
I ◦ μw ◦ w∗)

∗(r) dr

�

|Ω|
2∫

0

|∇w|∗(r)pI (r) dr

�
s∫

0

|∇w|∗(r)pI (r) dr

� |∇w|∗(s)p
s∫

0

r∫
0

ζ(ρ)dρ dr for s ∈ (
0, |Ω|/2

)
. (4.31)

From (4.29) and (4.31) we obtain that

C|∇w|∗(s)p
∫ s

0 ζ(r)(s − r) dr∫ s

0 νp(r/2)
1

1−p ζ(r) dr

�
∥∥(f − g)+

∥∥
L1(Ω)

(‖f+‖
1

p−1

L1(Ω)
+ ‖g−‖

1
p−1

L1(Ω)

)
, (4.32)

for s ∈ (0, |Ω|/2). Clearly,

sup
ζ

∫ s

0 ζ(r)(s − r) dr∫ s

0 νp(r/2)
1

1−p ζ(r) dr

= ∥∥(s − r)νp(r/2)
1

p−1
∥∥

L∞(0,s)
� s

2
νp(s/4)

1
p−1 , (4.33)

for s ∈ (0, |Ω|/2). Thus, owing to the arbitrariness of ζ , inequality (4.32) implies that

|∇w|∗(s)σ � C

(sν (s/4)
1

p−1 )
σ
p

(∥∥(f − g)+
∥∥

L1(Ω)

(‖f+‖
1

p−1

L1(Ω)
+ ‖g−‖

1
p−1

L1(Ω)

)) σ
p , (4.34)
p
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for s ∈ (0, |Ω|/2). An analogous argument yields a similar inequality with (u − v)+ (i.e. w) replaced by (u − v)−.
Hence, by (3.30), inequality (4.1) follows.

Consider now the case when 1 < p < 2. Define H : Ω → [0,∞) by

H(x) = |∇w| 2
p

(|∇u| + |∇v|) 2−p
p

, for x ∈ Ω.

From (1.10) and (4.28) we deduce that

C

∫
{u−v>0}

H(x)I
(
μw

(
w(x)

))
dx

�
∥∥(f − g)+

∥∥
L1(Ω)

(‖f+‖
1

p−1

L1(Ω)
+ ‖g−‖

1
p−1

L1(Ω)

) s∫
0

νp(r/2)
1

1−p ζ(r) dr, for s ∈ (
0, |Ω|/2

)
. (4.35)

The same argument leading to (4.34) now shows that

H ∗(s) � C

(sνp(s/4)
1

p−1 )
1
p

(∥∥(f − g)+
∥∥

L1(Ω)

(‖f+‖
1

p−1

L1(Ω)
+ ‖g−‖

1
p−1

L1(Ω)

)) 1
p (4.36)

for s ∈ (0, |Ω|/2). On the other hand,

|∇w|∗(s) = (
H

p
2
(|∇u| + |∇v|) 2−p

2
)∗

(s)

� H ∗(s/2)
p
2
(|∇u| + |∇v|)∗

(s/2)
2−p

2

� CH ∗(s/2)
p
2
(|∇u|∗(s/4)

2−p
2 + |∇v|∗(s/4)

2−p
2

)
� C′H ∗(s/2)

p
2
(
sνp(s/8)

1
p−1

) p−2
2p

(‖f ‖
1

p−1

L1(Ω)
+ ‖g‖

1
p−1

L1(Ω)

) 2−p
2 (4.37)

for s ∈ (0, |Ω|/2). Note that the first inequality holds by (2.4), the second one by (2.3) and last one by Proposition 3.6.
Coupling (4.36) and (4.37) yields

|∇w|∗(s)σ � C

(sνp(s/8)
1

p−1 )
σ
p

∥∥(f − g)+
∥∥ σ

2
L1(Ω)

(‖f ‖L1(Ω) + ‖g‖L1(Ω)

) (3−p)σ
2(p−1) (4.38)

for s ∈ (0, |Ω|/2). Inequality (4.38), and a similar inequality with (u − v)+ (i.e. w) replaced by (u − v)−, imply (4.1)
when (3.30) is in force. �
4.2. Proof of Theorem 1.2

We proceed through the same steps and make use of the same notations as in the proof of Theorem 1.1. The proofs
of Steps 1 and 3 are exactly the same. Thus, we shall focus on Steps 2 and 4.

Step 2. {∇uk} is a Cauchy sequence in measure.

Either assumption (1.8) or (1.9), according to whether q ∈ (1,∞] or q = 1, Theorem 4.1 and (3.66) ensure that

‖∇uk − ∇um‖Lp−1(Ω) � C‖fk − fm‖
1
r

Lq(Ω)
‖f ‖

1
p−1 − 1

r

Lq(Ω)
(4.39)

for k,m ∈ N and for some constant C independent of k and m, where r = max{p,2}. Hence, {∇uk} is a Cauchy
sequence in measure.

Step 4. u ∈ V 1,p−1(Ω), and satisfies property (i) of the definition of approximable solution.
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From Theorem 3.5, Step 3 and Fatou’s lemma, we get that

‖∇u‖Lp−1(Ω) � lim inf
k→∞ ‖∇uk‖Lp−1(Ω) � C‖f ‖Lq(Ω),

for some constant C, whence u ∈ V 1,p−1(Ω). In order to prove (2.16), note that∣∣∣∣∂uk

∂xi

∣∣∣∣∂uk

∂xi

∣∣∣∣
p−2

− ∂um

∂xi

∣∣∣∣∂um

∂xi

∣∣∣∣
p−2∣∣∣∣ � 22−p

∣∣∣∣∂uk

∂xi

− ∂um

∂xi

∣∣∣∣
p−1

, i = 1, . . . , n, (4.40)

for k,m ∈ N. Coupling (4.39) and (4.40) entails that { ∂uk

∂xi
| ∂uk

∂xi
|p−2} is a Cauchy sequence in L1(Ω), for i = 1, . . . , n.

Thus, the sequence { ∂uk

∂xi
| ∂uk

∂xi
|p−2} converges to some function in L1(Ω). Since ∇uk → ∇u a.e. in Ω by Step 3,

necessarily

∂uk

∂xi

∣∣∣∣∂uk

∂xi

∣∣∣∣
p−2

→ ∂u

∂xi

∣∣∣∣ ∂u

∂xi

∣∣∣∣
p−2

in L1(Ω), for i = 1, . . . , n. (4.41)

Now, define the Carathéodory function b : Ω × Rn → Rn as

b(x, η) = a
(
x,η1|η1|

2−p
p−1 , . . . , ηn|ηn|

2−p
p−1

)
, for (x, η) ∈ Ω × Rn. (4.42)

Hence,

a(x, ξ) = b
(
ξ1|ξ1|p−2, . . . , ξn|ξn|p−2), for (x, ξ) ∈ Ω × Rn, (4.43)

and, by (1.4), for a.e. x ∈ Ω∣∣b(x, η)
∣∣ � C

(|η| + h(x)
)
, for η ∈ Rn. (4.44)

By (4.44), the Nemytski operator N : (L1(Ω))n → (L1(Ω))n, defined by Nz(x) = b(x, z(x)), for z ∈ (L1(Ω))n, is
continuous (see [68, Section 26.3]). Thus, by (4.41) and (4.43),

a(x,∇uk) → a(x,∇u) in
(
L1(Ω)

)n
.

Consequently,

lim
k→∞

∫
Ω

a(x,∇uk) · ∇Φ dx =
∫
Ω

a(x,∇u) · ∇Φ dx

for every Φ ∈ W 1,∞(Ω). Trivially,

lim
k→∞

∫
Ω

fkΦ dx =
∫
Ω

f Φ dx,

for any such Φ . Hence, (2.16) follows from (3.69). This completes the proof of the existence of an approximable
solution to (1.1).

As far as (1.11) is concerned, by the definition of approximable solution, there exist sequences {fk} and {gk} in
Lq(Ω) ∩ (V 1,p(Ω))′ such that fk → f and gk → g in Lq(Ω) as k → ∞, and such that the sequences {uk} and {vk}
of the weak solutions to problem (1.1), with f replaced by fk and f replaced by gk , converge to u and v, respectively,
a.e. in Ω . From Theorem 4.1 we have that

‖∇uk − ∇vk‖Lp−1(Ω) � C‖fk − gk‖
1
r

Lq(Ω)

(‖fk‖Lq(Ω) + ‖gk‖Lq(Ω)

) 1
p−1 − 1

r (4.45)

for k ∈ N. The same argument as in the proof of existence above tells us that ∇uk → ∇u and ∇vk → ∇v a.e. in Ω

(up to subsequences). Hence, by Fatou’s lemma, we deduce (1.11).
In particular, if f = g, then (1.11) entails that ∇u = ∇v a.e. in Ω . Thus, the same argument as in the proof of

Theorem 1.1 ensures that u − v = c in Ω for some c ∈ R. This establishes the uniqueness of the solution up to
additive constants.
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5. Applications and examples

Before presenting some applications of Theorems 1.1 and 1.2 to special domains and classes of domains Ω , we
state, for comparison, counterparts of these results involving the isoperimetric function λ. They immediately follow
from Theorems 1.1 and 1.2, via (2.27).

Corollary 5.1. Let Ω , p, q , a and f be as in Theorem 1.1. Assume that either

(i) 1 < q � ∞ and

|Ω|/2∫
0

s
q′
p

( |Ω|/2∫
s

dr

λ(r)p
′

) q′
p′

ds < ∞, (5.1)

or
(ii) q = 1 and

|Ω|/2∫
0

s
1
p

( |Ω|/2∫
s

dr

λ(r)p
′

) 1
p′

ds

s
< ∞. (5.2)

Then there exists a unique (up to additive constants) approximable solution to problem (1.1).

Corollary 5.2. Let Ω , p, q , a and f be as in Theorem 1.2. Assume that either 1 < q � ∞ and (5.1) holds, or q = 1
and (5.2) holds.

Then there exists a unique (up to additive constants) approximable solution to problem (1.1) depending continu-
ously on the right-hand side of the equation. Precisely, if g is another function from Lq(Ω) such that

∫
Ω

g(x)dx = 0,
and v is the solution to (1.1) with f replaced by g, then

‖∇u − ∇v‖Lp−1(Ω) � C‖f − g‖
1
r

Lq(Ω)

(‖f ‖Lq(Ω) + ‖g‖Lq(Ω)

) 1
p−1 − 1

r

for some constant C depending on p, q and on the left-hand side of either (5.1) or (5.2). Here, r = max{p,2}.

Recall from Section 2.4 that inequality (2.27) between λ and νp holds for every domain Ω and for every p > 1,
whereas a converse inequality (even up to a multiplicative constant) fails, unless Ω is sufficiently regular. As an-
ticipated in Section 1, Corollaries 5.1 and 5.2 lead to conclusions equivalent to those of Theorems 1.1 and 1.2,
respectively, only if the domain Ω is regular enough for the two sides of (2.27) to be equivalent, namely if a con-
stant C exists such that

νp(s) � C

( |Ω|/2∫
s

dr

λ(r)p
′

)1−p

for s ∈ (
0, |Ω|/2

)
. (5.3)

This is the case of Examples 1–5 below. However, if Ω is very irregular, as in Examples 6 and 7, then (5.3) fails, and
Corollaries 5.1 and 5.2 are essentially weaker than Theorems 1.1 and 1.2.

In our examples we shall discuss the problem of existence and uniqueness of solutions to problem (1.1) via The-
orem 1.1 or Corollary 5.1; it is implicit that the continuous dependence on the data will follow under the appropriate
strong monotonicity assumption (1.10) by Theorem 1.2 or Corollary 5.2, respectively.

Example 1 (Lipschitz domains). Assume that Ω is a connected and bounded open set with a Lipschitz boundary,
and let 1 < p � n. Owing to (2.29) and (2.30), condition (1.9) is fulfilled. Thus, by Theorem 1.1, under assumptions
(1.3)–(1.5), a unique approximable solution to problem (1.1) exists for any f ∈ L1(Ω).

The same conclusion follows from Corollary 5.1, since (5.3) holds in this case.
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Example 2 (Hölder domains). Let Ω be a connected and bounded open set with a Hölder boundary with exponent
α ∈ (0,1), and let 1 < p < 1

α
(n − 1) + 1. By the Sobolev embedding of [46] and by the equivalence of (2.23)–(2.24),

we have that

νp(s) � Cs1− αp
n−1+α for s ∈ (

0, |Ω|/2
)
, (5.4)

for some positive constant C. Owing to Theorem 1.1, a unique approximable solution to (1.1) exists for any α ∈ (0,1)

and for any f ∈ L1(Ω).
On the other hand, by (2.26),

λ(s) � Cs
n−1

n−1+α for s ∈ (
0, |Ω|/2

)
,

for some positive constant C. Thus, (5.3) holds, and the use of Corollary 5.1 leads to the same conclusion about
solutions to (1.1).

Example 3 (John and γ -John domains). Let γ � 1. A bounded open set Ω in Rn is called a γ -John domain if there
exist a constant c ∈ (0,1) and a point x0 ∈ Ω such that for every x ∈ Ω there exists a rectifiable curve � : [0, l] → Ω ,
parametrized by arclenght, such that �(0) = x, �(l) = x0, and

dist
(
�(r), ∂Ω

)
� crγ for r ∈ [0, l].

The γ -John domains generalize the standard John domains, which correspond to the case when γ = 1 and arise in
connection with the study of holomorphic dynamical systems and quasiconformal mappings. The notion of John and
γ -John domain has been used in recent years in the study of Sobolev inequalities. In particular, a result from [45]
(complementing [40]) tells us that if p � 1 and 1 � γ � p

n−1 + 1, then

V 1,p(Ω) → Lσ (Ω),

where either σ = np
(n−1)γ+1−p

or σ is any positive number, according to whether γ >
p−1
n−1 or γ � p−1

n−1 . By the
equivalence of (2.23) and (2.24), one has that

νp(s) � Cs
p
σ for s ∈ (

0, |Ω|/2
)
,

for some positive constant C. An application of Theorem 1.1 ensures that a unique approximable solution to (1.1)
exists for any f ∈ Lq(Ω) if q > 1 and 1 � γ � p

n−1 + 1, and also for f ∈ L1(Ω) provided that 1 � γ <
p

n−1 + 1.
It is easily verified, on exploiting (2.26), that the same conclusions follow from Corollary 5.1 as well.

Example 4 (A cusp-shaped domain). Let L > 0 and let ϑ : [0,L] → [0,∞) be a differentiable convex function such
that ϑ(0) = 0. Consider the set

Ω = {
x ∈ Rn:

∣∣x′∣∣ < ϑ(xn), 0 < xn < L
}

(see Fig. 1), where x = (x′, xn) and x′ = (x1, . . . , xn−1) ∈ Rn−1. Let Θ : [0,L] → [0,∞) be the function given by

Θ(ρ) = nωn

ρ∫
0

ϑ(r)n−1 dr for ρ ∈ [0,L].

We claim that (1.9) is fulfilled for every p ∈ (1, n). Actually, [55, 4.3.5/1] tells us that

νp(s) ≈
( Θ−1(|Ω|/2)∫

Θ−1(s)

ϑ(r)
1−n
p−1 dr

)1−p

for s ∈ (
0, |Ω|/2

)
. (5.5)

Thus, (1.9) is equivalent to

∫
0

s−1/p′
( Θ−1(|Ω|/2)∫

−1

ϑ(r)
1−n
p−1 dr

)1/p′

ds < ∞, (5.6)
Θ (s)
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Fig. 1. A cusp-shaped domain.

or, via a change of variable, to

∫
0

( Θ−1(|Ω|/2)∫
ρ

ϑ(r)
1−n
p−1 dr

)1/p′( ρ∫
0

ϑ(r)n−1 dr

)−1/p′

ϑ(ρ)n−1 dρ < ∞. (5.7)

By De L’Hopital rule,

lim sup
ρ→0+

∫ Θ−1(|Ω|/2)

ρ
ϑ(r)

1−n
p−1 dr

ϑ(ρ)−(n−1)p′ ∫ ρ

0 ϑ(r)n−1 dr
� lim sup

ρ→0+

1

(n − 1)p′ϑ(ρ)−nϑ ′(ρ)
∫ ρ

0 ϑ(r)n−1 dr − 1
. (5.8)

Since ϑ ′ is non-decreasing,

ϑ(ρ)−nϑ ′(ρ)

ρ∫
0

ϑ(r)n−1 dr = ϑ ′(ρ)
∫ ρ

0 (
∫ r

0 ϑ ′(τ ) dτ)n−1 dr

(
∫ ρ

0 ϑ ′(r) dr)n

�
∫ ρ

0 ϑ ′(r)(
∫ r

0 ϑ ′(τ ) dτ)n−1 dr

(
∫ ρ

0 ϑ ′(r) dr)n
= 1

n
(5.9)

for ρ ∈ (0, |Ω|/2). Inasmuch as p < n, by (5.8) and (5.9) the integrand in (5.7) is bounded at 0, and hence (5.7)
follows.

By Theorem 1.1, if f ∈ L1(Ω), then there exists a unique approximable solution to problem (1.1) under assump-
tions (1.3)–(1.5).

Notice that the same result can be derived via Corollary 5.1. Indeed, by [54, Example 3.3.3/1],

λ(s) ≈ ϑ
(
Θ−1(s)

)n−1 for s ∈ (
0, |Ω|/2

)
,

and hence (5.3) holds.

Example 5 (An unbounded domain). Let ζ : [0,∞) → (0,∞) be a differentiable convex function such that
limρ→0+ ζ ′(ρ) > −∞ and limρ→∞ ζ(ρ) = 0. Consider the unbounded set

Ω = {
x ∈ Rn: xn > 0,

∣∣x′∣∣ < ζ(xn)
}
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Fig. 2. An unbounded domain.

(see Fig. 2), where x = (x′, xn) and x′ = (x1, . . . , xn−1) ∈ Rn−1. Assume that

∞∫
0

ζ(r)n−1 dr < ∞, (5.10)

in such a way that |Ω| < ∞. Let Υ : [0,∞) → [0,∞) be the function given by

Υ (ρ) = nωn

∞∫
ρ

ζ(r)n−1 dr for ρ > 0.

By [55, Example 4.3.5/2], if p > 1,

νp(s) ≈
( Υ −1(s)∫

Υ −1(|Ω|/2)

ζ(r)
1−n
p−1 dr

)1−p

for s ∈ (
0, |Ω|/2

)
.

An application of Theorem 1.1 tells us that there exists a unique solution to problem (1.1) with f ∈ Lq(Ω) if either
q > 1 and

∞∫ ( ρ∫
Υ −1(|Ω|/2)

ζ(r)
1−n
p−1 dr

) q′
p′ ( ∞∫

ρ

ζ(r)n−1 dr

) q′
p

ζ(ρ)n−1 dρ < ∞, (5.11)

or q = 1 and

∞∫ ( ρ∫
Υ −1(|Ω|/2)

ζ(r)
1−n
p−1 dr

) 1
p′ ( ∞∫

ρ

ζ(r)n−1 dr

)− 1
p′

ζ(ρ)n−1 dρ < ∞. (5.12)

For instance, if ζ(ρ) = 1
(1+ρ)β

, then (5.11) and (5.10) hold if β >
1+q ′
n−1 , whereas (5.12) never holds, whatever β is. In

the case when ζ(ρ) = e−ρα
with α > 0, condition (5.11) holds for every q ∈ (1,∞], whereas (5.12) does not hold for

any α.
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Fig. 3. An example from [24].

Note that, by [55, Example 3.3.3/2],

λ(s) ≈ (
ζ
(
Υ −1(s)

))n−1 as s → 0+.

Thus, (2.26) holds, and hence Corollary 5.1 leads to the same conclusions.

Example 6 (A domain from [24]). Let us consider problem (1.1) in the domain Ω ⊂ R2 displayed in Fig. 3 and
borrowed from [24], where it is exhibited as an example of a domain in which the Poincaré inequality fails. In the
figure, L = 2−k and l = δ(2−k), where k ∈ N and δ : [0,∞) → [0,∞) is any function such that: δ(2s) � cδ(s) for

some c > 0 and for s > 0; sp+1

δ(s)
is non-decreasing; s1+ε

δ(s)
is non-increasing for some ε > 0. One can show [23] that, if

1 � p � 2, then

νp(s) ≈ δ
(
s1/2)s 1−p

2 as s → 0+. (5.13)

In particular, by (2.26),

λ(s) ≈ δ
(
s1/2) as s → 0+. (5.14)

By Theorem 1.1, it is easily verified that there exists a unique solution to problem (1.1) if f ∈ Lq(Ω) for any q > 1.
When q = 1, the solution exists and is unique provided that∫

0

(
s

δ(s)

)1/p

ds < ∞. (5.15)

For instance, (5.15) holds when δ(s) = sα for some α ∈ (1,p + 1), or when δ(s) ≈ sp+1(log(1/s))β for small s, with
β > p.

The use of the isoperimetric function, namely of Corollary 5.1, yields worse results for the domain of this example,
for which inequality (5.3) fails. For instance, if δ(s) = sα , the existence and uniqueness of a solution to problem (1.1)
cannot be deduced from Corollary 5.1 unless either α < 2 and q � 1, or 2 � α � p + 1 and q > 2

4−δ
.

Example 7 (Nikodým). The most irregular domain Ω ⊂ R2 that we consider is depicted in Fig. 4. It was introduced
by Nikodým in his study of Sobolev embeddings.
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Fig. 4. Nikodým example.

In the figure, L = 2−k and l = δ(2−k), where k ∈ N and δ : [0,∞) → (0,∞) is any increasing Lipschitz continuous
function such that δ(2s) � cδ(s) � c′s for some constants c, c′ > 0 and for s > 0. If p � 1, one has that

νp(s) ≈ δ(s) as s → 0+, (5.16)

and

λ(s) ≈ δ(s) as s → 0+ (5.17)

[55, Section 4.5]. By (5.16) and Theorem 1.1 there exists a unique approximable solution to problem (1.1) provided
that f ∈ Lq(Ω) for some q > 1 and (1.8) is fulfilled, namely

∫
0

(
s

δ(s)

) q′
p

ds < ∞. (5.18)

On the other hand, condition (1.9) never holds, and hence the case when f ∈ L1(Ω) is not admissible in Theorem 1.1
for this domain.

In the special case when

δ(s) = sα, for s > 0, (5.19)

with α � 1, condition (5.18) is equivalent to

α < 1 + p

q ′ . (5.20)

Eqs. (5.17) and (5.16) tell us that (5.3) is not fulfilled for the domain Ω of this example, and the use of Corollary 5.1
actually requires stronger assumptions on δ(s). For instance, when δ(s) is given by (5.19), one has to demand that
α < 2 − 1

q
. This is a more restrictive condition than (5.20).
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