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Abstract

This paper considers a system described by a conservation law on a general network and deals with solutions to Cauchy problems.
The main application is to vehicular traffic, for which we refer to the Lighthill–Whitham–Richards (LWR) model. Assuming to
have bounds on the conserved quantity, we are able to prove existence of solutions to Cauchy problems for every initial datum
in L1

loc. Moreover Lipschitz continuous dependence of the solution with respect to initial data is discussed.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Various fluid dynamic models were developed in the literature in order to describe the evolution of vehicular traffic
in roads. They treat traffic from a macroscopic point of view: just the evolution of macroscopic variables, such as
density and average velocity of cars, is considered. The Lighthill–Whitham–Richards (LWR) model (see [34,37]),
introduced in the 50s, is the prototype. It is based on the conservation of the number of cars and it consists of a single
partial differential equation in conservation form.

From 1975 several second order models, i.e. models with two equations, were considered, see for example [1,13,
25,27,36,38–40], while a third order model was presented in [28]. An extension to multipopulation can be found;
see [7]. We refer the reader to [6,24,29] for a general presentation of the various models.

More recently, a growing attention was devoted to extensions of the same models to networks; see for in-
stance [4,11,12,21–23,30–32]. The interest was also motivated by other applications: data networks [19], supply
chains [18,26], air traffic management [5], gas pipelines [2,14,15]. Here we focus on the LWR model on a network,
but the results are of use to other research domains.
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The main interest is in the Cauchy problem for a complex network. In some previous papers [12,19,21,24], ex-
istence of weak entropic solutions was proved only for networks with nodes with at most two incoming and two
outgoing arcs and some specific dynamics at nodes.

Our construction is based on the wave-front tracking method; see [9,17,33]. More precisely, first we consider
Riemann problems at nodes, which are Cauchy problems with constant initial data on each arc. Notice that the only
conservation of cars is not sufficient to determine a unique solution. Thus one has to prescribe solutions for every initial
data and we call the relative map a Riemann solver at nodes. Then it is possible to construct approximate solutions
using classical self-similar entropic solutions for Riemann problems inside arcs and an assigned Riemann solver at
nodes. As usual, the approach relies on three estimates: the number of waves, the number of wave interactions and
total variation of the solution. While these estimates are straightforward on a real line (see [9]), they become difficult
to be proved on complex networks (see [24]). In particular one has to rely on estimates on the total variation of the
flux of the solution.

We provide a general strategy to overcome the technical problems: three key properties of Riemann solvers are
defined (see Definitions 8–10), which guarantee the needed bounds and thus the existence of solutions to Cauchy
problems. Our approach is valid for general networks, with no limitation on the type of nodes: in particular we extend
all results of the literature. The main technical novelty is to get bounds on the total variation (in space) of solution flux
via bounds on the positive variation (in time) of incoming fluxes at nodes.

To prove the validity of our approach, we show that the three key properties are shared by various Riemann solvers
proposed in the literature. In particular, we consider three different kind of solutions at J , which we call Riemann
solvers RS 1, RS 2 and RS 3. The Riemann solver RS 1 was proposed for vehicular traffic in [12]. It prescribes first
a fixed distribution of traffic in outgoing arcs, and then the maximization of the flux through the node. The Riemann
solver RS 2 was introduced for data networks in [19]: first one maximizes the flux through the node and then prescribes
a distribution of traffic. The Riemann solver RS 3 models car traffic at T-junctions; see [35]. Thanks to finite velocity
of waves, one can reduce to treat the case of a single node, with arcs of infinite length.

The continuous dependence of solutions with respect to initial data is an open problem in the case of Riemann
solver RS 1. We remark that, in general, the Lipschitz continuous dependence with respect to initial data does not
hold; see [12,24]. As regards the Riemann solver RS 2, we prove the Lipschitz continuous dependence with respect
to initial conditions, by viewing L1 as a Finsler manifold and considering “generalized tangent vectors”. This method
was proposed by Bressan [8] and improved in [10].

The paper is organized as follows. Section 2 contains the main definitions and notations. Section 3 deals with
Riemann problems at the node J , while the Riemann solvers RS 1, RS 2 and RS 3 are analyzed in Section 4. In
Section 5 there are the statements of the main result about existence of solutions to Cauchy problems in the network,
while in Section 5.1 the wave-front method is briefly described. Sections 5.2 and 5.3 give, respectively, some bounds
on the total variation of the flux for approximate solutions and the proof of the existence of a wave-front tracking
approximate solution. Section 5.4 contains the proof about existence of a solution to the Cauchy problem, while
Section 6 deals with the Lipschitz continuous dependence of the solution with respect to initial conditions. Finally
Appendix A contains some technical results.

2. Basic definitions and notations

A complex networks is formed by a collection of arcs and nodes. However, relying on finite velocity of waves, one
can reduce to consider Cauchy problems for single nodes; see Theorem 4.3.9 of [24]. Thus, from now on, for sake of
simplicity, we focus on a single node with arcs of infinite length.

Consider a node J with n incoming arcs I1, . . . , In and m outgoing arcs In+1, . . . , In+m. We model each incoming
arc Ii (i ∈ {1, . . . , n}) of the node with the real interval Ii = ]−∞,0]. Similarly we model each outgoing arc Ij

(j ∈ {n + 1, . . . , n + m}) of the node with the real interval Ij = [0,+∞[. On each arc Il (l ∈ {1, . . . , n + m}) we
consider the partial differential equation

(ρl)t + f (ρl)x = 0, (1)

where ρl = ρl(t, x) ∈ [0, ρmax], is the density of cars, vl = vl(ρl) is the velocity of cars and f (ρl) = vl(ρl)ρl is the
flux. Hence the datum is given by a finite collection of functions ρl defined on [0,+∞[ × Il . For simplicity, we put
ρmax = 1.
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On the flux f we make the following assumption

(F ) f : [0,1] → R is a Lipschitz continuous and concave function satisfying
1. f (0) = f (1) = 0;
2. there exists a unique σ ∈ ]0,1[ such that f is strictly increasing in [0, σ [ and strictly decreasing in ]σ,1].

The definitions of entropic solutions on arcs and weak solutions at nodes are as follows.

Definition 1. A function ρl ∈ C([0,+∞[;L1
loc(Il)) is an entropy-admissible solution to (1) in the arc Il if, for every

k ∈ [0,1] and every ϕ̃ : [0,+∞[ × Il → R smooth, positive with compact support in ]0,+∞[ × (Il \ {0}), it holds
+∞∫
0

∫
Il

(
|ρl − k|∂ϕ̃

∂t
+ sgn(ρl − k)

(
f (ρl) − f (k)

)∂ϕ̃

∂x

)
dx dt � 0. (2)

Definition 2. A collection of functions ρl ∈ C([0,+∞[;L1
loc(Il)), where l ∈ {1, . . . , n+m}, is a weak solution at J if

1. for every l ∈ {1, . . . , n + m}, the function ρl is an entropy-admissible solution to (1) in the arc Il ;
2. for every l ∈ {1, . . . , n+m} and for a.e. t > 0, the function x �→ ρl(t, x) has a version with bounded total variation;
3. for a.e. t > 0, it holds

n∑
i=1

f
(
ρi(t,0−)

) =
n+m∑

j=n+1

f
(
ρj (t,0+)

)
, (3)

where ρl stands for the version with bounded total variation of 2.

For a collection of functions ρl ∈ C([0,+∞[;L1
loc(Il)) (l ∈ {1, . . . , n + m}) such that, for every l ∈ {1, . . . , n + m}

and a.e. t > 0 the map x �→ ρl(t, x) has a version with bounded total variation, we define the functionals

Γ (t) :=
n∑

i=1

f
(
ρi(t,0−)

)
(4)

and

Tot.Var.f (t) :=
n+m∑
l=1

Tot.Var.
(
f

(
ρl(t, ·)

))
. (5)

It is clear that these functionals are well defined for a.e. positive time. By definition we easily derive the bound

0 � Γ (t) � nf (σ ) (6)

for a.e. t � 0.
We now define a set of matrices to describe solutions at nodes. First consider the set

A :=
{

A = {aji}i=1,...,n, j=n+1,...,n+m: 0 < aji < 1 ∀i, j,

n+m∑
j=n+1

aji = 1 ∀i

}
. (7)

Let {e1, . . . , en} be the canonical basis of Rn. For every i = 1, . . . , n, we denote Hi = {ei}⊥. If A ∈ A, then we write,
for every j = n+1, . . . , n+m, aj = (aj1, . . . , ajn) ∈ Rn and Hj = {aj }⊥. Let K be the set of indices k = (k1, . . . , k�),
1 � � � n − 1, such that 0 � k1 < k2 < · · · < k� � n + m and for every k ∈ K define

Hk =
�⋂

h=1

Hkh
.

Writing 1 = (1, . . . ,1) ∈ Rn and following [12] we define the set

N := {
A ∈ A: 1 /∈ H⊥

k for every k ∈ K
}
. (8)
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Notice that, if n > m, then N = ∅. The matrices of N will give rise to a unique solution to Riemann problems at J .
For later use, define also the set

Θ =
{

θ = (θ1, . . . , θn+m) ∈ Rn+m: θ1 > 0, . . . , θn+m > 0,

n∑
i=1

θi =
n+m∑

j=n+1

θj = 1

}
. (9)

3. The Riemann problem

Fix ρ1,0, . . . , ρn+m,0 ∈ [0,1]. Consider the Riemann problem at J⎧⎨⎩
∂

∂t
ρl + ∂

∂x
f (ρl) = 0,

ρl(0, ·) = ρl,0,

l ∈ {1, . . . , n + m}. (10)

Remark 1. The Riemann problem (10) can be interpreted as a collection of initial–boundary value problems, one for
each arc, with coupling conditions. Concerning this type of problems for conservation laws, we refer to [3] and to [20]
for general theory.

Conditions 2 and 3 of Definition 4 ensure that, on each arc, an admissible solution to the corresponding initial–
boundary value problem is achieved. See also Remark 2 below.

A solution to the Riemann problem at J is defined following Definition 2, i.e.

Definition 3. A solution to the Riemann problem (10) is a weak solution at J , in the sense of Definition 2, such that
ρl(0, x) = ρl,0 for every l ∈ {1, . . . , n + m} and for a.e. x ∈ Il .

We are now ready to introduce the key concept of Riemann solver at J .

Definition 4. A Riemann solver RS is a function

RS : [0,1]n+m −→ [0,1]n+m,

(ρ1,0, . . . , ρn+m,0) �−→ (ρ̄1, . . . , ρ̄n+m)

satisfying the following

1.
∑n

i=1 f (ρ̄i) = ∑n+m
j=n+1 f (ρ̄j );

2. for every i ∈ {1, . . . , n}, the classical Riemann problem⎧⎨⎩
ρt + f (ρ)x = 0, x ∈ R, t > 0,

ρ(0, x) =
{

ρi,0, if x < 0,

ρ̄i , if x > 0,

is solved with waves with negative speed;
3. for every j ∈ {n + 1, . . . , n + m}, the classical Riemann problem⎧⎨⎩

ρt + f (ρ)x = 0, x ∈ R, t > 0,

ρ(0, x) =
{

ρ̄j , if x < 0,

ρj,0, if x > 0,

is solved with waves with positive speed.

Remark 2. By Definition 4, a Riemann solver produces a solution to the Riemann problem (10), which conserves the
mass at J and which generates waves with negative speed in incoming arcs and waves with positive speed in outgoing
arcs.

To effectively describe a solution to Riemann problems at J , a Riemann solver needs to satisfy the following
consistency condition:
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Definition 5. We say that a Riemann solver RS satisfies the consistency condition if

RS
(

RS(ρ1,0, . . . , ρn+m,0)
) = RS(ρ1,0, . . . , ρn+m,0)

for every (ρ1,0, . . . , ρn+m,0) ∈ [0,1]n+m.

Now we can state the three key properties of a Riemann solver, which will ensure the necessary bounds on approx-
imate solutions (via wave-front tracking) and thus the existence of solutions to Cauchy problems. First we need some
additional notation.

Definition 6. We say that (ρ1,0, . . . , ρn+m,0) is an equilibrium for the Riemann solver RS if

RS(ρ1,0, . . . , ρn+m,0) = (ρ1,0, . . . , ρn+m,0).

Definition 7. We say that a datum ρi ∈ [0,1] in an incoming arc is a good datum if ρi ∈ [σ,1] and a bad datum
otherwise.

We say that a datum ρj ∈ [0,1] in an outgoing arc is a good datum if ρi ∈ [0, σ ] and a bad datum otherwise.

The first property requires that equilibria are determined only by bad data values, more precisely:

Definition 8. We say that a Riemann solver RS has the property (P1) if the following condition holds. Given
(ρ1,0, . . . , ρn+m,0) and (ρ′

1,0, . . . , ρ
′
n+m,0) two initial data such that ρl,0 = ρ′

l,0 whenever either ρl,0 or ρ′
l,0 is a bad

datum, then

RS(ρ1,0, . . . , ρn+m,0) = RS
(
ρ′

1,0, . . . , ρ
′
n+m,0

)
. (11)

The second property asks for bounds in the increase of the flux variation for waves interacting with J . More
precisely the latter should be bounded in terms of the strength of the interacting wave as well as the variation in the
incoming fluxes.

Definition 9. We say that a Riemann solver RS has the property (P2) if there exists a constant C � 1 such
that the following condition holds. For every equilibrium (ρ1,0, . . . , ρn+m,0) of RS and for every wave (ρl,0, ρl)

(l ∈ {1, . . . , n + m}) interacting with J at time t̄ > 0 and producing waves in the arcs according to RS , we have

Tot.Var.f (t̄+) − Tot.Var.f (t̄−) � C min
{∣∣f (ρl,0) − f (ρl)

∣∣, ∣∣Γ (t̄+) − Γ (t̄−)
∣∣}. (12)

Finally, we state the third property: a wave interacting with J and provoking a flux decrease on a specific arc should
also gives rise to a decrease in the incoming fluxes.

Definition 10. We say that a Riemann solver RS has the property (P3) if, for every equilibrium (ρ1,0, . . . , ρn+m,0)

of RS and for every wave (ρl,0, ρl) (l ∈ {1, . . . , n + m}) with f (ρl) < f (ρl,0) interacting with J at time t̄ > 0 and
producing waves in the arcs according to RS , we have

Γ (t̄+) � Γ (t̄−). (13)

4. Riemann solvers

In this section we present some different Riemann solvers for the Riemann problem (10), proposed in recent
literature. We verify for all of them the three key properties stated in the previous section.

Let us first illustrate some common facts to all Riemann solvers. Introduce the following sets and notations

1. for every i ∈ {1, . . . , n} define

Ωi =
{ [0, f (ρi,0)], if 0 � ρi,0 � σ,

[0, f (σ )], if σ � ρi,0 � 1; (14)



1930 M. Garavello, B. Piccoli / Ann. I. H. Poincaré – AN 26 (2009) 1925–1951
2. for every j ∈ {n + 1, . . . , n + m} define

Ωj =
{ [0, f (σ )], if 0 � ρj,0 � σ,

[0, f (ρj,0)], if σ � ρj,0 � 1; (15)

3. for every l ∈ {1, . . . , n + m} denote

γ max
l = maxΩl. (16)

For a flux satisfying (F ), we define:

Definition 11. Let τ : [0,1] → [0,1] be the map such that:

1. f (τ(ρ)) = f (ρ) for every ρ ∈ [0,1];
2. τ(ρ) �= ρ for every ρ ∈ [0,1] \ {σ }.

Clearly, the function τ is well defined and satisfies

0 � ρ � σ ⇐⇒ σ � τ(ρ) � 1, σ � ρ � 1 ⇐⇒ 0 � τ(ρ) � σ.

Then we can state the following:

Proposition 1. The following statements hold.

1. For every i ∈ {1, . . . , n}, an element γ̄ belongs to Ωi if and only if there exists ρ̄i ∈ [0,1] such that f (ρ̄i) = γ̄ and
point 2 of Definition 4 is satisfied.

2. For every j ∈ {n + 1, . . . , n + m}, an element γ̄ belongs to Ωj if and only if there exists ρ̄j ∈ [0,1] such that
f (ρ̄j ) = γ̄ and point 3 of Definition 4 is satisfied.

Proof. From 2 of Definition 4, ρ̄i ∈ {ρi,0} ∪ ]τ(ρi,0),1] if ρi,0 < σ , while ρ̄i ∈ [σ,1] otherwise. By definition of Ωi ,
the first statement follows.

Similarly, by 3 of Definition 4, ρ̄j ∈ {ρj,0} ∪ [0, τ (ρj,0)[ if ρj,0 > σ , while ρ̄j ∈ [0, σ ] otherwise. By definition
of Ωj , the second statement follows. �
4.1. Riemann solver RS 1

In this subsection, we consider the Riemann solver introduced for vehicular traffic in [12]. The construction can be
summarized as follows.

1. Fix a matrix A ∈ N and consider the closed, convex and not empty set

Ω =
{

(γ1, . . . , γn) ∈
n∏

i=1

Ωi : A · (γ1, . . . , γn)
T ∈

n+m∏
j=n+1

Ωj

}
. (17)

2. Find the point (γ̄1, . . . , γ̄n) ∈ Ω which maximizes the function

E(γ1, . . . , γn) = γ1 + · · · + γn, (18)

and define (γ̄n+1, . . . , γ̄n+m)T := A · (γ̄1, . . . , γ̄n)
T . Since A ∈ N, the point (γ̄1, . . . , γ̄n) is uniquely defined.

3. For every i ∈ {1, . . . , n}, set ρ̄i either by ρi,0 if f (ρi,0) = γ̄i , or by the solution to f (ρ) = γ̄i such that ρ̄i � σ .
For every j ∈ {n + 1, . . . , n + m}, set ρ̄j either by ρj,0 if f (ρj,0) = γ̄j , or by the solution to f (ρ) = γ̄j such that
ρ̄j � σ . Finally, define RS 1 : [0,1]n+m → [0,1]n+m by

RS 1(ρ1,0, . . . , ρn+m,0) = (ρ̄1, . . . , ρ̄n, ρ̄n+1, . . . , ρ̄n+m). (19)

We now verify the consistency condition as well as properties (P1)–(P3).
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Lemma 1. The function defined in (19) satisfies the consistency condition

RS 1
(

RS 1(ρ1,0, . . . , ρn+m,0)
) = RS 1(ρ1,0, . . . , ρn+m,0) (20)

for every (ρ1,0, . . . , ρn+m,0) ∈ [0,1]n+m.

For a proof, see [12,24].

Proposition 2. The Riemann solver RS 1 satisfies property (P1).

Proof. Fix two initial data (ρ1,0, . . . , ρn+m,0) and (ρ′
1,0, . . . , ρ

′
n+m,0) with the property that ρl,0 = ρ′

l,0 whenever
either ρl,0 or ρ′

l,0 is a bad datum. For every l ∈ {1, . . . , n + m}, consider Ωl and Ω ′
l the sets (14)–(15) respectively for

the initial data (ρ1,0, . . . , ρn+m,0) and (ρ′
1,0, . . . , ρ

′
n+m,0). We easily deduce that Ωl = Ω ′

l for every l ∈ {1, . . . , n+m}.
Indeed if ρl,0 or ρ′

l,0 is a bad data, then ρl,0 = ρ′
l,0 and so Ωl = Ω ′

l . If ρl,0 is a good datum, then also ρ′
l,0 is a good

datum (and vice versa) and so Ωl = Ω ′
l = [0, f (σ )]. Consequently we have the thesis, since the solution depends only

on these sets and on the matrix A. �
Lemma 2. Fix an equilibrium (ρ1,0, . . . , ρn+m,0) for RS 1 and consider, for some l ∈ {1, . . . , n + m}, ρl ∈ [0,1] such
that the wave (ρl, ρl,0) has positive speed if l � n, while the wave (ρl,0, ρl) has negative speed if l > n. There exists
a constant C̃ � 1 such that

n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ � C̃
∣∣f (ρl) − f (ρl,0)

∣∣, (21)

where

(ρ̂1, . . . , ρ̂n+m) = RS 1(ρ1,0, . . . , ρl−1,0, ρl, ρl+1,0, . . . , ρn+m,0).

Proof. Denote with Ω− and with Ω the sets, defined in (17), respectively for the initial data (ρ1,0, . . . , ρn+m,0)

and (ρ1,0, . . . , ρl, . . . , ρn+m,0). It is easy to see that, by construction, Ω− ⊆ Ω or Ω ⊆ Ω−. We have two different
possibilities:

1. max(γ1,...,γn)∈Ω− E(γ1, . . . , γn) = max(γ1,...,γn)∈Ω E(γ1, . . . , γn),
2. max(γ1,...,γn)∈Ω− E(γ1, . . . , γn) �= max(γ1,...,γn)∈Ω E(γ1, . . . , γn),

where E is the linear function defined in (18). If

max
(γ1,...,γn)∈Ω− E(γ1, . . . , γn) = max

(γ1,...,γn)∈Ω
E(γ1, . . . , γn),

then, since A ∈ N, there exists a unique

(γ̄1, . . . , γ̄n) = (
f (ρ1,0), . . . , f (ρn,0)

) ∈ Ω ∩ Ω−

such that

E(γ̄1, . . . , γ̄n) = max
(γ1,...,γn)∈Ω− E(γ1, . . . , γn) = max

(γ1,...,γn)∈Ω
E(γ1, . . . , γn).

Therefore there is only one wave, produced by RS 1 at J , in the arc Il . Hence

n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ = ∣∣f (ρ̂l) − f (ρl)
∣∣ = ∣∣f (ρl,0) − f (ρl)

∣∣
and the conclusion follows.

Consider the other case, i.e.

max − E(γ1, . . . , γn) �= max
(γ ,...,γ )∈Ω

E(γ1, . . . , γn).

(γ1,...,γn)∈Ω 1 n
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Denote with (γ −
1 , . . . , γ −

n ) ∈ Ω− and with (γ̄1, . . . , γ̄n) ∈ Ω the points of maximum of E respectively on Ω− and
on Ω . Clearly, we have that (γ −

1 , . . . , γ −
n ) = (f (ρ1,0), . . . , f (ρn,0)), (γ −

1 , . . . , γ −
n ) ∈ ∂Ω− and (γ̄1, . . . , γ̄n) ∈ ∂Ω .

Since the directions of the faces of Ω− and Ω depend only on the coefficients of A and the difference between the
two sets depends only by the variation of a single constraint, then there exists a constant C̄ such that∣∣(γ −

1 , . . . , γ −
n

) − (γ̄1, . . . , γ̄n)
∣∣ � C̄

∣∣f (ρl,0) − f (ρl)
∣∣.

Hence
n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ �
n+m∑
h=1

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣
� 2C̄

n∑
i=1

|γ̄i − γi,0| +
∣∣f (ρ̂l) − f (ρl)

∣∣ � (2C̄ + 1)
∣∣f (ρl,0) − f (ρl)

∣∣
and the conclusion follows. �
Proposition 3. The Riemann solver RS 1 satisfies property (P2).

Proof. Fix an equilibrium (ρ1,0, . . . , ρn+m,0) for RS 1 and l ∈ {1, . . . , n + m}. Assume l � n, ρl ∈ [0,1] is such that
the wave (ρl, ρl,0) has positive speed and interacts with J at time t̄ , the other case being similar. Define

(ρ̂1, . . . , ρ̂n+m) = RS(ρ1,0, . . . , ρl−1,0, ρl, ρl+1,0, . . . , ρn+m,0).

Lemma 2 implies that

Tot.Var.f (t̄+) − Tot.Var.f (t̄−) =
n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ − ∣∣f (ρl,0) − f (ρl)
∣∣

� (C̃ − 1)
∣∣f (ρl,0) − f (ρl)

∣∣.
Clearly we have Γ (t̄−) = ∑n

i=1 f (ρi,0) and Γ (t̄+) = ∑n
i=1 f (ρ̂i). Since the direction of the faces of the set Ω ,

defined in (17), depend only on the matrix A ∈ N and the solution for the flux lies on the boundary of Ω , we have that
|Γ (t̄−) − Γ (t̄+)| is proportional to

n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ − ∣∣f (ρl,0) − f (ρl)
∣∣

and so the conclusion follows. �
Proposition 4. The Riemann solver RS 1 satisfies property (P3).

Proof. Fix an equilibrium (ρ1,0, . . . , ρn+m,0) for RS 1 and l ∈ {1, . . . , n + m}. Consider just the case l � n, the other
case being similar. Assume that ρl ∈ [0,1] is such that the wave (ρl, ρl,0) has positive speed, interacts with J at time t̄

and f (ρl) < f (ρl,0). Define

(ρ̂1, . . . , ρ̂n+m) = RS(ρ1,0, . . . , ρl−1,0, ρl, ρl+1,0, . . . , ρn+m,0).

The Rankine–Hugoniot condition implies that ρl < ρl,0 and so ρl is a bad datum. Call Ω− and Ω+ respectively
the sets (17) for the initial data (ρ1,0, . . . , ρn+m,0) and (ρ1,0, . . . , ρl, . . . , ρn+m,0). Since ρl is a bad datum and
f (ρl) < f (ρl,0), then Ω+ ⊆ Ω− and so

Γ (t̄−) =
n∑

i=1

f (ρi,0) �
n∑

i=1

f (ρ̂i) = Γ (t̄+).

The proof is finished. �
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4.2. Riemann solver RS 2

In this subsection, we consider the Riemann solver, introduced in [19] for data networks; see also [24]. The con-
struction consists of the following steps.

1. Fix θ ∈ Θ and define

Γinc =
n∑

i=1

γ max
i , Γout =

n+m∑
j=n+1

γ max
j ,

then the maximal possible through-flow at the crossing is

Γ = min{Γinc,Γout}.
2. Introduce the closed, convex and not empty sets

I =
{

(γ1, . . . , γn) ∈
n∏

i=1

Ωi :
n∑

i=1

γi = Γ

}
,

J =
{

(γn+1, . . . , γn+m) ∈
n+m∏

j=n+1

Ωj :
n+m∑

j=n+1

γj = Γ

}
.

3. Denote with (γ̄1, . . . , γ̄n) the orthogonal projection on the convex set I of the point (Γ θ1, . . . ,Γ θn) and with
(γ̄n+1, . . . , γ̄n+m) the orthogonal projection on the convex set J of the point (Γ θn+1, . . . ,Γ θn+m).

4. For every i ∈ {1, . . . , n}, define ρ̄i either by ρi,0 if f (ρi,0) = γ̄i , or by the solution to f (ρ) = γ̄i such that ρ̄i � σ .
For every j ∈ {n + 1, . . . , n + m}, define ρ̄j either by ρj,0 if f (ρj,0) = γ̄j , or by the solution to f (ρ) = γ̄j such
that ρ̄j � σ . Finally, define RS 2 : [0,1]n+m → [0,1]n+m by

RS 2(ρ1,0, . . . , ρn+m,0) = (ρ̄1, . . . , ρ̄n, ρ̄n+1, . . . , ρ̄n+m). (22)

The following result holds.

Lemma 3. The function defined in (22) satisfies the consistency condition

RS 2
(

RS 2(ρ1,0, . . . , ρn+m,0)
) = RS 2(ρ1,0, . . . , ρn+m,0) (23)

for every (ρ1,0, . . . , ρn+m,0) ∈ [0,1]n+m.

Proof. Consider (ρ1,0, . . . , ρn+m,0) ∈ [0,1]n+m, call Γ0,inc, Γ0,out , Γ0 the numbers defined in 1 of RS 2 and call I0
and J0 the sets defined in 2 of RS 2. Let

(ρ̄1, . . . , ρ̄n+m) = RS 2(ρ1,0, . . . , ρn+m,0)

and

(γ̄1, . . . , γ̄n+m) = (
f (ρ̄1), . . . , f (ρ̄n+m)

)
.

Similarly to above, call Γinc, Γout , Γ , the numbers defined in 1 and I and J the sets defined in 2 with respect to the
initial condition (ρ̄1, . . . , ρ̄n+m). In order to prove (23), we need to consider the following possibilities.

1. Γ0 = Γ0,inc � Γ0,out .
2. Γ0 = Γ0,out � Γ0,inc.

We restrict to the first case, since the second one is completely symmetric. For every i ∈ {1, . . . , n}, ρ̄i ∈ {ρi,0, σ }.
More precisely, if ρi,0 < σ , then ρ̄i = ρi,0, while if ρi,0 � σ , then ρ̄i = σ .

Applying RS 2 to the point (ρ̄1, . . . , ρ̄n+m), we deduce Γinc = Γ0,inc, Γout � Γ0,out , Γ = Γ0, I = I0, and J0 ⊆ J .
More precisely, Γout > Γ0,out if and only if there exists j ∈ {n + 1, . . . , n + m} such that ρj,0 > σ and ρ̄j � σ . Define

Ã = {
j ∈ {n + 1, . . . , n + m}: ρj,0 > σ, ρ̄j � σ

}
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and B̃ = {n + 1, . . . , n + m} \ Ã. We easily deduce that the projection of (Γ0θ1, . . . ,Γ0θn) on I0 is the same as the
projection of (Γ θ1, . . . ,Γ θn) on I . We also claim that the projection of (Γ0θn+1, . . . ,Γ0θn+m) on J0 is the same as the
projection of (Γ θn+1, . . . ,Γ θn+m) on J . In fact, if J = J0, then the claim is obvious. Assume therefore that J0 � J .
If we denote with PC the orthogonal projection on a closed and convex subset C of Rm, then

(γ̄n+1, . . . , γ̄n+m) = PJ0(Γ θn+1, . . . ,Γ θn+m).

Therefore, if we choose a point (xn+1, . . . , xn+m) ∈ J0, then the scalar product

(Γ θn+1 − γ̄n+1, . . . ,Γ θn+m − γ̄n+m) · (xn+1 − γ̄n+1, . . . , xn+m − γ̄n+m) � 0.

Notice that J \ J0 is given by points (γn+1, . . . , γn+m) satisfying

f (ρj,0) < γj � f (σ )

for some j ∈ Ã. Since γ̄j < f (ρj,0) for every j ∈ Ã, then for every point (x̃n+1, . . . , x̃n+m) of J such that x̃j > γ̄j for
some j ∈ Ã, there exist ζ > 0 and a point (xn+1, . . . , xn+m) ∈ J0 such that xj > γ̄j for some j ∈ Ã and

(x̃n+1 − γ̄n+1, . . . , x̃n+m − γ̄n+m) = ζ(xn+1 − γ̄n+1, . . . , xn+m − γ̄n+m).

This fact permits to conclude that

(Γ θn+1 − γ̄n+1, . . . ,Γ θn+m − γ̄n+m) · (x̃n+1 − γ̄n+1, . . . , x̃n+m − γ̄n+m) � 0

for every (x̃n+1, . . . , x̃n+m) ∈ J and so

(γ̄n+1, . . . , γ̄n+m) = PJ (Γ θn+1, . . . ,Γ θn+m).

This concludes the proof. �
Before proving (P1)–(P3), we need to prove some technical lemmas about projections.

Lemma 4. Fix N ∈ N \ {0}, a set P = ∏N
l=1[0, al], where al > 0 for every l ∈ {1, . . . ,N}, and an N -dimensional

vector (ϑ1, . . . , ϑN) such that ϑl > 0 for every l ∈ {1, . . . ,N} and
∑N

l=1 ϑl = 1. For 0 � Λ �
∑N

l=1 al , denote with
(ζ1, . . . , ζN ) = PI (Λϑ1, . . . ,ΛϑN) the orthogonal projection of (Λϑ1, . . . ,ΛϑN) on the set

I =
{

(γ1, . . . , γN) ∈ P :
N∑

l=1

γl = Λ

}
.

Then the value ζl (l ∈ {1, . . . ,N}) depends on Λ in a continuous way. Moreover, for all but a finite number of
0 < Λ <

∑N
l=1 al , the derivative of ζl with respect to Λ exists and satisfies ∂

∂Λ
ζl � 0.

Proof. The continuity of ζl w.r.t. Λ is trivial. The differentiability of ζl w.r.t. Λ is instead granted for all values
of Λ such that locally the projection PI (Λϑ1, . . . ,ΛϑN) either is (Λϑ1, . . . ,ΛϑN) or lies in the same face of I . By
linearity, this happens for all but a finite number of values of Λ. Thus we are left with last statement.

The conclusion is evident if PI (Λϑ1, . . . ,ΛϑN) is equal to (Λϑ1, . . . ,ΛϑN). So assume that

PI (Λϑ1, . . . ,ΛϑN) �= (Λϑ1, . . . ,ΛϑN),

i.e. (ζ1, . . . , ζN) belongs to the boundary of I . Moreover the case N = 1 is trivial, so we consider N � 2.
Since ϑk > 0 for every k ∈ {1, . . . ,N}, then ζk > 0 for every k ∈ {1, . . . ,N}. Assume, for simplicity, that there

exists k̄ ∈ {1, . . . ,N − 1}, such that

ζk = ak,

for every k = k̄ + 1, . . . ,N , and ζk < ak otherwise. The vector (ζ1, . . . , ζN ) can be written in the form

Λ(ϑ1, . . . , ϑN) + t (v1, . . . , vN),

where t > 0, (v1, . . . , vN) depends on Λ and on ak and it satisfies
∑N

l=1 vl = 0. Hence, for every k = k̄ + 1, . . . ,N ,
we deduce that

t = ak − ϑkΛ
vk



M. Garavello, B. Piccoli / Ann. I. H. Poincaré – AN 26 (2009) 1925–1951 1935
and

vk = ak − ϑkΛ

aN − ϑNΛ
vN.

Since the projection minimizes the distance, in order to find (ζ1, . . . , ζn), it is sufficient to minimize t (or equivalently
to maximize v2

N ) under the constraints

vk = ak − ϑkΛ

aN − ϑNΛ
vN, k = k̄ + 1, . . . ,N, (24)∥∥(v1, . . . , vN)

∥∥2 = 1, (25)
N∑

l=1

vl = 0. (26)

We apply the Lagrangian multiplier method to maximize v2
N under the constraints (24)–(26). For simplicity, define

f = v2
N , gk = vk − ak−ϑkΛ

aN−ϑNΛ
vN for k = k̄ + 1, . . . ,N , gN+1 = ∑N

l=1 vl and finally gN+2 = ‖(v1, . . . , vN)‖2 − 1. So
we deal with the critical points of the function

f +
N+2∑

k=k̄+1

λkgk,

depending on the variables (v1, . . . , vN), where the coefficients λk belong to R. Differentiating the previous function
with respect to vi (i = 1, . . . , k̄), we find that

λN+1 + 2λN+2vi = 0,

which implies that v1 = · · · = vk̄ = v̄ for some v̄ �= 0, since λN+1 and λN+2 are nontrivial. Thus Eqs. (24) and (26)
imply that

v̄ = −AvN

k̄
,

where

A = 1 +
N−1∑

k=k̄+1

ak − ϑkΛ

aN − ϑNΛ
.

Hence, for every i = 1, . . . , k̄,

∂

∂Λ
ζi = ∂

∂Λ
(Λϑi + tvi) = ∂

∂Λ

(
Λϑi − aN − ϑNΛ

vN

· AvN

k̄

)
= ∂

∂Λ

(
Λϑi − aN − ϑNΛ

k̄
· A

)

= ∂

∂Λ

(
Λϑi − 1

k̄

N∑
k=k̄+1

(ak − ϑkΛ)

)

= ϑi + 1

k̄

N∑
k=k̄+1

ϑk > 0,

while, for every i = k̄ + 1, . . . ,N , we have ∂
∂Λ

ζi = 0. �
Lemma 5. Under the same assumptions as Lemma 4, the value ζl , for l ∈ {1, . . . ,N}, depends in a continuous way
on ah for h ∈ {1, . . . ,N}. Moreover, if l �= h, then for all but a finite number of ah it is differentiable and it holds
∂ζl � 0.

∂ah
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Proof. The proof of continuity and differentiability of ζl w.r.t. ah is similar to that of Lemma 4. Thus we consider
only the last statement.

The case N = 1 is trivial, hence we assume that N � 2 and l, h ∈ {1, . . . ,N} with l �= h. If (ζ1, . . . , ζN ) is equal to
Λ(ϑ1, . . . , ϑN), then the claim is obvious. Assume therefore that

(ζ1, . . . , ζN) �= Λ(ϑ1, . . . , ϑN).

In this case (ζ1, . . . , ζN ) belongs to the topological boundary of P contained in the space
∑n

i=1 γi = Λ.
As in the proof of Lemma 4, we deduce ζk > 0 for every k ∈ {1, . . . ,N} and assume there exists k̄ ∈ {1, . . . ,N −1},

such that ζk = ak , for every k = k̄ + 1, . . . ,N , and ζk < ak otherwise. Again (see the proof of Lemma 4) we write
(ζ1, . . . , ζN ) = Λ(ϑ1, . . . , ϑN) + t (v1, . . . , vN), and deduce v1 = · · · = vk̄ = v̄ for some v̄ �= 0.

Now, notice that ∂
∂ah

ζi = 0 if i � k̄ + 1 and i �= h. While, if i � k̄, then

∂

∂ah

ζi = ∂

∂ah

(Λϑi + tvi) = ∂

∂ah

(t v̄),

since Λ is fixed. Thus ∂
∂ah

ζi is independent from i and, finally, the equation
∑n

i=1 ζi = Λ implies that

∂

∂ah

ζi � 0;
so the proof is finished. �
Remark 3. Note that, in Lemma 4, we assume that every al (l ∈ {1, . . . ,N}) is fixed and that the coefficient Λ varies.

On the contrary, in Lemma 5, we assume that Λ is fixed and that the coefficients al vary.

Proposition 5. The Riemann solver RS 2 satisfies property (P1).

The proof is similar to that of Proposition 2; hence we omit it.

Lemma 6. Fix an equilibrium (ρ1,0, . . . , ρn+m,0) for RS 2 and consider, for some l ∈ {1, . . . , n + m}, ρl ∈ [0,1] such
that the wave (ρl, ρl,0) has positive speed if l � n, while the wave (ρl,0, ρl) has negative speed if l > n. Then

n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ = ∣∣f (ρl) − f (ρl,0)
∣∣, (27)

where

(ρ̂1, . . . , ρ̂n+m) = RS 2(ρ1,0, . . . , ρl−1,0, ρl, ρl+1,0, . . . , ρn+m,0).

Proof. In this proof we use the following notation.

• Γ −
inc, Γ −

out , Γ −, I− and J− denote the numbers and the sets defined in points 1 and 2 of Section 4.2 for the initial
condition (ρ1,0, . . . , ρn+m,0).

• Γ +
inc, Γ +

out , Γ +, I+ and J+ denote the numbers and the sets defined in points 1 and 2 of Section 4.2 for the initial
condition (ρ̂1, . . . , ρ̂n+m).

• Γ̄inc, Γ̄out, Γ̄ , Ī and J̄ denote the numbers and the sets defined in points 1 and 2 of Section 4.2 for the initial
condition (ρ1,0, . . . , ρl, . . . , ρn+m,0).

• Ωh,0 denotes the set defined in (14) or in (15) with respect to ρh,0 for h ∈ {1, . . . , n + m}.
• Ωl denotes the set defined in (14) or in (15) with respect to ρl .

Notice that Γ̄ = Γ +. We have the following two possibilities.

1. Γ −
inc � Γ −

out .
2. Γ −

inc > Γ −
out .
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We deal only with the proof of the first case, since the second one can be treated in the same way. Assume, therefore,
Γ −

inc � Γ −
out. In this case Γ − = Γ −

inc and ρi,0 � σ for every i ∈ {1, . . . , n}. There are two different situations: l � n and
l > n.

Assume first l � n. We noticed that ρl,0 � σ and so ρl < σ , since the speed of the wave is positive. We have

Γ̄inc = Γ −
inc − f (ρl,0) + f (ρl) (28)

and

Γ̄out = Γ −
out.

If Γ̄inc � Γ̄out , then no wave is produced in incoming arcs and at most m waves are produced in outgoing arcs. The
total variation of the flux due to these waves is

n+m∑
j=n+1

∣∣f (ρ̂j ) − f (ρj,0)
∣∣.

Therefore
n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ − ∣∣f (ρl) − f (ρl,0)
∣∣

= −∣∣f (ρl) − f (ρl,0)
∣∣ +

n+m∑
j=n+1

∣∣f (ρj,0) − f (ρ̂j )
∣∣.

If f (ρl) < f (ρl,0), then Γ̄ < Γ − and the sets J̄ ⊆ J− differ only for the values of Γ̄ , Γ −, since the wave (ρl, ρl,0)

does not affect Ωj,0 for every j ∈ {n + 1, . . . , n + m}; hence we apply Lemma 4 and deduce that f (ρ̂j ) � f (ρj,0) for
every j ∈ {n + 1, . . . , n + m}.

If instead f (ρl) > f (ρl,0), then Γ̄ > Γ − and, with similar considerations as the previous ones, we have that
f (ρ̂j ) � f (ρj,0) for every j ∈ {n + 1, . . . , n + m}. Therefore, we have

n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ − ∣∣f (ρl) − f (ρl,0)
∣∣

= sgn
(
f (ρl) − f (ρl,0)

) ·
(

−f (ρl) + f (ρl,0) +
n+m∑

j=n+1

(
f (ρ̂j ) − f (ρj,0)

))
= sgn

(
f (ρl) − f (ρl,0)

)(−f (ρl) + f (ρl,0) + Γ + − Γ −)
= sgn

(
f (ρl) − f (ρl,0)

)(−f (ρl) + f (ρl,0) + Γ̄ − Γ −
inc

)
= sgn

(
f (ρl) − f (ρl,0)

)(−f (ρl) + f (ρl,0) + Γ̄inc − Γ −
inc

) = 0,

where we used Eq. (28) and the equality Γ̄ = Γ +. Thus the conclusion follows in the case Γ̄inc � Γ̄out .
If Γ̄inc > Γ̄out , then Γ̄ = Γ + = Γ̄out = Γ +

out and Γ̄inc > Γ̄ � Γ −
inc. Moreover we deduce that f (ρl) > f (ρl,0) and so

the total variation of the flux due to the interacting wave is, in this case, equal to∣∣f (ρl) − f (ρl,0)
∣∣ = f (ρl) − f (ρl,0).

Since Γ̄ = Γ̄out, then in the outgoing arcs there is the formation of at most m waves and the trace of the flux of the
solution at the node is the maximum possible. This implies that f (ρ̂j ) � f (ρj,0) for every j ∈ {n + 1, . . . , n + m}.
Therefore the total variation of the flux in outgoing arcs after the interaction produced at J is given by Γ̄ − Γ −

inc.
By Γ̄inc > Γ̄ , in the incoming arcs there is the production of at most n waves. In this case, the trace of the solution

in an incoming arc is a good datum (see Definition 7), since ρi,0 � σ for every i ∈ {1, . . . , n}, ρl < σ and the speed of
the produced waves is negative. Then f (ρh,0) � f (ρ̂h) for every h ∈ {1, . . . , n}, h �= l and f (ρ̂l) � f (ρl).

Without loss of generality, we may assume that the interacting wave is in the arc I1, i.e. l = 1; hence the total
variation of the flux due to the waves is
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n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ − ∣∣f (ρl) − f (ρl,0)
∣∣

=
n+m∑
h=2

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂1) − f (ρ1)

∣∣ − ∣∣f (ρ1) − f (ρ1,0)
∣∣

=
n∑

i=2

[
f (ρi,0) − f (ρ̂i)

] + Γ̄ − Γ −
inc + f (ρ1) − f (ρ̂1) − f (ρ1) + f (ρ1,0)

=
n∑

i=1

[
f (ρi,0)

] −
n∑

i=1

[
f (ρ̂i)

] + Γ̄ − Γ −
inc

=
n∑

i=1

[
f (ρi,0)

] − Γ + + Γ̄ − Γ −
inc

= Γ −
inc − Γ + + Γ̄ − Γ −

inc = 0.

Thus the conclusion follows provided Γ̄inc > Γ̄out. Therefore the case l � n is completed.
Assume now l > n and, without loss of generality, l = n + 1. We consider three different situations.
If Γ −

out � Γ̄out , then Γ̄ = Γ̄inc = Γ −
inc, and so nothing happens in incoming arcs. If Γ −

out = Γ̄out , then both ρn+1,0
and ρn+1 are good data and this is not possible by the velocity of the wave. Since the wave (ρn+1,0, ρn+1) has negative
speed, then Γ −

out < Γ̄out. The only possibility is that ρn+1,0 is a bad datum, ρn+1 ∈ [σ,ρn+1,0[ and so f (ρn+1) >

f (ρn+1,0). Moreover, since the wave (ρ̂n+1, ρn+1) has positive speed, then f (ρn+1) � f (ρ̂n+1). Therefore

n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ − ∣∣f (ρl) − f (ρl,0)
∣∣

=
n+m∑

j=n+2

∣∣f (ρj,0) − f (ρ̂j )
∣∣ + ∣∣f (ρ̂n+1) − f (ρn+1)

∣∣ − ∣∣f (ρn+1) − f (ρn+1,0)
∣∣

=
n+m∑

j=n+2

∣∣f (ρj,0) − f (ρ̂j )
∣∣ + f (ρn+1) − f (ρ̂n+1) − f (ρn+1) + f (ρn+1,0)

=
n+m∑

j=n+2

∣∣f (ρj,0) − f (ρ̂j )
∣∣ − f (ρ̂n+1) + f (ρn+1,0).

Since Γ̄ = Γ − and Ωl,0 ⊆ Ωl , we may apply Lemma 5 and deduce that f (ρj,0) � f (ρ̂j ) for every j ∈ {n + 2, . . . ,

n + m} and so

n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ − ∣∣f (ρl) − f (ρl,0)
∣∣

=
n+m∑

j=n+1

[
f (ρj,0)

] −
n+m∑

j=n+1

[
f (ρ̂j )

] = Γ − − Γ + = 0

and so we have the thesis in the case Γ −
out � Γ̄out .

If Γ −
out > Γ̄out � Γ −

inc, then ρn+1,0 < ρn+1 and f (ρn+1) < f (ρn+1,0), since the wave (ρn+1,0, ρn+1) has negative
speed. Thus Γ̄ = Γ −

inc and no wave is produced in incoming arcs and also no wave is produced in the arc In+1; i.e.
ρ̂n+1 = ρn+1. Moreover Ωl ⊆ Ωl,0 and so, by Lemma 5, we have f (ρj,0) � f (ρ̂j ) for every j ∈ {n + 2, . . . , n + m}.
Therefore
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n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ − ∣∣f (ρl) − f (ρl,0)
∣∣

=
n+m∑

j=n+2

∣∣f (ρ̂j ) − f (ρj,0)
∣∣ − ∣∣f (ρn+1) − f (ρn+1,0)

∣∣
=

n+m∑
j=n+2

[
f (ρ̂j ) − f (ρj,0)

] + f (ρn+1) − f (ρn+1,0)

=
n+m∑

j=n+1

[
f (ρ̂j ) − f (ρj,0)

] = Γ̄ − Γ − = 0

and so we have the thesis in the case Γ −
out > Γ̄out � Γ −

inc.
If Γ −

out > Γ̄out and Γ̄out < Γ −
inc, then ρn+1,0 < ρn+1 and f (ρn+1) < f (ρn+1,0), since the wave (ρn+1,0, ρn+1) has

negative speed. Moreover Γ̄ = Γ̄out and so no wave is produced in In+1, waves with decreasing flux are produced in
incoming arcs, and waves with increasing flux are produced in outgoing arcs, i.e. ρ̂n+1 = ρn+1, f (ρ̂i) � f (ρi,0) for
every i ∈ {1, . . . , n} and f (ρ̂j ) � f (ρj,0) for every j ∈ {n + 2, . . . , n + m}. Hence

n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ − ∣∣f (ρl) − f (ρl,0)
∣∣

=
n∑

i=1

∣∣f (ρ̂i) − f (ρi,0)
∣∣ +

n+m∑
j=n+2

∣∣f (ρ̂j ) − f (ρj,0)
∣∣ − ∣∣f (ρn+1,0) − f (ρn+1)

∣∣
=

n∑
i=1

[
f (ρi,0) − f (ρ̂i)

] +
n+m∑

j=n+2

[
f (ρ̂j ) − f (ρj,0)

] + f (ρn+1) − f (ρn+1,0)

= Γ − − Γ + +
n+m∑

j=n+1

[
f (ρ̂j ) − f (ρj,0)

] = Γ − − Γ + + Γ + − Γ − = 0,

and we have the thesis in the case Γ −
out > Γ̄out and Γ̄out < Γ −

inc.
The proof is thus finished. �

Proposition 6. The Riemann solver RS 2 satisfies property (P2).

Proof. Fix an equilibrium (ρ1,0, . . . , ρn+m,0) for RS 2 and consider, for some l ∈ {1, . . . , n+m}, ρl ∈ [0,1] such that
the wave (ρl, ρl,0) has positive speed if l � n, while the wave (ρl,0, ρl) has negative speed if l > n. Assume that the
wave interacts with J at time t̄ > 0 and define

(ρ̂1, . . . , ρ̂n+m) = RS 2(ρ1,0, . . . , ρl−1,0, ρl, ρl+1,0, . . . , ρn+m,0).

By Lemma 6 we have

Tot.Var.f (t̄+) − Tot.Var.f (t̄−) =
n+m∑
h=1
h�=l

∣∣f (ρ̂h) − f (ρh,0)
∣∣ + ∣∣f (ρ̂l) − f (ρl)

∣∣ − ∣∣f (ρl,0) − f (ρl)
∣∣

= ∣∣f (ρl,0) − f (ρl)
∣∣ − ∣∣f (ρl,0) − f (ρl)

∣∣ = 0

and so (P2) holds. �
Proposition 7. The Riemann solver RS 2 satisfies property (P3).
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Proof. Fix an equilibrium (ρ1,0, . . . , ρn+m,0) for RS 2 and l ∈ {1, . . . , n + m}. Consider just the case l � n, the other
case being similar. Assume that ρl ∈ [0,1] is such that the wave (ρl, ρl,0) has positive speed, interacts with J at time
t̄ > 0 and f (ρl) < f (ρl,0). Define

(ρ̂1, . . . , ρ̂n+m) = RS(ρ1,0, . . . , ρl−1,0, ρl, ρl+1,0, . . . , ρn+m,0).

The Rankine–Hugoniot condition implies that ρl < ρl,0 and so ρl is a bad datum. Call Γ − and Γ + respectively the
values, defined in point 1 of the procedure for RS 2, for initial data (ρ1,0, . . . , ρn+m,0) and (ρ1,0, . . . , ρl, . . . , ρn+m,0).
Since ρl is a bad datum, then Γ − � Γ + and so

Γ (t̄−) =
n∑

i=1

f (ρi,0) �
n∑

i=1

f (ρ̂i) = Γ (t̄+).

The proof is finished. �
4.3. Riemann solver RS 3

In this subsection, we consider the Riemann solver, introduced in [35] to model T-nodes. Consider a node J with n

incoming and m = n outgoing arcs and fix a positive coefficient ΓJ , which is the maximum capacity of the node. The
construction can be done in the following way.

1. Fix θ ∈ Θ . For every i ∈ {1, . . . , n}, define

Γi = min
{
γ max
i , γ max

i+n

}
where the numbers γ max

l are defined in (16). Then the maximal possible through-flow at J is

Γ =
n∑

i=1

Γi.

2. Introduce the closed, convex and not empty set

I =
{

(γ1, . . . , γn) ∈
n∏

i=1

[0,Γi]:
n∑

i=1

γi = min{Γ,ΓJ }
}

.

3. Denote with (γ̄1, . . . , γ̄n) the orthogonal projection on the convex set I of the point (min{Γ,ΓJ }θ1, . . . ,

min{Γ,ΓJ }θn) and set (γ̄n+1, . . . , γ̄2n) = (γ̄1, . . . , γ̄n).
4. For every i ∈ {1, . . . , n}, define ρ̄i either by ρi,0 if f (ρi,0) = γ̄i , or by the solution to f (ρ) = γ̄i such that ρ̄i � σ .

For every j ∈ {n + 1, . . . , n + m}, define ρ̄j either by ρj,0 if f (ρj,0) = γ̄j , or by the solution to f (ρ) = γ̄j such
that ρ̄j � σ . Finally, define RS 3 : [0,1]n+m → [0,1]n+m by

RS 3(ρ1,0, . . . , ρn+m,0) = (ρ̄1, . . . , ρ̄n, ρ̄n+1, . . . , ρ̄n+m). (29)

The following result holds.

Lemma 7. The function defined in (29) satisfies the consistency condition

RS 3
(

RS 3(ρ1,0, . . . , ρn+m,0)
) = RS 3(ρ1,0, . . . , ρn+m,0) (30)

for every (ρ1,0, . . . , ρn+m,0) ∈ [0,1]n+m.

For a proof, see Proposition 2.4 of [35].

Proposition 8. The Riemann solver RS 3 satisfies property (P1).

The proof is similar to that of Proposition 2; hence we omit it.
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Proposition 9. The Riemann solver RS 3 satisfies properties (P2) and (P3).

The proof is completely similar to the proofs of properties (P2) and (P3) for the Riemann solver RS 2 and so
omitted.

5. The Cauchy problem

In this section, we deal with the Cauchy problem at the node J . Fix n initial data for incoming arcs ρ1,0, . . . , ρn,0 ∈
BV(]−∞,0]; [0,1]) and m initial data for outgoing arcs ρn+1,0, . . . , ρn+m,0 ∈ BV([0,+∞[; [0,1]). Consider the
Cauchy problem at J :⎧⎨⎩

∂

∂t
ρl(t, x) + ∂

∂x
f

(
ρl(t, x)

) = 0, x ∈ Il \ {0}, t > 0,

ρl(0, x) = ρ0,l(x), x ∈ Il,

l ∈ {1, . . . , n + m}. (31)

The main result is the following theorem.

Theorem 8. Consider the Cauchy problem (31) and a Riemann solver RS satisfying the consistency condition and
the properties (P1)–(P3). Then there exists a weak solution at J (ρ1(t, x), . . . , ρn+m(t, x)) such that

1. for every l ∈ {1, . . . , n + m}, ρl(0, x) = ρ0,l(x) for a.e. x ∈ Il ;
2. for a.e. t > 0,

RS
(
ρ1(t,0−), . . . , ρn+m(t,0+)

) = (
ρ1(t,0−), . . . , ρn+m(t,0+)

)
. (32)

The proof of the theorem is given in next sections. In [12,19,24,35], existence of solutions was proved for Riemann
solvers RS 1, RS 2 and RS 3 for a node J with at most two incoming and two outgoing arcs.

Remark 4. Notice that, under the hypotheses of the paper, every weak solution at J (ρ1(t, x), . . . , ρn+m(t, x)) admits
strong traces (ρ1(t,0−), . . . , ρn+m(t,0+)) for a.e. t > 0; see [3, Lemma 1].

5.1. Wave-front tracking

Since solutions to Riemann problems are given, we are able to construct piecewise constant approximations via
wave-front tracking algorithm; see [9] for the general theory and [24] in the case of networks.

Definition 12. Given ε > 0 and a Riemann solver RS , we say that the map ρ̄ε = (ρ̄1,ε, . . . , ρ̄n+m,ε) is an
ε-approximate wave-front tracking solution to (31) with respect to RS if the following conditions hold.

1. For every l ∈ {1, . . . , n + m}, ρ̄l,ε ∈ C([0,+∞[;L1
loc(Il; [0,1])).

2. For every l ∈ {1, . . . , n + m}, ρ̄l,ε(t, x) is piecewise constant, with discontinuities occurring along finitely many
straight lines in the (t, x)-plane. Moreover jumps of ρ̄l,ε(t, x) can be shocks or rarefactions and are indexed by
Jl(t) = Sl (t) ∪ Rl(t).

3. For every l ∈ {1, . . . , n + m}, along each shock x(t) = xl,α(t), α ∈ Sl (t), we have

ρ̄l,ε

(
t, xl,α(t)−)

< ρ̄l,ε

(
t, xl,α(t)+)

.

Moreover∣∣∣∣ẋl,α(t) − f (ρ̄l,ε(t, xl,α(t)−)) − f (ρ̄l,ε(t, xl,α(t)+))

ρ̄l,ε(t, xl,α(t)−) − ρ̄l,ε(t, xl,α(t)+)

∣∣∣∣ � ε.

4. For every l ∈ {1, . . . , n + m}, along each rarefaction front x(t) = xl,α(t), α ∈ Rl(t), we have

ρ̄l,ε

(
t, xl,α(t)+)

< ρ̄l,ε

(
t, xl,α(t)−)

< ρ̄l,ε

(
t, xl,α(t)+) + ε.

Moreover

ẋl,α(t) ∈ [
f ′(ρ̄l,ε

(
t, xl,α(t)−))

, f ′(ρ̄l,ε

(
t, xl,α(t)+))]

.
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5. For every l ∈ {1, . . . , n + m},∥∥ρ̄l,ε(0, ·) − ρ0,l(·)
∥∥

L1(Il )
< ε.

6. For a.e. t > 0

RS
(
ρ̄1,ε(t,0−), . . . , ρ̄n+m,ε(t,0+)

) = (
ρ̄1,ε(t,0−), . . . , ρ̄n+m,ε(t,0+)

)
.

Fix a Riemann solver RS satisfying the consistency condition and the properties (P1)–(P3). For every
l ∈ {1, . . . , n + m}, consider a sequence ρ0,l,ν of piecewise constant functions defined on Il such that ρ0,l,ν has
a finite number of discontinuities and limν→+∞ ρ0,l,ν = ρ0,l in L1

loc(Il; [0,1]). For every ν ∈ N \ {0}, we apply the
following procedure. At time t = 0, we solve the Riemann problem at J (according to RS ) and all Riemann problems
in each arc. We approximate every rarefaction wave with a rarefaction fan, formed by rarefaction shocks of strength
less than 1

ν
travelling with the Rankine–Hugoniot speed. Moreover, if σ is in the range of a rarefaction shock, then

its speed is zero. We repeat the previous construction at every time at which interactions between waves or of waves
with J happen.

Remark 5. By slightly modifying the speed of waves, we may assume that, at every positive time t , at most one
interaction happens. Moreover, at every interaction time, either two waves interact in an arc or a wave reaches the
node J .

Remark 6. For interactions in arcs, we split rarefaction waves into rarefaction fans just at time t = 0. At the node J ,
instead, we allow the formation of rarefaction fans at every positive time.

Let us introduce the concepts of generation order for waves, of big shocks and of waves with increasing or decreas-
ing flux. We need these definitions in the proof of existence of a wave-front tracking approximate solution and in the
bounds for the total variation of the flux.

Definition 13. A wave of ρ̄ε , generated at time t = 0, is said an original wave or a wave with generation order 1.
If a wave with generation order k � 1 interacts with J , then the produced waves are said of generation k + 1.
If a wave with generation order k � 1 interacts in an arc with a wave with generation order k′ � 1, then the produced

wave is said of generation min{k, k′}.

Definition 14. We say that a wave (ρl, ρr) in an arc is a big shock if ρl < σ < ρr .

Definition 15. We say that a wave (ρl, ρr) interacting with J from an incoming arc has decreasing flux (respectively
increasing flux) if f (ρl) < f (ρr) (respectively f (ρl) > f (ρr)).

We say that a wave (ρl, ρr) interacting with J from an outgoing arc has decreasing flux (respectively increasing
flux) if f (ρl) > f (ρr) (respectively f (ρl) < f (ρr)).

5.2. Bounds on the total variation of the flux

The aim of this subsection is to give a bound to the total variation of the flux for an approximate solution. Fix
a Riemann solver satisfying the properties (P1)–(P3). Let us start with some technical results.

Lemma 9. The following statements hold.

1. Assume that a wave with decreasing flux, connecting ρl with ρr , reaches J from an incoming arc. Then (ρl, ρr)

is a shock wave and ρl is a bad datum.
2. Assume that a wave with decreasing flux, connecting ρl and ρr , reaches J from an outgoing arc. Then (ρl, ρr) is

a shock wave and ρr is a bad datum.
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Proof. Let us consider an incoming arc and a wave (ρl, ρr), which reaches the node J with decreasing flux. The wave
has positive speed and so ρl < ρr . Since f is decreasing in [σ,1] then ρl < σ . It means that the wave is a shock wave
and ρl is a bad datum.

The situation for an outgoing arc is completely symmetric. �
Corollary 1. If a wave generated at J returns to J without interacting with waves with generation order 1, then it has
decreasing flux and produces a decrease of Γ .

Proof. Consider a wave generated at J , which does not interact with waves with generation order 1. Since the network
is composed by a single node, then the speed of the wave can change only if the wave interacts with waves with
generation order k � 2, i.e. with waves produced by J . Under these assumptions, the speed of the wave can change
sign, only in the case the wave is a big shock or it interacts with a big shock; see Lemma 4.3.7 of [24] (see Appendix A).
In any case, the wave is a big shock when it returns to J . Moreover it must have positive velocity if it is in an
incoming arc, while it must have negative velocity in the other case. Therefore it is a wave with decreasing flux and
the conclusion follows by property (P3). �
Lemma 10. Assume that a wave (ρl, ρr) interacts with J at a time t̄ > 0, then

Tot.Var.f (t̄+) � (C + 1)Tot.Var.f (t̄−), (33)

where C is given by property (P2) of the Riemann solver RS .

Proof. By property (P2), we get

Tot.Var.f (t̄+) − Tot.Var.f (t̄−) � C
∣∣f (ρl) − f (ρr)

∣∣.
Therefore we have

Tot.Var.f (t̄+) � Tot.Var.f (t̄−) + C
∣∣f (ρl) − f (ρr)

∣∣
= Tot.Var.f (t̄−) − ∣∣f (ρl) − f (ρr)

∣∣ + (C + 1)
∣∣f (ρl) − f (ρr)

∣∣
� max{C + 1,1}[Tot.Var.f (t̄−) − ∣∣f (ρl) − f (ρr)

∣∣] + max{C + 1,1}∣∣f (ρl) − f (ρr)
∣∣

= (C + 1)Tot.Var.f (t̄−),

and this concludes the proof. �
Lemma 11. Assume that a wave (ρl, ρr) interacts with J at a time t̄ > 0. Then

Γ (t̄+) � Γ (t̄−) + (C + 2)
∣∣f (ρl) − f (ρr)

∣∣, (34)

where C is given by property (P2).

Proof. The variation of Γ at t̄ is the sum of the variation of the fluxes for the incoming arcs. Therefore

Γ (t̄+) − Γ (t̄−) � Tot.Var.f (t̄+) − Tot.Var.f (t̄−) + 2
∣∣f (ρl) − f (ρr)

∣∣.
Hence, by (P2), it is bounded by (C + 2)|f (ρl) − f (ρr)|. �

The next lemma gives a bound for the positive total variation of Γ .

Lemma 12. We have

Tot.Var.+ Γ (·) � (C + 2)Tot.Var.f (0+), (35)

where C is given by property (P2) and Tot.Var.+ Γ (·) denotes the positive total variation of Γ .
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Proof. By property (P3), an increment of the functional Γ can happen only when a wave with increasing flux interacts
with J . Moreover a wave, generated at J , can come back at J only with a decreasing flux. Indeed, consider the case of
an incoming arc, the other one being completely symmetric. Assume that a wave with increasing flux (ρl, ρr) interacts
with J . Since f (ρl) > f (ρr) and the velocity of the wave is positive, then we deduce that ρl > ρr . By contradiction,
if ρl > σ , then clearly ρr ∈ [0, τ (ρl)[ and so (ρl, ρr) is a rarefaction wave, whose velocity is not positive. Hence
ρl � σ and ρr is a bad datum. By [24, Lemma 4.3.6] (see Appendix A), the wave (ρl, ρr) is not a wave coming back
to J . More precisely, it is a wave, which can be generated by interactions between original waves, but no one of these
interacting waves is produced at J .

If two waves interact in an arc, then, by the construction of the approximate solution, the total variation of the flux
diminishes after the interaction. Therefore, the previous considerations allow to conclude, thanks to Lemma 11. �
Lemma 13. For C given by property (P2), we have

Tot.Var. Γ (·) � 2(C + 2)Tot.Var.f (0+) + nf (σ ). (36)

Proof. It is a direct consequence of Lemma 12 and of the bound (6). �
Lemma 14. For every t > 0 we have

Tot.Var.f (t) � C1 Tot.Var.f (0+) + Cnf (σ), (37)

where C1 = 1 + 2C(C + 2) and C is given by property (P2).

Proof. Notice that the functional Tot.Var.f can increase only when a wave interacts with J and, by property (P2) of
the Riemann solver RS , produces a variation of Γ . If we denote with g(t) the function Tot.Var.f (t), then the positive
variation Tot.Var.+ g(·) of g is bounded by C · Tot.Var. Γ (·). Thus, by Lemma 13,

Tot.Var.+ g(·) � 2C(C + 2)Tot.Var.f (0+) + Cnf (σ)

and so, for every t > 0,

Tot.Var.f (t) � Tot.Var.f (0+) + 2C(C + 2)Tot.Var.f (0+) + Cnf (σ)

= C1 Tot.Var.f (0+) + Cnf (σ).

The proof is finished. �
5.3. Existence of a wave-front tracking solution

In this subsection, we prove the existence of a wave-front tracking approximate solution. We have the following
proposition.

Proposition 10. For every ν ∈ N \ {0} the construction in Section 5.1 can be done for every positive time, producing
a 1

ν
-approximate wave-front tracking solution to (31) with respect to RS .

Proof. For every l ∈ {1, . . . , n + m} and every ν ∈ N \ {0}, call ρl,ν the function built by the previous procedure.
Moreover, for every l ∈ {1, . . . , n + m}, ν ∈ N \ {0}, k ∈ N \ {0} and for every time t � 0, define the functions Nl,ν(t)

and Ml,k,ν(t), which count respectively the number of discontinuities of ρl,ν(t, ·) and the number of waves with
generation order k of ρl,ν(t, ·).

Assume, by contradiction, that, there exist ν̄ ∈ N \ {0} and T > 0 such that
n+m∑
l=1

Nl,ν̄(t) < +∞

for every t ∈ [0, T [, and

lim sup
t→T −

n+m∑
Nl,ν̄(t) = +∞. (38)
l=1
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Note that, for every time t ,

n+m∑
l=1

Ml,1,ν̄ (t) �
n+m∑
l=1

Ml,1,ν̄ (0+) < +∞.

Indeed,
∑n+m

l=1 Ml,1,ν̄ (t) is locally constant and can vary only at interaction times in the following way:

1. if at t̄ > 0 a wave with generation order 1 reaches the node J , then

n+m∑
l=1

Ml,1,ν̄ (t̄+) =
n+m∑
l=1

Ml,1,ν̄ (t̄−) − 1;

2. if at t̄ > 0 two waves with generation order 1 interact in an arc, then

n+m∑
l=1

Ml,1,ν̄ (t̄+) =
n+m∑
l=1

Ml,1,ν̄ (t̄−) − 1;

3. if at t̄ > 0 a wave with generation order k1 interacts with a wave of order k2 in an arc with k1 + k2 � 3, then

n+m∑
l=1

Ml,1,ν̄ (t̄+) =
n+m∑
l=1

Ml,1,ν̄ (t̄−).

Moreover, for every l ∈ {1, . . . , n + m} and for every k � 0, the function Ml,k,ν̄ (·) is decreasing inside the arcs. For
every k ∈ N \ {0} and for every time t > 0, we have

n+m∑
l=1

Ml,k,ν̄ (t) � (Kν̄)
k−1

n+m∑
l=1

Ml,1,ν̄ (0+) = (Kν̄)
k−1

n+m∑
l=1

Nl,ν̄(0+) < +∞,

where Kν̄ = (n + m)ν̄. This bound is due to the fact that each wave with generation order k can interact with J and
produce at most ν̄ waves with generation order k + 1 in each arc (in the case of rarefactions).

Now, there exists 0 < η < T such that no wave with generation order 1 interacts with J in the time interval
(T −η,T ). Eq. (38) implies also that in (T −η,T ) there are an infinite number of interactions of waves with J . Since
waves of generation order 1 do not interact in (T − η,T ), the only possibility is that a wave with generation order
k � 2 comes back to J producing waves of order k +1, some of which come back to J producing waves of order k +2
and so on. Moreover by Lemma 4.3.7 of [24] (see Appendix A), if a wave of generation order k � 2, interacts with J

from an arc in (T − η,T ), then, after the interaction, the datum in that arc is bad, since the wave cannot interact with
waves of generation order 1 and come back to J . In an arc a bad datum at J can change only in the following cases:

1. an original wave interacts with J from the arc;
2. a wave, which is a big shock, is originated at J on an arc and the new datum at J is good.

Obviously in the time interval (T − η,T ) the first possibility cannot happen; so only the second possibility may
happen. Assume that there exist t1, t2 ∈ (T − η,T ) with t1 < t2 such that a big shock is originated at J at time t1 in
an arc and comes back to J at time t2. In this arc, the datum before t1 is bad, since a big shock is originated at time t1.
Moreover the big shock comes back to J at time t2, and so an original wave cannot interact with the big shock; hence
the bad datum of the big shock does not change. Therefore, in that arc after the time t2, the datum is bad and is the
same as the datum before t1. Thus every arc Il may take only a precise bad value ρ̄l , otherwise good values. The key
point is that, at every time t ∈ (T − η,T ), there are finitely many possible combinations of bad data at the node J

(obtained choosing the arcs which present a bad datum at J , the precise value being fixed). By property (P1) (i.e. the
image of RS depends only on the values of bad data) we deduce that, for t ∈ (T − η,T ), ρν̄(t) at J may take only
a finite number of values, thus waves produced by J have a finite set of possible velocities.

Denote with G the set of all l ∈ {1, . . . , n + m} such that ρν̄,l(t,0) is a good datum for every time t in a left
neighborhood of T .
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Consider l̄ ∈ G . We claim that there exists a constant Cl̄ > 0 such that Nl̄,ν̄ (t) � Cl̄ for every time t in a left
neighborhood of T . Indeed the number of different states, which can be produced at J , is finite by the previous
considerations. Since all states are good, there is a minimal size of a flux jump along a discontinuity. Then the total
number of discontinuities is necessary bounded by Lemma 14.

Consider now l̄ ∈ {1, . . . , n + m} \ G . If ρν̄,l̄ (t,0) is a bad datum for every time t in a left neighborhood of T , then
clearly Nl̄,ν̄ (t) is uniformly bounded in the same time interval. The other case is that a big shock is originated in the
arc Il̄ and comes back to J infinitely many times. We claim that there exists a constant Cl̄ > 0 such that Nl̄,ν̄(t) � Cl̄

for every time t ∈ [t̃1, t̃2], where t̃1 and t̃2 are the times, at which a big shock respectively is originated at J in Il̄ and
comes back to J . In fact, in the time interval ]t̃1, t̃2[, the datum ρν̄,l̄ (t,0) is good and the number of possible different
states, between J and the big shock, is finite. Therefore, as before, if the number of discontinuity cannot be bounded
by a constant, then also the total variation of the flux cannot be bounded and this is not true, by Lemma 14.

This concludes the proof by contradiction. �
Remark 7. Notice that the proof of the previous proposition shows that the number of waves of a wave-front tracking
approximate solution is uniformly bounded, while the interactions can be accumulated at time T .

In the case of Riemann solver RS 1, it is also possible to prove that the interactions do not accumulate at T . In fact,
consider a wave interacting with J from an arc Il (l ∈ {1, . . . , n + m}) at time t̄ > 0. Then, by [16, Lemma 1], there
exists a constant C̃ > 0, depending only on the matrix A ∈ N, such that∣∣Γ (t̄+) − Γ (t̄−)

∣∣ � C̃
∣∣f (

ρh(t̄+,0)
) − f

(
ρh(t̄−,0)

)∣∣
for every h ∈ {1, . . . , n + m}, h �= l. This estimate permits to conclude in similar way as in the end of the proof of
Proposition 10, by using Lemma 13.

5.4. Existence of solutions

This subsection is devoted to the proof of Theorem 8.

Proof of Theorem 8. Fix an ε-approximate wave-front tracking solution ρ̄ε to (31), in the sense of Definition 12,
with respect to a Riemann solver RS satisfying the consistency condition and the properties (P1)–(P3).

By Lemma 14, we deduce that there exists a constant M > 0, depending on the total variation of the flux of the
initial datum, such that

Tot.Var.f (·) � M.

For every l ∈ {1, . . . , n + m} and every ν ∈ N, using the concept of generalized characteristic introduced by Dafer-
mos [17], we construct a curve Yl,ν bounding the region of influence of waves generated by the node J on the
approximate solution ρl,ν . More precisely, we follow the generalized characteristic emanating from 0 at time 0, stick-
ing to the boundary of Il each time Yl,ν is at 0 and the characteristic speed is positive (respectively negative) if Il is
an incoming (respectively outgoing) arc. The curve Yl,ν : [0,+∞[ → Il then satisfies

1. Yl,ν(0) = 0;
2. in D

l,ν
1 = {(t, x) ∈ [0,+∞[ × Il : |x| � Yl,ν(t)}, the function ρl,ν depends only on the initial condition;

3. in D
l,ν
2 = [0,+∞[ × Il \ D

l,ν
1 the function ρl,ν depends also on the data from other arcs and on the Riemann

solver RS .

By uniform Lipschitz continuity, possibly by passing to a subsequence, the curves Yl,ν converge uniformly as
ν → +∞ to some Lipschitz continuous limit curves. Thus, for every l ∈ {1, . . . , n + m}, there exist two sets
Dl

1,D
l
2 ⊆ [0,+∞[ × Il , which are “limits” of the regions D

l,ν
1 , D

l,ν
2 , in the sense that meas(Dl

1�D
l,ν
1 ) → 0 and

meas(Dl
2�D

l,ν
2 ) → 0, where � indicates the set-theoretic symmetric difference.

For every l ∈ {1, . . . , n + m}, ρl,ν converges to a limit function ρl in L1
loc on Dl

1 by the theory of conservation laws
on a real line; see [9].

Now recall that, for every l ∈ {1, . . . , n+m} and ν ∈ N, ρl,ν ∈ L∞. Therefore, possibly up to a subsequence, on Dl
2

the sequence ρl,ν weakly converges to a limit function ρl in L1 and f (ρl,ν) strongly converges to f̄l in L1 for some f̄l .
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By [24, Lemma 4.3.6] (see Appendix A), for every t̄ the set D
l,ν
2 ∩ {(t, x): t = t̄} contains at most one big shock.

This permits to conclude that ρl,ν strongly converges to ρl (being f invertible possibly subdividing furtherly D
l,ν
2 ).

Finally, the vector (ρ1(t, x), . . . , ρn+m(t, x)) is a weak solution at J satisfying 1 and 2 of Theorem 8. �
Remark 8. In the case of Riemann solver RS 2, when a wave interacts with J at time t̄ , the total variation of the flux
does not change, i.e.

Tot.Var.f (t̄−) = Tot.Var.f (t̄+).

For a detailed proof of this fact, see Lemma 6. Therefore the constant M in the proof of Theorem 8 can be chosen
equal to Tot.Var.f (0+).

6. Dependence of solutions on initial data

It is known that the Lipschitz continuous dependence of the solution to the Cauchy problem (31) with respect to
the initial datum in general does not hold in the case of Riemann solver RS 1. More precisely in [12,24] there is
a counterexample to the Lipschitz continuous dependence property in the case of a node with two incoming and two
outgoing arcs.

On the other side, the Lipschitz continuous dependence of the solution to (31) with respect to the initial datum was
proved in the case of Riemann solver RS 2 and simple nodes in [19]; see also [24]. In this section we want to prove
that the property holds for every type of nodes.

Let us introduce the concept of Finsler manifold.

Definition 16. Consider a differentiable manifold M and, for every x ∈ M , a norm ‖ · ‖x on the tangent space TxM .
The manifold M is said a Finsler manifold if

1. ‖ · ‖x depends in a continuous way on x;
2. for every x ∈ M and v ∈ TxM the Hessian of the function

Lx :TxM −→ R,

w �−→ ∥∥w
∥∥2

x

is positive definite at v.

Given a Finsler manifold M , a metric d is naturally defined by

d(x, y) = inf
Ω(x,y)

1∫
0

∥∥γ̇ (θ)
∥∥dθ

where Ω(x,y) is the set of smooth curves γ : [0,1] → M such that γ (0) = x and γ (1) = y.
Our main idea is to put a Finsler type structure on L1(R), which measures the norm of generalized tangent vectors

and is not defined on the whole space, thus not ensuring the second property of Definition 16. To do this we first focus
on piecewise constant functions and define “generalized” tangent vectors in terms of shift of discontinuities. Still we
can define a distance among piecewise constant functions, which happens to coincide with the usual L1 metric and
thus can be naturally extended to the whole L1. The difference is in the differential structure at the base of this new
metric, which will permit to prove the Lipschitz continuous dependence.

Consider a curve γ : [0,1] → L1 taking values on the set of piecewise constant functions with N discontinu-
ities, indicating by x1(θ) < x2(θ) < · · · < xN(θ) the discontinuity points of γ (θ). Then γ admits as tangent vector
(v, ξ)(θ) ∈ L1 × RN if the following holds:

L1 � v(θ, x)
.= lim

h→0

γ (θ + h,x) − γ (θ, x)

h
, for a.e. x,

ξi(θ)
.= lim

xi(θ + h) − xi(θ)
, i = 1, . . . ,N.
h→0 h
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In this case we write γ̇ (θ) = (v, ξ)(θ). Notice that γ is not differentiable according to the usual differential structure
of L1, since the L1-limit of (γ (θ + h) − γ (θ))/h does not exist (indeed such ratio converges to a finite sum of Dirac
deltas).

The norm of (v, ξ)(θ) is defined by

∥∥(v, ξ)(θ)
∥∥ = ∥∥v(θ)

∥∥
L1 +

N∑
i=1

∣∣ξi(θ)
∣∣∣∣γ (θ, xi+) − γ (θ, xi−)

∣∣.
The norm of (v, ξ) measures precisely the infinitesimal L1 displacement of γ .

Then, for every couple of piecewise constant functions u,u′ ∈ L1 we can define the distance:

d(u,u′) = inf
Ω(u,u′)

1∫
0

∥∥γ̇ (θ)
∥∥dθ

where Ω(u,u′) is the set of curves γ : [0,1] → L1 admitting piecewise smooth tangent vectors (thus having a piece-
wise constant number of discontinuities), such that γ (0) = u and γ (1) = u′. We easily get that d coincides with the
usual L1-distance (since we defined suitably the norm of tangent vectors). Then d can be extended to the whole L1

using the usual L1-distance, namely we can set

d(u,u′) = inf
{‖u − w‖L1 + d(w,w′) + ‖w′ − u′‖L1 : w,w′ piecewise constant

}
.

Moreover d can be recovered just using curves with tangent vectors having a zero L1 component. More precisely:

Lemma 15. Given u,u′ ∈ L1 piecewise constant, let us indicate by Ω̃(u,u′) the set of curves γ : [0,1] → L1,
γ (0) = u, γ (1) = u′, admitting piecewise smooth tangent vector (v, ξ) such that v ≡ 0. Then it holds:

inf
Ω̃(u,u′)

1∫
0

∥∥γ̇ (θ)
∥∥dθ = inf

Ω(u,u′)

1∫
0

∥∥γ̇ (θ)
∥∥dθ = d(u,u′) = ‖u − u′‖L1 .

Proof. Consider the curve defined for t ∈ ]0,1[ by

γ (t) = u(x)χ]−∞,tan(πt− π
2 )] + u′(x)χ]tan(πt− π

2 ),+∞[,

where χ is the indicator function, and setting, by continuity, γ (0) = u and γ (1) = u′. Then clearly γ admits
a piecewise smooth tangent vector (v, ξ) with v ≡ 0. Indeed, for every t such that x(t) = tan(πt − π

2 ) is neither
a discontinuity point of u nor of u′ we get

γ̇ (t) =
(

0,π

[
1 + tan2

(
πt − π

2

)])
and so∥∥γ̇ (t)

∥∥ = π

[
1 + tan2

(
πt − π

2

)]∣∣u′(x(t)
) − u

(
x(t)

)∣∣.
Moreover, the norm of γ̇ spans exactly the area contained between the graphs of u and u′ so that:

1∫
0

∥∥γ̇ (θ)
∥∥dθ = ‖u − u′‖L1,

which gives the conclusion. �
Remark 9. The technique of generalized tangent vectors was used in [10] for systems. In that case one has to introduce
weights in the definition of the norm of a tangent vector. Therefore the metric d happens to be equivalent but not equal
to the L1 metric. Moreover Lemma 15 does no more hold true.
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Now the main idea to prove Lipschitz continuous dependence is the following. We consider the same Finsler
structure on the set L1(

∏n+m
l=1 Il). Given two initial data ρ(0) and ρ′(0), we focus on wave-front tracking approximate

solutions ρν(t), ρ′
ν(t). We fix a sampling procedure for the first step of the wave-front tracking, for instance sampling

the initial datum at points j/ν, j ∈ N. For every γ0 ∈ Ω(ρ(0), ρ′(0)) we can define γt to be the evolution of γ0 at
time t : for t > 0 and θ ∈ [0,1], γt (θ) is the wave-front tracking approximate solution to (31), evaluated at time t ,
starting from the initial condition γ0(θ). It is easy to prove that γt admits, for a.e. θ , a tangent vector (v, ξ)t such that:∥∥(v, ξ)t (θ)

∥∥ �
∥∥(v, ξ)0(θ)

∥∥. (39)

Then, denoting by Ωt the set of all the evolution curves of γ0, which varies in Ω(ρ(0), ρ′(0)), we get

d
(
ρν(t), ρ

′
ν(t)

) = inf
Ω(ρν(t),ρ′

ν (t))

1∫
0

∥∥γ̇ (θ)
∥∥dθ

� inf
Ωt

1∫
0

∥∥γ̇ (θ)
∥∥dθ = inf

Ωt

1∫
0

∥∥(v, ξ)t (θ)
∥∥dθ

� inf
Ω(ρ(0),ρ′(0))

1∫
0

∥∥(v, ξ)0(θ)
∥∥dθ = d

(
ρν(0), ρ′

ν(0)
)
.

Passing to the limit in ν and recalling that d coincides with the usual L1 metric, we conclude the Lipschitz continuous
dependence on initial data.

Let us now pass to estimates on the shift of waves along wave-front tracking approximate solutions. We start with
a definition.

Definition 17. Fix ξ ∈ R and a wave (ρl, ρr) of an ε-approximate wave-front tracking solution to (31). We say that ξ

forms a shift for the wave (ρl, ρr) if we consider the same ε-approximate wave-front tracking solution, except for the
position of the wave (ρl, ρr), which is translated by the quantity ξ in the x-direction.

The proof of the continuous dependence is based on the following general lemma.

Lemma 16. Fix an ε-approximate wave-front tracking solution to (31) ρ̄ε with respect to a Riemann solver RS ,
satisfying the consistency condition. Assume that a wave (ρ̂−

k , ρ̃−
k ) in an arc Ik (k ∈ {1, . . . , n + m}) interacts with J

producing waves (ρ̂+
l , ρ̃+

l ) in ( possibly) all the arcs of the node J . If the interacting wave in Ik is shifted by ξ−
k , then

all the produced waves at J are shifted by ξ+
l (l ∈ {1, . . . , n + m}), which satisfy the relations∣∣∣∣ξ−

k

ρ̂−
k − ρ̃−

k

f (ρ̂−
k ) − f (ρ̃−

k )

∣∣∣∣ =
∣∣∣∣ξ+

l

ρ̂+
l − ρ̃+

l

f (ρ̂+
l ) − f (ρ̃+

l )

∣∣∣∣ (40)

for every l ∈ {1, . . . , n + m}.

Proof. Note that, applying the shift ξ−
k , the interaction of the wave (ρ̂−

k , ρ̃−
k ) with J is shifted in time by

ξ−
k

ρ̂−
k − ρ̃−

k

f (ρ̂−
k ) − f (ρ̃−

k )
.

The shift in time of the waves generated by this interaction must be the same and so the proof easily follows. �
Theorem 17. Fix θ ∈ Θ and consider the Cauchy problem (31) with the Riemann solver RS 2. There exists a unique
(ρ1(t, x), . . . , ρn+m(t, x)), weak solution at J , such that
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1. for every l ∈ {1, . . . , n + m}, ρl(0, x) = ρ0,l(x) for a.e. x ∈ Il ;
2. for a.e. t > 0,

RS 2
(
ρ1(t,0), . . . , ρn+m(t,0)

) = (
ρ1(t,0), . . . , ρn+m(t,0)

)
. (41)

Moreover the solution depends in a Lipschitz continuous way on the initial datum with respect to the L1-topology.

Proof. As explained above, we can restrict to estimate the L1-distance among wave-front tracking solutions. For this,
it is enough to show that∥∥(v, ξ)t (θ)

∥∥ �
∥∥(v, ξ)0(θ)

∥∥
for every t > 0 and θ ∈ [0,1]. We prove the latter estimating the evolution of the tangent vector norm at each time.
Moreover, by Lemma 15, we can restrict the study to the evolution of shifts.

Fix a time t̄ > 0 and, without loss of generality, treat the following cases:

(a) no interaction of waves takes place in any arc at t̄ and no wave interacts with J ;
(b) two waves interact at t̄ on an arc and no other interaction takes place;
(c) a wave interacts with J at t̄ and no other interaction takes place.

In case (a) the shifts are constant, while in case (b) the norms are decreasing by Lemma 2.7.2 of [24] (see Ap-
pendix A).

Assume now that a wave (ρ̂−
l̄

, ρ̃−
l̄

) interacts with J at time t̄ from the arc Il̄ . Using Lemmas 6 and 16, we deduce

∥∥(v, ξ)(t̄+)
∥∥ − ∥∥(v, ξ)(t̄−)

∥∥ =
n+m∑
l=1

∣∣ξ+
l

∣∣∣∣ρ̂+
l − ρ̃+

l

∣∣ − ∣∣ξ−
l̄

∣∣∣∣ρ̂−
l̄

− ρ̃−
l̄

∣∣
=

[
n+m∑
l=1

∣∣∣∣∣f (ρ̂+
l ) − f (ρ̃+

l )

f (ρ̂−
l̄

) − f (ρ̃−
l̄

)

∣∣∣∣∣ − 1

]∣∣ξ−
l̄

∣∣∣∣ρ̂−
l̄

− ρ̃−
l̄

∣∣
= 0,

where (ρ̂+
l , ρ̃+

l ) is the wave produced in the arc Il after the interaction. This estimate permits to conclude. �
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Appendix A. Technical lemmas

In this section we report the statements of Lemmas 2.7.2, 4.3.6 and 4.3.7 of [24], for readers’ convenience.

Lemma 2.7.2 of [24]. Consider two waves, with speeds λ1 and λ2 respectively, that interact together at t̄ producing
a wave with speed λ3. If the first wave is shifted by ξ1 and the second wave by ξ2, then the shift of the resulting wave
is given by

ξ3 = λ3 − λ2

λ1 − λ2
ξ1 + λ1 − λ3

λ1 − λ2
ξ2. (42)

Moreover we have that

�ρ3ξ3 = �ρ1ξ1 + �ρ2ξ2, (43)

where �ρi are the signed strengths of the corresponding waves.

Lemma 4.3.6 of [24]. If an arc Il of a node J has a good datum, then it remains good after interactions with J of
waves coming from other arcs. Moreover, no big shock can be produced in this way. If an arc Il has a bad datum, then
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after any interaction with J of waves coming from other arcs, either the datum of Il is unchanged or a big shock is
produced (and the new datum is good).

Lemma 4.3.7 of [24]. If a wave produced from a node J on an incoming arc Ii comes back to J , interacting only
with waves produced by J , then the wave connects a bad left datum to a right good datum. The converse is true for
outgoing arcs.
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