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Abstract

Using techniques related to the (C,F )-actions we construct explicitly mixing rank-one (by cubes) actions T of G = Rd1 × Zd2

for any pair of non-negative integers d1, d2. It is also shown that h(Tg) = 0 for each g ∈ G.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

En utilisant des techniques liées aux action (C,F ), nous construisons explicitement des actions mélangeantes de rang un (par
cubes), T de G = Rd1 × Zd2 pour toute paire de nombres entiers d1, d2 � 0. On prouve aussi que h(Tg) = 0 pour chaque g ∈ G.
© 2006 Elsevier Masson SAS. All rights reserved.
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0. Introduction

Mixing rank-one transformations (and actions of more general groups) have been of interest in ergodic theory
since 1970 when Ornstein constructed an example of mixing transformation without square root [18]. His method
was used later as the core of a number of other remarkable constructions (see [20,21,13,10,17,19,8], etc.) Since then
the dynamical properties of mixing rank-one transformations have been deeply investigated. It is now well known
that such transformations are mixing of all orders [14,22] and have minimal self-joinings of all orders [15,22]. This
implies in turn that they are prime and have trivial centralizer [21]. The results on multiple mixing were extended to
rank-one mixing actions of Rd and Zd [22–24] and to rank-one mixing actions of a wide class of discrete countable
Abelian groups having an element of infinite order [11].
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Despite this progress, there are not many concrete examples of rank-one mixing actions that are known. Most
of them were obtained via stochastic cutting-and-stacking techniques using “random spacers”. Ornstein initiated this
technique in [18], and more recent generalizations include the constructions of R-actions in [19] and actions of infinite
sums of finite groups in [8], as well as the del Junco–Madore actions of Abelian extensions of Zd by locally finite
groups [10,17]. The latter actions were only shown to be weakly mixing but conjectured to be mixing in [17]. While
demonstrating the existence of mixing rank-one actions (which is a non-trivial problem!), these works do not exhibit a
specific such transformation or action. In 1992 Adams and Friedman [2] gave a non-random algorithm that leads to a
mixing rank-one construction. Using the ideas from that manuscript Adams [1] proved in 1998 the old conjecture that
the classical staircase is mixing. That gave the first explicit example of mixing cutting-and-stacking transformation.
Higher dimensional mixing staircase Zd -actions were later constructed in [3]. We note that the complete proof of
the fact that they are mixing was given there only in dimension d = 2. As one of the consequences of our work, we
complete the proof for all d > 2 (see Remark 4.12 below). Recently, a more general family of mixing “polynomial”
staircase Z-actions was constructed in [5]. Another interesting non-random construction appears in a recent work [12]
devoted to smooth realizations of mixing rank-one flows on the 3-torus.

Our main purpose here is to construct explicitly a family of mixing rank-one actions of Rd1 × Zd2 for all non-
negative d1 and d2. It seems plausible that Orntein’s stochastic method also can be adapted to produce mixing rank-
one actions of these groups. We note however that our construction is more general and the ‘randomness’ can be
incorporated into it (see [5] and [8] for a detailed discussion on that for Z-actions and actions of infinite sums of finite
groups respectively). Moreover, the main advantage of our approach is that the examples in our family are ‘absolutely
concrete’, i.e., the parameters in the construction are all explicitly specified—the ‘spacer mappings’ are polynomials
with known coefficients.

As a corollary we show that this family includes all the examples of mixing rank-one Zd -actions constructed
previously in [1,3] and [5]. Our approach is based on ideas that first appeared in those three works. However, in this
paper we proceed entirely in the framework of (C,F )-actions for locally compact second countable (l.c.s.c.) Abelian
groups, and in fact we develop a large part of the theory in the more general context of these actions. In particular, we
encounter here some new problems that are specific to higher dimensions and the continuity of the groups. Recall that
the (C,F )-construction of finite measure-preserving actions of discrete countable amenable groups appeared in [10]
as an algebraic counterpart of the “geometrical” cutting-and-stacking method developed for Z-actions. Later it was
used (in a modified form) by the authors in the framework of infinite measure-preserving and non-singular countable
Abelian group actions, as a convenient tool for modeling examples and counterexamples with various properties of
weak mixing and multiple recurrence (see [6,7,9]).

Let G be a non-compact l.c.s.c. Abelian group and T = (Tg)g∈G a measurable action of G on a standard probability
space (X,B,μ).

Definition 0.1. T is said to be mixing if for all subsets A,B ∈ B we have

lim
g→∞μ(TgA ∩ B) = μ(A)μ(B). (0.1)

A sequence gn → ∞ in G is called mixing if (0.1) holds along gn as n → ∞.

Notice that an action is mixing whenever each sequence converging to infinity in G contains a mixing subsequence.

Definition 0.2.

(i) A Rokhlin tower or column for T is a triple (Y,f,F ), where Y ∈ B, F is a relatively compact subset of G and
f :Y → F is a measurable mapping such that for any Borel subset H ⊂ F and an element g ∈ G with g+H ⊂ F ,
one has f −1(g + H) = Tgf

−1(H).
(ii) We say that T is of funny rank-one if there exists a sequence of Rokhlin towers (Yn, fn,Fn) such that

limn→∞ μ(Yn) = 1 and for any subset B ∈ B, there is a sequence of Borel subsets Hn ⊂ Fn such that

lim
n→∞μ

(
B�f −1

n (Hn)
)= 0.

(iii) If G = Rd1 × Zd2 , T is of funny rank-one and, in addition, the subsets Fn from (ii) are as follows

Fn = {
(t1, . . . , td +t ) ∈ G | 0 � ti < an for all i = 1, . . . , d1 + d2

}

1 2



A.I. Danilenko, C.E. Silva / Ann. I. H. Poincaré – PR 43 (2007) 375–398 377
for some an ∈ R, n = 1,2, . . . , then we say that T is of rank-one (or rank-one by cubes).

It is easy to see that any funny rank-one action is ergodic.
Note that what we call funny rank-one is called rank-one by del Junco and Yassawi in case G is discrete and

countable and G �= Z [11]; also del Junco and Yassawi require in addition that the sequence of sets (Fn)
∞
n=1 is a

Følner sequence.
The paper is organized as follows. In Section 1 we extend the concept of (C,F )-action introduced for countable

discrete groups (see [10,6]) to the class of l.c.s.c. Abelian ones. A special family of actions, whose mixing properties
will be under investigation in subsequent sections, is defined. In Section 2 we introduce a concept of uniformly mixing
sequence and prove a fundamental lemma (Lemma 2.2) linking the uniform mixing along some special sequences with
Cesàro means for the ‘spacer mappings’. Then we find a sufficient condition for the total ergodicity of the actions under
considerations. We also start to check the uniform mixing property for some special sequences. In particular, we show
that if a sequence is of ‘moderate growth’ relative to a fixed Følner sequence in G then (under some extra conditions
on G and the action) it is uniformly mixing (Lemma 2.9). Section 3 is devoted to the actions with restricted growth—
the property which was phrased explicitly in [5] for G = Z but used already in [1] and [3] in an implicit form. We note
that our definition of restricted growth differs from that introduced in [5] (the latter does not extend from Z to arbitrary
l.c.s.c. Abelian group actions). However, they are equivalent for polynomial staircase actions. Theorem 3.5 provides
a sufficient condition for the (C,F )-actions with restricted growth to be mixing. We also include here a couple of
statements (Lemmas 3.9–3.11) facilitating verification of this condition for the Rd1 × Zd2 -actions to be constructed in
the next section. Section 4 contains the main results of the paper: Theorems 4.9–4.11 and 4.13 which provide families
of mixing rank-one actions of Rd with d > 1, R, Zd and Rd1 × Zd2 respectively. Every such action is determined
completely by a sequence of positive integers (rn)

∞
n=1 (corresponding to the sequence of ‘cuts’ in the cutting-and-

stacking construction) and a sequence (sn)
∞
n=1 of ‘monotonic’ polynomials of d1 + d2 variables (corresponding to

the sequence of ‘spacer’s maps’ on the n-th step). The sequences are chosen in the following way: (rn)
∞
n=1 is any

sequence of sub-exponential growth with limn→∞ rn = ∞ and (sn)
∞
n=1 consists of some specially selected quadratic

polynomials from Example 4.2. Moreover, if d1 �= 1 (and only in this case) then (sn)
∞
n=1 can be chosen constant. If

d1 = 1 then (sn)
∞
n=1 can be chosen consisting of two alternating polynomials. Furthermore, using our techniques plus

the Hilbertian van der Corput trick we can also treat a more complicated case where (sn)
∞
n=1 consists of polynomials

of degree > 2 (see Proposition 4.14). Example 4.15 provides a family of rank-one mixing transformations including
the polynomial staircases from [5]. In the final section (Section 5) we show that the actions constructed in Section 4
have ‘very weak’ stochastic properties—the entropy of any individual transformation from such actions is zero. This
fact holds for any rank-one (by cubes) action. However, it is no longer true for a more general class of actions of
rank-one ‘by rectangles’ (see [20] for a counterexample).

1. (C,F )-actions of locally compact Abelian groups

In this section we introduce the (C,F )-actions of l.c.s.c. Abelian groups and specify a subclass of them (see
Definitions 1.2 and 1.4). We explain how the classical cutting-and-stacking transformations are included into this
subclass (Remark 1.6). The aim of the paper is to show that this subclass contains mixing actions.

Let G be a l.c.s.c. Abelian group. Denote by λG a (σ -finite) Haar measure on it. Given two subsets E,F ⊂ G,
by E + F we mean their algebraic sum, i.e., E + F = {e + f | e ∈ E,f ∈ F }. The algebraic difference E − F is
defined in a similar way. We hope that the reader will not confuse it with the set theoretical difference E \ F . If E is
a singleton, say E = {e}, then we will write e + F for E + F . If (E − E) ∩ (F − F) = {0} then E and F are called
independent. For an element g ∈ G and a subset E ⊂ G, we set E(g) = E ∩ (E − g).

To define a (C,F )-action of G we need two sequences (Fn)n�0 and (Cn)n>0 of subsets in G such that the following
hold

F0 ⊂ F1 ⊂ F2 ⊂ · · · is a Følner sequence in G, (1.1)

Cn is finite and #Cn > 1, (1.2)

Fn + Cn+1 ⊂ Fn+1, (1.3)

Fn and Cn+1 are independent. (1.4)
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We put Xn := Fn ×∏
k>n Ck , endow Xn with the standard product Borel σ -algebra and define a Borel embedding

Xn → Xn+1 by setting

(fn, cn+1, cn+2, . . .) 	→ (fn + cn+1, cn+2, . . .). (1.5)

Then we have X1 ⊂ X2 ⊂ · · ·. Hence X := ⋃
n Xn endowed with the natural Borel σ -algebra, say B, is a standard

Borel space. Given a Borel subset A ⊂ Fn, we denote the set{
x ∈ X | x = (fn, cn+1, cn+2 . . .) ∈ Xn and fn ∈ A

}
by [A]n and call it an n-cylinder. It is clear that the σ -algebra B is generated by the family of all cylinders.

Now we are going to define a measure on (X,B). Let κn stand for the equidistribution on Cn and νn :=
(#C1 · · · #Cn)

−1λG � Fn on Fn. We define a product measure μn on Xn by setting

μn = νn × κn+1 × κn+2 × · · · ,
n ∈ N. Then the embeddings (1.5) are all measure preserving. Hence a σ -finite measure μ on X is well defined by the
restrictions μ � Xn = μn, n ∈ N. To put it in another way, (X,μ) = inj limn(Xn,μn). Since

μn+1(Xn+1) = νn+1(Fn+1)

νn+1(Fn + Cn+1)
μn(Xn) = λG(Fn+1)

λG(Fn)#Cn+1
μn(Xn),

it follows that μ is finite if and only if
∞∏

n=0

λG(Fn+1)

λG(Fn)#Cn+1
< ∞, i.e.,

∞∑
n=0

λG(Fn+1 \ (Fn + Cn+1))

λG(Fn)#Cn+1
< ∞. (1.6)

For the rest of the paper we will assume that (1.6) is satisfied. Moreover, we choose (i.e., normalize) λG in such a way
that μ(X) = 1.

To construct a measure-preserving action of G on (X,μ), we fix a filtration K1 ⊂ K2 ⊂ · · · of G by compact
subsets. Thus

⋃∞
m=1 Km = G. Given n,m ∈ N, we set

D(n)
m :=

( ⋂
k∈Km

(Fn − k) ∩ Fn

)
×
∏
k>n

Ck ⊂ Xn

and

R(n)
m :=

( ⋂
k∈Km

(Fn + k) ∩ Fn

)
×
∏
k>n

Ck ⊂ Xn.

It is easy to verify that

D
(n)
m+1 ⊂ D(n)

m ⊂ D(n+1)
m and R

(n)
m+1 ⊂ R(n)

m ⊂ R(n+1)
m .

We define a Borel mapping

Km × D(n)
m 
 (g, x) 	→ T (n)

m,gx ∈ R(n)
m

by setting for x = (fn, cn+1, cn+2, . . .),

T (n)
m,g(fn, cn+1, cn+2, . . .) := (g + fn, cn+1, cn+2, . . .).

Now let Dm :=⋃∞
n=1 D

(n)
m and Rm :=⋃∞

n=1 R
(n)
m . Then a Borel mapping

Km × Dm 
 (g, x) 	→ Tm,gx ∈ Rm

is well defined by the restrictions Tm,g � D
(n)
m = T

(n)
m,g for g ∈ Km and n � 1. It is easy to see that Dm ⊃ Dm+1,

Rm ⊃ Rm+1 and Tm,g � Dm+1 = Tm+1,g for all m. It follows from (1.1) that μn(D
(n)
m ) → 1 and μn(R

(n)
m ) → 1 as

n → ∞. Hence μ(Dm) = μ(Rm) = 1 for all m ∈ N. Finally we set X̂ := ⋂∞
m=1 Dm ∩⋂∞

m=1 Rm and define a Borel
mapping

T : G × X̂ 
 (g, x) → Tgx ∈ X̂

by setting Tgx := Tm,gx for some (and hence any) m such that g ∈ Km. It is clear that μ(X̂) = 1.
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Proposition 1.1. T = (Tg)g∈G is a free Borel measure preserving action of G on a conull subset of the standard
probability space (X,B,μ). It is of funny rank-one.

Proof. It suffices to verify only the latter claim. According to Definition 0.2 we have to find a sequence of Rokhlin
towers ‘appoximating’ the dynamical system. Let sn denote the projection of Xn = Fn × Cn+1 × · · · onto the first
coordinate. It is easy to see that the sequence (Xn, sn,Fn) is as desired. �

Throughout the paper we will not distinguish between two measurable sets (or mappings) which agree almost
everywhere. It is easy to see that T does not depend on the choice of filtration (Km)∞m=1.

Definition 1.2. T is called the (C,F )-action of G associated with (Cn,Fn)n.

We will often use the following simple properties of (X,μ,T ): for Borel subsets A,B ⊂ Fn,

[A ∩ B]n = [A]n ∩ [B]n, (1.7)

[A]n = [A + Cn+1]n+1 =
⊔

c∈Cn+1

[A + c]n+1, (1.8)

Tg[A]n = [A + g]n if A + g ⊂ Fn, (1.9)

μ
([A]n

)= #Cn+1 · μ([A + c]n+1
)

for every c ∈ Cn+1, (1.10)

μ
([A]n

)
� λG(A)

λG(Fn)
, (1.11)

where the sign � means the union of mutually disjoint sets.
Recall that an action T of G on (X,B,μ) is partially rigid if there exists δ > 0 with

lim inf
g→∞ μ(TgB ∩ B) � δμ(B) for all B ∈ B.

It is clear that partial rigidity is incompatible with the mixing. For the (C,F )-actions, there is a simple condition that
implies the partial rigidity.

Proposition 1.3. If lim infn→∞ #Cn < ∞ then T is partially rigid and hence is not mixing.

Proof. Let ni < n2 < · · · be a sequence of indices with #Cn1 = #Cn2 = · · ·. Select ci �= c′
i in Ci and set gi := ci − c′

i .
Then gi /∈ Fni

− Fni
by (1.4). On the other hand, it follows from (1.1) that

⋃∞
i=1(Fni

− Fni
) = G. Hence gi → ∞ as

i → ∞. Take a cylinder B ∈ B. We can represent it eventually (i.e., for all large enough i) as B = [Bi]ni
, where Bi is

a Borel subset of Fni
. If follows from (1.7)–(1.10) that

μ(Tgi
B ∩ B) = μ

(
Tgi

[Bi−1 + Cni
]ni

∩ [Bi−1 + Cni
]ni

)
� μ

(
Tgi

[Bi−1 + c′
i]ni

∩ [Bi−1 + ci]ni

)
= μ

([Bi−1 + ci]ni

)= 1

#Cni

μ
([Bi−1]ni−1

)
= 1

#Cn1

μ(B).

Since the cylinders generate a dense subalgebra in B, we are done. �
Now we isolate a special subfamily of (C,F )-actions to show in the sequel that it contains mixing actions.
Let H be a discrete countable group, and let φn, sn and cn+1 be three mappings from H to G such that φn is a

homomorphism, sn(0) = 0 and cn+1 := φn + sn, n ∈ N. Suppose that

(Hn)n�0 is a Følner sequence in H, 0 ∈ Hn (1.12)

and

φn(H) is a lattice in G. (1.13)



380 A.I. Danilenko, C.E. Silva / Ann. I. H. Poincaré – PR 43 (2007) 375–398
Now we define Fn ⊂ G to be a Borel fundamental domain for φn(H) (i.e., a subset which meets every φn(H)-coset
exactly once) and put Cn+1 := cn+1(Hn), n � 0. Assume that (1.1)–(1.4) are all satisfied.

Definition 1.4. We call the corresponding (C,F )-action T of G on the probability space (X,B,μ) the action associ-
ated with (Hn,φn, sn,Fn)n.

In view of Proposition 1.3, we will always assume that limn→∞ #Hn = ∞.
Notice also that if sn are all trivial, i.e. sn(h) = 0 for all h ∈ Hn then the action of G associated with (Hn,φn, sn,Fn)

has pure point spectrum with rational eigenvalues only. This simple fact will not be used in this paper. We leave its
proof to the reader.

In the statements of our main results here it will be assumed that the mappings sn are polynomials of degree > 1.

Definition 1.5. [16] For any h ∈ H , the h-derivative of s is a mapping ∂hs :H → G given by ∂hs(k) = s(k+h)− s(k).
Let d be a non-negative integer. Then s is called a polynomial of degree � d if for any h1, . . . , hd+1 ∈ H \ {0}, we
have ∂h1 · · · ∂hd+1s = 0. The minimal d with this property is called the degree of s.

It is easy to see that every polynomial of degree 0 is constant. As was shown in [16], a polynomial of degree one
is a non-constant affine mapping (i.e., a homomorphism plus a constant). A polynomial from Zd to Rl is an l-tuple of
usual polynomials in d variables with real coefficients. A polynomial from Zd to Zl is an l-tuple (p1, . . . , pl) of usual
polynomials in d variables with rational coefficients such that pi(Z

d) ⊂ Z for all i = 1, . . . , l.

Remark 1.6. Here we are going to explain how the (C,F )-construction for Z-actions is related to the classical cutting-
and-stacking construction. Recall that the latter one defines ergodic measure-preserving transformations on intervals
in R (or on [a,+∞)) furnished with Lebesgue measure via an inductive procedure. A column is an ordered collection
of intervals, called levels, of the same length. The number of levels is called the height of the column. The associated
column mapping is defined by translation of each level to the level above it (i.e., next in the order). Hence the column
mapping is defined from all but the top level onto all but the bottom level. Suppose now that we are given a sequence
(rn)

∞
n=1 of positive integers and a sequence of arrays of non-negative integers (σn(j), j = 0,1, . . . , rn − 1)∞n=1. Then

we define inductively a sequence of columns as follows. Let the initial column Y0 consists of one level of length 1.
Suppose that on the n-th step we have a column Yn consisting of levels I (i, n), 0 � i < an. Cut every I (i, n) into
rn sublevels Ik(i, n), 0 � k < rn, numbered from left to right. Then we obtain rn subcolumns Yn,k := {Ik(i, n) | i =
0, . . . , an − 1}, 0 � k < rn, of Yn of the same height. Now place σn(k) spacers (i.e., the intervals of the same length as
Ik(i, n)) above Yn,k and stack the resulting subcolumns with spacers right to the top of left. This yields a new column
Yn+1 of height an+1 = anrn +∑rn−1

k=0 σn(k) and a natural inclusion of Yn into Yn+1. Notice that the associated (n+1)-
column mapping restricted to Yn coincides with the n-th column mapping. Hence the associated sequence of column
mappings approaches a transformation defined on all but a measure zero subset of the union of the initial level and
the spacers added at each column. It is easy to see that this transformation corresponds exactly to the (C,F )-action
of Z associated with (Hn,φn, sn,Fn)n if we put Hn := {0,1, . . . , rn − 1}, φn(t) := ant , sn(t) := ∑t

k=0 σn(k) and
Fn = {0,1, . . . , an − 1}. If we set σn(k) = k for all 0 � k < rn and n ∈ N then the corresponding cutting-and-stacking
transformation is called a staircase. If, moreover, rn = n for all n ∈ N, we obtain the classical staircase which is
finite measure-preserving. In case the sequence (σn)

∞
n=1 consists of polynomials, the corresponding transformations

are called polynomial staircases [5].

2. Uniformly mixing sequences

For the remaining of the paper (X,B,μ,T ) will stand for the (C,F )-action of G associated to a sequence
(Hn,φn, sn,Fn)n.

In this section we prove a fundamental Lemma 2.2 and use it to show that some special sequences in G are
uniformly mixing. As an auxiliary result for that we exhibit a sufficient condition for the total ergodicity of T . A con-
nection between the uniform mixing and total ergodicity is established in Corollary 2.6.
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Definition 2.1. A sequence (gn)
∞
n=1 of elements from G is called uniformly mixing for T if

sup
A⊂Fn

∣∣μ(Tgn[A]n ∩ B
)− μ

([A]n
)
μ(B)

∣∣→ 0 as n → ∞ (2.1)

for every subset B ∈ B.

It is easy to see that if a sequence is uniformly mixing then it is mixing.
Notice that a somewhat different definition for uniform mixing was given in [5] in case G = Z. To state it precisely

we assume that the sequence (Hn,φn, sn,Fn)n is chosen as described in Remark 1.6. Then a sequence of positive
integers (gn)

∞
n=1 was called uniformly mixing in [5] if∑

f ∈Fpn

∣∣μ(Tgn[f ]pn ∩ B
)− μ

([f ]pn

)
μ(B)

∣∣→ 0

for every subset B ∈ B, where pn is the unique positive integer such that apn � gn < apn+1. We only observe that this
implies the uniform mixing in the sense of Definition 2.1 if pn � n for all n.

Let L be a finite set and a :L → G a mapping. We define a linear operator Ma,L in L2(X,μ) by setting

Ma,L(f ) := 1

#L

∑
l∈L

f ◦ Ta(l).

Let P0 stand for the projection onto the subspace of constant functions, i.e. P0(f ) = ∫
X

f dμ. The inner product in
L2(X,μ) will be denoted by 〈·, ·〉.

Fix a sequence (hn)n�1 of elements from H . For brevity, we will denote ∂hnsn by s′
n, n ∈ N.

Lemma 2.2. If the following conditions are satisfied

#Hn(hn)

#Hn

→ 1, (2.2)

1

#Hn

∑
h∈Hn(hn)

λG(Fn \ Fn(s
′
n(h)))

λG(Fn)
→ 0 (2.3)

then for all n-cylinders A,B ⊂ X, we have

μ(Tφn(hn)A ∩ B) = 1

#Hn

∑
h∈Hn(hn)

μ(A ∩ Ts′
n(h)B) + o(1)

= 〈
χA,Ms′

n,Hn(hn)(χB)
〉+ o(1),

where χA and χB are the indicators of A and B respectively and o(1) denotes a sequence that tends to 0 and that
does not depend on A and B . The same formula holds as well for

(i) an arbitrary subset B ∈ B and A as above with o(1) depending on B only and
(ii) arbitrary subsets A,B ∈ B with o(1) depending on both A and B .

Proof. Let An and Bn be the Borel subsets of Fn such that A = [An]n and B = [Bn]n. For h ∈ Hn(hn), we put
An,h := An ∩ Fn(−s′

n(h)). Then

An,h − s′
n(h) ⊂ Fn. (2.4)

We also make a simple but important observation that

φn(hn) + cn+1(h) = φn(hn) + φn(h) + sn(h)

= φn(h + hn) + sn(h + hn) − s′
n(h)

= cn+1(h + hn) − s′
n(h). (2.5)

It follows from (1.8), (1.9), (2.4), (1.3), (2.5) and (1.10) that
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μ(Tφn(hn)A ∩ B) =
∑
h∈Hn

μ
(
Tφn(hn)

[
An + cn+1(h)

]
n+1 ∩ [Bn]n

)
=

∑
h∈Hn(hn)

(
μ
(
Tφn(hn)

[
An,h + cn+1(h)

]
n+1 ∩ [Bn]n

)
± μ

([
(An \ An,h) + cn+1(h)

]
n+1

))±
∑

h∈Hn\Hn(hn)

μ
([

Fn + cn+1(h)
]
n+1

)

=
∑

h∈Hn(hn)

(
μ
([

An,h − s′
n(h) + cn+1(h + hn)

]
n+1 ∩ [Bn]n

)± 1

#Hn

μ
([An \ An,h]n

))

±
(

1 − #Hn(hn)

#Hn

r

)
.

Notice that for all c ∈ Cn+1 and h ∈ Hn(hn), we have by (1.7), (1.8) and (1.11),

[An,h − s′
n(h) + c]n+1 ∩ [Bn]n = [((

An,h − s′
n(h)

)∩ Bn

)+ c
]
n+1 (2.6)

and

μ
([

(An \ An,h)
]
n

)
� λG(An \ An,h)

λG(Fn)
� λG(Fn \ Fn(s

′
n(h)))

λG(Fn)
. (2.7)

Hence it follows from (1.10), (2.2), (2.3), (2.6) and (2.7) that

μ(Tφn(hn)A ∩ B) = 1

#Hn

∑
h∈Hn(hn)

μ
([(

An,h − s′
n(h)

)∩ Bn

]
n

)+ o(1).

Applying (1.7), (1.9) and (2.4) we obtain

μ(Tφn(hn)A ∩ B) = 1

#Hn

∑
h∈Hn(hn)

μ
(
T−s′

n(h)[An,h]n ∩ [Bn]n
)+ o(1)

= 1

#Hn

∑
h∈Hn(hn)

(
μ(A ∩ Ts′

n(h)B) ± μ
([An \ An,h]n

))+ o(1).

It remains to make use of (2.7), (2.3) and (2.2).
The final claim of Lemma 2.2 follows from the fact that the cylinders generate a dense subalgebra in B. �

Corollary 2.3. Let (2.2) and (2.3) hold. Then the following are satisfied:

(i) The sequence (φn(hn))
∞
n=1 is mixing for T if and only if Ms′

n,Hn(hn) → P0 in the weak operator topology.
(ii) If Ms′

n,Hn(hn) → P0 in the strong operator topology then (φn(hn))
∞
n=1 is uniformly mixing.

We now examine when T is totally ergodic. Recall some standard definitions.

Definition 2.4.

(i) Given a subset B ∈ B, we denote by GB the stabilizer of B , i.e., GB := {g ∈ G | TgB = B}.
(ii) T is called totally ergodic if for any co-compact subgroup K ⊂ G, the action (Tg)g∈K is ergodic.

(iii) T is called weakly mixing if the diagonal action (Tg × Tg)g∈G of G is ergodic. Equivalently, if there exist a
function f ∈ L2(X,μ) and a continuous character χ of G such that f ◦ Tg = χ(g)f a.e. then f is constant.

It is easy to see that T is totally ergodic if and only if the stabilizer of any subset B ∈ B with 0 < μ(B) < 1 is not
co-compact. Moreover, if an action is weakly mixing then it is totally ergodic. The converse is true for G = R but it
does not hold for general groups.
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Proposition 2.5. Let (2.2) and (2.3) hold. Let K be a co-compact subgroup of G and π :G → G/K stand for the
corresponding quotient map. Denote by κn the image of the equidistributed probability on Hn(hn) under the mapping
(π ◦ s′

n)∗, n ∈ N. If κn does not ∗-weakly converge to a Dirac δ-measure on G/K then K is not the stabilizer of any
measurable subset B ∈ B with 0 < μ(B) < 1.

Proof. Suppose that the contrary holds, i.e., there exists B ∈ B with 0 < μ(B) < 1 and K = GB . Then the quo-
tient compact group G/K acts naturally on the sub-σ -algebra F of (Tg)g∈K -invariant subsets. Denote this action
by T̂ . Then T̂π(g)A := TgA for all g ∈ G and A ∈ F. It is clear that T̂ is free. We set an := π(φn(hn)). Passing
to a subsequence, if necessary, we may assume without loss of generality that an converges to some a ∈ G. Then
μ(T̂anB�T̂aB) → 0 as n → ∞. Hence

μ(B) = μ(Tφn(hn)B) = μ
(
Tφn(hn)B ∩ T̂anB

)= μ
(
Tφn(h)B ∩ T̂aB

)+ o(1).

We then deduce from this formula and Lemma 2.2(ii) that

μ(B) = 1

#Hn

∑
h∈Hn(hn)

μ
(
B ∩ Ts′

n(h)T̂aB
)+ o(1)

= 1

#Hn(hn)

∑
h∈Hn(hn)

μ
(
T̂π(s′

n(h))+aB ∩ B
)+ o(1)

=
∫

G/K

μ
(
T̂a+bB ∩ B

)
dκn(b) + o(1). (2.8)

Since G/K is compact, we may assume (passing to a subsequence, if necessary) that κn converges ∗-weakly to a
probability κ which is not a Dirac δ-measure by the condition of the proposition. Hence passing to a limit in (2.8) we
obtain

μ(B) =
∫

G/H

μ
(
T̂a+bB ∩ B

)
dκ(b)

Hence μ(B) = μ(T̂a+bB ∩ B), i.e., B = T̂a+bB , for κ-a.a. b ∈ G/K . Since T̂ is free, we deduce that Supp κ = {−a}.
Hence Supp κ is a singleton, a contradiction. �

Now we are interested in the following particular case. There exist a non-zero k ∈ H and a polynomial s :H → G

of degree 2 such that hn = k and sn = s for all n ∈ N. Then, of course, (2.2) is satisfied. Moreover, for any non-zero
t ∈ H , we have

∂t s(h) = ψt(h) + at , at all h ∈ H

for some non-trivial homomorphism ψt :H → G and an element at ∈ G (see the text following Definition 1.5). Hence
s′
n(h) = ψk(h) + ak for all h ∈ H and n ∈ N.

Corollary 2.6. Let the above assumptions and (2.3) hold. Then the following are satisfied:

(i) If the action (Tψk(h))h∈H is ergodic then the sequence (φn(k))∞n=1 is uniformly mixing.
(ii) If the subgroup generated by

⋃
t∈H ψt(H) is dense in G then T is totally ergodic.

(iii) If the subgroup generated by
⋃

t∈H ψt(H) is dense in G and ψk(H) is a lattice in G then the sequence (φn(k))∞n=1
is uniformly mixing.

Proof. (i) follows from Corollary 2.3 and the von Neumann mean ergodic theorem for (Tψk(h))h∈H .
(ii) Suppose that the contrary holds, i.e., there exists a co-compact subgroup K ⊂ G and a subset B ⊂ X such that

0 < μ(B) < 1 and K = GB . Fix t ∈ H , t �= 0. Then κn is the translation of (π ◦ ψt)∗νn by π(at ), where νn stands for
the equidistribution on Hn(t), n ∈ N. Denote by Gt the closure of the subgroup (π ◦ ψt)(H) in G/K . Since Hn(t) is
a Følner sequence in H and π ◦ ψt :H → G/K is a homomorphism, it is easy to verify that (π ◦ ψt)∗νn converges
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∗-weakly to the Haar measure λGt which is considered now as a measure on G/K supported on Gt . It follows from
Proposition 2.5 that Supp λGt is a singleton, i.e. Gt = K . However we deduce from the condition of the corollary that
the subgroup generated by

⋃
t∈H Gt is dense in G/K . Hence K = G which contradicts to the ergodicity of T .

(iii) follows directly from (i) and (ii). �
Remark 2.7. We will also need the following slight extension of Corollary 2.6 which is proved in a similar way.
Assume that (2.3) holds for a constant sequence hn = k �= 0. Let S be a finite family of polynomials from H to G of
degree 2. For all s ∈ S and t ∈ H , we then have

∂t s(h) = ψs
t (h) + as

t , h ∈ H,

where ψs
t :H → G is a homomorphism and as

t is an element of G. Let (sn)
∞
n=1 be a sequence of elements of S

such that every element of S occurs in (sn)
∞
n=1 infinitely many times. Denote by T the (C,F )-action associated with

(Hn,φn, sn,Fn)n. Then the following are satisfied.

(i) If the action (Tψs
k (h))h∈H is ergodic for any s ∈ S then the sequence (φn(k))∞n=1 is uniformly mixing.

(ii) If the subgroup generated by
⋃

s∈S

⋃
t∈H ψs

t (H) is dense in G then T is totally ergodic.

(iii) If the subgroup generated by
⋃

s∈S

⋃
t∈H ψs

t (H) is dense in G and ψs
k (H) is a lattice in G for all s ∈ S then

(φn(k))∞n=1 is uniformly mixing.

Now we return to the general case and prove two lemmas.

Lemma 2.8. Suppose that there exists a finite subset Q ⊂ H such that

Fn + Fn ⊂ φn(Q) + Fn for all n ∈ N. (2.9)

Let gn = φn(k) + fn for some k ∈ H and fn ∈ Fn, n ∈ N. If the sequence (φn(t))
∞
n=1 is uniformly mixing for every

t ∈ k + Q then so is the sequence (gn)
∞
n=1.

Proof. Since fn + Fn ⊂ φn(Q) + Fn and Fn is a fundamental domain for φn(H), a finite partition of Fn is well
defined as follows: Fn = ⊔

q∈Q Fn(fn − φn(q)). Now let A be an n-cylinder in X and A = [An]n for some Borel
subset An ⊂ Fn. Consider the induced partition

⊔
q∈Q An,q of An, where An,q := An ∩F(fn −φn(q)). Then by (1.9),

Tgn[An,q ]n = Tφn(k+q)Tfn−φn(q)[An,q ]n = Tφn(k+q)

[
fn − φn(q) + Aq

]
n
.

Hence for any subset B ∈ B,

μ(TgnA ∩ B) − μ(A)μ(B) =
∑
q∈Q

(
μ
(
Tφn(k+q)[An,q ]n ∩ B

)− μ
([An,q ]n ∩ B

))
.

It remains to use the uniform mixing of (φn(t))
∞
n=1, t ∈ k + Q. �

Suppose that—in addition to (2.9)—there is a finite subset Q• ⊂ H such that

Fn − Fn ⊂ φn

(
Q•)+ Fn for all n ∈ N. (2.10)

We will assume in the following that Q• is the minimal subset with this property. It is clear that 0 ∈ Q•. We set
F •

n := φn(Q
•) + Fn. Then there exists a finite subset Q+ ⊂ H such that(

F •
n + F •

n

) \ F •
n ⊂ φn(Q+) + Fn for all n ∈ N.

Again we will assume that Q+ is the minimal subset with this property. It is clear that Q• ∩ Q+ = ∅.

Lemma 2.9. Let (2.9) and (2.10) hold and let for any t ∈ H \ {0}, the sequence (φn(t))
∞
n=1 be uniformly mixing. Take

gn ∈ (F •
n + F •

n ) \ F •
n for all n ∈ N. If for an integer l > 0, we have

−lQ+ ∩ (Q + · · · + Q︸ ︷︷ ︸
l times

) = ∅

then the sequence (lgn)
∞ is uniformly mixing.
n=1



A.I. Danilenko, C.E. Silva / Ann. I. H. Poincaré – PR 43 (2007) 375–398 385
Proof. Since Q+ is finite, we can partition the sequence gn into finitely many subsequences of the form φn(q) + fn

for some fn ∈ Fn, n ∈ N, and a fixed q ∈ Q+. Therefore it is enough to assume that gn itself enjoys this property.
Then condition (2.9) applied l − 1 times yields

lgn = φn(lq) + fn + · · · + fn︸ ︷︷ ︸
l times

= φn(lq) + φn(q1 + · · · + ql−1) + f̃n

for some q1, . . . , ql−1 ∈ Q and f̃n ∈ Fn. Since 0 /∈ lq + q1 + · · · + ql−1 + Q by the condition of the lemma, we may
apply Lemma 2.8 to complete the proof. �
3. Restricted growth condition

In this section we introduce a restricted growth condition for the (C,F )-actions specified in Section 2. It is an
analogue of a concept considered in [5] for G = Z. The concept, in turn, is a counterpart of a sufficient condition
introduced in [1] for a staircase to be mixing. The main result here is Theorem 3.5, which provides a sufficient
condition for mixing in the class of (C,F )-actions with restricted growth. We conclude the section with some technical
statements needed to verify this condition for some special Rd1 × Zd2 -actions that will be constructed in the next
section.

Definition 3.1. We say that T satisfies the restricted growth condition if (2.3) holds for any sequence hn ∈ H such
that there exists limn→∞ #Hn(hn)/#Hn > 0.

Definition 3.2. Given two sequences An,Bn ⊂ G, we write An ∼n Bn if

λG(An�Bn)

λG(Fn)
→ 0 as n → ∞.

It follows from (1.11) that μ([An]n�[Bn]n) → 0 whenever An ∼n Bn and An,Bn ⊂ Fn.

Lemma 3.3. Suppose that (2.9) and the following hold

1

#Hn

∑
h∈Hn

λG(Fn \ Fn(sn(h)))

λG(Fn)
→ 0 as n → ∞. (3.1)

Let gn := φn(hn) + fn for some hn ∈ H and fn ∈ Fn, n ∈ N. Then

Fn+1(gn) ∼n+1

⊔
h∈Hn(hn)

(
cn+1(h) + Fn

)
.

Proof. Since

λG

(
Fn+1�

⊔
h∈Hn

(
φn(h) + Fn

)
r

)
� λG

(
Fn+1 \ (Fn + Cn+1)

)+
∑
h∈Hn

λG

((
cn+1(h) + Fn

)
�
(
φn(h) + Fn

))
= λG

(
Fn+1 \ (Fn + Cn+1)

)+
∑
h∈Hn

λG

((
sn(h) + Fn

)
�Fn

)
,

it follows from (3.1) and (1.6) that Fn+1 ∼n+1 (φn(Hn)+Fn). For q ∈ Q, we set Fn,q := Fn(fn −φn(q)) and F ′
n,q :=

Fn(−fn + φn(q)). Then (2.9) yields

Fn =
⊔
q∈Q

Fn,q =
⊔
q∈Q

F ′
n,q . (3.2)

It follows that

Fn+1 − gn ∼n+1

⊔ ⊔(
φn(h) − φn(hn) − fn + F ′

n,q

)=
⊔ ⊔ (

φn(h − hn − q) + Fn,q

)
.

h∈Hn q∈Q q∈Q h∈Hn
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Therefore

Fn+1 ∩ (Fn+1 − gn) ∼n+1

⊔
q∈Q

⊔
h∈Hn(hn+q)

(
φn(h) + Fn,q

)
. (3.3)

Next, since λG(Fn+1) � #HnλG(Fn) and

λG(
⊔

q∈Q

⊔
h∈Hn(hn+q)�Hn(hn)(φn(h) + Fn,q))

λG(Fn+1)
�

∑
q∈Q #(Hn(hn + q)�Hn(hn))λG(Fn,q)

#HnλG(Fn)

�
∑
q∈Q

#(Hn(hn + q)�Hn(hn))

#Hn

→ 0,

it follows from (3.3) and (3.2) that

Fn+1(gn) ∼n+1

⊔
q∈Q

⊔
h∈Hn(hn)

(
φn(h) + Fn,q

)=
⊔

h∈Hn(hn)

(
φn(h) + Fn

)
.

It remains to use (3.1) once more to conclude that⊔
h∈Hn(hn)

(
φn(h) + Fn

)∼n+1

⊔
h∈Hn(hn)

(
cn+1(h) + Fn

)
. �

Corollary 3.4. If (2.9) and (3.1) are satisfied then

(A + Cn+1) ∩ Fn+1(gn) ∼n+1 A + cn+1
(
Hn(hn)

)
uniformly in A ⊂ Fn. Hence

sup
A⊂Fn

μ
(([A]n ∩ [

Fn+1(gn)
]
n+1

)
�
[
A + cn+1

(
Hn(hn)

)]
n+1

)= o(1).

Now we are going to prove the main result of the section.

Theorem 3.5. Let T be a (C,F )-action associated with (Hn,φn, sn,Fn)n and satisfying (2.9), (2.10), (3.1) and the
restricted growth condition. Let Q• ⊃ −Q. If Ms′

n,Hn(hn) → P0 strongly for any sequence hn ∈ H \ {0} such that

lim inf
n→∞ #Hn(hn)/#Hn > 0

then T is mixing. (Here s′
n stands for the hn-derivative of sn.)

Proof. Take any sequence gn → ∞ in G. We are going to prove that it contains a mixing subsequence. Since
F •

1 ⊂ F •
2 ⊂ · · · and

⋃∞
n=1 F •

n = G, we can find pn such that gn ∈ F •
pn+1 \ F •

pn
for all n ∈ N. It is clear that pn → ∞.

Notice that

F •
n+1 + Fn+1 ⊂ φn+1

(
Q• + Q

)+ Fn+1.

Then using a similar idea as in the proof of Lemma 2.8, we partition Fpn+1 as follows

Fpn+1 =
⊔

q∈Q•+Q

Fpn+1
(
gn − φpn+1(q)

)
.

Take two pn-cylinders A,B ⊂ X. Let Am and Bm be the Borel subsets of Fm such that A = [Am]m and B = [Bm]m
for all m � pn. For q ∈ Q• + Q, we put Apn+1,q := Apn+1 ∩ Fpn+1(gn − φpn(q)). We have now

Tgn[Apn+1,q ]pn+1 = Tφpn+1(q)

[
Apn+1,q + gn − φpn+1(q)

]
pn+1 (3.4)

and Apn+1 =⊔
q∈Q•+Q Apn+1,q . For any q ∈ Q• +Q, the constant sequence hn := q , n ∈ N satisfies (2.2). Moreover,

it satisfies (2.3) since T has restricted growth (we need this to apply Corollary 2.3 later). By the condition of the
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theorem, M∂qsn,Hn(q) → P0 strongly whenever q �= 0. Therefore by Corollary 2.3(ii), the sequence (φn(q))∞n=1 is
uniformly mixing. Then it follows from (3.4) that

sup
A is a pn-cylinder

∣∣μ(Tgn[Apn+1,q ]pn+1 ∩ B
)− μ

([Apn+1,q ]pn+1
)
μ(B)

∣∣→ 0 (3.5)

for every q ∈ (Q• + Q) \ {0}.
It remains to consider the case q = 0 which is more involved. Let us represent gn as gn = φpn(hn) + fn for some

(uniquely determined) hn ∈ H \ Q• and fn ∈ Fpn . Since Apn+1,0 = Apn+1 ∩ Fpn+1(gn) and (3.1) holds, it follows
from Corollary 3.4 that

sup
A in a pn-cylinder

∣∣∣∣μ([Apn+1,0]pn+1
)− μ(A)

#Hpn(hn)

#Hpn

∣∣∣∣= o(1). (3.6)

Hence, if lim infn→∞ #Hpn(hn)/#Hpn = 0,

lim inf
n→∞ sup

A in a pn-cylinder
μ
([Apn+1,0]pn+1

)= 0.

Therefore passing to a subsequence in (pn)
∞
n=1 we conclude that (3.5) is also true for q = 0. This implies that the corre-

sponding subsequence of (gn)
∞
n=1 is mixing. Thus from now on we may assume that lim infn→∞ #Hpn(hn)/#Hpn > 0.

It follows from Corollary 3.4 that

μ
(
Tφpn (hn)[Apn+1,0]pn+1 ∩ B

)= μ
(
Tφpn (hn)

[
Apn + cpn+1

(
Hpn(hn)

)]
pn+1 ∩ B

)+ o(1),

where o(1) does not depend on the pn-cylinders A and B . Using that together with the restricted growth condition
and arguing almost literally as in the proof of Lemma 2.2 we obtain

μ
(
Tφpn (hn)[Apn+1,0]pn+1 ∩ B

)= 1

#Hpn

∑
h∈Hpn(hn)

μ
(
T−s′

n(h)[Apn]pn ∩ B
)+ o(1)

= #Hpn(hn)

#Hpn

〈
χA,Ms′

n,Hpn (hn)(χB)
〉+ o(1),

where s′
n is the hpn -derivative of sn and o(1) does not depend on A and B . It is easy to find a sequence (ĥn)

∞
n=1

with lim infn→∞ #Hn(ĥn)/#Hn > 0, ĥn �= 0 and ĥpn = hn for all n ∈ N. Let ŝ′
n denote the ĥn-derivative of sn. Then

s′
n = ŝ′

pn
. By the condition of the theorem, M

ŝ′
n,Hn(ĥn)

→ P0 strongly. Hence Ms′
n,Hpn (hn) → P0 strongly. Therefore

we deduce from the above and (3.6) that

μ
(
Tφpn (hn)[Apn+1,0]pn+1 ∩ B

)= #Hpn(hn)

#Hpn

· μ(A)μ(B) + o(1)

= μ
([An+1,0]pn+1

)
μ(B) + o(1), (3.7)

where o(1) does not depend on A. To complete the proof, we will use once more the ‘partition trick’. Let A
q
pn

:=
Apn ∩ Fpn(fn − φpn(q)) for q ∈ Q. Then in view of (2.9) Apn = ⊔

q∈Q A
q
pn

and fn − φpn(q) + A
q
pn

⊂ Fpn for all
q ∈ Q. It is easy to see that (3.7) is also true if we replace the sequence (hn)n�1 with the sequence (hn + q)n�1 for
any q ∈ Q. Notice that hn + q �= 0 since Q• ⊃ −Q. Hence applying Corollary 3.4 and (3.7) we obtain

μ
(
Tgn[Apn+1,0]pn+1 ∩ B

)= μ
(
Tgn

[
Apn + cpn+1

(
Hpn(hn)

)]
pn+1 ∩ B

)+ o(1)

=
∑
q∈Q

μ
(
Tφpn (hn+q)

[
fn − φpn(q) + A

q
pn

+ cpn+1
(
Hpn(hn)

)]
pn+1 ∩ B

)+ o(1)

=
∑
q∈Q

μ
([

fn − φpn(q) + A
q
pn

+ cpn+1
(
Hpn(hn)

)]
pn+1

)
μ(B) + o(1)

=
∑
q∈Q

μ
([

A
q
pn

+ cpn+1
(
Hpn(hn)

)]
pn+1

)
μ(B) + o(1)

= μ
([

Apn + cpn+1
(
Hpn(hn)

)]
pn+1

)
μ(B) + o(1)

= μ
([Apn+1,0]pn+1

)
μ(B) + o(1).
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This plus (3.5) imply that the sequence (gn)
∞
n=1 is mixing. �

The following material will be used in the next section to check the condition on the strong convergence from
Theorem 3.5.

Definition 3.6. Let I, J be finite subsets in H and let ε be a non-negative number. We say that I is ε-tiled by J if
there exists a finite set F ⊂ H such that the following are satisfied:

(i) J + F ⊂ I ,
(ii) J and F are independent and

(iii) #(I \ (J + F)) � ε#I .

Lemma 3.7. Let I be ε-tiled by J . Then for any function f ∈ L2(X,μ) and any homomorphism α :H → G,∥∥Mα,I (f )
∥∥

2 �
∥∥Mα,J (f )

∥∥
2 + ε‖f ‖2.

Proof. Since T preserves μ, it follows that∥∥Mα,h+J (f )
∥∥

2 = ∥∥Mα,J (f ) ◦ Tα(h)

∥∥
2 = ∥∥Mα,J (f )

∥∥
2

for every h ∈ H . Let F be as in Definition 3.6. Then

∥∥Mα,I (f )
∥∥

2 � #J

#I

∑
h∈F

∥∥Mα,h+J (f )
∥∥

2 + #(I \ (J + F))

#I

∥∥Mα,I\(J+F)(f )
∥∥

2

�
∥∥Mα,J (f )

∥∥
2 + ε‖f ‖2. �

Let h ∈ H , i, j ∈ Z and 0 � i < j . The subset {ih, (i + 1)h, . . . , jh} is called an h-interval.

Remark 3.8. Let V ⊂ H be a finite subset, I, J two h-intervals in H and l ∈ N. If V is tiled (i.e., 0-tiled) by I then V

is also l#J
#I

-tiled by the lh-interval l · J .

Lemma 3.9. Let α :H → G be a homomorphism. Let (hn)n�1 be a sequence in H such that for some subset A ⊂ X

and every l ∈ N, we have μ(Tlα(hn)A ∩ A) → μ(A)2 as n → ∞. Then for any sequence of hn-intervals In whose
cardinality is constant, say L, the following inequality holds eventually (i.e., for all large enough n)∥∥Mα,In(χA) − μ(A)

∥∥2
2 � 2

L
.

Proof. Since T preserves μ, without loss of generality we may assume that In = {0, hn, . . . , (L − 1)hn}. Now the
inequality follows from the formula∥∥∥∥∥ 1

L

L−1∑
i=0

χA ◦ Tiα(hn) − μ(A)

∥∥∥∥∥
2

2

= μ(A)

L
+ 1

L2

∑
i �=j

(
μ(T|i−j |α(hn)A ∩ A) − μ(A)2),

which is established by a straightforward calculation. �
Lemma 3.10. Let α :H → G be a homomorphism, (hn)n�1 a sequence in H and (mn)n�1 a sequence in N. Let Vn be
a finite subset of H which is tiled by an hn-interval In. If mn/#In → 0 and μ(Tlmnα(hn)A ∩ A) → μ(A)2 as n → ∞
for any integer l > 0 then Mα,Vn(χA) → μ(A) in L2(X,μ).

Proof. For an ε > 0, fix an integer r > ε−1. Let Jn be a hn-interval of cardinality r . By Lemma 3.9,∥∥Mα,mnJn(χA) − μ(A)
∥∥2

< 2ε
2
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eventually in n. It follows from Remark 3.8 that Vn is mnr
#In

-tiled by the mnhn-interval mnJn. By Lemma 3.7,

∥∥Mα,Vn(χA) − μ(A)
∥∥

2 �
∥∥Mα,mnJn(χA) − μ(A)

∥∥
2 + mnr

#In

< 3ε

eventually in n. �
The following results will be used while proving mixing of the (C,F )-actions whose ‘spacer mappings’ sn are

polynomials of degree > 2.

Lemma 3.11 (Hilbertian van der Corput trick). Let (vh)h∈H stand for a bounded family of vectors in a Hilbert space.
If for any k ∈ H \ {0}, we have limn→∞ 1

#Hn

∑
h∈Hn

〈vh+k, vh〉 = 0 then limn→∞ ‖ 1
#Hn

∑
h∈Hn

vh‖ = 0.

Proof. In case H = Z, we refer the reader to [4] for a short proof. Only a slight and obvious modification of that
proof is needed to adapt it to the general case. �
Corollary 3.12. Given a map t :H → G, let 〈M∂kt,HnχB,χB〉 → μ(B)2 for every non-trivial k ∈ H and all B ∈ B.
Then Mt,Hn → P0 strongly as operators in L2(X,μ).

Proof. Fix a subset B ∈ B. For any h ∈ H , we set vh := χB ◦ Tt(h) − μ(B) ∈ L2(X,μ). Then 〈vh+k, vh〉 =
〈χB ◦ T∂kt (h), χB〉 − μ(B)2. It remains to apply Lemma 3.11. �
4. Mixing rank-one actions of Rd1 × Zd2

In this section we prove the main results of the paper—Theorems 4.9–4.11 and 4.12.
Let d1 and d2 be non-negative integers such that d := d1 + d2 �= 0. We set G = Rd1 × Zd2 and H = Zd . For

g = (g1, . . . , gd) ∈ G, we let ‖g‖∞ := max1�i�d |gi |. If gi � 0 for all i = 1, . . . , d we write g � 0. In a similar way
we define ‖h‖∞ and h � 0 for h ∈ H .

To define a mixing (C,F )-action of G we first fix a sequence of positive integers rn > 2 which goes to infinity as
n → ∞. Some restrictions on its growth will be imposed later. Let s

(1)
n :H → Rd1 be a usual polynomial with real

coefficients and s
(2)
n :H → Zd2 a usual polynomial with rational coefficients such that s

(1)
n (0) = 0 and s

(2)
n (0) = 0.

Then sn := (s
(1)
n , s

(2)
n ) is a polynomial mapping from H to G in the sense of Definition 1.5. Let Hn := {h � 0 |

‖h‖∞ < rn}. We define a sequence of positive reals (an)n�0 recurrently by setting

an+1 := the integer part of anrn + max
h∈Hn

∥∥sn(h)
∥∥∞

and choosing a0 arbitrarily. It is clear that an+1 � a0r1 · · · rn for all n ∈ N. Since rn → ∞, the sequence (an)
∞
n=1 grows

faster than any exponent. We finally let

Fn := {
g � 0 | ‖g‖∞ < an

}
,

φn(h) := anh for h ∈ H and

Cn+1 := (φn + sn)(Hn),

for n = 0,1, . . .. It is easy to see that (1.1)–(1.3), (1.12) and (1.13) are satisfied. In the case d = 1, the condition (1.4) is
satisfied too if sn is non-negative and non-decreasing on Z+, for instance if the coefficients of sn are all non-negative.
The situation is more difficult when d > 1. That is why we introduce the following definition.

Definition 4.1. A mapping s :H → G is monotonic if for all non-negative x, y ∈ H with ‖x − y‖∞ = 1,

max

{
s(x)i − s(y)i

xi − yi

∣∣∣∣ for all 1 � i � d such that xi �= yi

}
� 0.
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Example 4.2. Let s(x)i = (αixi + γi)(x1 + · · · + xd) + βix
2
i + δixi for some reals αi,βi, γi and δi such that αi > 0,

γi � 0, αi + 2βi � 0 and αi + βi + δi � 0 for i = 1, . . . , d . Suppose that the mapping

H 
 x 	→ s(x) = (
s(x)1, . . . , s(x)d

)
takes values in G. Then it is monotonic. To show this, consider two non-negative elements x �= y ∈ H such that
‖x − y‖∞ = 1 and set z := y − x. Without loss of generality we may assume that z1 + · · · + zd � 0. Then there exists
a coordinate j such that zj = 1. By a straightforward calculation,

s(x + z)j − s(x)j = (αjxj + γj )

d∑
i=1

zi + αj ·
∑
i �=j

(xi + zi) + (αj + 2βj )xj + αj + βj + δj � 0.

We observe that in [3], the following monotonic polynomial s : Zd → Zd was used while constructing Zd -staircase
actions:

s(x)i = xi(x1 + · · · + xd) − (
x2
i + xi

)
/2, i = 1, . . . , d.

(By this formula we correct a misprint on page 849 of [3].) If, moreover d = 1, we get s(x) = x(x − 1)/2, i.e., the
polynomial corresponding to the classical staircase shown to be mixing in [1].

Lemma 4.3. If sn is monotonic and

max
x∈Hn

∥∥sn(x)
∥∥∞ < an/2 (4.1)

then (1.4) holds.

Proof. Suppose that the contrary holds. Then there exist x �= y ∈ Hn and f,f ′ ∈ Fn such that anx + sn(x) + f =
any + sn(y) + f ′. Since

Fn − Fn = {
g ∈ G | ‖g‖∞ < an

}
,

it follows that ‖an(x − y) + sn(x) − sn(y)‖∞ < an. If ‖x − y‖∞ � 2 then we get a contradiction with (4.1). If
‖x − y‖∞ = 1 then we get a contradiction with the fact that sn is monotonic. �

Now suppose that sn = s for all n � 0, where s is a monotonic polynomial of degree l > 1. Let λG stand for
the direct product of the Lebesgue measure on Rd1 and the ‘counting’ measure on Zd2 . Let us check (1.6). Since
λG(Fn) = ad

n and

λG

(
Fn+1 \ (Fn + Cn+1)

)=
(
rnan + max

h∈Hn

∥∥s(h)
∥∥∞ ± 1

)d − (rnan)
d,

we see that (1.6) is satisfied if and only if
∞∑

n=1

maxh∈Hn ‖s(h)‖∞
rnan

< ∞.

Of course, there exists a strictly positive limit limn→∞ maxh∈Hn ‖s(h)‖∞/rl
n. Thus (1.6) holds if and only if

∞∑
n=1

rl−1
n

an

< ∞. (4.2)

It is easy to see that (2.9) and (2.10) are satisfied if we set

Q := {
h ∈ H | h � 0 and ‖h‖∞ � 1

}
and Q• := −Q. (4.3)

Proposition 4.4. Let (4.2) be satisfied. If

rl
n/an → 0 (4.4)

then the (C,F )-action T associated with (Hn,φn, sn,Fn)n is well defined and it satisfies the restricted growth condi-
tion. Also (3.1) holds.
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Proof. Notice first that (4.4) implies (4.1) eventually. Hence (1.4) holds eventually by Lemma 4.3. Without loss of
generality we may assume that it holds for all n. Since (1.1)–(1.3), (1.12) and (1.13) are also satisfied, it follows that the
associated (C,F )-action T of G is well defined. Take a sequence (hn)

∞
n=1 in H with lim infn→∞ #Hn(hn)/#Hn > 0

(in fact, it suffices to have only Hn ∩ (Hn + hn) �= ∅ eventually). It follows from (4.4) that

max
h∈Hn(hn)

‖∂hns(h)‖∞
an

� max
h,k∈Hn

‖s(h) − s(k)‖∞
an

→ 0.

On the other hand, for any b ∈ G with ‖b‖∞ < an, we have

λG(Fn \ (Fn + b))

λG(Fn)
� ad

n − (an − ‖b‖∞)d

ad
n

� d‖b‖∞
an

.

Hence
1

#Hn

∑
h∈Hn(hn)

λG(Fn \ Fn(∂hns(h)))

λG(Fn)
� max

h∈Hn(hn)

λG(Fn \ (Fn + ∂hns(h)))

λG(Fn)
→ 0,

i.e., (2.3) holds. (3.1) is verified in a similar way. �
We see, in particular, that if rn is of sub-exponential growth, i.e., rn/ξ

n → 0 for some ξ > 1, then both (4.2) and
(4.4) hold and hence T is well defined for any monotonic s.

Now consider in more detail the case where s :H → G is a polynomial of degree 2. Given t ∈ H , we have ∂t s(h) =
ψt(h)+at for some homomorphism ψt : H → G and an element at ∈ G. It is easy to verify that ψt1+t2(h) = ψt1(h)+
ψt2(h) for all t1, t2 ∈ H . Hence the map H ×H 
 (t, h) 	→ ψt(h) ∈ G is a ‘bihomomorphic’ form. Then there is γ > 0
such that∥∥ψt(h)

∥∥∞ � γ ‖t‖∞‖h‖∞ for all t, h ∈ H. (4.5)

Fix a standard ‘basis’ in G (and H ):

e1 := (1,0, . . . ,0), e2 := (0,1,0, . . . ,0), . . . , ed := (0, . . . ,0,1).

Then we can identify ψt with the corresponding (d × d)-matrix with real entries for any t ∈ H .
The following statement based essentially on Theorem 3.5 provides convenient sufficient conditions for the (C,F )-

actions under consideration to be mixing. Combined with Corollary 2.6 it will turn proofs of the main results into
verifications of almost purely algebraic nature.

Proposition 4.5. Let the polynomial s be monotonic and (4.2) and (4.4) hold with l = 2. Moreover, suppose that

(i) the action (Tψk(h))h∈H is ergodic for any k ∈ H \ {0} and
(ii) max1�i�d ‖ψk(ei)‖∞ � δ‖k‖∞ for some δ > 0 and every k ∈ H .

Then T is mixing.

Proof. By Proposition 4.4, T has restricted growth and (3.1) holds. Take a sequence (hn)
∞
n=1 in H such that hn �= 0

for all n ∈ N and

lim inf
n→∞ #Hn(hn)/#Hn > 0. (4.6)

In view of Theorem 3.5, it suffices to show that Mψhn ,Hn(hn) → P0 strongly. Suppose first that hn = k for some
k ∈ H and all n. Then just use (i) and apply the mean ergodic theorem to the action (Tψk(h))h∈H to conclude that
Mψk,Hn(k) → P0. Hence it remains to consider only the sequences (hn)

∞
n=1 with hn → ∞ in H . Let i(k) stand for an

index at which the maximum in (ii) is attained. Then∥∥ψhn(ei(hn))
∥∥∞ � δ‖hn‖∞. (4.7)

Since Hn(hn) is a parallelepiped in Zd+, there exist an element h′
n ∈ H , a positive integer r ′

n � rn and two paral-

lelepipeds Jn ⊂ Z
i(hn)−1
+ and J ′

n ⊂ Z
d−i(hn)
+ such that

Hn(hn) + h′
n = Jn × {0,1, . . . , r ′

n − 1} × J ′
n.
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It follows from (4.6) that there exist two reals δ′ > 0 and δ′′ � 1 such that

r ′
n/rn � δ′ and ‖hn‖∞/rn � δ′′ eventually. (4.8)

We set Vn := Hn(hn) + h′
n and gn := ψhn(ei(hn)). By (4.7), ‖gn‖∞ → ∞ (recall that hn → ∞). Find pn ∈ N with

gn ∈ F •
pn+1 \ F •

pn
. Then, of course, pn → ∞. Let mn be the smallest positive integer such that mngn /∈ F •

pn+1. Then

mngn = (mn − 1)gn + gn ∈ F •
pn+1 + F •

pn+1.

Since {g ∈ G | ‖g‖∞ � am} ⊃ F •
m ⊃ {g ∈ G | ‖g‖∞ < am} for all m ∈ N, we have

apn � ‖gn‖∞ � apn+1 and apn+1 � mn‖gn‖∞ � 2apn+1. (4.9)

Moreover, it is straightforward (see (4.3)) that

Q + · · · + Q︸ ︷︷ ︸
l times

= {
h ∈ H | h � 0 and ‖h‖∞ � l

}

and

Q+ ∩ {
h ∈ H | ‖h‖∞ = 1 and − h � 0

}= ∅.

Recall that Q+ denotes the minimal (finite) subset of H such that (F •
n + F •

n ) \ F •
n ⊂ φn(Q+) + Fn for all n ∈ N.

Hence

−lQ+ ∩ (Q + · · · + Q︸ ︷︷ ︸
l times

) = ∅.

By (i) and Corollary 2.6(i), the sequence (φn(k))∞n=1 is mixing for every 0 �= k ∈ H . Thus we may apply Lemma 2.9
and conclude that the sequence (lmngn)

∞
n=1 is mixing for every l ∈ N. Notice that

Mψhn ,Hn(hn) = Mψhn ,VnUn = UnMψhn ,Vn,

where Un is the unitary operator given by Unf := f ◦Tψhn(−h′
n). Therefore, Mψhn ,Hn(hn) → P0 strongly if and only if

MψhnVn → P0 strongly as n → ∞. We set In := {0, ei(hn), . . . , (r
′
n − 1)ei(hn)}. To complete the proof it remains only

to establish that mn/#In → 0 and apply Lemma 3.10. By (4.5),

‖gn‖∞ = ∥∥ψhn(ei(hn))
∥∥∞ � γ ‖hn‖∞

eventually in n. Using that, (4.8) and (4.9) we obtain

mn

rn
� 2γ δ′′apn+1

‖gn‖2∞
� 2γ δ′′ apn+1

a2
pn

for all large enough n. It follows (use also (4.8) plus (4.2))

lim
n→∞

mn

r ′
n

� 1

δ′ lim
n→∞

mn

rn
� 2γ δ′′

δ′ lim
n→∞

apn+1

a2
pn

= 2γ δ′′

δ′ lim
n→∞

rpn

apn

= 0.

(Notice that it follows from (1.6) that limn→∞ an+1/(anrn) = 1.) �
Fix a family of reals ξ1, . . . , ξm. For a non-empty subset J ⊂ {1, . . . ,m}, we let ξJ :=∏

i∈J ξi . We also let ξ∅ := 1.

Definition 4.6. If the family of reals ξJ , J runs all the subsets of {1, . . . ,m}, is independent over Q then we say that
ξ1, . . . , ξm is good.

It is clear that any subfamily of a good family is good. Moreover, given non-zero rationals q1, . . . , qm, the family
q1ξ1, . . . , qmξm is good if and only if so is ξ1, . . . , ξm.

We also let RJ := {g = (g1, . . . , gd) ∈ Rd | gi = 0 for all i /∈ J }. In a similar way we define ZJ .
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Lemma 4.7. Let ξ1, . . . , ξm be a good family. Then

det

⎛
⎜⎜⎝

q1,1 + ξ1 q1,2 . . . q1,m

q2,1 q2,2 + ξ2 . . . q2,m

...
...

. . .
...

q1,m q2,m . . . qm,m + ξm

⎞
⎟⎟⎠ �= 0

for any qi,j ∈ Q, i, j = 1, . . . ,m.

Proof. It is enough to notice that the determinant equals to
∑

J⊂{1,...,m} rJ ξJ with some coefficients rJ ∈ Q. If the de-
terminant vanishes then rJ = 0 for all J by the definition of a good family. However, it is easy to see that ξ{1,...,m} = 1,
a contradiction. �

We also state without proof a couple of well known facts.

Lemma 4.8.

(i) A weakly mixing action of a l.c.s.c. Abelian group is totally ergodic.
(ii) Let V and V ′ be two mutually commuting actions of l.c.s.c. Abelian groups F and F ′ respectively. If V is weakly

mixing and V ′ is ergodic then V ′ is weakly mixing.

Now we are ready to prove the main results of the paper. We consider first the case where d2 = 0 and d1 > 1.

Theorem 4.9. Let G = Rd , d > 1, and (4.2) and (4.3) hold. Let s be the polynomial from Example 4.2 and
let the parameters αi,βi satisfy the following additional conditions: αi ∈ Q for all i = 1, . . . , d and the family
α1 + 2β2, . . . , αd + 2βd is good. Put sn := s for all n ∈ N. Then the rank-one action T of G associated with
(Hn,φn, sn,Fn)n is mixing.

Proof. It is easy to calculate that

ψei
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1
. . .

αi−1
αi . . . αi 2(αi + βi) αi . . . αi

αi+1
. . .

αd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.10)

where the entries outside the main diagonal and the i-th line are zero, i = 1, . . . , d .
We first claim that the group generated by

⋃d
i,j=1 ψei

(ej ) is dense in G. For a real x ∈ R, denote the fractional
part of x by 〈x〉. Identify T with the interval [0,1) endowed with addition mod 1. Since ψei

(ei) = 2(αi + βi)ei and
αi + βi �= 0, the map

π :G 
 (x1, . . . , xd) 	→
(〈

x1

2(α1 + β1)

〉
, . . . ,

〈
xd

2(αd + βd)

〉)
∈ Td

is a quotient of G by the lattice generated by
⋃d

i=1 ψei
(ei). We see that for i �= 1,

π
(
ψe1(ei)

)=
(〈

α1

2(α1 + β1)

〉
,0, . . . ,0,

〈
αi

2(αi + βi)

〉
︸ ︷︷ ︸

i

,0, . . . ,0

)
.

Since α1 + β1 /∈ Q and (αi + βi)/(α1 + β1) /∈ Q for i = 2, . . . , d , the group generated by π(ψe1(ei)) is dense in the
subgroup

T × {0} × · · · × {0} × T︸ ︷︷ ︸×{0} × · · · × {0} ⊂ T.
i
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Thus our first claim follows.
Now let us verify conditions (i) and (ii) from Proposition 4.5.
It follows from (4.10) that det ψei

�= 0. Hence ψei
(H) is a lattice in G. Then by Corollary 2.6(iii), the sequence

(φn(ei))
∞
n=1 is uniformly mixing. Since φn(ei) = anei , it follows that the transformation Tei

is weakly mixing for every
i = 1, . . . ,m. By Lemma 4.8(ii), the action (Tg)g∈RJ is also weakly mixing for any non-empty subset J ⊂ {1, . . . ,m}.
Now take any 0 �= t = (t1, . . . , td ) ∈ H . If det ψt �= 0 then ψt(H) is a lattice in G. By Corollary 2.6(ii), (Tψt (h))h∈H is
ergodic, as desired. Consider now the second case when det ψt = 0. Since ψt = t1ψe1 + · · · + tdψed

, it follows from
(4.10) that

ψt =

⎛
⎜⎜⎝

(α1 + 2β1)t1 + α1u α1t1 . . . α1t1
α2t2 (α2 + 2β2)t2 + α2u . . . α2t2

...
...

. . .
...

αd td αd td . . . (αd + 2βd)td + αdu

⎞
⎟⎟⎠ ,

where u := ∑d
i=1 ti . Let J := {i | ti �= 0}. It follows immediately from Lemma 4.7 that there exists i /∈ J . Then for

any j �= i, the j -th element of the i-th line of ψt is 0. Crossing out the i-th line and the i-column for all i /∈ J we
obtain a (#J × #J )-matrix M and det ψt = ud−#J

∏
i /∈J αi det M . It is easy to see that Lemma 4.7 is applicable to M .

Hence det M �= 0. Since det ψt = 0, it follows that u = 0. Hence for any j /∈ J , the entire i-th line in ψt vanishes.
Therefore ψt(H) ⊂ RJ . Moreover, ψt(H) is a lattice in RJ since det M �= 0. By Lemma 4.8(i), the action (Tψt (h))h∈H

is ergodic. Thus, Proposition 4.5(i) holds. The other condition of that theorem is much easier to verify. Let ‖t‖∞ = |tj |
for some j . Take any l �= j . Then we have∥∥ψt(el)

∥∥∞ � αj |tj | � min
1�i�d

αi · ‖t‖∞. �
It is easy to understand that the above construction does not work in case G = R since the first claim of the proof

fails. However, only a slight ‘complication’ of the construction is needed to cover the exceptional case. We outline it
briefly. Let S be a finite family of monotonic polynomials from H to G = Rd1 × Zd2 of degree l > 1. Let (sn)

∞
n=1 be

a sequence of elements of S such that every element of S occurs in (sn)
∞
n=1 infinitely many times. Suppose that (4.2)

and (4.4) are satisfied. Define Hn,φn,Fn as above. Then the (C,F )-action T associated with (Hn,φn, sn,Fn)n is well
defined and it satisfies the restricted growth condition (the same proof as in Proposition 4.4 works as well to establish
this fact). Let us assume now that l = 2. For any s ∈ S, let

∂t s(h) = ψs
t (h) + as

t for all t, h ∈ H,

where ψs
t :H → H is a homomorphism and as

t an element of H . Suppose, in addition, that

(i) the action (Tψs
k (h))h∈H is ergodic for any k ∈ H \ {0} and s ∈ S and

(ii) mins∈S max1�i�d ‖ψs
k (ei)‖∞ � δ‖k‖∞.

Then repeating the proof of Proposition 4.5 almost verbatim one can show that T is mixing. Now let G = Rd for any
d > 0. Suppose that every polynomial from S satisfies the conditions of Theorem 4.9. Then slightly modifying the
proof of this theorem one can establish that T is mixing whenever

the group generated by
⋃
s∈S

d⋃
i,j=1

ψs
ei
(ej ) is dense in G. (4.11)

The main point of this modification is to replace the references to Corollary 2.6 with the references to Remark 2.7.
If d > 1 then (4.11) is satisfied (see the proof of Theorem 4.9). The following theorem provides an example where
(4.11) holds in case d = 1.

Theorem 4.10. Let G = R and (4.2) and (4.3) hold with l = 2. Let

s(x) := αx2 + βx, s̃(x) := α̃x2 + β̃x at all x ∈ Z,

where α and α̃ are rationally independent positive reals and α + β � 0, α̃ + β̃ � 0. Set sn := s for even n and sn := s̃

for odd n. Then the (C,F )-action of R associated with (Hn,φn, sn,Fn)n is mixing.
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Proof. In view of the reasoning preceding the statement of the theorem it suffices to notice that s and s̃ are both
non-negative and non-decreasing on Z+ and (4.11) is satisfied since ψs

e1
(e1) = 2α and ψs̃

e1
(e1) = 2α̃. �

Now we pass to the case G = Zd .

Theorem 4.11. Let G = Zd and (4.2) and (4.4) hold with l = 2. Let s be the polynomial from Example 4.2 with
α1 = · · · = αd = 1 and β1 = · · · = βd = −0.5. Put sn := s for all n ∈ N. Then the rank-one action T of G associated
with (Hn,φn, sn,Fn)n is mixing.

Proof. As in the proof of Theorem 4.9 it suffices to show that the group generated by
⋃d

i,j=1 ψei
(ej ) is ( = dense in)

G and the conditions (i) and (ii) of Proposition 4.5 are satisfied. The first claim is trivial since ψei
(ei) = ei for all i =

1, . . . , d (see (4.10)). Now take any t = (t1, . . . , td ) ∈ G and set J (t) := {i | ti �= 0}. We will check Proposition 4.5(i)
by induction in #J (t).

If #J (t) = 1 then t = tiei for some 1 � i � d and a non-zero integer ti . Hence det ψt = tdi det ψei
�= 0. It remains

to apply Corollary 2.6(ii).
Suppose now that there exists p < d such that the action (Tψt (h))h∈H is ergodic for any t ∈ H with 1 � #J (t) � p.

Take any t ∈ H with #J (t) = p + 1. We are going to show that the action (Tψt (h))h∈H is ergodic. For convenience, let
us assume that J (t) = {1, . . . , p + 1}. (In the general case one can argue in a similar way.) Then

ψt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑p+1
i=1 ti t1 . . . t1 t1 . . . t1

t2
∑p+1

i=1 ti . . . t2 t2 . . . t2
...

...
. . .

...
...

. . .
...

tp+1 tp+1 . . .
∑p+1

i=1 ti tp+1 . . . tp+1

0 0 . . . 0
∑p+1

i=1 ti . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . .
∑p+1

i=1 ti

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We consider now three possible cases. Denote by A the (p + 1) × (p + 1)-submatrix of ψt standing at the upper left
corner.

Case 1. If
∑p+1

i=1 ti �= 0 and det A �= 0 then det ψt = (
∑p+1

i=1 ti )
d−p−1det A �= 0. Hence ψt(H) is of finite index in G

and we are done (just apply Corollary 2.6(ii)).

Case 2. If
∑p+1

i=1 ti �= 0 but det A = 0 then it is easy to verify that rk A � 2. Hence rk ψt � d − (p + 1) + 2 > d − p.
Therefore

ψt(H) ∩ ZJ (t) �= {0}.
On the other hand, it follows from the inductive assumption and Corollary 2.6(i) that the sequence (φn(h))∞n=1 is
mixing for T for any non-zero h ∈ Ze1 + · · · + Zep . Hence the transformation Th is weakly mixing for all such h

(recall that φn(h) = anh). Thus the transformation group (Tψt (h))h∈H contains a weakly mixing transformation and
therefore it is ergodic.

Case 3. If
∑p+1

i=1 ti = 0 then it is easy to see that ψt(H) ⊂ ZJ (t). Moreover,

detA = t1 · · · tp+1 det

⎛
⎜⎜⎝

0 1 1 . . . 1
1 0 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0

⎞
⎟⎟⎠ �= 0.

Hence ψt(H) is of finite index in ZJ (h). Since the transformation Te1 is weakly mixing, the action (Tg)g∈ZJ (h) is
weakly mixing by Lemma 4.8(ii). It remains to make use of Lemma 4.8(i).
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The condition (ii) of Proposition 4.5 is checked in a straightforward way (as in the proof of Theorem 4.9). �
Remark 4.12. Note that if we put γi = δi = 0 for all i in the statement of Theorem 4.10 (see the definition of s in
Example 4.2) then we obtain exactly the main result of [3]. However, it was proved there completely only for G = Z2.
Roughly speaking, it was assumed implicitly in [3] that det ψt �= 0 for all t ∈ Zd \ {0}. While being the case for d = 2,
it is no longer true for d > 2 (see Cases 2 and 3 in the proof of Theorem 4.10).

Combining the arguments from Theorems 4.9–4.11, one can prove the following.

Theorem 4.13. Let G = Rd1 × Zd2 and (4.2) and (4.4) hold. Let s̃n : Zd1 → Rd1 and ŝn : Zd2 → Zd2 stand for the
sequences of polynomials defined in the statements of Theorem 4.9 if d1 > 1 (or Theorem 4.10 if d1 = 1) and Theo-
rem 4.11 respectively. We set

sn(t1, . . . , td1+d2) := (
s̃n(t1, . . . , td1), ŝn(td1+1, . . . , td1+d2)

)
for all (t1, . . . , td1+d2) ∈ H = Zd1 × Zd2 . Then the rank-one (C,F )-action of G associated with (Hn,φn, sn,Fn)n is
mixing.

Now we consider a more general case where the ‘spacer mapping’ s :H → G is a polynomial of arbitrary degree
l > 2. Then for any t1, . . . , tl−1 ∈ H , there exist a homomorphism ψt1,...,tl−1 :H → G and an element at1,...,tl−1 ∈ G

such that

∂t1 · · · ∂tl−1s(h) = ψt1,...,tl−1(h) + at1,...,tl−1 for all h ∈ H.

It is easy to verify that the map

H × · · · × H︸ ︷︷ ︸
l times


 (t1, . . . , tl) 	→ ψt1,...,tl−1(tl) ∈ G

is a ‘polyhomomorphic’ form and there exists γ > 0 such that

‖ψt1,...,tl−1‖∞ � γ ‖t1‖∞ · · · ‖tl‖∞ for all t1, . . . , tl ∈ H.

The following statement is a higher degree analogue of Proposition 4.5.

Proposition 4.14. Let s :H → G be a monotonic polynomial of degree l > 2. Assume that (4.2) and (4.4) hold. Set
sn := s for all n and denote by T the (C,F )-action of G associated with (Hn,φn, sn,Fn)n. Suppose that

(i) the action (Tψt1,...,tl−1 (h))h∈H is ergodic for any family t1, . . . , tl−1 ∈ H \ {0} and
(ii) max1�i�d ‖ψt1,...,tl−1(ei)‖∞ � δ‖t1‖∞ · · · ‖tl−1‖∞ for some δ > 0 and all t1, . . . , tl−1 ∈ H \ {0}.

Then T is mixing.

Proof. (Cf. with the proof of Proposition 4.5.) By Proposition 4.4, T has restricted growth. Take a sequence (hn)
∞
n=1

in H \ {0} such that (4.6) holds. In view of Theorem 3.5, it suffices to show that Ms′
n,Hn(hn) → P0 strongly, where s′

n

is the hn-derivative of s. Applying Corollary 3.12 l − 2 times, we obtain that the latter holds whenever

Mψt1,...,tl−2,hn ,Hn(hn) → P0 strongly for any family t1, . . . , tl−2 ∈ H \ {0}. (4.12)

Suppose first that hn = k for some k ∈ H and all n. Then just use (i) and apply the mean ergodic theorem to the action
(Tψt1,...,tl−2,k(h))h∈H to deduce (4.11).

It remains to consider the second case where hn → ∞ in H . Notice first that since M∂ks,Hn(k) → P0 strongly, it
follows from Corollary 2.3(ii) that the sequence (φn(k))∞n=1 is uniformly mixing for every k ∈ H \ {0}. The rest of the
argument is almost a literal repetition of that from the proof of Proposition 4.5. �

As an application we construct a family of mixing (C,F )-actions with polynomial ‘spacer map’ of higher degree
in the simplest case when G = Z.
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Example 4.15. Let G = Z. Suppose that the sequence (rn)
∞
n=1 is of sub-exponential growth and limn→∞ rn = ∞.

Then, as was noticed above, (4.2) and (4.4) hold. Let p : Z → Z be a polynomial of degree l > 0 which non-decreases
on Z+. Assume also that p(0) = 0. Suppose that the image of p is not contained in any proper subgroup of Z. For
instance, if p(Z) 
 1 then p enjoys this property. Define a polynomial s : Z → Z by setting

s(t) := p(0) + p(1) + · · · + p(t − 1) for t > 0.

Clearly, s is of degree l + 1 and s non-decreases on Z+. Let sn := s for all n ∈ N. Denote by T the corresponding Z-
action. We will show that it is mixing. To this end it suffices to verify that the conditions (i) and (ii) of Proposition 4.14
hold for T . It is obvious that (ii) holds. The condition (i) will follow from the fact that T is totally ergodic. To establish
the latter we are going to apply Proposition 2.5. Let hn = 1 for all n ∈ N. Then ∂hns(t) = s(t + 1) − s(t) = p(t) at all
t � 0. If T is not totally ergodic then by Proposition 2.5 there exist k > 0 and j ∈ {0, . . . , k − 1} such that

#{i ∈ {1, . . . , rn − 1} | p(i) ≡ j modk}
rn − 1

→ 1 as n → ∞.

Hence if n is large enough we can find 0 < i < rn − 2 − l such that

p(i) ≡ p(i + 1) ≡ · · · ≡ p(i + l)modk.

Since p(0) = 0 and l is the degree of p, it follows from [16, Corollary 1.17] that p(Z) ⊂ kZ, a contradiction.

In particular, putting rn = n and p(t) = t l , t ∈ Z, we obtain the family of polynomial staircases first proved to be
mixing in [1] (when l = 1) and [5] (when l > 1).

5. Entropic properties of rank-one actions

Let G = Rd1 × Zd2 with arbitrary d1, d2 � 0 and T a (C,F )-action of G on a probability space (X,B,μ). We will
assume that

Fn = {
g ∈ G | g � 0 and ‖g‖∞ < an

}
for a sequence an ∈ R+. This implies that T is rank-one by cubes. It is well known that the entropy of any rank-one
Z-action is zero. This fact extends easily to the rank-one (by cubes) actions of any group G. However in case of
higher dimensional groups, say G = Z2, there exist rank-one (by rectangles) actions S = (Sg)g∈G of G such that
the transformation S(1,0) is Bernoulli (see [20]). Then one has h(S) = 0 but h(S(1,0)) > 0. We show now that this is
impossible for rank-one (by cubes) actions.

Theorem 5.1. Let T be a rank-one (by cubes) action of G. Then h(Tg) = 0 for each g ∈ G.

Proof. We consider only the case G = Rd (in the general case one can argue in a similar way). Let (Mn)
∞
n=1 be a

sequence of positive reals such that

lim
n→∞

Mn

an

= 0 and lim
n→∞

logan

Mn

= 0. (5.1)

Fix g ∈ G \ {0} and take a family v1, . . . , vd of mutually orthogonal (with respect to Euclidean inner product in Rd )
vectors such that v1 = g. Consider the finest partition F of G into parallelepipeds whose vertices belong to the lattice
generated by v1, . . . , vd . Let Fn be a maximal subset of F such that the atoms ig + A, A runs Fn and 0 � i < Mn,
are mutually disjoint and all of the are contained in Fn. It follows from the first limit in (5.1) that

#Fn · Mn · λG(A)

λG(Fn)
→ 1. (5.2)

Let Pn be a finite partition of X consisting of the n-cylinders [A]n, where A runs Fn and the complement Bn to the
union of these n-cylinders. Then

H(Pn) = −#Fnμ
([A]n

)
logμ

([A]n
)− μ(Bn) logμ(Bn), (5.3)
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where A is an atom of Fn. Since μ(X \ Xn) → 0 and (5.2) holds, it is easy to show that the second term in the
right-hand side of (5.3) goes to 0. Substituting (1.11) to (5.3) and making use of (5.2) we now obtain

H(Pn) � #Fn

λG(A)

λG(Fn)
log

λG(Fn)

λG(A)
+ o(1) � 2d

Mn

log
an

λG(A)
+ o(1)

(notice that λG(Fn) = ad
n ). It follows from the second limit in (5.1) that H(Pn) → 0 as n → ∞. Denote by Qn

the finite partition
∨Mn−1

i=0 T i
gPn of X. It is easy to deduce from the definition of Pn that the sequence (Qn)

∞
n=1

generates B, i.e., for any B ∈ B and n ∈ N, there exists a Qn-measurable subset Qn such that μ(B�Qn) → 0 as
n → ∞. Hence

h(Tg) = lim
n→∞h(Tg,Qn) = lim

n→∞h(Tg,Pn) � lim
n→∞H(Pn) = 0. �

We see, in particular, that for all mixing actions T constructed in Theorems 4.9–4.11 and 4.13, h(Tg) = 0 for all
g ∈ G.
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