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Abstract

We prove that the upward ladder height subordinator H associated to a real valued Lévy process ξ has Laplace exponent ϕ that
varies regularly at ∞ (respectively, at 0) if and only if the underlying Lévy process ξ satisfies Sinaı̌’s condition at 0 (respectively,
at ∞). Sinaı̌’s condition for real valued Lévy processes is the continuous time analogue of Sinaı̌’s condition for random walks. We
provide several criteria in terms of the characteristics of ξ to determine whether or not it satisfies Sinaı̌’s condition. Some of these
criteria are deduced from tail estimates of the Lévy measure of H , here obtained, and which are analogous to the estimates of the
tail distribution of the ladder height random variable of a random walk which are due to Veraverbeke and Grübel.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Nous montrons que l’exposant de Laplace du subordinateur d’échelle H , associé à un processus de Lévy ξ , à valeurs réelles,
est à variation régulière à l’infini (respectivement, en 0) si et seulement si le processus de Lévy sous-jacent vérifie la condition de
Sinaı̌ en 0 (respectivement, en +∞). Cette dernière est l’analogue pour les processus de Lévy de la condition de Sinaı̌ pour les
marches aléatoires. Nous obtenons des estimations de la mesure de Lévy de H qui nous permettent d’établir des critères, en termes
des caractéristiques de ξ , pour déterminer quand celui-ci vérifie la condition de Sinaı̌. Certaines de ces estimations sont l’analogue
de celles obtenues par Veraverbeke et Grübel pour la queue de la fonction de répartition de la variable aléatoire d’échelle d’une
marche aléatoire.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

Let ξ = {ξt , t � 0} be a real valued Lévy process, S = (St , t � 0) its current supremum and L = (Lt , t � 0) the
local time at 0 of the strong Markov process ξ reflected at its current supremum, that is to say (St −ξt , t � 0). The first
purpose of this work is to obtain some asymptotic properties of the ascending ladder height subordinator H associated
to ξ (that is, the current supremum of ξ evaluated at the inverse of the local time at 0, i.e. L−1, H ≡ (S

L−1
t

, t � 0)).
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According to Fristedt [11] the ascending ladder process (L−1,H) is a bivariate subordinator, that is, a Lévy process
in R

2 with increasing paths (coordinatewise) whose bivariate Laplace exponent κ ,

e−κ(λ1,λ2) ≡ E
(
e−λ1L

−1
1 −λ2H1

)
, λ1, λ2 � 0,

with the assumption e−∞ = 0, is given by

κ(λ1, λ2) = k exp

{ ∞∫
0

dt

t

∫
[0,∞[

(
e−t − e−λ1t−λ2x

)
P(ξt ∈ dx)

}
, λ1, λ2 � 0,

with k a constant that depends on the normalization of the local time. (See Doney [7], for a survey, and Bertoin [2] VI,
for a detailed exposition of the fluctuation theory of Lévy processes and Vigon [24] for a description of the Lévy
measure of H .)

The fact that the ladder process (L−1,H) is a bivariate subordinator is central in the fluctuation theory of Lévy
processes because it enables to obtain several properties of the underlying Lévy process using results for subordinators,
which are objects simpler to manipulate. Among the various properties that can be obtained using this fact, there is a
well known arc-sine law in the time scale for Lévy processes, see Theorem VI.3.14 in Bertoin’s book [2] for a precise
statement. That result tell us that Spitzer’s condition is a condition about the underlying Lévy process ξ which ensures
that the Laplace exponent κ(·,0) of the ladder time subordinator L−1 is regularly varying and which in turn permits
to obtain an arc-sine law in the time scale for Lévy processes. Now, if we want to establish an analogous result in the
space scale we have to answer the question: What is the analogue of Spitzer’s condition for the upward ladder height
process H ? or put another way: What do we need to assume about ξ to ensure that the Laplace exponent

ϕ(λ) ≡ κ(0, λ) = k exp

{ ∞∫
0

dt

t

∫
[0,∞[

(
e−t − e−λx

)
P(ξt ∈ dx)

}
, λ � 0,

of H varies regularly?
A now classical limit theorem for random walks due to Greenwood, Omey and Teugels [15], Dynkin [9] and Ro-

gozin [20] tell us that for random walks the answer to these questions is Sinaı̌’s condition; see also [4] Theorem 8.9.17.
So given that the fluctuation theory for Levy processes mirrors that of random walks, it is natural to hope that the an-
swer to the questions posed above is the continuous time version of Sinaı̌’s condition. We will say that a Lévy process
ξ satisfies Sinaı̌’s condition at ∞ (respectively, at 0) if

(Sinaı̌) There exists a 0 � β � 1 such that

∞∫
0

dt

t
P(z < ξt � λz) → β log(λ) as z → +∞ (respectively, z → 0+), ∀λ > 1.

The term β will be called Sinaı̌’s index of ξ .

Example 1. A Lévy process, ξ , which satisfies Sinaı̌’s condition is the strictly stable process with index 0 < α � 2.
Indeed, for every z > 0 and λ > 1 we have by the scaling property of ξ that

∞∫
0

dt

t
P(z < ξt � λz) =

∞∫
0

dt

t
P
(
z < t1/αξ1 � λz

) = E

(
1{ξ1>0}

∞∫
0

dt

t
1{(z/ξ1)

α<t�(zλ/ξ1)
α}

)

= E
(
1{ξ1>0} log

(
λα

)) = αP(ξ1 > 0) log(λ).

Thus any stable process ξ does satisfies Sinaı̌’s condition at infinity and at 0 with index αρ, where ρ is the positivity
parameter of ξ , ρ = P(ξ1 � 0).
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We recall that a measurable function f : [0,∞[→ [0,∞[ varies regularly at infinity (respectively, at 0) with index
α ∈ R, f ∈ RV∞

α (respectively, ∈ RV0
α), if for any λ > 0,

lim
f (λx)

f (x)
= λα at ∞ (respectively, at 0).

We have all the elements to state our main result, which provides an answer to the questions above.

Theorem 1. For β ∈ [0,1], the following are equivalent

(i) The Lévy process ξ satisfies Sinaı̌’s condition at ∞ (respectively, at 0) with index β .
(ii) The Laplace exponent of the ladder height subordinator H varies regularly at 0 (respectively, at ∞) with index

β .

Proof. By the fluctuation identity of Bertoin and Doney [3] we have that for any z > 0, λ > 1,
∞∫

0

dt

t
P(z < ξt � λz) =

∞∫
0

dt

t
P(z < Ht � λz).

As a consequence, Sinaı̌’s condition is satisfied by the Lévy process ξ if and only if it is satisfied by the ascending
ladder height subordinator H . The result then follows from Theorem 4, which establishes that the Laplace exponent
φ of any given subordinator, say σ , varies regularly if and only if σ satisfies Sinaı̌’s condition. �

Assuming that the Lévy process ξ satisfies Sinaı̌’s condition and applying known results for subordinators, when
its Laplace exponent is regularly varying, we can deduce the behavior at 0 or ∞ of ξ from that of H . (See Bertoin [2]
Chapter III for an account on the short and long time behavior of subordinators.) The following spatial arc-sine law
for Lévy processes is an example of the results that can be obtained.

Corollary 1. For r > 0, denote the first exit time of ξ out of ]−∞, r] by Tr = inf{t > 0: ξt > r}, the undershoot and
overshoot of the supremum of ξ by U(r) = r − STr− and O(r) = STr − r = ξTr − r . For any β ∈ [0,1], the conditions
(i) and (ii) in Theorem 1 are equivalent to the following conditions:

(iii) The random variables r−1(U(r),O(r)) converge in distribution as r → ∞ (respectively, as r → 0).
(iv) The random variables r−1O(r) converge in distribution as r → ∞ (respectively, as r → 0).
(v) The random variables r−1STr− converge in distribution as r → ∞ (respectively, as r → 0).

(vi) lim r−1E(STr−) = β ∈ [0,1] as r → ∞ (respectively, as r → 0).

In this case, the limit distribution in (iii) is determined as follows: if β = 0 (respectively, β = 1), it is the Dirac mass
at (1,∞) (respectively, at (0,0)). For β ∈ ]0,1[, it is the distribution with density

pβ(u,w) = β sinβπ

π
(1 − u)β−1(u + w)−1−β, 0 < u < 1, w > 0.

In particular, the limit law in (v) is the generalized arc-sine law of parameter β .

Proof. We recall that for every r > 0, the random variables (U(r),O(r)) are almost surely equal to the undershoot and
overshoot, (UH (r),OH (r)), of the ladder height subordinator H . Thus the result is a straightforward consequence of
the Dynkin–Lamperti arc-sine law for subordinators, Theorem III.3.6 in [2], using the elementary relations: for every
r > 0

P
(
UH (r) > y

) = P
(
OH (r − y) > y

)
, r > y > 0,

P
(
OH (r) > x,UH (r) > y

) = P
(
OH (r − y) > x + y

)
, r > y > 0, x > 0. �

To summarize, in Theorem 1 we provided a necessary and sufficient condition in terms of the marginal laws of
ξ which completely answers the questions posed at the beginning of this work. However, the possible drawback of
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this result is that in most of the cases we only know the characteristics of the Lévy process ξ , that is, its linear and
Gaussian terms and Lévy measure, and so it would be suitable to have a condition in terms of the characteristics of
the process. That is the purpose of the second part of this work.

One case at which Sinaı̌’s condition can be verified using the characteristics of the process is the case at which
the underlying Lévy process belongs to the domain of attraction at infinity (respectively, at 0) of a strictly stable law
of index 0 < α � 2, and which does not require a centering function. That is, whenever there exists a deterministic
function b : ]0,∞[ → ]0,∞[ such that

ξt

b(t)

D−→X(1) as t → ∞ (respectively, as t → 0), (1)

with X(1) a strictly stable random variable of parameter 0 < α � 2. It is well known that if such a function b exists, it is
regularly varying at infinity (respectively, at 0) with index β = 1/α. Plainly, the convergence in (1) can be determined
in terms of the characteristic exponent Ψ of ξ , i.e. E(eiλξt ) = exp{tΨ (λ)}, λ ∈ R, since the latter convergence in
distribution is equivalent to the validity of the limit

lim tΨ

(
λ

b(t)

)
= Ψα(λ) as t → ∞ (respectively, as t → 0) for λ ∈ R, (2)

where Ψα is the characteristic exponent of a strictly stable law and is given by

Ψα(λ) =
{−c|λ|α(1 − iδ sgn(λ) tan(πα/2)), 0 < α < 1 or 1 < α < 2;

−c|λ|α(1 − iδ sgn(λ) tan(πα/2) ln(|λ|)), α = 1;
−q2λ2/2, α = 2;

for λ ∈ R, where c > 0 and the term δ ∈ [−1,1] is the so called skewness parameter. We have the following theorem
whose proof will be given in Section 3.

Theorem 2. Let 0 < α � 2 and δ ∈ [−1,1]. Assume that there exists a function b : ]0,∞[ → ]0,∞[ such that the limit
in Eq. (2) holds as t goes to infinity (respectively, as t → 0). Then the Lévy process ξ satisfies Sinai’s condition at ∞
(respectively, at 0) with index αρ, where ρ is given by ρ = 1/2 + (πα)−1 arctan(δ tan(απ/2)).

The converse of this theorem is not true in general, see Remark 2 below.
With the aim of providing some other criteria in terms of the characteristics of the underlying Lévy process ξ to

determine whether or not it satisfies Sinaı̌’s condition we recall that the regular variation of the Laplace exponent, ϕ,
of H is closely related to the regular variation of the right tail of its Lévy measure, cf. [2] p. 82. Owing to this, we
will next restrict ourselves to studying the behavior of the right tail of the Lévy measure of H , say po. To that end, we
should be able to control the behavior of the dual ladder height subordinator Ĥ , that is, the ladder height subordinator
of the dual Lévy process ξ̂ = −ξ . This is due to the fact, showed by Vigon [24], that the Lévy measure of the ladder
height subordinator H is determined by the Lévy measure of ξ and the potential measure of Ĥ . (See the Lemma 1
below for a precise statement.)

Thus, under some assumptions on the dual ladder height process, that can be verified directly from the character-
istics of ξ , below we will provide some tail estimates of the right tail of the Lévy measure of H which in turn will
allow us to furnish some NASC for the regular variation, at infinity or 0, of the Laplace exponent of the ladder height
subordinator H . But first we need to introduce some supplementary notation.

We will assume hereafter that the underlying Lévy process is not spectrally negative, that is Π]0,∞[ > 0, since in
that case the ladder height process H is simply a drift, Ht = dt, t � 0. We will denote by (k0, d,po) (respectively,
(k̂0, d̂,ne)) the characteristics of the subordinator H (respectively, Ĥ ) that is, its killing and drift terms and Lévy
measure, respectively. Let V̂ be the potential measure of Ĥ , that is V̂ (dx) = E(

∫ ∞
0 1{Ĥt∈dx} dt). Furthermore, we will

denote by (a, q,Π) the characteristics of the Lévy process ξ . Finally, by the symbols po,ne,Π+, we denote the right
tail of the Lévy measures of H,Ĥ and ξ respectively, that is

po(x) = po]x,∞[, ne(x) = ne]x,∞[, Π+(x) = Π]x,∞[, x > 0,

and by Π+ the restriction of Π to ]0,∞[, Π+ = Π |]0,∞[.
As we mentioned before, Vigon [24] established some identities “equations amicales” relying the Lévy measures

po,ne and Π; these are quoted below for ease of reference.
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Lemma 1. (Vigon [24], Equations amicales.) We have the following relations

(EAI) po(x) = ∫ ∞
0 V̂ (dy)Π(x + y), x > 0.

(EA) Π+(x) = ∫
]x,∞[ po(dy)ne(y − x) + d̂p̄(x) + k̂0po(x), for any x > 0; where p̄(x) is the density of the measure

po, which exists if d̂ > 0.

We will say that a measure M on [0,∞[ belongs to the class L0 of long tailed measures if its tail M(x) = M]x,∞[,
is such that 0 < M(x) < ∞ for each x > 0 and

lim
x→∞

M(x + t)

M(x)
= 1, for each t ∈ R.

It is well known that this family includes the subexponential measures and the cases at which M is regularly varying.
We have now all the elements to state our results that relate the behavior of Π+ with that of po at infinity, they are

the continuous time analogue of the result of Veraverbeke [22] and Grübel [16] for random walks.

Theorem 3.

(a) Assume that the dual ladder height subordinator has a finite mean μ = E(Ĥ1) < ∞, which implies that ξ does
not drifts to ∞. The following are equivalent
(a-1) The measure Π+

I on [0,∞[ with tail Π+
I (x) = ∫ ∞

x
Π+(z)dz, x � 0, belongs to L0.

(a-2) po ∈ L0.
(a-3) po(x) ∼ 1

μ
Π+

I (x), as x → ∞.

(b) Assume that the dual ladder height subordinator Ĥ has killing term k̂0 > 0 or equivalently that ξ drifts to ∞. The
following are equivalent
(b-1) Π+ = Π |]0,∞[ ∈ L0.
(b-2) po ∈ L0,

d̂p̄(x)

po(x)
→ 0 and

1∫
0

(
po(x) − po(x + y)

po(x)

)
ne(dy) → 0 as x → ∞. (3)

(b-3) po(x) ∼ 1
k̂0

Π+(x) as x → ∞.

In Remarks 3 and 4 below we make some comments on NASC for the assumptions in Theorem 3 and on some
related results, respectively.

As a corollary of the previous theorem we have the following criterions to determine whether or not the tail of the
Lévy measure of H is regularly varying.

Corollary 2.

(a) Under the assumptions of (a) in Theorem 3 and for any α ∈ ]0,1] we have that Π+ ∈ RV∞−1−α if and only if
po ∈ RV∞−α . Both imply that

po(x) ∼ 1

αμ
xΠ+(x), x → ∞.

(b) Under the assumptions of (b) in Theorem 3 and for any α ∈ ]0,1[ we have that Π+ ∈ RV∞−α if and only if
po ∈ RV∞−α and

1∫
0

(
po(x) − po(x + y)

po(x)

)
ne(dy) → 0 as x → ∞.
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Proof. The proof of (a) in Corollary 2 follows from the fact that under these hypotheses

xΠ+(x)∫ ∞
x

Π+(z)dz
→ α as x → ∞,

which is a consequence of Theorem 1.5.11 in [4]. The proof of (b) is straightforward. �
The behavior at 0 of po was studied by Vigon in [23] Theorems 6.3.1 and 6.3.2. He obtained several estimations

that we will use here to provide an analogue of Corollary 2 for the behavior at 0 of po.

Proposition 1.

(a) Assume that Ĥ has a drift d̂ > 0. For any α ∈ ]0,1] we have that po ∈ RV0−α if and only if Π+ ∈ RV0
−α−1.

(b) Assume that Ĥ has a drift d̂ = 0 and that the total mass of the measure ne is finite, equivalently, limx→0+ ne(x) <

∞. Then for any α ∈ ]0,1] we have that po ∈ RV0−α if and only if Π+ ∈ RV0−α . Moreover, the same assertion holds
if furthermore α = 0 and limx→0+ po(x) = ∞.

Cf. [24] and [23] Chapter 10 for NASC for the assumptions in Proposition 1.
Before finishing this section we would like to make some remarks.

Remark 1. As a consequence to Theorem 1, in the case where Sinaı̌’s condition hold for ξ with index β = 1 at ∞
(respectively, at 0) we have that r−1ξTr converges in law to 1 as r → ∞ (respectively, to 0). The almost sure conver-
gence of this random variable was studied by Doney and Maller [8]. Precisely, Theorem 8 of Doney and Maller [8]
provide necessary and sufficient conditions, on the characteristics of ξ , according to which r−1ξTr converges a.s. to 1
as r → ∞. Moreover, Corollary 1 in [8] establishes that the latter sequence of r.v. converges a.s. to 1 as r → 0 if and
only if ξ creeps upward.

Remark 2. Observe that if ξ satisfies the hypotheses of Theorem 2 at infinity so it does ξ̂ = −ξ and as a consequence
ξ̂ satisfies Sinaı̌’s condition. Thus, given that the downward ladder height subordinator, Ĥ , associated to ξ is the
upward ladder height subordinator associated to ξ̂ , then under the hypotheses of Theorem 2 the Laplace exponent of
H and Ĥ , respectively, is regularly varying at 0 with index αρ and α(1 −ρ), respectively. This fact allow us to realize
that the reciprocal of Theorem 2 is not true in general. To construct a counterexample, let h = {ht , t � 0} be a stable
subordinator with parameter α ∈ ]0,1[, and ĥ = {ĥt , t � 0}, be a subordinator with infinite lifetime, without drift,
such that its Lévy measure is absolutely continuous with a decreasing density and assume that its Laplace exponent is
not regularly varying at 0. Observe that according to Theorem 4, h satisfies Sinaı̌’s condition at infinity but ĥ does not.
According to the results in Section 7.3 in [23] there exists a real valued Lévy process, say ξ̃ , such that its upward and
downward ladder height subordinators are equal in law to h and ĥ, respectively. Thus the process ξ̃ satisfies Sinaı̌’s
condition at infinity, since h does, but there does not exists any function such that the limit in Eq. (2) holds as t goes
to infinity, because if this were indeed the case it would imply that ĥ satisfies Sinaı̌’s condition at infinity, which is a
contradiction.

Remark 3. The assumptions in Theorem 3 can be verified using only the characteristics of the underlying Lévy
process ξ . According to a result due to Chow [5] necessary and sufficient conditions on ξ to be such that E(Ĥ1) < ∞,
are either 0 < E(−ξ1) � E|ξ1| < ∞ or 0 = E(−ξ1) < E|ξ1| < ∞ and∫

[1,∞[

(
xΠ−(x)

1 + ∫ x

0 dy
∫ ∞
y

Π+(z)dz

)
dx < ∞ with Π−(x) = Π]−∞,−x[, x > 0.

Observe that under such assumptions the Lévy process ξ does not drift to ∞, i.e. lim inft→∞ ξt = −∞, P-a.s. The
case where the Lévy process ξ drifts to ∞, limt→∞ ξt = ∞, P-a.s. or equivalently k̂0 > 0 is considered in (b). Kesten
and Erickson’s criteria state that ξ drifts to ∞ if and only if
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∫
]−∞,−1[

( |y|
Π+(1) + ∫ |y|

1 Π+(z)dz

)
Π(dy) < ∞ =

∞∫
1

Π+(x)dx or 0 < E(ξ1) � E|ξ1| < ∞,

cf. [17] and [10]. (Actually, Chow, Kesten and Erickson proved the results above for random walks, its translation for
real valued Lévy processes can be found in [8] and [23].)

Remark 4. The results in Theorem 3 are close in spirit to those obtained by Klüppelberg, Kyprianou and Maller [19].
In that work the authors assume that the Lévy process ξ drifts to −∞, i.e. limt→∞ ξt = −∞, P-a.s. and obtain several
asymptotic estimates of the function po in terms of the Lévy measure Π . In our setting we permit any behavior of ξ at
the price of making some assumptions on the dual ladder height subordinator. Furthermore, the results in Theorem 3
concern only the case at which the underlying Lévy process does not have exponential moments and so it extends to
Lévy processes Theorem 1-(B,C) of Veraverbeke [22]. The case at which the Lévy process has exponential moments
has been considered by Klüppelberg et al. [19] Proposition 5.3 under the assumption that the underlying Lévy process
has positive jumps and drifts to −∞, but actually the latter hypothesis is not used in their proof, and so their result is
still true in this more general setting, which extends Theorem 1-A in [22].

Remark 5. The estimate of po obtained in Theorem 3(a) holds whenever the function Π+
I belongs to the class L0,

but it is known that it occurs even if Π+ /∈ L0, see e.g. Klüppelberg [18]. A question arises: Is it possible to sharpen
the estimate of po provided in Theorem 3(a) when moreover Π+ ∈ L0? The following result answers this question in
affirmatively and will be proved below.

Proposition 2. Assume that μ = E(Ĥ1) < ∞. The following are equivalent

(i) Π+ ∈ L0.
(ii) For any g : R+ → R+ directly Riemann integrable,

lim
x→∞

1

Π+(x)

∞∫
x

po(dy)g(y − x) = 1

μ

∞∫
0

g(z)dz.

To our knowledge the discrete time analogue of this result, that we state below, is unknown, although it can be
easily deduced from the arguments in Asmussen et al. [1] Lemma 3.

Proposition 3. Let X1,X2, . . . be a sequence of independent and identically distributed random variables, Z its
associated random walk Z0 = 0, Zn = ∑n

k=1 Xk,n > 0 and define the pair of random variables (N,ZN) where N

is the first ladder epoch of the random walk Z, N = min{k: Zk > 0}, and ZN , is the position of Z at the instant N .
Assume that m = E(ZN̂ ) < ∞, where N̂ = inf{n > 0: Zn � 0} and that the law of X1 is non-lattice. The following
are equivalent

(i) The law of X1 belongs to the class L0.
(ii) For any g : R+ → R

+ directly Riemann integrable,

lim
x→∞

1

F(x)

∞∫
x

g(y − x)P(ZN ∈ dy) = 1

m

∞∫
0

g(z)dz,

where F(x) = P(X1 > x), x > 0.

The proof of this result is quite similar to that of Proposition 2 and so we will omit it.

The forthcoming sections are organized as follows. In Section 2, we focus all our efforts into prove an equivalent
form of the Dynkin and Lamperti theorem for subordinators (see e.g. [2] Theorem III.6) which is one of the key tools
in the proof of Theorem 1 and it is interesting in itself. In Section 3, we prove Theorem 2. Finally, Section 4 is devoted
to the proof of Theorem 3 and Propositions 1 and 2.
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2. A result for subordinators

In the proof of Theorem 1 we have seen that a fluctuation identity due to Bertoin and Doney allows us to simplify
our problem for general Levy processes into one for subordinators. Namely, that for subordinators Sinaı̌’s condition
is equivalent to the regular variation of the associated Laplace exponent. The purpose of this section is to prove the
latter assertion, and so throughout this section we will only deal with subordinators.

Let σ = (σt , t � 0) be a subordinator, possibly killed, with life time ζ , and denote by φ its Laplace exponent,

φ(λ) ≡ − log E
(
e−λσ1,1 < ζ

)
, λ � 0.

It is well known that the Laplace exponent φ can be represented as

φ(λ) = κ + λd +
∫

]0,∞[

(
1 − e−λy

)
ν(dy), λ � 0,

where κ, d � 0 are the killing rate and drift coefficient of σ , respectively, and ν is the Lévy measure of σ , that is,
a measure on ]0,∞[ such that

∫
]0,∞[ min{1, y}ν(dy) < ∞.

The main result of this section is the following equivalent form of the Dynkin and Lamperti theorem for subor-
dinators (see e.g. [2] Theorem III.6, see also page 82 therein for an account on necessary and sufficient conditions
according to which a subordinator has a Laplace exponent that is regularly varying either at infinity or at 0).

Theorem 4. For β ∈ [0,1], the following are equivalent:

(i) The subordinator σ satisfies Sinaı̌’s condition at 0+ (respectively, at +∞) with index β .
(ii) The Laplace exponent φ is regularly varying at +∞ (respectively, at 0+) with index β .

The proof of this result relies on the following elementary remark.

Remark 6. Write

φ(θ) = (
1 + φ(θ)

) φ(θ)

1 + φ(θ)
, θ � 0. (4)

The first (respectively, second) factor in the right-hand term of the previous equality can be used to determine the
behavior at infinity (respectively, at 0) of φ. More precisely, φ ∈ RV∞

β (respectively, ∈ RV0
β ) if and only

1 + φ(·) ∈ RV∞
β

(
respectively,

φ(·)
1 + φ(·) ∈ RV0

β

)
.

This is based on the fact that for λ > 1,

∞∫
0

dt

t
P(z < σt � λz) ∼

∞∫
0

dt

t
e−tP(z < σt � λz) ∼

1∫
0

dt

t
P(z < σt � λz), z → 0+,

and
∞∫

0

dt

t
P(z < σt � λz) ∼

∞∫
0

dt

t

(
1 − e−t

)
P(z < σt � λz) ∼

∞∫
1

dt

t
P(z < σt � λz), z → ∞,

since only the small time (respectively, long time) behavior of σ is relevant to estimate the value at 0 (respectively,
at ∞) of the leftmost integral in the former (respectively, latter) equation. In general, for studying properties related
to the small time behavior of σ it may be useful to consider

∞∫
0

dt

t
e−tP(σt ∈ dz) or

1∫
0

dt

t
P(σt ∈ dz),

instead of
∫ ∞ dt P(σt ∈ dz). The analogous holds also for large time behavior.
0 t
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The proof of Theorem 4 will be given using the previous remark and via three lemmas whose proof will be given
at the end of this section. The first of them will enable us to relate the factors in Eq. (4) with a transformation of the
type Mellin’s convolution.

Lemma 2. We have that

(i) 1+φ(θ) = exp{Ĝ1(θ)}, for θ > 0; where the function Ĝ1 is the Mellin convolution of the non-decreasing function

G1(y) =
∞∫

0

dt

t
e−tP

(
σt >

1

y

)
, y > 0,

and the kernel k(x) = x e−x, x > 0; that is,

Ĝ1(θ) = kM ∗ G1(θ) :=
∞∫

0

dx

x
k

(
θ

x

)
G1(x), θ > 0.

(ii) φ(θ)/(1 + φ(θ)) = exp{−Ĝ2(θ)}, for θ > 0; where Ĝ2 is the Laplace transform of the measure

G2(dx) =
∞∫

0

dt

t

(
1 − e−t

)
P(σt ∈ dx), x > 0;

which is in fact the harmonic renewal measure associated to the law F(dx) = P(σΘ ∈ dx) with Θ an independent
random variable with exponential law of parameter 1.

A consequence of Lemma 2 is that 1 + φ ∈ RV∞
β if and only if

lim
θ→∞ Ĝ1(λθ) − Ĝ1(θ) = β logλ, ∀λ > 0. (5)

Moreover, φ(·)/(1 + φ(·)) ∈ RV0
β if and only if

lim
θ→0

Ĝ2(λθ) − Ĝ2(θ) = −β logλ, ∀λ > 0. (6)

The second of these lemmas enable us to relate Sinai’s condition with the behavior at infinity of the differences of
the function G1, and those of the function G2(x) ≡ G2[0, x], x > 0.

Lemma 3. Let β ∈ [0,1].

(i) Sinaı̌’s condition holds at 0 with index β if and only if

lim
z→∞G1(λz) − G1(z) = β log(λ), ∀λ > 1.

(ii) Let G2(z) := G2[0, z], z > 0. Sinaı̌’s condition holds at infinity with index β if and only if

lim
z→∞G2(λz) − G2(z) = β log(λ), ∀λ > 1.

The last ingredient to achieve the proof of Theorem 4 is an Abelian–Tauberian type result relating the behavior of
the differences of G1 (respectively, G2) with those of the functions Ĝ1 (respectively, Ĝ2).

Lemma 4.

(i) The following are equivalent

lim
y→∞G1(λy) − G1(y) = β log(λ), ∀λ > 0. (7)

lim Ĝ1(λθ) − Ĝ1(θ) = β log(λ), ∀λ > 0. (8)

θ→∞
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Both imply that

G1(θ) − Ĝ1(θ) −→
θ→∞βγ.

(ii) The following are equivalent

lim
y→∞G2(λy) − G2(y) = β log(λ), ∀λ > 0. (9)

lim
θ→0

Ĝ2(λθ) − Ĝ2(θ) = −β log(λ), ∀λ > 0. (10)

Both imply that

G2(θ) − Ĝ2

(
1

θ

)
−→
θ→∞βγ.

Where γ is Euler’s constant γ = ∫ ∞
0 e−v log(v)dv.

Tacking for granted Lemmas 2, 3 and 4 the proof of Theorem 4 is straightforward.
A consequence of Lemma 4 is that quantities related to Sinaı̌’s condition can be used to determine some parameters

of σ . That is the content of the following corollary.

Corollary 3.

(i) σ has a finite lifetime a.s. if and only if

r ≡ lim
θ→∞G2(θ) < ∞.

In this case, φ(0) = (er − 1)−1. In particular, Sinaı̌’s condition is satisfied at infinity with index β = 0.
(ii) σ is a compound Poisson process if and only if

r̃ ≡ lim
θ→∞G1(θ) < ∞.

In this case, ν]0,∞[ = er̃ − 1. In particular, Sinaı̌’s condition is satisfied at 0 with index β = 0.
(iii) Assume that Sinaı̌’s condition holds at infinity with index β = 1. Then σ has a finite mean if and only if

R ≡ lim
θ→∞ log(θ) − G2(θ) < ∞.

In this case, E(σ1) = eγ+R .
(iv) Assume that Sinaı̌’s condition holds at 0 with index β = 1. Then σ has a strictly positive drift d if and only if

R̃ ≡ lim
θ→∞G1(θ) − log(θ) < ∞

In this case, d = eγ+R̃ .

Before we pass to the proof of Lemmas 2, 3 and 4 we make a final remark.

Remark 7. For β ∈ ]0,1[, it is well known that φ ∈ RV∞
β if and only if the sequence of subordinators σz defined

by (σ z
t = zσt/φ(z), t � 0) converge as z → ∞, in the sense of finite dimensional distributions and in Skorohod’s

topology, to a stable subordinator σ̃ of parameter β . This is equivalent to say that for any t > 0

P(1 < zσt/φ(z) � λ) −→
z→∞ P(1 < σ̃t � λ), λ > 1, (11)

and

P(λ < zσt/φ(z) � 1) −→
z→∞ P(λ < σ̃t � 1), 0 < λ < 1. (12)

On the other hand, Theorem 4 ensures that the latter condition on φ holds if and only if Sinaı̌’s condition holds at 0,
which can be written as follows: for any λ > 1
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∞∫
0

ds

s
P(1 < z−1σs/φ(z−1) � λ) =

∞∫
0

dt

t
P(z < σt � λz)−→

z→0
β ln(λ) =

∞∫
0

ds

s
P(1 < σ̃s � λ), (13)

where the first equality is justified by a change of variables s = tφ(z−1) and the last one follows from the scaling
property of the stable subordinator σ̃ ; and for any 0 < λ < 1

∞∫
0

ds

s
P(λ < z−1σs/φ(z−1) � 1)−→

z→0

∞∫
0

ds

s
P(λ < σ̃s � 1), (14)

Putting the pieces together we get that the result in Theorem 4 can be viewed as an equivalence between the
convergence of the uni-dimensional laws of σz in (11) and (12) and the convergence of the integrated ones in (13)
and (14). An analogous fact can be deduced for the convergence of σz as z goes to 0 whenever Sinaı̌’s condition holds
at infinity.

2.1. Proof of Lemmas 2, 3 and 4

Proof of (i) in Lemma 2. We have by Frullani’s formula that for every θ > 0

1 + φ(θ) = exp

{ ∞∫
0

dt

t
e−t

(
1 − e−tφ(θ)

)} = exp

{
θ

∞∫
0

dy e−θy

∞∫
0

dt

t
e−tP(σt > y)

}
= exp

{
Ĝ1(θ)

}
. �

Proof of (ii) in Lemma 2. The equation relating φ and the measure G2 can be obtained using Frullani’s formula but
to prove moreover that this measure is in fact is an harmonic renewal measure we proceed as follows. Let (ek, k � 1)

be a sequence of independent identically distributed random variables with exponential law of parameter 1 and in-
dependents of σ . Put Θl = ∑l

k=1 ek, l � 1. It was proved by Bertoin and Doney [3], and it is easy to prove, that
(σΘl

, l � 1) forms a renewal process. The harmonic renewal measure associated to (σΘl
, l � 1) is G2(dx). In-

deed,

∞∑
l=1

1

l
P(σΘl

∈ dx) =
∞∑
l=1

1

l

∞∫
0

dt
t l−1

(l − 1)! e−tP(σt ∈ dx) =
∞∫

0

dt

t
e−t

(
et − 1

)
P(σt ∈ dx) = G2(dx).

Moreover, since the l-convolution of F(dx) = P(σΘ1 ∈ dx) is such that

F ∗l (dx) = P(σΘl
∈ dx)

we have that the Laplace transform F̂ (θ) of F is related to that of G2 by the formula

1 − F̂ (θ) = exp
{−Ĝ2(θ)

}
, θ > 0.

Which finish the proof since F̂ (θ) = (1 + φ(θ))−1 for θ > 0. �
Proof of (i) in Lemma 3. We can suppose without loss of generality that λ > 1. Given that

∞∫
0

dt

t
P(z < σt � λz) =

∞∫
0

dt

t
e−tP(z < σt � λz) +

∞∫
0

dt

t
(1 − e−t )P(z < σt � λz),

for every z > 0, and

G1(λz) − G1(z) =
∞∫

dt

t
e−tP

(
1

λz
� σt <

1

z

)
, z > 0,
0
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in order to prove (i) in Lemma 3 we only need to check that

lim
z→0

∞∫
0

dt

t

(
1 − e−t

)
P(z < σt � λz) = 0, ∀λ > 1.

Indeed, given that for any 0 < z < ∞
1∫

0

dt

t

(
1 − e−t

)
P(σt � λz) �

1∫
0

dt

t

(
1 − e−t

)
< ∞,

we have by the monotone convergence theorem that

1∫
0

dt

t

(
1 − e−t

)
P(z < σt � λz) �

1∫
0

dt

t

(
1 − e−t

)
P(σt � λz) → 0 as z → 0, ∀λ > 1.

Furthermore, for any 0 < z < ∞ and 1 < λ,

∞∫
1

dt

t
P(σt � λz) �

∞∫
1

dt P(σt � λz) < ∞,

owing to the fact that the renewal measure associated to σ of any interval [0, z], z > 0, is finite, see e.g. [2] Proposi-
tion III.1. Thus, proceeding as in the case

∫ 1
0 we obtain that for any λ > 1,

lim
z→0

∞∫
1

dt

t

(
1 − e−t

)
P(z < σt � λz) = 0. �

Proof of (ii) in Lemma 3. As in the proof of (i) it is enough to prove that

lim
z→∞

∞∫
0

dt

t
e−tP(z < σt � λz) = 0, ∀λ > 1.

Indeed, it is straightforward that

lim
z→∞

∞∫
1

dt

t
e−tP(z < σt � λz) = 0, ∀λ > 1.

To prove that

lim
z→∞

1∫
0

dt

t
e−tP(z < σt � λz) = 0, ∀λ > 1,

we will use the inequality (6) in Lemma 1 of [12] which enable us to ensure that for any u > 0 and z > 0

P(z < σt < ∞) � t φ̃(u) e−κt

1 − e−uz
, with φ̃(u) = ud +

∫
]0,∞[

(
1 − e−ux

)
ν(dx).

Applying this inequality we get that, for any u, z > 0 and λ > 1,

1∫
dt

t
e−tP(z < σt � λz) � φ̃(u)

1 − e−uz

1∫
e−(1+κ)t dt.
0 0
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Making, first z → ∞ and then u → 0 in the previous inequality, we obtain the estimate

lim
z→∞

1∫
0

dt

t
e−tP(z < σt � λz) � φ̃(0)

1∫
0

e−(1+κ)tdt,

valid for any λ > 1. Which in fact ends the proof since φ̃(0) = φ(0) − κ = 0. �
Proof of Lemma 4. The equivalence in (ii) of Lemma 4 follows from Theorem 3.9.1 in [4]. The equivalence in (i)
of Lemma 4 is obtained by applying Abelian–Tauberian theorems relying the behavior of the differences of a non-
decreasing function and those of their Mellin transform. Indeed, to prove that (7) implies (8) we apply an Abelian
theorem that appears in [4] Section 4.11.1. To that end we just need to verify that the Mellin transform ǩ of the kernel
k is finite in a set A = {x ∈ C: a � 	(x) � b} with a < 0 < b. This is indeed the case since the Mellin transform of k,

ǩ(x) :=
∞∫

0

t−xk(t)
dt

t
=

∞∫
0

t−x e−t dt, x ∈ C,

is finite in the strip 	(x) < 1. That (8) implies (7) is a direct consequence of a Tauberian theorem for differences
established in [13] Theorem 2.35. �
Proof of Corollary 3. To prove the assertion in (i) observe that

lim
θ→∞G2(θ) =

∞∫
0

dt

t

(
1 − e−t

)
P(σt < ∞) =

∞∫
0

dt

t

(
1 − e−t

)
e−tφ(0),

which is finite if and only if φ(0) > 0, so if and only if σ has finite lifetime a.s. In this case, by Frullani’s formula

lim
θ→∞G2(θ) = ln

(
1 + φ(0)

φ(0)

)
.

In particular, Sinaı̌’s condition is satisfied at infinity with index β = 0.
We next prove (ii). To that end observe that

lim
θ→∞G1(θ) =

∞∫
0

dt

t
e−tP(σt > 0) =

∞∫
0

dt

t
e−t

(
1 − P(σt = 0)

)
.

If the latter quantity is finite it implies that for t > 0, σs = 0, for all s � t , with probability > 0. So σ is compound
Poisson. Reciprocally, if the latter holds then

P(σt = 0) = e−tν]0,∞[, t � 0,

and thus

lim
θ→∞G1(θ) = ln

(
1 + ν]0,∞[).

In particular, Sinaı̌’s condition is satisfied at 0 with index β = 0.
The proof of the assertion in (iii) and (iv) in Corollary 3 are quite similar so we will only prove the assertion in (iii)

and indicate the tools needed to prove (iv). Observe that owing to ξ satisfies Sinaı̌’s condition at infinity with index
β = 1 and the assertion in (i) in Corollary 3 then its lifetime is a.s. infinite and so φ(0) = 0. It is well known that any
subordinator has finite mean if and only if its Laplace exponent is derivable at 0. Since σ is assumed to have infinite
lifetime and the following relations, which are a consequence of the Lemmas 2, 3 and 4,

φ(θ)

θ
∼

φ(θ)
1+φ(θ)

θ
∼ exp

{−Ĝ2(θ) − log(θ)
} ∼ exp

{
γ − G2

(
1

θ

)
+ log

(
1

θ

)}
as θ → 0,

we have that φ is derivable at 0 if and only if the limit in Corollary 3(iii) holds. The proof of the assertion in Corol-
lary 3(iv) uses the fact that σ has a strictly positive drift if and only if limθ→∞ φ(θ)/θ > 0. �
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3. Proof of Theorem 2

We will prove that under the assumptions of Theorem 2, for t → ∞ in Eq. (2), the assertion in Corollary 1(iv)
holds. (The proof of the case t → 0 in Eq. (2) follows in a similar way and so we omit the proof.) To that end, let
(ξ r )r>0 be the family of Lévy processes defined by, (ξ r (t) = ξrt /b(r), t � 0) for r > 0. The hypothesis of Theorem 2
is equivalent to the convergence, in the sense of finite dimensional distributions, of the sequence of Lévy processes ξ r

to a stable Lévy process X with characteristic exponent given by the formula (2). By Corollary 3.6 in Jacod–Shiryaev
we have that this convergence holds also in the Skorohod topology and Theorem IV.2.3 in Gihman and Skorohod [14]
enable us to ensure that there is also convergence of the first passage time above the level x and the overshoot at the
first passage time above the level x by ξ r to the corresponding objects for X. That is, for any x > 0

τ r
x = inf

{
t > 0: ξ r (t) > x

}
, γ r

x = ξ r
(
τ r
x

) − x,

τx = inf
{
t > 0: X(t) > x

}
, γx = X(τx) − x,

we have that(
τ r
x , γ r

x

) D−→
r→∞(τx, γx).

In particular, for x = 1, we have that τ r
1 = r−1Tb(r) and γ r

1 = (ξTb(r)
− b(r))/b(r), in the notation of Corollary 1,

and thus that(
r−1Tb(r),

(ξTb(r)
− b(r))

b(r)

)
D−→

r→∞(τ1, γ1).

We will next prove that

ξTr − r

r

D−→
r→∞γ1,

which implies that the assertion (iv) in Corollary 1 holds. To that end, we introduce the generalized inverse of b,
b←(t) = inf{r > 0: b(r) > t} for t > 0. Given that b is regularly varying at infinity it is known that b(b←(t)) ∼ t as
t → ∞, see e.g. [4] Theorem 1.5.12. Owing the following relations valid for any ε > 0 fixed and small enough,

b
(
b←(r) − ε

)
� r � b

(
b←(r)

)
, r > 0,

we have that for any x > 0

P
(

ξTb(b←(r))

b(b←(r))

b(b←(r))

r
� x + 1

)
� P

(
ξTr

r
� x + 1

)
� P

(
ξTb(b←(r)−ε)

b(b←(r) − ε)

b(b←(r) − ε)

b(b←(r))

b(b←(r))

r
� x + 1

)
.

Making r tend to infinity and using that b(b←(r) − ε)/b(b←(r)) → 1 as r → ∞, we get that the left and right-hand
sides of the previous inequality tend to P(γ1 + 1 � x + 1) and so that for any x > 0

P
(

ξTr − r

r
� x

)
−→
r→∞ P(γ1 � x).

Furthermore, it is well known that in the case αρ ∈ ]0,1[ the law of γ1 is the generalized arc-sine law with parameter
αP(X1 > 0) = αρ, that is

P(γ1 ∈ dx) = sin(αρπ)

π
x−αρ(1 + x)αρ−1dx, x > 0.

In the case αρ = 0 the random variable γ1 is degenerate at infinity and in the case αρ = 1 it is degenerate at 0. Thus,
in any case the Sinaı̌ index of ξ is αρ. Which finish the proof of Theorem 2.

For shake of completeness in the following lemma we provide necessary and sufficient conditions on the tail
behavior of the Lévy measure of ξ in order that the hypotheses of Theorem 2 be satisfied. This result concerns only
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the case t → ∞ in (i) of Theorem 2 and α ∈ ]0,1[. The triple (a, q2,Π) denotes the characteristics of the Lévy
process ξ , that is, its linear and Gaussian term, a, q and Lévy measure Π and are such that

Ψ (λ) = iaλ − λ2q2

2
+

∫
R\{0}

(
eiλx − 1 − iλx1{|x|<1}

)
Π(dx), λ ∈ R.

By Π+ and Π− we denote the right- and left-hand tails of the Lévy measure Π respectively, i.e. Π+(x) = Π]x,∞[
and Π−(x) = Π]−∞,−x[, for x > 0.

Lemma 5. Let α ∈ ]0,1[ and δ ∈ [−1,1]. The following are equivalent

(DA) There exists a function b : ]0,∞[→]0,∞[ which is regularly varying at infinity with index β = 1/α and such
that the limit in Eq. (2) holds as t → ∞.

(TB) The function Π+(·) + Π−(·) is regularly varying at infinity with index −α and

Π+(x)

Π+(x) + Π−(x)
→ p,

Π−(x)

Π+(x) + Π−(x)
→ q, as x → ∞; p + q = 1,p − q = δ.

Proof of Lemma 5. It is plain, that for any t > 0 the function Ψ (t)(λ) := tΨ (λ/b(t)) is the characteristic exponent
of the infinitely divisible random variable X(t) := ξt/b(t), which by the hypothesis DA(α) converges to a stable law
X(1) whose characteristic exponent is given by Eq. (2). The characteristic exponent Ψ (t) can be written as

Ψ (t)(λ) = iλa(t) − λ2(q(t)
)2

/2 +
∫

R\{0}

(
eiλz − 1 − iλh(z)

)
Π(t)(dz),

where h(z) = z1{|z|�1} + z−11{|z|>1} and (a(t), q(t),Π(t)) are given by

a(t) = ta

b(t)
+ t

b(t)

∫
x1{1<|x|�b(t)}Π(dx) + tb(t)

∫
x−11{|x|>b(t)}Π(dx),

q(t) = q

(
t

b(t)2

)1/2

, Π(t)(dz) = tΠ
(
b(t)dz

)
.

According to a well known result on the convergence of infinite divisible laws, see e.g. Sato [21], the convergence
in law of X(t) to X as t → ∞, is equivalent to the convergence of the triplet (a(t), q(t),Π(t)) to (l,0,ΠS) as t → ∞,
with

ΠS(dx) = (
c+x−1−α1{x>0} + c−|x|−1−α1{x<0}

)
dx, c+, c− ∈ R

+,

and

l = 2(c+ − c−)

1 − α2
,

and they are such that for every λ ∈ R

−c|λ|α
(

1 − iδ sgn(λ) tan

(
πα

2

))
=

∫
R\{0}

(
eiλx − 1

)
ΠS(dx) = ilλ +

∫
R\{0}

(
eiλx − 1 − iλh(x)

)
ΠS(dx),

with c > 0 convenably chosen. The term δ in the previous equation is determined by δ = p−q = (c+ − c−)/(c+ + c−).
That the hypotheses on the tail behavior of Π are equivalent to the convergence of Πt to ΠS is a quite standard

fact in the theory of domains of attraction and so we refer to [4] Section 8.3.2, for a proof. This implies in particular
that for any x > 0,

tΠ+(
b(t)x

) → c+x−α, and tΠ−(
b(t)x

) → c−x−α as t → ∞.

The only technical detail that requires a proof is that a(t) → l as t → ∞. Indeed, under the conditions (ii) of Theorem 2
and 0 < p < 1 the functions Π+(·) and Π−(·) are regularly varying at infinity with index 0 < α < 1, this implies that
at/b(t) → 0 as t → ∞. Moreover, it is justified by making an integration by parts that
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∫
x1{1<x�b(t)}Π(dx) ∼ Π+(1) − b(t)Π+(

b(t)
) +

b(t)∫
1

Π+(z)dz

∼ Π+(1) − b(t)Π+(
b(t)

) + b(t)Π+(b(t))

1 − α
,

as t → ∞. Multiplying by t/b(t) we get that

t

b(t)

∫
x1{1<x�b(t)}Π(dx) ∼ −tΠ+(

b(t)
) + tΠ+(b(t))

1 − α
→ −c+ + c+

1 − α

as t → ∞. Similarly, it is proved that

t

b(t)

∫
x1{1<−x�b(t)}Π(dx) −→

t→∞ c− − c−
1 − α

.

Concerning the term
∫

x−11{|x|>b(t)}Π(dx), an integration by parts and Karamata’s theorem yield∫
x−11{x>b(t)}Π(dx) ∼ (

b(t)
)−1

Π+(
b(t)

) +
∞∫

b(t)

z−2Π+(z)dz

∼ (
b(t)

)−1
Π+(

b(t)
) + Π+(b(t))

b(t)(1 + α)
,

as t → ∞ and therefore

tb(t)

∫
x−11{x>b(t)}Π(dx) ∼ tΠ+(

b(t)
) + tΠ+(b(t))

1 + α
→ c+ + c+

1 + α
.

Analogously, we prove

tb(t)

∫
x−11{x<−b(t)}Π(dx) −→

n→∞−c− − c−
1 + α

.

Finally, adding up these four terms it follows that

lim
t→∞a(t) = c+ − c−

1 − α
+ c+ − c−

1 + α
= l.

The proof that a(t) → l in the case p = 1, respectively p = 0, is quite similar but uses that Π− = o(Π+), respectively
Π+ = o(Π−). �
Remark 8. The proof of Theorem 2 is a reworking of its analogous for random walks, which was established by
Rogozin [20] Theorem 9.

Remark 9. The result in Lemma 5 holds also true for α ∈ ]0,2[ if the Lévy process is assumed to be symmetric
(the proof of Lemma 5 can be easily extended to this case). Furthermore, there is also an analogue of this result when
t → 0 in (i) of Theorem 2 in the cases 1 < α < 2 or 0 < α < 2 and ξ is assumed to be symmetric. Its proof is quite
similar to that of Lemma 5, see e.g. the recent work of De Weert [6].

4. Proofs of Theorem 3 and Propositions 1 and 2

Proof of (a) in Theorem 3. To prove that (a-1) is equivalent to (a-2) we will prove that either of this conditions
implies that

po(x) =
∞∫

Π+(x + y)V̂ (dy) ∼ 1

μ

∞∫
Π+(z)dz as x → ∞, (15)
0 x
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with μ := E(Ĥ1), from where the result follows. (Observe that the assumption that Ĥ has a finite mean implies that∫ ∞
Π+(z)dz < ∞.)

Assume that (a-1) holds. Indeed, by the renewal theorem for subordinators we have that for any h > 0,

lim
t→∞ V̂ ]t, t + h] = h

μ
.

Thus, for any h > 0 given and any ε > 0 there exists a t0(h, ε) > 0 such that

(1 − ε)
h

μ
< V̂ ]t, t + h] < (1 + ε)

h

μ
, ∀t > t0,

and as a consequence, if N0 is an integer such that N0h > t0, we have the following inequalities

∞∫
0

Π+(x + y)V̂ (dy) � Π+(x)V̂ [0,N0h] +
∞∑

k=N0

Π+(kh + x)V̂ ]kh, kh + h]

� Π+(x)V̂ [0,N0h] + (1 + ε)

∞∑
k=N0

Π+(kh + x)
h

μ

� Π+(x)V̂ [0,N0h] + 1 + ε

μ

∞∫
(N0−1)h

Π+(x + z)dz

� Π+(x)V̂ [0,N0h] + 1 + ε

μ

∞∫
x

Π+(z)dz.

It follows from the previous inequalities and the fact that

Π+(x)
/ ∞∫

x

Π+(z)dz → 0 as x → ∞,

since Π+
I ∈ L0 and Π+ is decreasing, that

lim sup
x→∞

∫ ∞
0 Π+(x + y)V̂ (dy)

1
μ

∫ ∞
x

Π+(z)dz
� 1.

Analogously, we prove that
∞∫

0

Π+(x + y)V̂ (dy) � 1 − ε

μ

∞∫
x

Π+(z)dz − 1 − ε

μ
Π+(x)(N0 + 1)h, x > 0.

Therefore,

lim inf
x→∞

∫ ∞
0 Π+(x + y)V̂ (dy)

1
μ

∫ ∞
x

Π+(z)dz
� 1.

Which ends the proof of the claim (15).
We assume now that (a-2) holds and we will prove that the estimate in (15) holds. On the one hand, we know that

for every z > 0

Π+(z) =
∞∫
z

po(dy)ne(y − z) + d̂p̄(z),

since k̂0 = 0, because under our assumptions the Lévy process does not drift to ∞. Integrating this relation between
x and ∞ and using Fubini’s theorem we obtain that for any x > 0
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∞∫
x

dzΠ+(z) =
∞∫

x

po(dy)

y−x∫
0

dzne(z) + d̂po(x) � po(x)

( ∞∫
0

dz ne(z) + d̂

)
= po(x)μ < ∞.

Thus,

lim sup
x→∞

1
μ

∫ ∞
x

dzΠ+(z)

po(x)
� 1.

On the other hand, to prove that

lim inf
x→∞

1
μ

∫ ∞
x

dzΠ+(z)

po(x)
� 1,

we will use an argument based on some facts of renewal theory. To that end we recall that it was proved by Bertoin
and Doney [3] that the potential measure of a subordinator Ĥ is the delayed renewal measure associated to the law
F(x) = P(Ĥϑ � x) with ϑ an exponential random variable independent of Ĥ , that is

V̂ (dy) =
∞∑

n=1

F ∗n(dy).

We have by hypothesis that
∫ ∞

0 (1 − F(x))dx = E(Ĥ1) = μ < ∞ and thus the measure G̃F (dy) on ]0,∞[, with
density GF (z) := (1 − F(z))/μ, z > 0, is a probability measure. By standard facts of renewal theory we know that
the following equality between measures holds

dy

μ
= G̃F (dy) + G̃F ∗ V̂ (dy), y > 0,

where ∗ denotes the standard convolution between measures. Using this identity and Eq. (EAI) we have that for any
x > 0,

1

μ

∞∫
0

dy Π+(x + y) =
∞∫

0

dy GF (y)Π+(x + y) +
∞∫

0

dzGF (z)

∞∫
0

V̂ (dr)Π+(x + z + r)

=
∞∫

0

dy GF (y)Π+(x + y) +
∞∫

0

dzGF (z)po(x + z),

and by Fatou’s lemma we get that

lim inf
x→∞

1
μ

∫ ∞
0 dy Π+(x + y)

po(x)
�

∞∫
0

dzGF (z) lim inf
x→∞

po(x + z)

po(x)
= 1.

So we have proved that (a-1) and (a-2) are equivalent and imply (a-3). To finish the proof, we will prove that (a-3)
implies (a-2). To that end it suffices with proving that

lim
x→∞

po(x) − po(x + y)

po(x)
= 0, for any y > 0.

Indeed, using Eq. (EA) we have that for any y > 0,

μ −
∫ ∞

0 dzΠ+(z + x)

po(x)
=

∫ ∞
0 dzne(z)po(x) + d̂po(x) − ∫ ∞

x
po(dy)

∫ y−x

0 dzne(z) − d̂po(x)

po(x)

=
∞∫

0

dz ne(z)
po(x) − po(x + z)

po(x)
�

∞∫
y

dz ne(z)
po(x) − po(x + y)

po(x)
� 0,

and the assertion follows making x → ∞ in the latter equation since by assumption its left-hand term tends to 0 as
x → ∞. �
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Proof of (b) in Theorem 3. The assumption that k̂0 > 0, implies that the renewal measure V̂ (dy) is a finite measure
and V̂ [0,∞[ = 1/k̂0. Thus if Π+(x) ∈ L0 we have by Eq. (EA) and the dominated convergence theorem that

lim
x→∞

po(x)

Π+(x)
= lim

x→∞

∞∫
0

V̂ (dy)
Π+(x + y)

Π+(x)
=

∞∫
0

V̂ (dy) lim
x→∞

Π+(x + y)

Π+(x)
= 1

k̂0
.

Now, that (3) holds is a straightforward consequence of the following identity, for any x > 0

Π+(x) =
∞∫

0

ne(dy)
(
po(x) − po(x + y)

) + k̂0po(x) + d̂p̄(x)

= po(x)

1∫
0

ne(dy)

(
po(x) − po(x + y)

po(x)

)
+

∞∫
1

ne(dy)
(
po(x) − po(x + y)

) + k̂0po(x) + d̂p̄(x), (16)

which is obtained using Eq. (EAI) and Fubini’s theorem. We have so proved that (b-1) implies (b-2) and (b-3). Next,
to prove that (b-2) implies (b-1) and (b-3) we assume that po ∈ L0 and (3) holds. Under this assumptions we claim
that

Π+(x) ∼ k̂0po(x) + d̂p̄(x) as x → ∞.

Indeed, this can be deduced from Eq. (16), using that
∫ 0
−∞ ne(dy)min{|y|,1} < ∞, that limx→∞ po(x +y)/po(x) = 1

for any y > 0, and the dominated convergence theorem. Furthermore, we have by hypothesis that d̂p̄(x)/po(x) → 0
as x → ∞, which implies that

Π+(x) ∼ k̂0po(x) as x → ∞.

To finish we next prove that (b-3) implies (b-2). Indeed, using Eq. (EAI) and the hypothesis (b-3) we get that

Π+(x)

po(x)
− k̂0 =

∫ ∞
x

po(dz)ne(z − x) + d̂p̄(x)

po(x)
=

∞∫
0

ne(dz)
(po(x) − po(x + z))

po(x)
+ d̂p̄(x)

po(x)
→ 0 as x → ∞.

We deduce therefrom that (3) holds and that po ∈ L0 since for any y > 0,

∞∫
0

ne(dz)

(
po(x) − po(x + z)

po(x)

)
� ne(y)

(
po(x) − po(x + y)

po(x)

)
� 0. �

Proof of (a) in Proposition 1. According to Theorem 6.3.2 in [23] under these assumptions the measure po has
infinite total mass if and only if limx→0+

∫ 1
x

Π+(z)dz = ∞ and in this case

po(x) ∼ 1

d̂

1∫
x

Π+(z)dz as x → 0+.

Thus the assertion in (a) Proposition 1 is a consequence of this fact and the monotone density theorem for regularly
varying functions. �
Proof of (b) in Proposition 1. According to Theorem 6.3.1 in [23] under these assumptions, if we suppose
limx→0+ po(x) = ∞, then

po(x) ∼ 1

ne]0,∞[ + k̂0
Π+(x) as x → 0+.

The result follows. �
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Sketch of proof of Proposition 2. The proof of the assertion (i) implies (ii) is a reworking of the proof of Lemma 3
in Asmussen et al. [1], this can be done in our setting since the only hypothesis needed in that proof is that the dual
ladder height has a finite mean.

To show that (i) implies (ii) in Proposition 2 we first prove that under the assumption E(Ĥ1) = μ < ∞, the condition
Π+ ∈ L0, implies that for any z > 0,

(BRT) po]x, x + z[ ∼ z

μ
Π+(x), x → ∞.

The latter estimate and the fact that Π+ ∈ L0 implies that for any a � 0,

po]x + a, x + a + z[ ∼ z

μ
Π+(x), x → ∞. (17)

To prove that (BRT) holds, we may simply repeat the argument in the proof of Lemma 3 in Asmussen et al. [1] using
instead of Eq. (12) therein, the equation

po]x, x + z[ =
∞∫

x

Π(dy)V̂ ]y − x − z, y − x[, z > 0,

which is an elementary consequence of Eq. (EAI) and Fubini’s theorem.
The result in (ii) in Proposition 2 follows from (BRT) in the same way that the Key renewal theorem is obtained

from Blackwell’s renewal theorem using the estimate in (17) and the bounds

po]x, x + z[
Π+(x)

� V̂ (z), x > 0, z > 0,

which are a simple consequence of the former equation and the fact that V̂ is a renewal measure and so that for any
0 < z < y, V̂ (y) − V̂ (y − z) � V̂ (z).

To show that (ii) implies (i) we have to verify that for any a > 0

lim
x→∞

Π+(x + a)

Π+(x)
= 1.

This is indeed true since using (ii) in Proposition 2 it is straightforward that for any z > 0 the assertion in (BRT) holds
and a further application of (ii) in Proposition 2 to the function ga(·) = 1{]a,a+1[}(·), a > 0, gives that for any a > 0,

lim
x→∞

po]x + a, x + a + 1[
Π(x)

= 1

μ
,

and therefore, for any a > 0,

lim
x→∞

Π+(x + a)

Π+(x)
= lim

x→∞
Π+(x + a)

po]x + a, x + a + 1[
po]x + a, x + a + 1[

Π+(x)
= 1. �

Acknowledgements

It is my pleasure to thank Jean Bertoin for pointing out to me the work [15] and for insightful discussions and
Ron Doney for bringing to my attention the papers [22] and [16], suggesting to me an early version of Theorem 3
and Proposition 1 and for a number of helpful comments. Part of this paper was written while I was visiting the
Mathematical Sciences Institute of the Australian National University (ANU) in March 2005. I heartily thank Claudia
Klüppelberg and Ross Maller for arranging this visit, their hospitality and valuable discussions. Last but not least my
thanks go to Alex Lindner for his hospitality during my visit to ANU and many stimulating discussions.

References

[1] S. Asmussen, V. Kalashnikov, D. Konstantinides, C. Klüppelberg, G. Tsitsiashvili, A local limit theorem for random walk maxima with heavy
tails, Statist. Probab. Lett. 56 (4) (2002) 399–404.



V. Rivero / Ann. I. H. Poincaré – PR 43 (2007) 299–319 319
[2] J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996.
[3] J. Bertoin, R.A. Doney, Cramér’s estimate for Lévy processes, Statist. Probab. Lett. 21 (5) (1994) 363–365.
[4] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge Univer-

sity Press, Cambridge, 1989.
[5] Y.S. Chow, On moments of ladder height variables, Adv. Appl. Math. 7 (1) (1986) 46–54.
[6] F. De Weert, Attraction to stable distributions for Lévy processes at zero, Technical report, University of Manchester, 2003.
[7] R. Doney, Fluctuation theory for Lévy processes, in: Lévy Processes, Birkhäuser Boston, Boston, MA, 2001, pp. 57–66.
[8] R.A. Doney, R.A. Maller, Stability of the overshoot for Lévy processes, Ann. Probab. 30 (1) (2002) 188–212.
[9] E.B. Dynkin, Some limit theorems for sums of independent random quantities with infinite mathematical expectations, Izv. Akad. Nauk SSSR

Ser. Mat. 19 (1955) 247–266.
[10] K.B. Erickson, The strong law of large numbers when the mean is undefined, Trans. Amer. Math. Soc. 185 (1973) 371–381 (1974).
[11] B. Fristedt, Sample functions of stochastic processes with stationary, independent increments, in: Advances in Probability and Related Topics,

vol. 3, Dekker, New York, 1974, pp. 241–396.
[12] B.E. Fristedt, W.E. Pruitt, Lower functions for increasing random walks and subordinators, Z. Wahrsch. Verw. Gebiete 18 (1971) 167–182.
[13] J.L. Geluk, L. de Haan, Regular Variation, Extensions and Tauberian Theorems, CWI Tract, vol. 40, Stichting Mathematisch Centrum voor

Wiskunde en Informatica, Amsterdam, 1987.
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