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Abstract

Quantum Decoherence consists in the appearance of classical dynamics in the evolution of a quantum system. T
focuses on the probabilistic interpretation of this phenomenon, connected with the analysis of classical reductions of a
Markov semigroup.
 2005 Elsevier SAS. All rights reserved.

Résumé

La décohérence quantique correspond à l’apparition d’une dynamique classique dans l’évolution d’un système q
Cet article fait une interprétation probabiliste de ce phénomène tout en étudiant les réductions classiques des se
Markoviens quantiques.
 2005 Elsevier SAS. All rights reserved.

1. Introduction

For a number of physicistsdecoherence consists of the dynamical loss of coherences due to the coupled dy
ics of an open system and its environment. For a mathematician though, this statement contains numerou
concepts claiming for definition. When a quantum system is closed, a single complex separable Hilberth

is used in its description together with a self-adjoint operatorH – the Hamiltonian – which is the generator o
unitary group(Ut )t∈R of operators acting onh. Thus,Ut = exp(−itH) if we assume the Planck constanth̄ = 1
for simplicity, and given any elementx in the von Neumann algebraM = L(h) of all bounded linear operator
onh, its evolution is given by a group of automorphismsαt (x) = U∗

t xUt , t ∈ R (Heisenberg picture). The groupα
naturally determines a group of transformationsα∗ on the predual spaceM∗ = I1(h) of trace-class operators b
the equation tr(σαt (x)) = tr(α∗t (σ )x), that is,α∗t (σ ) = UtσU∗

t , (σ ∈ M∗, x ∈ M). In particular, the Schrödinge
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picture which describes the evolution ofstates, identified here withdensity matrices ρ ∈ M∗ which are positive
elements with tr(ρ) = 1, isρt = α∗t (ρ).

For an open system, instead, two Hilbert spaces are needed. The previoush, which we term thesystem space
and theenvironment space hE , so that the total dynamics is represented on the spaceHT = h ⊗ hE by a unitary
group of generatorHT = H + HE + HI , whereHE (respectivelyHI ) denotes the Hamiltonian of the environme
(respectively, the interaction Hamiltonian). If we want to analyze the reduced dynamics on the spaceh, we need
to know in addition the state of the environment, that is, a density matrixρE ∈ I1(hE) has to be given at th
outset. With this density matrix in hands we obtain the Schrödinger picture onh by taking a partial trace on th
environment variables (denoted trE):

T∗t (ρ) = trE
(
e−itHT ρ ⊗ ρE eitHT

)
.

Or, accordingly, we useρE to determine the conditional expectationEM(·) ontoM to obtain

Tt (x) = EM
(
eitHT x ⊗ 1E e−itHT

)
,

for x ∈ M.
What we now have in hands is a semigroup structure instead of a group. Suppose that an orthonorm

(en)n∈N is given in h so that a density matrixρ is characterized by its componentsρ(m,n) = 〈em,ρen〉. Ac-
cordingly,ρt (m,n) denotes the components ofρt = T∗t (ρ), (n,m ∈ N). The off-diagonal termsρt (m,n), n �= m,
are called thecoherences. In a rough version,decoherence consists of the disapearance of these terms as
increases, that isρt (m,n) → 0 ast → ∞. So that, for a large time, the evolution of states becomes essential
scribed by diagonal matrices which are commutative objects ruled by a classical dynamics. To paraphras
et al. (see [20]), decoherence is related to the appearance of a classical world in Quantum Theory.

The subject, from the physical point of view, is certainly much more complex than the rough picture
before. Several authors pointed out that a most careful analysis of involved time scales should be co
(see [33]). Indeed in numerous physical models, the generatorL of the semigroupT is obtained by different limit-
ing procedures leading to the so-calledmaster equations (a quantum version of Chapman–Kolmogorov equatio
via adequate renormalizations on time and space. The recent book [1] contains a systematic study of th
niques synthesized in the concept ofstochastic limit. Thus, for some physicists, decoherence is a phenom
which precedes the derivation of the so-called Markov approximation of the dynamics. Others, have focus
research on algebraic properties leading to a definition and main properties of decoherence in the Heisen
ture (see [4]), while another group looks for the physical causes of decoherence, mainly attributed to inte
of the system with the boundaries of the cavity in which it is contained (see [13]). The debate has been re
by experimental results allowing to observe the decay of coherences for a given initial coherent superpo
two pure states (see the reports of the Haroche’s group at the ENS in Paris [7], and that of the Wineland’s
Boulder [28]).

The physical problem of decoherence is undoubtedly passionating and its discussion leads directly
sophical arguments about the foundations of Quantum Mechanics. We do not pretend here to enter that a
address a much more modest problem which can be easily stated within a well known mathematical fram
we refer to Quantum Markov Theory.

We separate two aspects in the analysis of decoherence. Firstly, the question of the existence of an
subalgebra, generated by a given self-adjoint operator, which remains invariant under the action of a given
Markov semigroup (QMS). Thus, the restriction of the semigroup to that algebra will provide a classical M
semigroup. Secondly, we focus on the asymptotic behavior of a QMS. Our goal in that part is to analyze s
properties of the semigroup leading to a classical limit behavior. Preferred by physicists to construct math
models of open quantum systems, the generator will be our main tool to analyze decoherence of a quantum
semigroup.
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2. Quantum Markov Semigroups

A Quantum Markov Semigroup (QMS) arises as the natural non-commutative extension of the well kn
concept of Markov semigroup defined on a classical probability space and represents the loss-memory
of a microscopic system in accordance with the quantum uncertainty principle. The roots of the theory g
to the first researches on the so calledopen quantum systems (for an account see [2]), and have found its m
non-commutative tools in much older abstract results like the characterization ofcomplete positive maps due to
Stinespring (see [30,31]). Indeed, complete positivity contains a deep probabilistic notion expressed in the l
of operator algebras. In many respects it is the core of mathematical properties of (regular versions of) co
expectations. Thus, complete positivity appears as a keystone in the definition of a QMS. Moreover, in c
Markov Theory, topology plays a fundamental role which goes from the basic setting of the space of s
to continuity properties of the semigroup. In particular, Feller property allows to obtain stronger results
qualitative behavior of a Markov semigroup. In the non-commutative framework, Feller property is exp
as a topological and algebraic condition. Namely, a classical semigroup satisfying the Feller property on a
compact state space leaves invariant the algebra of continuous functions with compact support, which is a p
example of aC∗-algebra. The basic ingredients to start with a non-commutative version of Markov semigrou
then two: firstly, a∗-algebraA, that means an algebra endowed with an involution∗ which satisfies(a∗)∗ = a,
(ab)∗ = b∗a∗, for all a, b ∈ A, in addition we assume that the algebra contains a unit1; and secondly, we need
semigroup of completely positive maps fromA to A which preserves the unit. We will give a precise meaning
this below. We remind thatpositive elements of the∗-algebra are of the forma∗a, (a ∈ A). A state ϕ is a linear
mapϕ :A → C such thatϕ(1) = 1, andϕ(a∗a) � 0 for all a ∈ A.

Definition 1. Let A be a∗-algebra andP :A → A a linear map.P is completely positive if for any finite collection
a1, . . . , an, b1, . . . , bn of elements ofA the element∑

i,j

ai
∗P(bi

∗bj )aj

is positive.

Throughout this paper, we will restrict our∗-algebras to the significant cases ofC∗algebras and von Neuman
algebras of operators on a complex separable Hilbert spaceh. The symbolM will be used to denote a generic vo
Neumann algebra, whileB will be assigned to aC∗-algebra. Moreover, we always assume that ourC∗-algebra
B contains a unit1. In this case states are elements of the dualB∗ of B. A stateϕ is pure if the only positive
linear functionals majorized byϕ are of the formλϕ with 0 � λ � 1. For an AbelianC∗-algebra, the set of pur
states coincides with that of allcharacters, also called spectrum of the algebra (see [5], Proposition 2.3.27, p
A characterϕ of an AbelianC∗-algebraA is a state which satisfiesϕ(ab) = ϕ(a)ϕ(b), for all a, b ∈ A; the set of
all these elements is usually denotedσ(A) (for spectrum) or PA (for pure states).

If M is a von Neumann algebra, its predual is denotedM∗. The predual contains in particular all the norm
states. As a rule, we will only deal withnormal states ϕ for which there exists a density matrixρ, that is, a positive
trace-class operator ofh with unit trace, such thatϕ(a) = tr(ρa) for all a ∈ A.

Definition 2. A quantumsub-Markov semigroup, or quantum dynamical semigroup (QDS) on a∗-algebraA which
has a unit1, is a one-parameter familyT = (Tt )t∈R+ of linear maps ofA into itself satisfying

(M1) T0(x) = x, for all x ∈ A;
(M2) EachTt (·) is completely positive;
(M3) Tt (Ts(x)) = Tt+s(x), for all t, s � 0, x ∈ A;
(M4) T (1) � 1 for all t � 0.
t
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A quantum dynamical semigroup is calledquantum Markov (QMS) if Tt (1) = 1 for all t � 0.
If A is aC∗-algebra, then a quantum dynamical semigroup isuniformly (or norm) continuous if it additionally

satisfies

(M5) limt→0 sup‖x‖�1 ‖Tt (x) − x‖ = 0.

This is a very strong continuity condition which is sometimes replaced by the so calledFeller continuity condition

(M5F) limt→0 ‖Tt (x) − x‖ = 0, for all x ∈ A.

A quantum Markov semigroup satisfying (M5F) will be calledquantum Feller.
If A is a von Neumann algebra, (M5) is usually replaced by the weaker condition

(M5σ ) For eachx ∈ A, the mapt 
→ Tt (x) is σ -weak continuous onA, andTt (·) is normal orσ -weak continuous

The generatorL of the semigroupT is then defined in thew∗ or σ -weak sense. That is, its domainD(L)

consists of elementsx of the algebra for which thew∗-limit of t−1(Tt (x) − x) exists ast → 0. This limit is
denoted thenL(x).

Thepredual semigroup T∗ is defined onM∗ asT∗t (ϕ)(x) = ϕ(Tt (x)) for all t � 0, x ∈ M, ϕ ∈ M∗. Its gener-
ator is denotedL∗.

It is worth noticing that the generatorL is often known indirectly through sesquilinear forms and the so ca
Master Equations in the caseM = L(h). These equations are expressed in terms of density matricesρ ∈ I1(h),
the space of trace-class operators inL(h), and they correspond to a non-commutative version of Chapm
Kolmogorov’s equations:


d

dt
〈v,ρtu〉 = L∗− (ρt )(v,u),

ρ0 = ρ,

(1)

u,v ∈ h, ρt corresponds to the action of the predual semigroup onρ at timet and(u, v) 
→ L∗− (ρ)(v,u) corresponds
to a sesquilinear form which is linear inu ∈ h, and antilinear inv ∈ h.

2.1. The generator in the C∗-case

A quantum Markov semigroup is norm-continuous if and only if its generatorL(·) is a bounded operator onB.
In [10], Christensen and Evans provided an expression for the infinitesimal generatorL of a norm-continuous

quantum dynamical semigroup defined on aC∗-algebra, extending previous results obtained by Lindblad [
Gorini, Kossakowski and Sudarshan [21]. We recall their result here below.

Suppose thatT is a norm-continuous quantum dynamical semigroup onB and denote�B theσ -weak closure of
theC∗-algebraB. Then there exists a completely positive mapΨ :B → �B and an operatorG ∈ �B such that the
generatorL(·) of the semigroup is given by

L(x) = G∗x + Ψ (x) + xG (x ∈ B). (2)

The mapΨ can be represented by means of Stinespring Theorem [31] as follows. There exists a repres
(k,π) of the algebraB and a bounded operatorV from h to the Hilbert spacek such that

Ψ (x) = V ∗π(x)V (x ∈ B). (3)
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Notice thatΨ (1) = V ∗V = −(G∗ + G) = −2�(G) ∈ �B, where�(G) denotes the real part ofG, sinceL(1) =
0. So that, if we callH the selfadjoint operator 2−1i(G−G∗) = −
(G) ∈ �B, where
(G) stands for the imaginar
part ofG, thenL(·) can also be written as

L(x) = i[H,x] − 1

2

(
V ∗V x − 2V ∗π(x)V − xV ∗V

)
(x ∈ B). (4)

The representation ofL(x) in terms ofG andΨ is certainly not unique.

2.2. The generator in the von Neumann case

Consider a von Neumann algebraM on the Hilbert spaceh. The representation of the generatorL(·) of a norm
continuous QMS onM is then improved as follows. There exists a set of operators(Lk)k∈N such thatL = ∑

k L∗
kLk

is a bounded operator inM and
∑

k L∗
kxLk ∈ M wheneverx ∈ M and a selfadjoint operatorH = H ∗ ∈ M such

that

L(x) = i[H,x] − 1

2

∑
k

(Lk
∗Lkx − 2Lk

∗xLk + xLk
∗Lk). (5)

We recover the expression (2) if we put

G = −iH − 1

2

∑
k

L∗
kLk; Ψ (x) =

∑
k

L∗
kxLk. (6)

2.3. The case of a form-generator

In most of applicationsL(·) is not known as an operator directly but through a sesquilinear form. To discus
case we restrict ourselves to the von Neumann algebraM = L(h) and we rephrase, for easier reference the cru
result which allows to construct a quantum dynamical semigroup starting from a generator given as a ses
form. For further details on this matter we refer to [14], Section 3.3, see also [9].

Let G andL� (� � 1) be operators inh which satisfy the following hypothesis:

(H-min) G is the infinitesimal generator of a strongly continuous contraction semigroup inh, D(G) is contained
in D(L�), for all � � 1, and, for allu,v ∈ D(G), we have

〈Gv,u〉 +
∞∑

�=1

〈L�v,L�u〉 + 〈v,Gu〉 = 0.

Under the above assumption (H-min), for eachx ∈ L(h) let L−(x) be the sesquilinear form with doma
D(G) × D(G) defined by

L−(x)(v,u) = 〈Gv,xu〉 +
∞∑

�=1

〈L�v, xL�u〉 + 〈v, xGu〉. (7)

It is well-known (see e.g. [11], Section 3, [14], Section 3.3) that, given a domainD ⊆ D(G), which is a core
for G, it is possible to built up a quantum dynamical semigroup, called theminimal QDS, satisfying the equation

〈
v,Tt (x)u

〉 = 〈v, xu〉 +
t∫

0

L−(
Ts(x)

)
(v,u)ds, (8)

for u,v ∈ D.
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This equation, however, in spite of the hypothesis (H-min) and the fact thatD is a core forG, does not nec
essarily determine a unique semigroup. The minimal QDS is characterized by the following property:
w∗-continuous family(Tt )t�0 of positive maps onL(h) satisfying (8) we haveT (min)

t (x) � Tt (x) for all positive
x ∈ L(h) and all t � 0 (see e.g. [11]; [14], Theorem 3.22; [22], Theorem 3.3.3, p. 86). If the minimal QD
Markov, that isT (min)

t (1) = 1, for all t � 0, then it is the unique solution to (8). One may test that condition on
formal generator through the equationL−(1)(v,u) = 0 for all u,v ∈ D. Throughout this paper we will implicitly
assume that formal generators satisfy the Markov property, and we will then refer to the unique minimal s
of (8) as the minimal quantumMarkov semigroup. For a discussion on sufficient conditions for this proper
hold the reader is addressed to [8,22].

The assumed density ofD implies that the minimal quantum Markov semigroup – which we simply de
T from now on – possess a densely defined generatorL, its domainD(L being given by all elementsx ∈ L(h)

for which the map(u, v) 
→ L−(x)(u, v) is norm-continuous on the product Hilbert spaceh × h. And, for any
x ∈ D(L), L(x) is given by〈v,L(x)u〉 = L−(x)(u, v), u,v ∈ h, after extendingL−(x) from the dense setD × D

to all of h × h by continuity. Also, Proposition 3.1.6 in [5], shows thatL is w∗-closed. Moreover, the predu
semigroupT∗ is now defined on the predual space ofL(h) which isI1(h), the Banach space of trace-class operat
tr(T∗t (ρ)x) = tr(ρTt (x)), (ρ ∈ I1(h), x ∈ L(h)). So that,L∗(D(L∗)) ⊂ I1(h) and, as Davies proved in [11] (se
also [15]), the dense set{|u〉〈v|; u,v ∈ D} is included in the domainD(L∗) of the predual semigroup generat
This predual semigroupT∗ is weakly-continuous. This property, together with complete positivity, imply th
is also a strongly continuous semigroup of bounded linear operators (a so calledC0-semigroup) sinceI1(h) is a
Banach space and Corollary 2.5 in [29] holds. As a result,L∗ is a closed operator too.

2.4. Examples of generators

2.4.1. The quantum damped harmonic oscillator
In this case the Hilbert space used to represent the system ish = �2(N) with its canonical orthonormal bas

(en)n∈N ; M = L(h). We use the customary notations for annihilation (a), creation (a†) and number (N ) operators.
The physical model corresponds to an atom which traverses an ideal resonator (a high quality cavity), it
can be in two levels only (a so calledtwo-level atom). Excitations of a mode of the quantized radiation field
the resonator correspond tophotons which stay in the cavity, they have a finite life-time and they interact with
incident atom. The physical description of the dynamics have been obtained by different approximation pro
(weak coupling limit, coarse graining) which end in aMaster Equation containing the (formal) generator of a qua
tum Markov semigroup. Here we start from that formal generator, the reader interested in its physical deriv
addressed to any textbook on Quantum Optics, here we use the presentation of B.E. Englert and G. Morig
55 of the collective book [33]. Let introduce the physical parameters:A denotes the energy decay rate in the cav
ν, the number of thermal excitations;ω, the natural (circular) frequency. The form-generator of the semigro
given by the (formal) expression

L(x) = i[ωN,x] − 1

2
A(ν + 1)(a†ax − 2a†xa + xa†a) − 1

2
Aν(aa†x − 2axa† + xaa†), (9)

for x in a dense subset ofM, which is the common domain ofa anda†.

2.4.2. The quantum Brownian motion
Let h = L2(Rd;C) andM = L(h). We consider here another version of the harmonic oscillator like in [

Chapter III (see also [3]). Though this is an extension of the previous example, the dimensiond plays here an
important role in the analysis of ergodic properties of the semigroup. AQuantum Brownian Motion means for us a
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quantum Markov process with associated semigroupT on M which is the minimal semigroup (see [8,14] and t
references therein) with form-generator

L−(x) = −1

2

d∑
j=1

(aj a
†
j x − 2ajxa

†
j + xaja

†
j ) − 1

2

d∑
j=1

(a
†
j aj x − 2a

†
j xaj + xa

†
j aj ),

wherea
†
j , aj are the creation and annihilation operators

aj = (qj + ∂j )/
√

2, a
†
j = (qj − ∂j )/

√
2,

∂j being the partial derivative with respect to thej th coordinateqj .

2.4.3. The quantum exclusion semigroup
The generator of this example is constructed via a second quantization procedure. Consider first a se

bounded operatorH0 defined on a separable complex Hilbert spaceh0. H0 will be thought of as describing th
dynamics of a single fermionic particle. We assume that there is an orthonormal basis(ψn)n∈N of eigenvectors
of H0, and denoteEn the eigenvalue ofψn (n ∈ N). The set of all finite subsets ofN is denotedPf (N) and for any
Λ ∈ Pf (N), we denotehΛ

0 the finite-dimensional Hilbert subspace ofh0 generated by the vectors(ψn; n ∈ Λ). To
deal with a system of infinite particles we introduce the fermionic Fock spaceh = Γf (h0) associated toh0 whose
construction we recall briefly (see [6] for full detail).

The Fock space associated toh0 is the direct sum

Γ (h0) =
⊕
n∈N

h
⊗n
0 ,

whereh
⊗n
0 is then-fold tensor product ofh0, with the conventionh⊗0

0 = C. Define an operatorPa on the Fock
space as follows,

Pa(f1 ⊗ f2 ⊗ · · · ⊗ fn) = 1

n!
∑
π

επfπ1 ⊗ · · · ⊗ fπn.

The sum is over all permutationsπ : {1, . . . , n} → {π1, . . . , πn} of the indices andεπ is 1 if π is even and−1 if π

is odd. Define the anti-symmetric tensor product on the Fock space asf1 ∧ · · · ∧ fn = Pa(f1 ⊗ f2 ⊗ · · · ⊗ fn). In
this manner, the Fermi–Fock spaceh is obtained as

h = Γf (h0) = Pa

(⊕
n∈N

h
⊗n
0

)
=

⊕
n∈N

h∧n
0 .

We follow [6] to introduce the so-called fermionicCreation b†(f ) andAnnihilation b(f ) operators onh, asso-
ciated to a given elementf of h0. Firstly, onΓ (h0) we definea(f ) anda†(f ) by initially settinga(f )ψ(0) = 0,
a†(f )ψ(0) = f , for ψ = (ψ(0),ψ(1), . . .) ∈ Γ (h0) with ψ(j) = 0 for all j � 1, and

a†(f )(f1 ⊗ · · · ⊗ fn) = √
n + 1f ⊗ f1 ⊗ · · · ⊗ fn, (10)

a(f )(f1 ⊗ · · · ⊗ fn) = √
n〈f,f1〉f2 ⊗ f3 ⊗ · · · ⊗ fn. (11)

Finally, define annihilation and creation onΓf (h0) asb(f ) = Paa(f )Pa andb†(f ) = Paa
†(f )Pa. These operator

satisfy the Canonical Anti-commutation Relations (CAR) on the Fermi–Fock space:
{
b(f ), b(g)

} = 0= {
b†(f ), b†(g)

}
, (12){

b(f ), b†(g)
} = 〈f,g〉1, (13)

for all f,g ∈ h , where we use the notation{A,B} = AB + BA for two operatorsA andB.
0



356 R. Rebolledo / Ann. I. H. Poincaré – PR 41 (2005) 349–373

n)

learly,

is

es

y

Moreover,b(f ) andb†(g) have bounded extensions to the whole spaceh since‖b(f )‖ = ‖f ‖ = ‖b†(f )‖.
To simplify notations, we writeb†

n = b†(ψm) (respectivelybn = b(ψn)) the creation (respectively annihilatio
operator associated withψn in the spaceh0, (n ∈ N).

TheC∗-algebra generated by1 and all theb(f ), f ∈ h0, is denotedA(h0) and it is known as the canonicalCAR
algebra.

Remark 1. The algebraA(h0) is the unique, up to∗-isomorphism,C∗-algebra generated by elementsb(f ) satis-
fying the anti-commutation relations overh0 (see e.g. [6], Theorem 5.2.5).

Remark 2. It is worth mentioning that the family(b(f ), b†(g); f,g ∈ h0) is irreducible on h, that is, the only
operators which commute with this family are the scalar multiples of the identity ([6], Proposition 5.2.2). C
the same property is satisfied by the family(bn, b

†
n; n ∈ N), since(ψn)n∈N is an orthonormal basis ofh0.

Remark 3. The algebraA(h0) is the strong closure ofD = ⋃
Λ∈Pf (N) A(hΛ

0 ) (see [6], Proposition 5.2.6), this

thequasi-local property. Moreover, the finite dimensional algebrasA(hΛ
0 ) are isomorphic to algebras of matric

with complex components.

An elementη of {0,1}N will be called aconfiguration of particles. For eachn, η(n) will take the value 1 or 0
depending on whether then-th site has been occupied by a particle in the configurationη. In other terms, we sa
that the siten is occupied by the configurationη if η(n) = 1. We denoteS the set of configurationsη with a finite
number of 1’s, that is

∑
n η(n) < ∞. Eachη ∈ S is then identifiable to the characteristic function 1{s1,...,sm} of a

finite subset ofN, which, in addition, we will suppose ordered as 0� s1 < s2 < · · · < sm. For simplicity we write
1k the configuration 1{k}, (k ∈ N). Furthermore, we define

b†(η) = b†
sm

b†
sm−1

. . . b†
s1

, (14)

b(η) = bsmbsm−1 . . . bs1, (15)

for all η = 1{s1,...,sm}. Clearly,b†(1k) = b
†
k , b(1k) = bk (k ∈ N).

To obtain a cyclic representation ofA(h0) we call |0〉 the vacuum vector inh, and|η〉 = b†(η)|0〉 (η ∈ S). Then
(|η〉, η ∈ S) is an orthonormal basis ofh. In this manner, anyx ∈ A(h0) can be represented as an operator inL(h).
Moreover, callv the vector space spanned by(|η〉, η ∈ S).

An elementary computation based on the C.A.R. shows that for anyη, ζ ∈ S, it holds

b
†
k |η〉 = (

1− η(k)
)|η + 1k〉, (16)

bk|η〉 = η(k)|η − 1k〉 (k ∈ N). (17)

We assume in addition thatH0 is bounded from below, so that there existsb ∈ R such thatb < En for all
n ∈ N. Then, the second quantization ofH0 becomes a self-adjoint operatorH acting onh, with domainD(H)

which includesv and can formally be written as

H =
∑
n

Enb
†
nbn. (18)

It is worth mentioning that the restrictionHΛ = ∑
n∈Λ Enb

†
nbn of H to each spaceΓf (hΛ

0 ) is an element of the
algebraA(hΛ

0 ), Λ ∈ Pf (N), so thatHΛ is a bounded operator. Moreover, for each‖H |η〉 − HΛ|η〉‖ → 0 asΛ

increases toN, for eachη ∈ S.
Thetransport of a particle from a sitei to a sitej , at a rateγi,j is described by an operatorLi,j defined as

L = √
γ b

†
b . (19)
i,j i,j j i
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This corresponds to the action of a reservoir on the system of fermionic particles pushing them to jump b
different sites. Each operatorLi,j is an element ofA(h0) and‖Li,j‖ = √

γi,j . We additionally assume that

sup
i

∑
j

γi,j < ∞. (20)

Now, for eachΛ ∈ Pf (N) andx ∈ A(h0), define

ϕΛ(x) =
∑

i,j∈Λ

Li,j
∗xLi,j .

ϕΛ : A(h0) → A(h0) is a completely positive map. Moreover, for each vector|η〉 of the orthonormal basis inh,
∥∥ϕΛ(x)|η〉∥∥ �

∑
i,j∈Λ

∥∥Li,j
∗xLi,j |η〉∥∥ =

∑
i,j∈Λ

η(i)
(
1− η(j)

)√
γi,j

∥∥Li,j
∗x|η − 1i + 1j 〉

∥∥

�
∑

i,j∈Λ

η(i)
(
1− η(j)

)
γi,j‖x‖ �

(
sup

i

∑
j

γi,j

)
‖x‖.

So that‖ϕΛ(x)|η〉‖ is uniformly bounded asΛ run overPf (N). Moreover,∑
i,j

∥∥Li,j
∗xLi,j |η〉∥∥ < ∞

so that‖(ϕΛ(x) − ϕ(x))u‖ → 0 for all u ∈ v asΛ ↑ N, where the operator

ϕ(x) =
∑
i,j

Li,j
∗xLi,j ,

is defined on the dense manifoldv for all x ∈ A(h0).
As a result,ϕΛ(1) converges in the same sense toϕ(1) = ∑

i,j Li,j
∗Li,j .

To summarize, the generator of the QMS in this case is given in the form (5):

L(x) = i[H,x] − 1

2

∑
i,j

(Li,j
∗Li,j x − 2Li,j

∗xLi,j + xLi,j
∗Li,j ), (21)

with H andLi,j introduced in (18), (19),x ∈ A(h0) andv is a core domain forL(x).

3. The appearance of classical Markov semigroups

Given a quantum Markov semigroupT and a self-adjoint operatorK , this section studies different condition
on the generator of the semigroup to leave invariant the Abelian algebra generated byK .

Definition 3. We say that a completely positive mapP defined onB is reduced by an Abelian∗-subalgebraA if
A ⊆ B is invariant under the action ofP .

Analogously, a quantum dynamical (resp. Markov) semigroup(Tt )t∈R+ defined onB is reduced by A if A ⊆ B

is invariant under the action ofTt for all t � 0.
We will simply say that the semigroup is reduced by a normal operatorK when it is reduced by the algeb

generated byK .

Remark 4. Suppose thatP is a completely positive map defined onB such thatP(1) = 1. If P is reduced by an
Abelian subC∗-algebraA of the algebraB, then its restrictionP to A defines a norm-continuous kernel.
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Indeed, sinceA is an AbelianC∗-algebra which contains the unit, its set of charactersσ(A) is aw∗-compact
Hausdorff space (see [5], Theorem 2.1.11A, p. 62).

A is isomorphic to the algebra of continuous functionsC(σ(A)) via the Gelfand transform:a 
→ â, where
â(γ ) = γ (a), for all a ∈ A, γ ∈ σ(A).

DefinePâ = P̂(a). ThenP:C(σ(A)) → C(σ(A)) is linear, positive and continuous in norm since for alla ∈ A:

‖Pâ‖ = ∥∥P̂(a)
∥∥ � ‖a‖ = ‖â‖.

Therefore, by the disintegration of measures property (see [12]), there exists a kernelP :σ(A)×B(σ (A)) → [0,1]
such thatP(ψ, ·) is a (Radon) probability measure for allψ ∈ σ(A), P(·,A) is a continuous function, for a
A ∈ B(A) and

Pâ(ψ) =
∫

σ(A)

P (ψ,dϕ)ϕ(a).

Remark 5. It follows immediately from the previous remark that if a Feller quantum Markov semigroupT (in
particular, a norm-continuous semigroup) defined onB is reduced by an AbelianC∗-subalgebraA of B, there
exists a classical Feller semigroup which is isomorphic to the restriction ofT to A, called thereduced semigroup.

Given a∗-Abelian subalgebraA ⊆ L(h), it is included in its commutantA′ which is a von Neumann algebra.A

is maximal ifA = A′, and in that caseA becomes a von Neumann algebra too.

Remark 6. Suppose thatT is a quantum Markov semigroup defined onL(h) which is reduced by a maxima
Abelian von Neumann subalgebraA. Then there exists a compact Hausdorff spaceE endowed with a Rado
measureµ such that the restriction ofT to A is ∗-isomorphic to a classical Markov semigroup(Tt )t∈R+ on
L∞(E,µ). Moreover, if the semigroupT is quantum Feller, then(Tt )t∈R+ is a Feller semigroup.

The above remark follows directly from the Spectral Theorem: SinceA is maximal Abelian, there exists a trip
(E,µ,U), whereE is a compact second countable Hausdorff space,µ a Radon measure onE andU is an isometry
from L2(E,µ) ontoh. E is in fact the space of characters ofA which isw∗-compact.

So thatU :L∞(E,µ) → A, defined byU(f ) = UMf U∗, wheref ∈ L∞(E,µ) andMf denotes the multipli-
cation operator byf in L2(E,µ), is an isometric∗-isomorphism of algebras.

A semigroup(Tt )t∈R+ is defined onL∞(E,µ) through the relation

MTt f = U∗Tt (UMf U∗)U, (22)

for all f ∈ L∞(E,µ).
The semigroup(Tt )t∈R+ preserves the identity, sinceU is an isometry. Moreover,‖Tt (x)‖ � ‖x‖ (x ∈ M)

implies thatTt is a contraction. Therefore,(Tt )t∈R+ is a Markov semigroup onL∞(E,µ).
If T is Feller, this property is inherited by the classical reduction through Remark 5.
The previous results motivate the study of classical reductions of quantum Markov semigroups by A

algebras generated by a self-adjoint operator. To this end we refine below the applications of the Spectral
to reduce completely positive maps. Given a normal operatorK , we denoteW ∗(K) its generated von Neuman
algebra which coincides with the weak closure of theC∗-algebraC∗(K) generated by the same operator.

The Abelian algebraW ∗(K) is maximal if and only ifK is multiplicity-free or non-degenerate. If K is bounded,
non-degeneracy means that there exists a cyclic vector forC∗(K), that is,{f (K)w: f ∈ C(Sp(K))} is dense inh
for some vectorw, whereSp(K) denotes the spectrum ofK . If K is unbounded, it is non-degenerate if the
is a vectorw in the intersection of all domainsD(Kn) (n � 1), such that the subspace spanned by the ve
(Knw; n � 1) is dense inh.
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If K is degenerate, one can decompose the Hilbert space in orthogonal subspaces on whichK is multiplicity-
free. Here below we will deal with this more general case.

We denoteξ the spectral measure ofK . In addition, given a Radon measure on the measurable s
(Sp(K),B(Sp(K))) we denoteL(Sp(K)) the∗-algebra which is obtained as the quotient of the set of Borel fu
tions by null functions under the given Radon measure.

Lemma 1. Assume that P is a normal linear completely positive map defined on M and such that P(1) = 1. Let
K be an unbounded self-adjoint operator affiliated with M. Then the following propositions are equivalent:

(i) W ∗(K) is invariant under P .
(ii) For any projection p ∈ W ∗(K), P(p) ∈ W ∗(K).

(iii) For all A ∈ B(Sp(K)), P(ξ(A)) ∈ W ∗(K).
(iv) There exists a kernel P : Sp(K) ×B(Sp(K)) → R+ such that P(x,Sp(K)) = 1, for all x ∈ Sp(K) and

P
(
ξ(A)

) =
∫

Sp(K)

ξ(dx)P (x,A),

for all A ∈ B(Sp(K)).

Proof. Clearly, (i) implies (ii) which in turn implies (iii). The equivalence of (i) and (iii) follows from a straig
forward application of the Spectral Theorem for general self-adjoint operators, sinceP is linear and normal. So
that (i), (ii), and (iii) are equivalent.

To prove that (iii) implies (iv), we first notice thatP ◦ ξ is an operator valued measure. Indeed, sinceξ is the
spectral measure ofK andP is linear and completely positive, the mapP ◦ ξ is additive onB(Sp(K)). Moreover,
take any pairwise disjoint sequence(An)n∈N of Borel subsets ofSp(K). The projection

∑
n ξ(An) exists as a stron

limit of the partial sums
∑

k�n ξ(Ak). Moreover
∑

n ξ(An) = l.u.b.
∑

k�n ξ(Ak) in the order of positive operator
Thus, the normality of the mapP yieldsP(

∑
n ξ(An)) = l.u.b.P(

∑
k�n ξ(Ak)), andP ◦ ξ is an operator-value

measure.
If we assume (iii), given anyA ∈ B(Sp(K)), the Spectral Theorem implies that there existsP(·,A) ∈ L(Sp(K))

such that

P ◦ ξ(A) =
∫

Sp(K)

ξ(dx)P (x,A). (23)

Denote(en)n∈N an orthonormal basis ofh and define the positive measureµ = ∑
n 2−n〈en, ξ(·)en〉. SinceP ◦ ξ

is an operator-valued measure, it follows thatA 
→ P(x,A) satisfies

P

(
x,

⋃
n

An

)
=

∑
n

P (x,An),

for µ-almost allx ∈ Sp(K).
Sinceµ is a probability measure, it is tight onSp(K) ⊆ R. Therefore, for eachn � 1, there exists a compa

Kn such thatµ(Kn) � 1 − 2−n, so thatJ = ⋃
n Kn ⊆ Sp(K) satisfiesµ(J ) = 1. We imbedJ in [−∞,∞], and

considerµ as a probability measure defined on[−∞,∞], supported byJ . Let denotek a vector space over th
field of rational numbers, closed for lattice operations∨,∧, dense inC([−∞,∞]) and such that 1∈ k. Define

A = {
x ∈ J :f 
→ P(x,f ) is a positiveQ-linear form onk andP(x,1) = 1

}
.

For allx ∈ A, P(x, ·) can be extended as a positive linear form to all ofC([−∞,∞]), and then toL([−∞,∞]).
Moreover,µ(A) = 1 and

µ
({

x ∈ Sp(K): P(x,J c) = 0
}) = 1.
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We can complete the definition of the kernelP choosingP(x, ·) = θ(·) for all x /∈ A, whereθ is an arbitrary
probability measure.

Finally to prove that (iv) implies (iii), it suffices to apply the Spectral Theorem again which y∫
ξ(dx)P (x,A) ∈ W ∗(K). �

Remark 7. It is worth noticing that ifK is degenerate, we haveW ∗(K) ⊂ W ∗(K)′ strictly andW ∗(K)′ is not
Abelian. Indeed, an example borrowed to Pedersen [32] shows the first assertion. Suppose thatKu = λu and
Kv = λv for two orthogonal unit vectorsu andv. There exists a unitary operatorW ′ such thatW ′u = v, W ′v = −u

andW ′ = 1 on the orthogonal complement ofCx ⊕Cy. One can check easily that all elementsa ∈ W ∗(K) have to
satisfy〈(u+v), a(u−v)〉 = 0, while〈(u+v),W ′(u−v)〉 = 2. So thatW ′ /∈ W ∗(K), however a direct computatio
shows thatW ′ ∈ W ∗(K)′. On the other hand, if one assumeW ∗(K)′ to be commutative, then it has a separat
vector. This means that the von Neumann algebraW ∗(K) has a cyclic vector and this property is equivalent to
maximality, that isW ∗(K) = W ∗(K)′, contradicting the degeneracy ofK .

The above discussion shows that the reduction of a completely positive map by the commutantW ∗(K)′ of the
von Neumann algebra generated byK leads to a classical kernel if and only ifK is non-degenerate.

3.1. The C∗-case

Consider first a semigroupT defined on aC∗-algebraB and let a bounded normal operatorK be given. We
then characterize the classical reduction of the semigroup as follows.

Theorem 1.Assume that K is a normal operator in the C∗-algebra B and call C∗(K) the Abelian C∗-algebra
generated by K . Then a norm-continuous quantum Markov semigroup T defined on B is reduced by C∗(K) if and
only if L(Kn) ∈ C∗(K) for all n ∈ N.

In particular, suppose that the generator is implemented by (4), where H and V satisfy:

(i) [H,K] ∈ C∗(K);
(ii) V ∗V ∈ C∗(K);

(iii) For each n ∈ N, there exists a constant αn ∈ C such that

V Kn − π(Kn)V = αnV .

Then, the semigroup T is reduced by the algebra C∗(K).

Proof. Let K denote the∗-subalgebra generated by the commuting variables1, K , K∗. K is strongly dense in
C∗(K). On the other hand,T is norm-continuous, so thatC∗(K) is invariant underT if and only ifL(K) ⊆ C∗(K).
SinceL(1) = 0 andL(K∗n) = L(Kn)∗, it follows easily thatL(K) ⊆ C∗(K) if and only if L(Kn) ∈ C∗(K), for
all n ∈ N.

To prove the second part of the theorem, from hypothesis (i) and the derivation property of[H, ·] it follows that
[H,Kn] ∈ C∗(K) for all n ∈ N. On the other hand, hypothesis (iii) yields

V ∗V Kn − V ∗π(Kn)V = αnV
∗V,

so thatV ∗π(Kn)V belongs toC∗(K) as well asV ∗V Kn andKnV ∗V , applying (ii). As a result,L(Kn) ∈ C∗(K)

for all n ∈ N, and the proof is complete.�
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3.2. Norm-continuous semigroups defined on von Neumann algebras

Given a normal operatorK , W ∗(K) reduces the norm-continuous quantum Markov semigroupT if and only
if L(x) ∈ W ∗(K) for all x ∈ W ∗(K). This follows immediately from the definition of the generator. Here belo
modification of this elementary result in case of non-degeneracy.

Theorem 2. If a bounded self-adjoint operator K ∈ M is non-degenerate, W ∗(K) reduces the norm-continuous
quantum Markov semigroup T if and only if L(x) commutes with K for any x ∈ W ∗(K).

In particular, suppose that

(i) [H,K] ∈ W ∗(K), and
(ii) [Lk,K] = ckLk , where ck = c∗

k ∈ W ∗(K), for all k ∈ N.

Then W ∗(K) reduces the semigroup T .

Proof. If K is non-degenerate, thenW ∗(K) is maximal Abelian and coincides with its commutatorW ∗(K)′. Thus,
L(W ∗(K)) ⊆ W ∗(K) if and only if L(x) lies inW ∗(K)′ for any elementx ∈ W ∗(K)′.

To prove the second part, consider an arbitraryx ∈ W ∗(K)′. To compute[L(x),K], we first observe tha
eachL∗

kLk ∈ W ∗(K), since [L∗
kLk,K] = −L∗

kckLk + L∗
kckLk = 0. In addition, [[H,x],K] = [[H,K], x] +

[H, [x,K]] = 0. Therefore,

[L(x),K] =
[
i[H,x] − 1

2

∑
k

[
L∗

kLkx − 2L∗
kxLk + xL∗

kLk,K
]]

= i
[[H,x],K5

] −
∑

k

[L∗
kxLk,K]

= −
∑

k

(−L∗
kckxLk + L∗

k[x,K]Lk + L∗
kxckLk

)
(x, ck andK commute)

= 0. �
The previous theorem can be improved to consider an unbounded self-adjoint operatorK affiliated with the von

Neumann algebraM.
For any quantum Markov semigroupT there existsM > 0 andβ ∈ R such that‖Tt‖ � M exp(βt) for all t � 0

(see [5], Proposition 3.1.6, p. 166). As a result, the resolventRλ(·) of the semigroup is given by the Lapla
transform

Rλ(x) = (λ1−L)−1(x) =
∞∫

0

dt e−λtTt (x),

for all x ∈ M, whenever�λ > β.

Theorem 3.Let be T a quantum Markov semigroup on the von Neumann algebra M and K an unbounded self-
adjoint operator affiliated with M. Then the following propositions are equivalent:

(i) The semigroup is reduced by W ∗(K).
(ii) For all A ∈ B(Sp(K)) and any t � 0, Tt (ξ(A)) ∈ W ∗(K).

(iii) The manifold D(L) ∩ W ∗(K) is non-trivial and for all x ∈ D(L) ∩ W ∗(K), it holds that L(x) ∈ W ∗(K).
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(iv) There exists a classical Markov semigroup (Tt )t∈R+ on Sp(K) such that for all f ∈ L(Sp(K)),

Tt

(
f (K)

) =
∫

Sp(K)

ξ(dx)Tt f (x).

(v) For all λ such that �λ > β and all A ∈ B(Sp(K)) Rλ(ξ(A)) ∈ W ∗(K).

Proof. We clearly have the equivalence of (i), (ii) and (iii). Furthermore, the equivalence of (i) with (iv) fol
from Lemma 1. Proposition (v) is equivalent to the existence of a family of kernelsRλ on the spectrum ofK which
defines a classical semigroupT. Thus (v) and (iv) are equivalent and this completes the proof.�

The particular case of norm-continuous semigroups enjoys a richer characterization in terms of the gen

Corollary 1. Suppose that K is a non-degenerate self-adjoint operator. W ∗(K) reduces a norm-continuous quan-
tum Markov semigroup T if and only if one of the following equivalent conditions is satisfied:

(i) L(ξ(A)) ∈ W ∗(K) for all A ∈ B(Sp(K)).
(ii) [L(ξ(A)), ξ(B)] = 0 for all A,B ∈ B(Sp(K)).

(iii) There exists a dense domain D ⊆ L(Sp(K)) and an operator L :D → L(Sp(K)), such that for all f ∈ D,
f (K) ∈ D(L) and

L
(
f (K)

) =
∫

Sp(K)

ξ(dx)Lf (x).

In particular, suppose that the generator L(·) is given by (5) which in addition satisfies the two conditions
below:

(a) [H,ξ(A)] ∈ W ∗(K), and
(b) [Lk, ξ(A)] = ck(A)Lk , where ck(A) is a self-adjoint element in W ∗(K), for all k ∈ N and A ∈ B(Sp(K)).

Then W ∗(K) reduces the semigroup T .

Proof. The generatorL(·) is everywhere defined since the semigroup is norm-continuous. Thus, the equiv
of (i)–(iii) with (i) of the previous result is a simple consequence of the Spectral Theorem.

The last part follows from the first and Theorem 2 applied toξ(A). �

4. Semigroups with form-generators

Finally, if the generator is given as a form through a Master Equation, forM = L(h), the above results have
be amended as follows.

Theorem 4.Assume that for all x ∈ W ∗(K), and all spectral projection ξ(A), where A ∈ B(Sp(K)) is such that
ξ(A)(D) ⊆ D it holds

L−(x)
(
v, ξ(A)u

) = L−(x)
(
ξ(A)v,u

)
, (24)

for all (u, v) ∈ D × D. Then the minimal semigroup T is reduced by K .
In particular, this is the case when the following two conditions hold:
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(a) The operator G is affiliated with W ∗(K),
(b) Given any x ∈ W ∗(K), (u, v) ∈ D × D, � � 1,〈

L�v, xL�ξ(A)u
〉 = 〈

L�ξ(A)v, xL�u
〉
, (25)

for all A ∈ B(Sp(K)) such that ξ(A)(D) ⊆ D.

Proof. The proof follows the construction of the minimal quantum dynamical semigroup associated
form L−(·), as presented by Chebotarev (see [9]) and extensively used by him and Fagnola in their joint res
the Markov property of this minimal semigroup (see [8]).

DefineT (0)
t (x) = x. Then, clearly〈v,T (0)

t (x)pu〉 = 〈pv,T (0)
t (x)u〉, for all x ∈ W ∗(K), all projectionp = ξ(A)

leavingD invariant,(u, v) ∈ D × D. We follow by definingT (1)
t (x) as follows: for each(u, v) ∈ D × D,

〈
v,T (1)

t (x)u
〉 = 〈v, xu〉 +

t∫
0

L−(
T (0)

s (x)
)
(v,u)ds.

Takex ∈ W ∗(K) a projectionp = ξ(A) as before, and apply hypothesis (24). Then it follows that〈
v,T (1)

t (x)pu
〉 = 〈

pv,T (1)
t (x)u

〉
.

This yields thatT (1)
t (x) ∈ W ∗(K) if x ∈ W ∗(K).

By induction, supposeT (0)
t (·), . . . ,T (n)

t (·) constructed and reduced byW ∗(K), then defineT (n+1)
t (·) through

the relation

〈
v,T (n+1)

t (x)u
〉 = 〈v, xu〉 +

t∫
0

L−(
T (n)

s (x)
)
(v,u)ds.

By the induction hypothesis, and (24) again, it follows that〈
v,T (n+1)

t (x)pu
〉 = 〈

pv,T (n+1)
t (x)u

〉
,

for all projectionp = ξ(A) such thatp(D) ⊆ D and(u, v) ∈ D × D, wheneverx ∈ W ∗(K). Therefore,K reduces
the whole sequence(T (n))n∈N . This sequence is used in the construction of the minimal quantum dyna
semigroup as follows. It is proved that〈u,T (n)

t (x)u〉 is increasing withn and〈u,Tt (x)u〉 is defined as its limit, for
all u ∈ h, x ∈ L(h) (see [14]). Then by polarization〈v,Tt (x)u〉 is obtained. Thus, the minimal quantum dynami
semigroupT satisfiesTt (1) � 1, and given any otherσ -weakly continuous family(St )t∈R+ satisfying (8) and
every positive operatorx ∈ L(h), it holdsTt (x) � St (x), for all t � 0. Moreover, sinceT (n)

t (W ∗(K)) ⊆ W ∗(K),
for all n ∈ N andt � 0, it follows thatK reduces the minimal quantum dynamical semigroup.

Assume now hypotheses (a) and (b). Condition (a) implies thatGξ(A) = ξ(A)G for all projectionξ(A) leaving
D invariant. Moreover, (b) yields

∑
�〈L�v, xL�ξ(A)u〉 = ∑

�〈L�ξ(A)v, xL�u〉 and this, together with (a), clear
determine (24) and the proof is complete.�
Corollary 2. With the notations and assumptions previous to the above theorem, suppose that in addition the two
hypotheses below are satisfied:

(a) G is affiliated with W ∗(K),
(b) For all � � 1 and any A ∈ B(Sp(K)) such that ξ(A) leaves D invariant, there exists a selfadjoint operator

c�(A) ∈ W ∗(K), such that

L�ξ(A) = (
ξ(A) + c�(A)

)
L�. (26)
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Then K reduces the minimal quantum dynamical semigroup T .

Proof. Hypothesis (a) is identical to condition (a) of the previous theorem. On the other hand, ifx ∈ W ∗(K), and
A ∈ B(Sp(K)) is such thatξ(A) leavesD invariant

〈
L�ξ(A)v, xL�u

〉 = 〈
ξ(A)L�v, xL�u

〉 + 〈
c�(A)L�v, xL�u

〉
= 〈

L�v, xξ(A)L�u
〉 + 〈

L�v, xc�(A)L�u
〉

= 〈
L�v, x

(
L�ξ(A) − c�(A)L�

)
u
〉 + 〈

L�v, xc�(A)L�u
〉

= 〈
L�v, xL�ξ(A)u

〉
,

for all (u, v) ∈ D × D. Thus, condition (b) of Theorem 4 is satisfied and the proof is complete.�
4.1. Returning to examples

4.1.1. The harmonic oscillator
In Example 2.4.1L(x) was indeed a form-generator which should be more rigorously writtenL−(x). The ex-

pression of the formal generatorL−(·) suggest to consider the reduction byW ∗(N). Indeed,Sp(N) = N, the
elementsen are the eigenvectors ofN and for any bounded functionf :N → C a straightforward computatio
yields

L−(
f (N)

)
(v, |en〉〈en|u) = L−(

f (N)
)
(|en〉〈en|v,u) = Lf (n)〈v, en〉〈en,u〉,

where,

Lf (n) = λn

(
f (n + 1) − f (n)

) + µn

(
f (n − 1) − f (n)

)
, (27)

and

λn = Aν(n + 1), µn = A(ν + 1)n (n ∈ N). (28)

As it is easily seen, the expression (27) corresponds to the generator of a classical birth and death
semigroup, with birth rateλn and death rateµn.

4.1.2. The quantum Brownian motion
The commutative von Neumann subalgebraW ∗(q) of M whose elements are multiplication operatorsMf by a

functionf ∈ L∞(Rd ;C) is T -invariant andTt (Mf ) = MTtf where

(Ttf )(x) = 1

(2πt)d/2

∫

Rd

f (y)e−|x−y|2/2t dy. (29)

The same conclusion holds for the commutative algebraW ∗(p) = F ∗W ∗(q)F , whereF denotes the Fourie
transform (see [18]). Therefore, this QMS namedquantum Brownian motion semigroup contains a couple of non
commuting classical Brownian semigroups as classical reductions.

Moreover, notice that the von Neumann algebraW ∗(N) generated by the number operatorN = ∑
j a

†
j aj is also

T invariant and the classical semigroup obtained by restriction ofT to W ∗(N) like in the previous example is
birth and death onN with birth rates(n + 1)n�0 and death rates(n)n�0.

4.1.3. The quantum exclusion semigroup
Givenη ∈ S, i, j ∈ N, definec (η) = η(i)(1− η(j))γ .
i,j i,j
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Proposition 1.For each x ∈ A(h0) the unbounded operator

L(x) = i[H,x] − 1

2

∑
i,j

(L∗
i,jLi,j x − 2L∗

i,j xLi,j + xL∗
i,jLi,j ), (30)

whose domain contains the dense manifold v, is the generator of a quantum Feller semigroup T on the C∗-algebra
A(h0). This semigroup is extended into a σ -weak continuous QMS defined on the whole algebra L(h).

Moreover, the semigroup is reduced by the algebra W ∗(H). The reduced semigroup T corresponds to a classical
exclusion process (see [24]) with generator

Lf (η) =
∑
i,j

ci,j (η)
(
f (η + 1j − 1i ) − f (η)

)
, (31)

for all bounded cylindrical function f : S→ R.

Proof. We first notice that there exists the minimal quantum Markov semigroup associated with the genera
Indeed this holds sincev is dense inh = Γf (h0), and it is a core forG = −iH − 1

2

∑
i,j Li,j

∗Li,j , which is the
generator of a contraction semigroup, andv is also contained in the domain of all the operatorsLi,j , and the
Markovian property is guaranteed byL(1) = 0. Let denoteT this minimal semigroup (see [11] for further detai
which is defined through the use of theσ -weak topology in all ofL(h). It satisfies the equation

〈
v,Tt (x)u

〉 = 〈v, xu〉 +
t∫

0

〈
v,L

(
Ts(x)

)
u
〉
ds, (32)

whereu,v ∈ v, x ∈ L(h).
Takex ∈ A(h0) andΛ ∈ Pf (N). Call EΛ the projection ofh = Γf (h0) onto hΛ = Γf (hΛ

0 ). Notice that for
all a ∈ A(h0), the net of projected operatorsEΛaEΛ ∈ A(hΛ

0 ) converges strongly toa, asΛ ↑ N sinceA(h0) is
the strong closure ofD = ⋃

A(hΛ
0 ). Call EΛ(a) = EΛaEΛ the projection of an element of the algebraA(h0) and

T Λ
t (x) = EΛTt (x)EΛ, x ∈ A(hΛ

0 ), t � 0. This is a semigroup acting onA(hΛ
0 ) whose generator, determined

(32), isLΛ(x) = EΛL(x)EΛ, for eachx ∈ A(hΛ
0 ). LΛ(x) is a matrix in a finite-dimensional space, so that it i

bounded operator. As a result, eachT Λ is a norm-continuous semigroup.
To prove that the minimal semigroupT satisfies the Feller property (M5F) on the algebraA(h0), we first

considerx ∈ D. So that there isΛ0 ∈ Pf (N) such thatx ∈ A(hΛ
0 ), which yieldsEΛ(x) = x for all Λ ∈ Pf (N)

containingΛ0. Then, for all suchΛ,
∥∥Tt (x) − x

∥∥ �
∥∥Tt (x) − T Λ

t (x)
∥∥ + ∥∥T Λ

t (x) − x
∥∥.

SinceEΛ ◦ Tt (x) strongly converges toTt (x) as Λ increases, given anyε > 0 we can chooseΛ ∈ Pf (N) to
have the first right-hand term in the previous inequality less thanε/2. On the other hand, for thisΛ we also have
limt→0 ‖T Λ

t − 1‖ = 0 andt0 may be selected to have the second right-hand term in the inequality less thanε/2 too
for any t < t0. This proves (M5F) forx ∈ D.

If x ∈ A(h0), we pick a netxΛ ∈ A(hΛ
0 ) which strongly converges tox, use the fact thatTt (·) is a contraction

and the property (M5F) proved for elements inD to conclude.T is thus a quantum Feller semigroup on the alge
A(h0).

To study the classical reduction, it suffices to use the C.A.R. Indeed,[b†
kbk, b

†
j bi] = (δkj − δki)b

†
j bi . Moreover,

since each operatorLi,j is bounded andLi,jv ⊂ v ⊂ D(H), the commutator[H,Li,j ] is well defined onv and can
be extended to all ofh as a bounded operator since

[H,Li,j ] =
∑

Ek
√

γi,j [b†
kbk, b

†
j bi] = (Ej − Ei)Li,j .
k
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So that, adapting to this case the proof of Theorem 2, we conclude thatH reduces the semigroup.
We now obtain the expression of the reduced generator. The spectral decomposition ofH may be written,

H =
∑
η

E(η)|η〉〈η|,

whereE(η) = ∑
i η(i)Ei , for all configurationη. The algebraCyl(H) of operators of the form

x =
∑
η

f (η)|η〉〈η|,

wheref : S→ C is a bounded cylindrical function, form a dense subalgebra ofC∗(H).
We computeL(x) for x ∈ Cyl(H).

The following additional notation will be used:i
η→ j , means thatη(i) = 1 andη(j) = 0 (under the configura

tion η a particle occupying the sitei can move to the free sitej ).
An elementary computation yields

L∗
i,jLi,j |η〉〈η| = γi,j η(i)

(
1− η(j)

)|η〉〈η|,
|η〉〈η|L∗

i,jLi,j = γi,j η(i)
(
1− η(j)

)|η〉〈η|,
L∗

i,j |η〉〈η|Li,j = γi,j

(
1− η(i)

)
η(j)|η − 1j + 1i〉〈η − 1j + 1i |.

From this it follows that

L
(|η〉〈η|) = −1

2

∑
i,j

(
L∗

i,jLi,j |η〉〈η| − 2L∗
i,j |η〉〈η|Li,j + |η〉〈η|L∗

i,jLi,j

)

=
∑

i,j : j
η→ i

γi,j |η − 1j + 1i〉〈η − 1j + 1i | −
∑

i,j :i η→ j

γi,j |η〉〈η|.

Now, for anyx = ∑
η f (η)|η〉〈η| ∈ Cyl(H),

L(x) =
∑
η

( ∑
i,j : j

η→ i

γi,j f (η)|η − 1j + 1i〉〈η − 1j + 1i | −
∑
i,j

γi,j f (η)|η〉〈η|
)

,

and notice that a change of variablesη 
→ η − 1j + 1i yields
∑
η

∑
i,j : j

η→ i

γi,j f (η)|η − 1j + 1i〉〈η − 1j + 1i | =
∑
η

∑
i,j : i

η→ j

γi,j f (η − 1i + 1j )|η〉〈η|.

Therefore, we finally obtain

L(x) =
∑
η

∑
i,j : i

η→ j

γi,j

(
f (η − 1i + 1j ) − f (η)

)|η〉〈η|,

from which (31) follows.
The above expression gives the generator of the semigroup restricted toW ∗(H). C∗(H) is isomorphic with the

algebraC(Sp(K)) of continuous complex valued functions on the compact setSp(H) and contains continuou
cylindrical functions as a uniformly dense sub-algebra. It is clear thatL given by (31) leaves the above den
subalgebra invariant, thus the reduced semigroup appliesC(Sp(H) into itself, moreover, the Feller continuit
property is inherited from the quantum Markov semigroup.�
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5. Decoherence as a limit behavior

Let be given a quantum Markov semigroupT defined onM = L(h). We introduce two additional notations:

F(T ) = {x ∈ M : Tt (x) = x, for all t � 0}
and

N(T ) = {
x ∈ M: Tt (x

∗x) = Tt (x
∗)Tt (x), for all t � 0

}
.

The first set corresponds to invariant elements under the action of the semigroup, whereas the sec
sists of elements for which equality holds in Schwartz inequality for completely positive maps, a feature
is characteristic of an automorphism group. In general,F(T ) ⊆ N(T ). Assume further that a faithful norma
stationary stateω∞ = tr(ρ∞ ·) exists for the semigroupT . Under this hypothesis, Frigerio and Verri prov
in [19] that for a norm-continuous semigroup,F(T ), N(T ) are von Neumann algebras, the conditional exp
tationsEF(T )(·) and EN(T )(·) exist and any other stationary state can be represented asω = ω∞ ◦ EF(T )(·).
In addition they proved that ifF(T ) = N(T ), then for any initial stateω and any elementx of the algebra,
T∗t (ω)(x) = ω(Tt (x)) → ω(EF(T )(x)) = ω∞(x) as t → ∞. Throughout the remains of the paper a semigr
is said to beweakly ergodic(or simply ergodic) when the above property holds. Since we are assuming all
to be normal, this means that for any initial density matrixρ, T∗t (ρ) weakly converges to the invariant faithf
density matrixρ∞ associated toω∞ ast → ∞. This result has been extended by Fagnola and Rebolledo in
to a general class of QMS. Moreover, for a generator given by a form like (7), withG as in (6), whereH is a
self-adjoint operator with pure point spectrum, one obtains the following nice characterization of weak erg

Theorem 5(Fagnola–Rebolledo, Theorem II.2, [15]).Suppose that the minimal semigroup T associated to L−(·) is
Markov and that it has a normal faithful stationary state ω∞.

Assume in addition that H is a self-adjoint operator with pure point spectrum and either

(a) H is bounded;
or

(b) H is selfadjoint and eitH (D) ⊆ D(G), where D ⊆ D(G) is a dense linear subspace.

Let ω denote an arbitrary normal state. Then Tt∗(ω) converges in the w∗-topology to ω∞ as t → ∞ if and only
if

{Lk,L
∗
k,H ; k � 1}′ = {Lk,L

∗
k; k � 1}′. (33)

It is worth mentioning that sufficient conditions for the existence of aT -stationary normal faithful state hav
been obtained in terms of the generator too in [16] and [17]. On the other hand, no stationary state e
a transient quantum Markov semigroup. Transience and recurrence of quantum Markov semigroups h
studied in [18].

We now proceed with the definition of decoherence in our framework. To keep this notion close to the fi
proach of physicists,throughout this section we consider a self-adjoint operatorK with pure point spectrum
and denote(en)n∈N an orthonormal basis of eigenvectors ofK .

Definition 4. We say thatK induces decoherence of the quantum Markov semigroupT if there exists a faithfu
T -stationary density matrix which commutes withK .

Equivalently,K induces decoherence ofT if there exists a common faithful stationary density matrix for bothT
and the groupα of automorphisms associated toK , αt (x) = exp(itK)x exp(−itK), (x ∈ M, t ∈ R).
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Remark 8. In an interesting article (see [26]), Majewski and Streater introduced what they called thebalance
condition II . Their definition, applied to the dynamicsα andT before, allows to easily infer a sufficient conditio
for decoherence as we show below.

Proposition 2.Assume K to be a self-adjoint operator with pure-point spectrum and let α denote the automorphism
group it induces. Suppose that there exists a normal faithful state ω such that the following balance equation
(balance condition II in [26]) is satisfied,

ω
(
αt (a

∗)b
) = ω

(
a∗Tt (b)

)
, (34)

for all a, b ∈ M. Then ω is a stationary state for both α and T , and K induces decoherence of the semigroup T .

Proof. To derive theα-invariance ofω, choose firstb = 1 in (34) and use the Markov property ofT . Similarly,
takinga = 1 and lettingb in (34) arbitrary, yields theT -invariance ofω. Moreover, sinceω is normal, there exist
a density matrixρ which commutes withK and such thatω(·) = tr(ρ ·). ThusK induces decoherence ofT . �

In concrete physical models though, condition (34) is oftenly hard to verify. Our aim in the remaining
paper, is to look for applicable criteria on decoherence based on the structure of the semigroup generatL. We
start by some remarks and straightforward consequences of Definition 4.

Remark 9. Notice that ifK is non-degenerate, Definition 4 implies that for all density matrixρ there exists a
sequence(tr )r∈N such thattr → ∞ and for alln �= m,

1

tr

tr∫
0

〈
em,T∗s(ρ)en

〉
ds → 0.

Moreover, we have the following easy proposition improving the above remark.

Proposition 3.Assume that a non-degenerate self-adjoint operator K with pure point spectrum as before induces
decoherence of T and that the semigroup is ergodic. Then, given any density matrix ρ ∈ I1(h), and n �= m, it holds〈

em,T∗t (ρ)en

〉 → 0,

as t → ∞.

Proof. Since the semigroup is ergodic andK induces decoherence, it holds that tr(T∗t (ρ)x) converges to tr(ρ∞x)

for all x ∈ M, ast → ∞ and any density matrixρ, whereρ∞ is a faithful density matrix which commutes withK .
The last statement follows straightforward from the above since〈em,ρ∞en〉 = 0 for n �= m. �

Proposition 4. Suppose that the self-adjoint operator K is non-degenerate and that W ∗(K) reduces the quan-
tum Markov semigroup T . If K induces decoherence of T , then the reduced semigroup has a faithful stationary
probability measure.

Proof. Call ρ a faithful stationary density matrix which commutes withK . So thatρ can be written as

ρ =
∑
n

p(n)|en〉〈en|,

where
∑

n p(n) = tr(ρ∞) = 1, and eachp(n) > 0 due to the faithfulness ofρ. Given any bounded functionf on
the spectrum ofK , it holds:

tr
(
ρTt

(
f (K)

)) =
∑

p(n)Ttf (n) = tr
(
ρf (K)

) =
∑

p(n)f (n),
n n
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for all t � 0. Thus, the densityp(n) defines a probability measure onSp(K) which is stationary under the reduc
semigroup(Tt )t∈R+ . �

It is an important problem for applications to Physics to know whether the knowledge of a stationary
bility for a reduced semigroup leads to decoherence. To give a partial answer for a wide class of semigro
previously need to take care of some technical matters concerning the domain of the generator. Suppos
are given a form-generatorL−(·) with which we construct the associated minimal quantum Markov semigroup
[11,8]). We will assume here that the orthonormal basis of eigenvectors ofK can be chosen on the dense subseD

which is a core for the operatorG and all the operatorsLk definingL−(·). Then, as proved in [11], Sections 2 and
the linear space spanned by all the projections|en〉〈em|, (n,m ∈ N), is a core for the predual generatorL∗. As a
result, all the operatorsL∗(|en〉〈en|) are well defined.

Theorem 6. Suppose that the self-adjoint operator K is non-degenerate and that W ∗(K) reduces the quantum
Markov semigroup T . Assume that there exists a faithful probability density (p(λ))λ∈Sp(K) on the spectrum of K

which is stationary for the reduced semigroup. If for all n ∈ N, L∗(|en〉〈en|) commutes with K , then K induces
decoherence of T .

Proof. Call ρ = p(K) = ∑
n p(λn)|en〉〈en|. We will prove thatρ ∈ D(L∗) and thatL∗(ρ) = 0. Given any bounded

functionf on Sp(K), call L the reduction of the generator, that is〈en,L(f (K))en〉 = Lf (λn). The hypothesis on
the stationarity ofp is then expressed as

∑
n p(λn)Lf (λn) = 0.

Define

ρN =
∑
n�N

p(λn)|en〉〈en| (N ∈ N).

Notice thatρN ∈ D(L∗), since each projection|en〉〈en| belongs toD(L∗). Moreover,L∗(ρN) is a trace-class
operator as well (see Subsection 2.3). SinceL∗(|en〉〈en|) commutes withK andK is non-degenerate,L∗(ρn) ∈
W ∗(K) too.

TakingN,M ∈ N, with N > M say, one obtains

∣∣tr((L∗(ρN) −L∗(ρM)
)
x
)∣∣ � C(x)

N∑
n=M+1

p(λn),

for any fixedx ∈ D(L), for a constantC(x) > 0. Since
∑

n p(λn) = 1, we obtain thatL∗(ρN) weakly converges
asN → ∞. On the other hand,ρN converges in the norm of the trace toρ. SinceL∗(·) is weakly closed, then
L∗(ρ) = limN L∗(ρN) andρ ∈ D(L∗). Moreover,L∗(ρ) is a trace-class operator which commutes withK .

After the previous result, to prove thatL∗(ρ) = 0 it suffices to show that〈ek,L∗(ρ)ek〉 = tr(L∗(ρ)|ek〉〈ek|) = 0
for all k ∈ N. Now,

tr
(
L∗(ρ)|ek〉〈ek|

) = tr
(
ρL(|ek〉〈ek|)

)
=

∑
n

p(λn)〈en,L
(|ek〉〈ek|

)
en〉

=
∑
n

p(λn)L1{λk}(λn)

= 0 (sincep is stationary for the reduced semigroup).

Thus,L∗(ρ) = 0 andρ is a stationary state forT . As a result,K induces decoherence of the quantum Mark
semigroup. �
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Corollary 3. Suppose that the semigroup T is norm-continuous with generator given by (5) and satisfies the
following hypotheses:

(i) H has a pure point spectrum;
(ii) [H,Lk] = αkLk , αk ∈ R, for all k � 1;

(iii) the generalized commutants {H,Lk,L
∗
k, k ∈ N}′ and {Lk,L

∗
k, k ∈ N}′ coincide;

(iv) There is a faithful probability p on the spectrum of H solving the equation

Lkp(H)L∗
k = L∗

kLkp(H) = p(H)L∗
kLk (k ∈ N). (35)

Then the semigroup is reduced by H , p(H) defines a stationary state for the semigroup and H induces decoherence
of T . Given any density matrix ρ, T∗t (ρ) → p(H) in the w∗-topology. As a result,〈

en,T∗t (ρ)em

〉 → 0,

as t → ∞, for all n �= m, n,m ∈ N, where (en)n∈N is an orthonormal basis of eigenvectors of H .

Proof. Hypothesis (ii) implies thatH reduces the semigroup. Then (iv) determines the existence of a faithfu
normal stationary state given by a density matrixρ∞ = p(H), sinceL∗(p(H)) = 0. ThusH induces decoherenc
of T . Condition (iii) implies the convergence ofT∗t (ρ) to ρ∞ for any density matrixρ by Theorem II.2 in [15]
which has been recalled here in Theorem 5. Finally Proposition 3 leads to the conclusion.�

The above result can be improved to consider more general QMS as follows

Corollary 4. Let K be as in Theorem 6. Assume that the semigroup T is reduced by W ∗(K) and that L∗(|en〉〈en|) ∈
W ∗(K) for all n ∈ N. Suppose in addition that the generalized commutant {Lk,Lk

∗, k ∈ N}′ is reduced to C1.
If there exists a faithful stationary probability on Sp(K) for the reduced semigroup, then the QMS is ergodic

and K induces decoherence of T .

Proof. By Theorem 6,p(K) defines a faithful normal stationary state for the semigroupT so that, from one
hand,K induces decoherence ofT and in addition, the results on ergodicity of [15] can be applied. SinceF(T ) ⊆
N(T ) ⊆ {Lk,Lk

∗, k ∈ N}′ and the latter is trivial, one obtainsF(T ) = N(T ) = C1, so thatT is ergodic after
Theorem II.1 in [15]. �
5.1. Examples

We come back to our well-known examples.

5.1.1. The harmonic oscillator
Clearly the hypothesis of the last corollary apply here. The algebra generated bya, a† and1 is topologically

irreducible, that means that the commutant isC1. The birth and death semigroup has a faithful invariant probab
measurep sinceλn < µn, for all n. So thatH induces decoherence of the semigroupT .

5.1.2. The quantum exclusion process
Here, the elements of the orthonormal basis are denoted|η〉 according to the notations introduced in the sec

quantization procedure. We summarize below the application of the previous corollaries to this model. C
first a density matrix which is of the formp(H), that is:

ρ =
∑

p(η)|η〉〈η|, (36)

η
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a direct
whereη 
→ p(η) is a summable function with
∑

η p(η) = 1.

Proposition 5.Let assume that

π(i)γi,j = π(j)γj,i (i, j ∈ N) (37)

where (π(i))i∈N is any sequence of positive numbers. Then a normal state ω with density matrix ρ given by (36)
is stationary if

p(η) =
∏
i∈N

αi

(
η(i)

)
,

for all η ∈ S, where αi : {0,1} → [0,1] is, for each i ∈ N, a probability measure given by

αi(x) = (π(i))x

1+ π(i)

(
i ∈ N, x ∈ {0,1}). (38)

Moreover, H induces decoherence of the semigroup T .

Proof. After proving the classical reduction of the semigroup, the expression of the stationary probabilityp(η) is
indeed a straightforward consequence of Theorem 2.1 in Chapter VIII of [23], however, we provide here
proof for the sake of completeness. We first notice that given the probabilitiesαi on {0,1}, by Kolmogorov’s
Theorem there is a unique probability measurePα on the set of configurationsS with marginals

Pα

({
η ∈ S: η(i) = 1, for all i ∈ I ; η(j) = 0, for all j ∈ J

}) =
∏
i∈I

αi(1)
∏
j∈J

αj (0).

And p(η) = Pα({η}).
Let be givenρ by (36). ThenL∗(ρ) = 0 if and only if tr(L∗(ρ)|η〉〈η|) = 0 for all η ∈ S.
Notice thatζ − 1j + 1i = η if and only if ζ = η − 1i + 1j , for η, ζ ∈ S, i, j ∈ N. Thus, if we write

ρ =
∑
ζ

p(ζ )|ζ 〉〈ζ |,

the previous theorem yields

L∗(ρ) =
∑
ζ

∑
i,j : i

ζ→ j

γi,jp(ζ )
(|ζ − 1i + 1j 〉〈ζ − 1i + 1j | − |ζ 〉〈ζ |).

Now, tr(|ζ − 1i + 1j 〉〈ζ − 1i + 1j ||η〉〈η|) = 1 if and only if ζ = η − 1j + 1i . Thus, tr(L∗(ρ)|η〉〈η|) = 0 if and
only if∑

i,j

(
1− η(i)

)
η(j)

(
γi,jp(η − 1j + 1i ) − γj,ip(η)

) = 0.

Notice thatαi(0)p(η + 1i ) = p(η)αi(1) andαj (1)p(η − 1j ) = p(η)αj (0). These equations yields

γi,jp(η − 1j + 1i ) − γj,ip(η) =
(

γi,j

π(i)

π(j)
− γj,i

)
p(η),

and the last term between brackets is zero, by the hypothesis (37). The last expression implies thatLp(η) = 0.
Moreover the above computations yield

L∗
(|η〉〈η|) =

∑
i,j

ci,j (η)
(|η − 1i + 1j 〉〈η − 1i + 1j | − |η〉〈η|),

which commutes withH , so that Theorem 6 applies and the proof is complete.�
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The above result can be rephrased in a slightly different framework to recover a unique faithful stationa
in the Gibbs form. We add a cemetery to the classical Markov chain by completingN with a point∞ /∈ N. We
assume thatγi,∞, γ∞,j > 0 butγ∞,∞ = 0. On the other hand, we putLi,∞ = √

γi,∞ bi , L∞,j = √
γ∞,j b

†
j , for all

i, j ∈ N, andL∞,∞ = 0. Configurations are now defined onN = N ∪ {∞}. Finally defineE∞ = µ > 0, which we
call thechemical potential. The generatorL(·) is naturally extended taking the sum in (30) running over all inde
(i, j) ∈ N×N. Moreover, this time the set{Li,j ,L

∗
i,j ; i, j ∈ N} includes all the operatorsb†(k), b(k) generating the

CAR algebra, so that its generalized commutant algebra is trivial. Thus, in this case we haveF(T ) = N(T ) = C1
and the semigroup is ergodic as soon as we provide a faithful stationary state.

In the following we assumeβ > 0, and remind thatH is supposed to be bounded from below. A straightforw
computation yields

tr
(
e−β(H−µN)

) =
∏
i∈N

(
1+ e−β(Ei−µ)

)
< ∞.

Corollary 5. Assume that the Hamiltonian H given by (18) is bounded from below. Moreover, suppose that (37) is
satisfied with

π(i) = e−β(Ei−µ) (i ∈ N), (39)

where β > 0. Denote

Z(β,µ) = tr
(
e−β(H−µN)

)
.

Then

ρ = 1

Z(β,µ)
e−β(H−µN),

is a faithful stationary state of the quantum Markov semigroup associated to H and the operators L� considered
in the previous results. The semigroup is ergodic and H induces decoherence of T .

Remark 10. As a final remark, it is worth noticing that if a quantum Markov semigroup is transient, there
stationary state. As a result, decoherence as defined here cannot take place. As an example of a trans
the reader is referred to [18] where it is showed that the semigroup of a quantum Brownian motion ford � 2 is
transient.
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