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Abstract

Quantum Decoherence consists in the appearance of classical dynamics in the evolution of a quantum system. This paper
focuses on the probabilistic interpretation of this phenomenon, connected with the analysis of classical reductions of a quantum
Markov semigroup.

0 2005 Elsevier SAS. All rights reserved.

Résumeé

La décohérence quantique correspond a I'apparition d’'une dynamique classique dans I'évolution d'un systéme quantique.
Cet article fait une interprétation probabiliste de ce phénomene tout en étudiant les réductions classiques des semigroupe:s
Markoviens quantiques.

0 2005 Elsevier SAS. All rights reserved.

1. Introduction

For a number of physicistiecoherence consists of the dynamical loss of coherences due to the coupled dynam-
ics of an open system and its environment. For a mathematician though, this statement contains numerous unclea
concepts claiming for definition. When a quantum system is closed, a single complex separable Hilbdyt space
is used in its description together with a self-adjoint opera&or the Hamiltonian — which is the generator of a
unitary group(U;),cr of operators acting of. Thus,U, = exp(—it H) if we assume the Planck constant 1
for simplicity, and given any elementin the von Neumann algebfat = £(h) of all bounded linear operators
on b, its evolution is given by a group of automorphismsx) = U;*xU;, r € R (Heisenberg picture). The group
naturally determines a group of transformatienson the predual spadBt, = J1(h) of trace-class operators by
the equation (oo, (x)) = tr(as (0)x), that is,a., (o) = U,o U, (0 € M., x € M). In particular, the Schrodinger

E-mail address: rrebolle@puc.cl (R. Rebolledo).
1 Research partially supported by FONDECYT grant 1030552 and CONICYT/ECOS exchange program.

0246-0203/$ — see front mattér 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.12.003



350 R. Rebolledo / Ann. |. H. Poincaré— PR 41 (2005) 349-373

picture which describes the evolution siétes, identified here withdensity matrices p € 9, which are positive
elements with tfp) = 1, is p; = a4 (0).

For an open system, instead, two Hilbert spaces are needed. The prgwehish we term thesystem space
and theenvironment space hg, so that the total dynamics is represented on the space h ® hr by a unitary
group of generatoH; = H + Hg + H;, whereHg (respectivelyH;) denotes the Hamiltonian of the environment
(respectively, the interaction Hamiltonian). If we want to analyze the reduced dynamics on thé spaceeed
to know in addition the state of the environment, that is, a density majrix J1(hg) has to be given at the
outset. With this density matrix in hands we obtain the Schrédinger pictutebyntaking a partial trace on the
environment variables (denoteg lr

T (p) = th(e_i'HT,O ® pE ei'HT)-
Or, accordingly, we usgg to determine the conditional expectatiBf’ (-) ontot to obtain
t];(x) — Egﬁ(eitHTx ® 1E e_i[HT)’

for x € M.

What we now have in hands is a semigroup structure instead of a group. Suppose that an orthonormal basis
(en)nen is given inh so that a density matriy is characterized by its componeni$m, n) = (e, pe,). Ac-
cordingly, p;(m, n) denotes the components af = 7., (p), (n, m € N). The off-diagonal termg, (m, n), n # m,
are called thecoherences. In a rough versiongecoherence consists of the disapearance of these terms as time
increases, that is,; (m, n) — 0 ast — oco. So that, for a large time, the evolution of states becomes essentially de-
scribed by diagonal matrices which are commutative objects ruled by a classical dynamics. To paraphrase Giulini
et al. (see [20]), decoherence is related to the appearance of a classical world in Quantum Theory.

The subject, from the physical point of view, is certainly much more complex than the rough picture drawn
before. Several authors pointed out that a most careful analysis of involved time scales should be considered
(see [33]). Indeed in numerous physical models, the genefabbthe semigrouf¥ is obtained by different limit-
ing procedures leading to the so-calledster equations (a quantum version of Chapman—Kolmogorov equations),
via adequate renormalizations on time and space. The recent book [1] contains a systematic study of these tech
niques synthesized in the conceptadchastic limit. Thus, for some physicists, decoherence is a phenomenon
which precedes the derivation of the so-called Markov approximation of the dynamics. Others, have focused their
research on algebraic properties leading to a definition and main properties of decoherence in the Heisenberg pic-
ture (see [4]), while another group looks for the physical causes of decoherence, mainly attributed to interactions
of the system with the boundaries of the cavity in which it is contained (see [13]). The debate has been reinforced
by experimental results allowing to observe the decay of coherences for a given initial coherent superposition of
two pure states (see the reports of the Haroche’s group at the ENS in Paris [7], and that of the Wineland’s group in
Boulder [28]).

The physical problem of decoherence is undoubtedly passionating and its discussion leads directly to philo-
sophical arguments about the foundations of Quantum Mechanics. We do not pretend here to enter that arena. We
address a much more modest problem which can be easily stated within a well known mathematical framework,
we refer to Quantum Markov Theory.

We separate two aspects in the analysis of decoherence. Firstly, the question of the existence of an Abelian
subalgebra, generated by a given self-adjoint operator, which remains invariant under the action of a given quantum
Markov semigroup (QMS). Thus, the restriction of the semigroup to that algebra will provide a classical Markov
semigroup. Secondly, we focus on the asymptotic behavior of a QMS. Our goal in that part is to analyze structure
properties of the semigroup leading to a classical limit behavior. Preferred by physicists to construct mathematical
models of open quantum systems, the generator will be our main tool to analyze decoherence of a quantum Markov
semigroup.
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2. Quantum Markov Semigroups

A Quantum Markov Semigroup (QMS) arises as the natural non-commutative extension of the well known
concept of Markov semigroup defined on a classical probability space and represents the loss-memory evolution
of a microscopic system in accordance with the quantum uncertainty principle. The roots of the theory go back
to the first researches on the so calgn quantum systems (for an account see [2]), and have found its main
non-commutative tools in much older abstract results like the characterizatmmpfete positive maps due to
Stinespring (see [30,31]). Indeed, complete positivity contains a deep probabilistic notion expressed in the language
of operator algebras. In many respects it is the core of mathematical properties of (regular versions of) conditional
expectations. Thus, complete positivity appears as a keystone in the definition of a QMS. Moreover, in classical
Markov Theory, topology plays a fundamental role which goes from the basic setting of the space of states up
to continuity properties of the semigroup. In particular, Feller property allows to obtain stronger results on the
qualitative behavior of a Markov semigroup. In the non-commutative framework, Feller property is expressed
as a topological and algebraic condition. Namely, a classical semigroup satisfying the Feller property on a locally
compact state space leaves invariant the algebra of continuous functions with compact support, which is a particular
example of aC*-algebra. The basic ingredients to start with a non-commutative version of Markov semigroups are
then two: firstly, a*-algebra2(, that means an algebra endowed with an involutiomhich satisfiega*)* = a,

(ab)* = b*a*, for all a, b € 2, in addition we assume that the algebra contains alyrihd secondly, we need a
semigroup of completely positive maps franto 24 which preserves the unit. We will give a precise meaning to
this below. We remind thatositive elements of thé&-algebra are of the form*a, (a € 2). A state ¢ is a linear
mapg : A — C such thatp(1) = 1, andg(a*a) > 0 for alla € 2.

Definition 1. Let 2 be a*-algebra and® : 2( — 2l a linear map’P is completely positive if for any finite collection
ai,...,an, b1, ..., b, of elements ofl the element

Zai*P(bi*bj)aj
iJj
is positive.

Throughout this paper, we will restrict otialgebras to the significant cases@falgebras and von Neumann
algebras of operators on a complex separable Hilbert dpaiiee symbobit will be used to denote a generic von
Neumann algebra, whil& will be assigned to a&*-algebra. Moreover, we always assume that Gtwalgebra
%5 contains a unitl. In this case states are elements of the d&&lof 9. A stateg is pure if the only positive
linear functionals majorized by are of the formig with 0 < A < 1. For an AbelianC*-algebra, the set of pure
states coincides with that of alharacters, also called spectrum of the algebra (see [5], Proposition 2.3.27, p. 62).
A charactery of an AbelianC*-algebra2l is a state which satisfies(ab) = ¢(a)@(b), for all a, b € ; the set of
all these elements is usually denote@() (for spectrum) or Py (for pure states).

If 21 is a von Neumann algebra, its predual is den®@d The predual contains in particular all the normal
states. As a rule, we will only deal witlormal states ¢ for which there exists a density matrix that is, a positive
trace-class operator gfwith unit trace, such that(a) =tr(pa) for all a € A.

Definition 2. A quantumsub-Markov semigroup, or quantum dynamical semigroup (QDS) on a*-algebra?l which
has a unitl, is a one-parameter family = (7),er, of linear maps ofl into itself satisfying

(M1) Zo(x) =x, forall x e «;

(M2) EachZ;(-) is completely positive;

(M3) 7;(Z5(x)) =T45(x), forallz,s > 0,x € X,
(M4) 7,(1) <1forallz > 0.
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A quantum dynamical semigroup is callgdantum Markov (QMS) if 7;(1) = 1 for all ¢ > 0.
If 2 is aC*-algebra, then a quantum dynamical semigroumiformly (or norm) continuous if it additionally
satisfies

(M5) lim;—osup, <1 17 (x) — x|l =0.
This is a very strong continuity condition which is sometimes replaced by the so Ealledcontinuity condition
(M5F) lim;_0|Z;(x) — x| =0, for all x € 2.

A gquantum Markov semigroup satisfying (M5F) will be callggantum Feller.
If 20 is a von Neumann algebra, (M5) is usually replaced by the weaker condition

(M50) For eachy € 2, the map — 7;(x) is o-weak continuous of{, and7,(-) is normal ore -weak continuous.

The generatoil of the semigroup? is then defined in thev* or o-weak sense. That is, its domain(L)
consists of elements of the algebra for which thev*-limit of +=1(7;(x) — x) exists ast — 0. This limit is
denoted ther (x).

The predual semigroup 7 is defined ordit, as7Z,,(¢)(x) = ¢(Z;(x)) forall > 0, x € M, ¢ € M,. Its gener-
ator is denoted’,..

It is worth noticing that the generatdris often known indirectly through sesquilinear forms and the so called
Master Equations in the caselt = £(h). These equations are expressed in terms of density magriee®; (h),
the space of trace-class operators£ifh), and they correspond to a non-commutative version of Chapman—
Kolmogorov’'s equations:

d
E“” pru) =L, (o) (v, u),

po=p,

1)

u, v € b, p; corresponds to the action of the predual semigroup attimer and(u, v) — £,(p)(v, u) corresponds
to a sesquilinear form which is linear ine b, and antilinear i € §.

2.1. The generator in the C*-case

A quantum Markov semigroup is norm-continuous if and only if its generétoris a bounded operator 68.

In [10], Christensen and Evans provided an expression for the infinitesimal genérat@ norm-continuous
quantum dynamical semigroup defined o &algebra, extending previous results obtained by Lindblad [25],
Gorini, Kossakowski and Sudarshan [21]. We recall their result here below.

Suppose thal is a norm-continuous quantum dynamical semigroufBoand denotés theo -weak closure of
the C*-algebra®. Then there exists a completely positive map®B — B and an operato6 € B such that the
generatoiZ(-) of the semigroup is given by

LX)=GC*x+¥(x)+xG (x€B). (2)

The map¥ can be represented by means of Stinespring Theorem [31] as follows. There exists a representation
(&, ) of the algebraB and a bounded operat®rfrom  to the Hilbert spacé such that

U(x)=V*r(x)V (x €B). (3)
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Notice that¥ (1) = V*V = —(G* + G) = —2R(G) € B, wheref(G) denotes the real part @f, since£(1) =
0. So that, if we calH the selfadjoint operator2i(G — G*) = —3(G) € B, where3(G) stands for the imaginary
part of G, then£(-) can also be written as

1
L(x)=i[H,x]— E(V*Vx —2V*'r(x)V —xV*V) (x € B). (4)
The representation af(x) in terms of G and¥ is certainly not unique.

2.2. The generator in the von Neumann case

Consider a von Neumann algel®a on the Hilbert spacé. The representation of the generafr) of a norm
continuous QMS oft is then improved as follows. There exists a set of operafork.cy suchthat. =, Ly Ly
is a bounded operator 81t and , LixL; € 9 whenever: € 9 and a selfadjoint operatdd = H* € 9t such
that

1
L(x)=Ii[H,x]— > Z(Lk*ka — 2Ly *xLy +xLi*Ly). (5)
k

We recover the expression (2) if we put

. 1
G:—IH—EXk:L,’:Lk; lP(x):Xk:LZka. (6)

2.3. The case of a form-generator

In most of application€ (-) is not known as an operator directly but through a sesquilinear form. To discuss this
case we restrict ourselves to the von Neumann alg®bea £(h) and we rephrase, for easier reference the crucial
result which allows to construct a quantum dynamical semigroup starting from a generator given as a sesquilinear
form. For further details on this matter we refer to [14], Section 3.3, see also [9].

Let G andL, (¢ > 1) be operators ify which satisfy the following hypothesis:

(H-min) G is the infinitesimal generator of a strongly continuous contraction semigroyp/MG) is contained
in D(Ly), forall£ > 1, and, for allt, v € D(G), we have

oo
(Gv.u)+ ) {Lev, Leu) + (v, Gu) = 0.
=1

Under the above assumption (H-min), for eaclke £(h) let £(x) be the sesquilinear form with domain
D(G) x D(G) defined by

£(x)(v,u) = (Gv,xu) + Y _(Lev, xLeu) + (v, xGu). (7)
=1

It is well-known (see e.g. [11], Section 3, [14], Section 3.3) that, given a dolainD(G), which is a core
for G, it is possible to built up a quantum dynamical semigroup, calledrihemal QDS, satisfying the equation:

t
(v, Tr (x)u) = (v,xu)+f£(’]}(x))(v,u)ds, (8)
0
foru,veD.
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This equation, however, in spite of the hypothesis (H-min) and the factihata core forG, does not nec-
essarily determine a unique semigroup. The minimal QDS is characterized by the following property: for any
w*-continuous family(7;); >0 of positive maps ort(h) satisfying (8) we havéft(m'”) (x) < 7;(x) for all positive
x € £(h) and allz > 0 (see e.g. [11]; [14], Theorem 3.22; [22], Theorem 3.3.3, p. 86). If the minimal QDS is
Markov, that is7,"™™ (1) = 1, for all > 0, then it is the unique solution to (8). One may test that condition on the
formal generator through the equati&il)(v, u) = O for all u, v € D. Throughout this paper we will implicitly
assume that formal generators satisfy the Markov property, and we will then refer to the unique minimal solution
of (8) as the minimal quanturilarkov semigroup. For a discussion on sufficient conditions for this property to
hold the reader is addressed to [8,22].

The assumed density @ implies that the minimal quantum Markov semigroup — which we simply denote
7 from now on — possess a densely defined generatits domainD (£ being given by all elements € £(h)
for which the map(u, v) — £(x)(u, v) is norm-continuous on the product Hilbert spdce& . And, for any
x € D(L), L(x) is given by (v, L(x)u) =£(x)(u, v), u,v € b, after extendingg(x) from the dense seb x D
to all of h x h by continuity. Also, Proposition 3.1.6 in [5], shows thatis w*-closed. Moreover, the predual
semigroup/,. is now defined on the predual spacegh) which isT1(h), the Banach space of trace-class operators:
tr(Z (p)x) =tr(pZ;(x)), (0 € J1(h), x € £(h)). So that,L,.(D(L,)) C J1(h) and, as Davies proved in [11] (see
also [15]), the dense séfu)(v|; u, v € D} is included in the domai (L,) of the predual semigroup generator.
This predual semigrouf, is weakly-continuous. This property, together with complete positivity, imply that it
is also a strongly continuous semigroup of bounded linear operators (a so Cgllmigroup) sincd1(h) is a
Banach space and Corollary 2.5 in [29] holds. As a reglylis a closed operator too.

2.4. Examples of generators

2.4.1. The quantum damped harmonic oscillator

In this case the Hilbert space used to represent the systgra:i€*(N) with its canonical orthonormal basis
(en)nen; M = £(h). We use the customary notations for annihilatioy creation ¢') and number §/) operators.
The physical model corresponds to an atom which traverses an ideal resonator (a high quality cavity), its energy
can be in two levels only (a so calledo-level atom). Excitations of a mode of the quantized radiation field in
the resonator correspondpbotons which stay in the cavity, they have a finite life-time and they interact with the
incident atom. The physical description of the dynamics have been obtained by different approximation procedures
(weak coupling limit, coarse graining) which end iMaster Equation containing the (formal) generator of a quan-
tum Markov semigroup. Here we start from that formal generator, the reader interested in its physical derivation is
addressed to any textbook on Quantum Optics, here we use the presentation of B.E. Englert and G. Morigi in page
55 of the collective book [33]. Let introduce the physical parametedenotes the energy decay rate in the cavity;
v, the number of thermal excitations; the natural (circular) frequency. The form-generator of the semigroup is
given by the (formal) expression

1 1
L(x)=i[wN,x] — EA(U + 1)(aTax —2a%xa + xaTa) - EAv(aaTx — 2axa’ + xaaT), 9)
for x in a dense subset 6ft, which is the common domain aefanda?.

2.4.2. The quantum Brownian motion

Let h = L2(R?; C) andt = £(h). We consider here another version of the harmonic oscillator like in [27],
Chapter Il (see also [3]). Though this is an extension of the previous example, the dimegnsiays here an
important role in the analysis of ergodic properties of the semigroupuatum Brownian Motion means for us a
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quantum Markov process with associated semigrbugn 9t which is the minimal semigroup (see [8,14] and the
references therein) with form-generator

d d
1 1
L(x) = —3 Z(aja;-rx - Zajxa;r + xaja}) ~5 Z(a;ajx — 2a;xaj —i—xa;aj),
j=1 j=1

Wherea;.r, a; are the creation and annihilation operators

aj=(qj+9))/V2.  al=(q—9)/V2,

d; being the partial derivative with respect to tf coordinatey; .

2.4.3. The quantum exclusion semigroup

The generator of this example is constructed via a second quantization procedure. Consider first a self-adjoint
bounded operatoHy defined on a separable complex Hilbert spageHp will be thought of as describing the
dynamics of a single fermionic particle. We assume that there is an orthonormalPagisy of eigenvectors
of Hp, and denot&, the eigenvalue ofs, (n € N). The set of all finite subsets 8f is denoted ;(N) and for any
AeBrN), we denoteh()‘ the finite-dimensional Hilbert subspacelpfgenerated by the vecto(g,,; n € A). To
deal with a system of infinite particles we introduce the fermionic Fock spaeé’s (ho) associated thg whose
construction we recall briefly (see [6] for full detail).

The Fock space associatedjipis the direct sum

I (ho) =EPHg",
neN

Wherehg@” is then-fold tensor product of)g, with the conventioﬁjgZ>O = C. Define an operatdP; on the Fock
space as follows,

1
Pa(fi® 28 ® fi) == exfu ® @ fr,.

The sum is over all permutations: {1, ..., n} — {m1, ..., 7,} of the indices and, is 1 if = is even and-1 if =
is odd. Define the anti-symmetric tensor product on the Fock spage/as-- A f, =Pa(f1® 2 ®--- ® fu). In
this manner, the Fermi—Fock spdgés obtained as

b= (ho) = Pa( 15" ) =P "
neN neN

We follow [6] to introduce the so-called fermion@reation 5T( ) andAnnihilation b( f) operators orf), asso-
ciated to a given element of ho. Firstly, onI"(ho) we definea(f) anda'(f) by initially settinga(f)y©@ =0,
at(Hv O =f fory =@ y® . )er(ho) withy ) =0forall j>1,and

AN ®f)=VI+Lf@[1® - ® fu, (10)
a(f)(fi® @ fu)=vnlf, ) 2R 3@ fu. (11)

Finally, define annihilation and creation @ (ho) ash(f) = Paa(f)Paandb’(f) = Paa’(f)Pa. These operators
satisfy the Canonical Anti-commutation Relations (CAR) on the Fermi—Fock space:

(b, b} =0={b"(f),b" ()} (12)
(b b @} = (181, (13)
for all f, g € ho, where we use the notatiqd, B} = AB + B A for two operatorsA and B.
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Moreover,b( ) andb'(g) have bounded extensions to the whole spasice||b( /)| = || f1l = IbT(N)].
To simplify notations, we writeb;r =bT(y,,) (respectivelyb, = b(,,)) the creation (respectively annihilation)
operator associated with, in the spacéy, (n € N).

The C*-algebra generated Hyand all theb(f), f € ho, is denoted®(ho) and it is known as the canonic@AR

algebra.

Remark 1. The algebr&l(ho) is the unique, up td-isomorphismC*-algebra generated by elemehts’) satis-
fying the anti-commutation relations ovigg (see e.g. [6], Theorem 5.2.5).

Remark 2. It is worth mentioning that the familyb(f), bT(g); f,g € ho) is irreducible on b, that is, the only
operators which commute with this family are the scalar multiples of the identity ([6], Proposition 5.2.2). Clearly,
the same property is satisfied by the faniiby, b,‘;; n € N), since(y,),en is an orthonormal basis ¢b.

Remark 3. The algebral(ho) is the strong closure @ = UAE%(N) Ql(bé‘) (see [6], Proposition 5.2.6), this is

the quasi-local property. Moreover, the finite dimensional algeb?a§g) are isomorphic to algebras of matrices
with complex components.

An elementy of {0, 1} will be called aconfiguration of particles. For each, n(n) will take the value 1 or 0
depending on whether theth site has been occupied by a particle in the configuratidn other terms, we say
that the siten is occupied by the configurationif n(n) = 1. We denoteS the set of configurations with a finite
number of 1's, that i9 , n(n) < co. Eachn € Sis then identifiable to the characteristic functiog, 1 ) of a
finite subset ofN, which, in addition, we will suppose ordered asiQ1 < s2 < --- < s,. FOr simplicity we write
1, the configuration {;, (k € N). Furthermore, we define

OB A (14)
b(n) = by, bs,,_, ... bs,, (15)

forall n =1, 51 Clearly,b(1;) = b;r, b(1y) = by (k eN).

To obtain a cyclic representation 2ijo) we call|0) the vacuum vector i), and|n) = bT(1)|0) (7 € S). Then
(In), n € S) is an orthonormal basis of In this manner, any € 2(ho) can be represented as an operatdt ().
Moreover, callo the vector space spanned iy), n € S).

An elementary computation based on the C.A.R. shows that fonang S, it holds

blin) = (1= n())In + L), (16)
beln) =n()ln— 1) (keN). 17)

We assume in addition thdfy is bounded from below, so that there exists € R such thath < E,, for all
n € N. Then, the second quantization B becomes a self-adjoint operatéir acting onh, with domainD(H)
which includess and can formally be written as

H=Y" Ebb, (18)

Itis worth mentioning that the restrictioi* =", _, E,b}b, of H to each space’ (h¢') is an element of the
aIgebran(b()‘), AePrN), so thatH* is a bounded operator. Moreover, for eddt|n) — H%|n)|| — 0 asA
increases tdN, for eachn € S.

Thetransport of a particle from a sité to a sitej, at a ratey; ; is described by an operatay ; defined as

Li,j = .\ /Vi,j bjb, (19)
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This corresponds to the action of a reservoir on the system of fermionic particles pushing them to jump between
different sites. Each operatdf ; is an element o®l(ho) and||L; ;|| = ./7i,;. We additionally assume that

SUDZ Vij < Q. (20)
b

Now, for eacha € P r(N) andx € 2(ho), define

@a(x)= > Lij*xLi .
i,jeA

oA - Aho) — A(ho) is a completely positive map. Moreover, for each vegorof the orthonormal basis i,

lea@im|| < Y |Lij*xLijin)| = > nG)(1—n())vis|| Lij*xIn— 1 + 1))

i,jeEA i,jeA
< D (L= n())yijlxl < (supZyi,,»)nxn.
i jeA Lo

So that|g 4 (x)|n) | is uniformly bounded agt run over (N). Moreover,

Yo lLitxLijin| < oo
i

so that|| (A (x) — @(x))u|| — O forallu € v asA 1 N, where the operator

p(x) = ZLi‘j*XLi,j,
iJ
is defined on the dense manifaidor all x € 2(ho).
As aresultp 4 (1) converges in the same sensed) = Zi’j L;;*L; ;.
To summarize, the generator of the QMS in this case is given in the form (5):

. 1
L(x)=Ii[H,x]— 5 Z(Li,j*Li,jx — 2L,~,j*xL,~,j + xL,‘,./*Li,j), (22)
iJ
with H andL; ; introduced in (18), (19} € 2((ho) andv is a core domain foL (x).

3. The appearance of classical Markov semigroups

Given a quantum Markov semigrodp and a self-adjoint operatdt, this section studies different conditions
on the generator of the semigroup to leave invariant the Abelian algebra generdfed by

Definition 3. We say that a completely positive mé&pdefined o8 is reduced by an Abelian*-subalgebra! if
2 C % is invariant under the action @3.
Analogously, a quantum dynamical (resp. Markov) semigrddp g+ defined ort5 is reduced by 21 if 2 C B
is invariant under the action & for all r > 0.
We will simply say that the semigroup is reduced by a normal opet&tarhen it is reduced by the algebra
generated by .

Remark 4. Suppose thaP is a completely positive map defined @hsuch thatP(1) = 1. If P is reduced by an
Abelian subC*-algebral of the algebrad, then its restrictiorP to 2( defines a norm-continuous kernel.
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Indeed, since&l is an AbelianC*-algebra which contains the unit, its set of charactet¥) is a w*-compact
Hausdorff space (see [5], Theorem 2.1.11A, p. 62).

20 is isomorphic to the algebra of continuous functiati& (2()) via the Gelfand transformz: — a, where
a(y)=vy(a),forallae, y o).

DefinePa = 7§(a\). ThenP: C(oc (2)) — C(o (1)) is linear, positive and continuous in norm since foraad 2A:

IPall = |P@)| < llall = l1al.

Therefore, by the disintegration of measures property (see [12]), there exists akesr@l) x B(o (2A)) — [0, 1]
such thatP (v, -) is a (Radon) probability measure for all € o (1), P(-, A) is a continuous function, for all
A e BA) and

Pa(y) = f P, dp)p(a).
o (R)

Remark 5. It follows immediately from the previous remark that if a Feller guantum Markov semigfoin
particular, a norm-continuous semigroup) defined¥iis reduced by an Abeliag™*-subalgebr&! of 8, there
exists a classical Feller semigroup which is isomorphic to the restrictigntof2(, called thereduced semigroup.

Given a*-Abelian subalgebra@ C £(h), itis included in its commutar’ which is a von Neumann algebri.
is maximal if2 =2, and in that cas@ becomes a von Neumann algebra too.

Remark 6. Suppose tha is a quantum Markov semigroup defined 8¢h) which is reduced by a maximal
Abelian von Neumann subalgeb®a Then there exists a compact Hausdorff spacendowed with a Radon
measureu such that the restriction of to 21 is *-isomorphic to a classical Markov semigro(ﬂﬁ,)leRJr on
L*°(E, u). Moreover, if the semigroufd is quantum Feller, thehT,)teRJr is a Feller semigroup.

The above remark follows directly from the Spectral Theorem: Sthisemaximal Abelian, there exists a triple
(E, u, U), whereE is a compact second countable Hausdorff spaceRadon measure dhandU is an isometry
from L?(E, ) ontoh. E is in fact the space of characters®fwhich isw*-compact.

So thatl/ : L*°(E, u) — A, defined byi/(f) = UM U™, where f € L*°(E, 1) and My denotes the multipli-
cation operator by in L2(E, 1), is an isometri¢-isomorphism of algebras.

A semigroup(T,),eR+ is defined onL*°(E, ) through the relation

Mt =U*T,(UM;U*U, (22)

forall f € L*°(E, u).

The semigroup(T,);cr, preserves the identity, sind@g is an isometry. Moreover|7; (x)|| < [lx|| (x € 2)
implies thatT, is a contraction. Thereforaé‘,r,),e]R+ is a Markov semigroup oA (E, w).

If 7 is Feller, this property is inherited by the classical reduction through Remark 5.

The previous results motivate the study of classical reductions of quantum Markov semigroups by Abelian
algebras generated by a self-adjoint operator. To this end we refine below the applications of the Spectral Theorem
to reduce completely positive maps. Given a normal oper&towe denoteW*(K) its generated von Neumann
algebra which coincides with the weak closure of €ifealgebraC*(K) generated by the same operator.

The Abelian algebrd/* (K) is maximal if and only ifK is multiplicity-free or non-degenerate. If K is bounded,
non-degeneracy means that there exists a cyclic vect@rfek), that is,{ f (K)w: f € C(Sp(K))} is dense irf
for some vectow, whereSp(K) denotes the spectrum &f. If K is unbounded, it is non-degenerate if there
is a vectorw in the intersection of all domain®(K") (n > 1), such that the subspace spanned by the vectors
(K"w; n>1)isdenseimn.
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If K is degenerate, one can decompose the Hilbert space in orthogonal subspaces dki ishiohitiplicity-
free. Here below we will deal with this more general case.

We denote¢ the spectral measure €. In addition, given a Radon measure on the measurable space
(Sp(K), B(Sp(K))) we denotel (Sp(K)) the*-algebra which is obtained as the quotient of the set of Borel func-
tions by null functions under the given Radon measure.

Lemma 1. Assume that P is a normal linear completely positive map defined on 9t and such that P(1) = 1. Let
K be an unbounded self-adjoint operator affiliated with 91. Then the following propositions are equivalent:

(i) W*(K) isinvariant under P.
(i) For any projection p € W*(K), P(p) € W*(K).
(i) Forall A e B(Sp(K)), P(6(A)) € W*(K).
(iv) Thereexistsakernel P:Sp(K) x B(Sp(K)) — R* such that P(x, Sp(K)) = 1, for all x € Sp(K) and

P(E(A) = / E(dx) P(x, A),
Sp(K)
for all A € B(Sp(K)).

Proof. Clearly, (i) implies (ii) which in turn implies (iii). The equivalence of (i) and (iii) follows from a straight-
forward application of the Spectral Theorem for general self-adjoint operators, Biigénear and normal. So
that (i), (i), and (iii) are equivalent.

To prove that (iii) implies (iv), we first notice th& o £ is an operator valued measure. Indeed, sihéethe
spectral measure & and?P is linear and completely positive, the m&w & is additive on3(Sp(K)). Moreover,
take any pairwise disjoint sequence, ),<n of Borel subsets dBp(K). The projectior) , £(A,) exists as a strong
limit of the partial sumszkgn £(Ax). Moreover)_, £(A,) =l.u.b. Zkgn &(Ay) in the order of positive operators.
Thus, the normality of the map yields P(}_, £(An)) = I.u.b.P(Zk@ £(Ap)), andP o & is an operator-valued
measure.

If we assume (iii), given anyt € B(Sp(K)), the Spectral Theorem implies that there exidts A) € L(Sp(K))
such that

Pok(A)= / E(do)P(x, A). (23)
Sp(K)

Denote(e,),en an orthonormal basis ¢fand define the positive measyre= )", 27" (e,, £(-)e,). SinceP o &
is an operator-valued measure, it follows that> P (x, A) satisfies

P<x, UA,,> =Y P(x, A,

for n-almost allx € Sp(K).

Sincep is a probability measure, it is tight 3®p(K) € R. Therefore, for each > 1, there exists a compact
K, such thaiu(K,) > 1— 27", so that/ =, K, € Sp(K) satisfiesu(J) = 1. We imbedJ in [—o0, co], and
considery as a probability measure defined proo, oo], supported by/. Let denotet a vector space over the
field of rational numbers, closed for lattice operations\, dense inC ([—oo, oo]) and such that & ¢. Define

A={xeJ:f+ P(x, f)is apositiveQ-linear form ont and P (x, 1) = 1}.

Forallx € A, P(x,-) can be extended as a positive linear form to all'¢f—oo, oo]), and then td_([— oo, o0]).
Moreover,u(A) =1 and

/L({x € Sp(K): P(x,J¢) = O}) =1
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We can complete the definition of the kernelchoosingP (x,-) = 6(-) for all x ¢ A, where6 is an arbitrary
probability measure.

Finally to prove that (iv) implies (iii), it suffices to apply the Spectral Theorem again which yields
[E@x)P(x,A) e WH(K). O

Remark 7. It is worth noticing that ifK is degenerate, we haw&*(K) c W*(K)' strictly and W*(K)’ is not
Abelian. Indeed, an example borrowed to Pedersen [32] shows the first assertion. Suppaése that: and
Kv = \v for two orthogonal unit vectors andv. There exists a unitary operatét’ such thatV’'u = v, Wv = —u
andW’ = 1 on the orthogonal complement@fc @ Cy. One can check easily that all elemeamts W*(K) have to
satisfy((u +v), a(u —v)) = 0, while ((u +v), W (u —v)) = 2. So thatW’ ¢ W*(K), however a direct computation
shows thatW’ € W*(K)'. On the other hand, if one assu& (K)’ to be commutative, then it has a separating
vector. This means that the von Neumann algébfgK ) has a cyclic vector and this property is equivalent to its
maximality, that isW*(K) = W*(K)’, contradicting the degeneracy &f,

The above discussion shows that the reduction of a completely positive map by the comiitt&nt of the
von Neumann algebra generatedfyteads to a classical kernel if and onlykf is non-degenerate.

3.1. The C*-case

Consider first a semigroup defined on aC*-algebra® and let a bounded normal operatkrbe given. We
then characterize the classical reduction of the semigroup as follows.

Theorem 1. Assume that K is a normal operator in the C*-algebra % and call C*(K) the Abelian C*-algebra
generated by K. Then a norm-continuous quantum Markov semigroup 7 defined on 9% isreduced by C*(K) if and
onlyif L(K") e C*(K) for all n € N.

In particular, suppose that the generator isimplemented by (4), where H and V satisfy:

() [H, K] e C*(K);
(i) V¥V eC*(K);
(iii) For eachn € N, there exists a constant «,, € C such that

VK" —a(K")V =a,V.

Then, the semigroup 7 isreduced by the algebra C*(K).

Proof. Let K denote the'-subalgebra generated by the commuting varialblek, K*. K is strongly dense in
C*(K). Onthe other hand] is norm-continuous, so th&t*(K) is invariant undef if and only if L(K) € C*(K).
Since£(1) = 0 andL(K*") = L(K™)*, it follows easily thatl(K) € C*(K) if and only if L(K™) € C*(K), for
alln eN,

To prove the second part of the theorem, from hypothesis (i) and the derivation propity- pit follows that
[H, K"] € C*(K) for all n € N. On the other hand, hypothesis (iii) yields

VAVK" — V¥ (K™)V = a, V¥V,

so thatV*z (K")V belongs taC*(K) as well asV*V K" and K" V*V, applying (ii). As aresultL(K™) € C*(K)
for all n € N, and the proof is complete.O
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3.2. Normtcontinuous semigroups defined on von Neumann algebras

Given a normal operatak, W*(K) reduces the norm-continuous quantum Markov semigfbupand only
if L(x) e W*(K) for all x € W*(K). This follows immediately from the definition of the generator. Here below a
modification of this elementary result in case of non-degeneracy.

Theorem 2.1f a bounded self-adjoint operator K € 91 is hon-degenerate, W*(K) reduces the norm-continuous
guantum Markov semigroup 7 if and only if £(x) commuteswith K for any x € W*(K).
In particular, suppose that

() [H,K]e W*(K), and
(i) [L, K]=ckLi, wherecy =cf € W*(K), for all k e N.

Then W*(K) reduces the semigroup 7.

Proof. If K is non-degenerate, thé#*(K) is maximal Abelian and coincides with its commuta¥t (K)'. Thus,
L(W*(K)) € W*(K) if and only if L(x) lies in W*(K)’ for any elemenk € W*(K)'.

To prove the second part, consider an arbitrarg W*(K)'. To compute[L(x), K], we first observe that
eachLiLy € W*(K), since[L;Ly, K] = —LjckLy + Ljck Ly = 0. In addition, [[H, x], K] = [[H, K], x] +
[H, [x, K]] = 0. Therefore,

[L(x), K]= [i[H, x]— %Z [LiLix —2LfxLi + xLfLg, K]}
k
=i[[H,x],K5] - Z[szLk, K]
k
=_ Z(—chkak + Lilx, K1Lg + Lixck L) (x, cx andK commute)
=0. k 0

The previous theorem can be improved to consider an unbounded self-adjoint oeedfitinted with the von
Neumann algebra.

For any quantum Markov semigrodpthere existsW > 0 andg € R such that|7; || < M exp(Bt) forall ¢ > 0
(see [5], Proposition 3.1.6, p. 166). As a result, the resol®nt) of the semigroup is given by the Laplace
transform

Ra(x) = (M= £)Hx) = / dr e T (x),
0

for all x € 901, whenevefia > B.

Theorem 3.Let be 7 a quantum Markov semigroup on the von Neumann algebra 9t and K an unbounded self-
adjoint operator affiliated with 9Jt. Then the following propositions are equivalent:

(i) Thesemigroup isreduced by W*(K).
(i) Forall Ae B(Sp(K))andanyt >0, 7;(£(A)) € W*(K).
(i) The manifold D(L£) N W*(K) isnon-trivial and for all x € D(£) N W*(K), it holdsthat L(x) € W*(K).
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(iv) Thereexistsa classical Markov semigroup (T;);cr+ 0N Sp(K) such that for all f € L(Sp(K)),

7?(f(K)) = / E(d0)T, f(x).
Sp(K)

(v) For all » suchthat WA > g andall A € B(Sp(K)) R, (£(A)) € W*(K).
Proof. We clearly have the equivalence of (i), (ii) and (iii). Furthermore, the equivalence of (i) with (iv) follows

from Lemma 1. Proposition (V) is equivalent to the existence of a family of keRyets the spectrum ok which
defines a classical semigroilip Thus (v) and (iv) are equivalent and this completes the proof.

The particular case of norm-continuous semigroups enjoys a richer characterization in terms of the generator.

Corollary 1. Supposethat K isa non-degenerate self-adjoint operator. W*(K) reduces a norm-continuous quan-
tum Markov semigroup 7 if and only if one of the following equivalent conditions is satisfied:

(i) L(E(A) e WH(K) for all A e B(Sp(K)).
(i) [L(E(A),&EB)]=0forall A, B B(Sp(K)).
(iii) There exists a dense domain D C L(Sp(K)) and an operator L : D — L(Sp(K)), such that for all f € D,
f(K)e D(L) and

L(f(K)) = / §(do)L f(x).

Sp(K)

In particular, suppose that the generator £(-) is given by (5) which in addition satisfies the two conditions
below:

() [H,&(A)] € W*(K), and
(b) [Ly,£(A)] = cx(A)Ly, where c; (A) isa self-adjoint element in W*(K), for all k € N and A € B(Sp(K)).

Then W*(K) reduces the semigroup 7 .

Proof. The generatoL(-) is everywhere defined since the semigroup is norm-continuous. Thus, the equivalence
of (i)—(iii) with (i) of the previous result is a simple consequence of the Spectral Theorem.
The last part follows from the first and Theorem 2 appliedtd). O

4. Semigroups with form-generators

Finally, if the generator is given as a form through a Master Equatio®)fes £(h), the above results have to
be amended as follows.

Theorem 4. Assume that for all x € W*(K), and all spectral projection £(A), where A € B(Sp(K)) is such that
&(A)(D) C D it holds

L) (v, £(Au) =L (§(A)v, u), (24)

for all (u, v) € D x D. Then the minimal semigroup 7 isreduced by K.
In particular, thisis the case when the following two conditions hold:
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(a) The operator G is affiliated with W*(K),
(b) Givenany x € W*(K), (u,v) e D x D, £ > 1,

(Lev,xLe&(A)u)=(Le&(A)v, xLou), (25)
for all A € B(Sp(K)) suchthat £(A)(D) C D.

Proof. The proof follows the construction of the minimal quantum dynamical semigroup associated to the
form-£(-), as presented by Chebotarev (see [9]) and extensively used by him and Fagnola in their joint research on
the Markov property of this minimal semigroup (see [8]).
DefineT,(O) (x) = x. Then, clearlyv, T,(O) (x)pu) = (pv, 7;(0) (x)u), forallx € W*(K), all projectionp = £(A)
leaving D invariant,(u, v) € D x D. We follow by defining];(l) (x) as follows: for eachiu, v) € D x D,
t
(v, Z(l)(x)u> = (v, xu) + [£(7;(0) (x))(v, u) ds.
0
Takex € W*(K) a projectionp = £(A) as before, and apply hypothesis (24). Then it follows that

(0. 7P ) pu) = {pv, TP ().

This yields that7, " (x) € W*(K) if x € W*(K).
By induction, suppos@,(o)(-), e, 7;(”)() constructed and reduced by*(K), then definéT,("+l)(-) through
the relation
13

(v, T yu) = (v, xu) + /:S(’Z;(")(x))(v, u) ds.
0
By the induction hypothesis, and (24) again, it follows that

(v, ’];("Jrl) (x)pu) = <pv, ’];("Jrl) (x)u),

for all projectionp = £(A) such thatp(D) € D and(u, v) € D x D, whenevenr € W*(K). Therefore K reduces
the whole sequencéZ ™), . This sequence is used in the construction of the minimal quantum dynamical
semigroup as follows. It is proved that, Z(")(x)u) is increasing withe and(u, 7; (x)u) is defined as its limit, for
allu e b, x € £(h) (see [14]). Then by polarizatiofy, 7; (x)u) is obtained. Thus, the minimal quantum dynamical
semigroup? satisfies7;(1) < 1, and given any othes -weakly continuous familyS;),cr+ satisfying (8) and
every positive operator € £(h), it holds7Z;(x) < S;(x), for all t > 0. Moreover, sian;(”)(W*(K)) C W*(K),
for alln e N andr > 0, it follows thatK reduces the minimal quantum dynamical semigroup.

Assume now hypotheses (a) and (b). Condition (a) implies@§an) = £(A)G for all projectioné (A) leaving
D invariant. Moreover, (b) yieldd ", (L¢v, xLeE(A)u) =), (Li&(A)v, xLeu) and this, together with (a), clearly
determine (24) and the proof is completex

Corollary 2. With the notations and assumptions previous to the above theorem, suppose that in addition the two
hypotheses below are satisfied:

(a) G isaffiliated with W*(K),
(b) For all £ >1andany A € B(Sp(K)) such that £(A) leaves D invariant, there exists a selfadjoint operator
ce(A) € W*(K), such that

Leg(A) = (5(A) +ce(A)) Ly (26)
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Then K reduces the minimal quantum dynamical semigroup 7.

Proof. Hypothesis (a) is identical to condition (a) of the previous theorem. On the other hand W*(K), and
A € B(Sp(K)) is such that(A) leavesD invariant

(Le&(A)v, xLou) = (E(A)Lgv, xLou)+ (ce(A)Lev, xLeu)

=(L¢v, x§(A)Lou) + (Lev, xcg(A) Lou)

= (Lgv, x(L¢&(A) — ce(A)Lg)u)+ (Lev, xce(A) Lou)
= (Lev, xLe&(A)u),

for all (u,v) € D x D. Thus, condition (b) of Theorem 4 is satisfied and the proof is complete.
4.1. Returning to examples

4.1.1. The harmonic oscillator

In Example 2.4.1L(x) was indeed a form-generator which should be more rigorously weiten. The ex-
pression of the formal generat@(-) suggest to consider the reduction By*(N). Indeed,Sp(N) = N, the
elementse, are the eigenvectors @¥ and for any bounded functioyi:N — C a straightforward computation
yields

£(f(N) W, len){enlu) =L£(f (N))(len) (enlv, u) = Lf (1) (v, €n)(en, u),

where,

Lfn) =2 (f(n4+2) = f0) + pa(f(n = 1) = f(n)), (27)
and

Am=Av(n+1), un=A@w+DLn @neN). (28)

As it is easily seen, the expression (27) corresponds to the generator of a classical birth and death Markov
semigroup, with birth rate, and death ratg.,,.

4.1.2. The quantum Brownian motion
The commutative von Neumann subalgelifa(q) of 9t whose elements are multiplication operattfg by a
function f € L>®(R?; C) is T-invariant andZ; (M s) = M, ; where

1
T = Gran f ey, (29)
R4

The same conclusion holds for the commutative algébiép) = F*W*(q)F, where F denotes the Fourier
transform (see [18]). Therefore, this QMS nangedntum Brownian motion semigroup contains a couple of non-
commuting classical Brownian semigroups as classical reductions.

Moreover, notice that the von Neumann alget& N) generated by the number operatde= Zj a;aj is also
T invariant and the classical semigroup obtained by restrictigh &6 W*(N) like in the previous example is a
birth and death oiN with birth rates(n + 1),,»0 and death rate:), 0.

4.1.3. The quantum exclusion semigroup
Givenn €S, i, j e N, definec; j(n) = n()) (L —n(j)vi,j-
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Proposition 1. For each x € 2(ho) the unbounded operator

, 1
L) =i[H, x] =5 > (LfjLijx — 2L} ;xLij +xL} Li ), (30)
i

whose domain contains the dense manifold v, is the generator of a quantum Feller semigroup 7 on the C*-algebra
2(ho). This semigroup is extended into a o -weak continuous QMS defined on the whole algebra £(h).

Moreover, the semigroup isreduced by the algebra W*(H ). Thereduced semigroup T correspondsto a classical
exclusion process (see [24]) with generator

LEm =) cijm(fa+1—1)— ), (31)
iJj
for all bounded cylindrical function f:S— R.

Proof. We first notice that there exists the minimal quantum Markov semigroup associated with the generator (30).
Indeed this holds since is dense irh = I'y(ho), and it is a core folG = —iH — %Zi’j L; ;j*L; ;, which is the
generator of a contraction semigroup, ané also contained in the domain of all the operatbfs, and the
Markovian property is guaranteed i8y(1) = 0. Let denoteZ this minimal semigroup (see [11] for further details)
which is defined through the use of theweak topology in all of£(h). It satisfies the equation

t

(v,Z(x)u): (v, xu) —i—/(v,[l(?}(x))u)ds, (32)
0

whereu, v € v, x € £(h).

Takex € A(ho) and A € P¢(N). Call E, the projection ofy = I'r(ho) onto h* = I'r(hg). Notice that for
all a € A(ho), the net of projected operatofsya E 4 € Q((hé‘) converges strongly ta, asA 1 N since2((ho) is
the strong closure dd = UQL(hé‘). CallE4(a) = E saE 4 the projection of an element of the algelého) and
TA(x) = EAT (x)E 4, x € A(hE), t > 0. This is a semigroup acting ali(h3') whose generator, determined by
(32), isL£A(x) = EAL(x)E 4, for eachx € 91([)6‘). L4 (x) is a matrix in a finite-dimensional space, so that it is a
bounded operator. As a result, eaEH is a norm-continuous semigroup.

To prove that the minimal semigroup satisfies the Feller property (M5F) on the algeBrép), we first
considerx € ®. So that there isig € B r(N) such thatr € Ql(h{)‘), which yieldsE 4 (x) = x for all A € P (N)
containingAg. Then, for all suchi,

|70 = x| < [T — T | + |7 -]

SinceE 4 o 7;(x) strongly converges td;(x) as A increases, given any > 0 we can chooset € B ¢(N) to
have the first right-hand term in the previous inequality less thi&n On the other hand, for thia we also have
lim,0Z,4 — 1| = 0 andzg may be selected to have the second right-hand term in the inequality less thiaro
for anyt < rg. This proves (M5F) fox € ©.

If x € A(ho), we pick a netxy € Ql(hg‘) which strongly converges te, use the fact thaf;(-) is a contraction
and the property (M5F) proved for elementsirto conclude7 is thus a quantum Feller semigroup on the algebra
2A(ho).

To study the classical reduction, it suffices to use the C.A.R. Inc[éélzk, b;bi] = (8kj — Sk,-)b;fb,-. Moreover,
since each operatdr; ; is bounded and.; jv C v C D(H), the commutatofH, L; ;] is well defined orv and can
be extended to all df as a bounded operator since

[H,Li 1=  ExyTijlbibi, bibil=(Ej — E)L; ;.
P J
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So that, adapting to this case the proof of Theorem 2, we concludé/theduces the semigroup.
We now obtain the expression of the reduced generator. The spectral decompostioneyfbe written,

H=Y E@mIn)nl,
n

whereE (n) = ; n(i) E;, for all configuratiory;. The algebraCyl(H) of operators of the form
x=Y_ fmn)n
n

wheref :S— C is a bounded cylindrical function, form a dense subalgebi@¢#).

We computel(x) for x € Cyl(H).

The following additional notation will be used:> j, means thaty(i) = 1 andn(j) = 0 (under the configura-
tion n a particle occupying the sitecan move to the free sitg).

An elementary computation yields

LY Li jln)(nl =i nG) (L= n())n)nl,
Iy ILY ;Lij = vi.jn@)(1—n())n)nl,
Li;ImnlLi ;= Yij(L=n@)n(DIn—1; + 1) (n—1; + L.

From this it follows that

L(In)y(nl) = ZZ Liglm)nl = 2LF ;\my(n|Li j + [n)(n|L} ; Li. ;)

= Y viin—Li+Lmn-1+LI— Y viinal

LN LN
i,jij—>i i,jii—j

Now, foranyx =3, f(mIn)(nl € Cyl(H),

L(x) = Z( S v fmin—1+ 1) -1+ L] - Zyi,jf(n)lnﬂnl),

U LJ

and notice that a change of variables> n — 1; + 1, yields

Y v -4+ —1+L=>" > i fa—L+ 1))l
Mo it

Therefore, we finally obtain

L)=Y Y vij(fo—=L+1)— f)m)nl,
T
from which (31) follows.

The above expression gives the generator of the semigroup restridiét{ #0). C*(H) is isomorphic with the
algebraC(Sp(K)) of continuous complex valued functions on the compaciSgg#/ ) and contains continuous
cylindrical functions as a uniformly dense sub-algebra. It is clear thgiven by (31) leaves the above dense
subalgebra invariant, thus the reduced semigroup appli&p(H) into itself, moreover, the Feller continuity
property is inherited from the quantum Markov semigroum
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5. Decoherence as a limit behavior

Let be given a quantum Markov semigrotipdefined ortJt = £(h). We introduce two additional notations:
ST ={xeM: T;(x) =x, forallt >0}
and
NT) = {x e M: T,(x*x) =T,(x") T (x), forall > 0}.

The first set corresponds to invariant elements under the action of the semigroup, whereas the second con-
sists of elements for which equality holds in Schwartz inequality for completely positive maps, a feature which
is characteristic of an automorphism group. In geneg&l) € 91(7). Assume further that a faithful normal
stationary statev,, = tr(p ) exists for the semigrouff. Under this hypothesis, Frigerio and Verri proved

in [19] that for a norm-continuous semigroug(7), 91(7) are von Neumann algebras, the conditional expec-
tationsES(D)(-) and E®7)(.) exist and any other stationary state can be represented=ags,, o ES(7)(.).

In addition they proved that i§(7) = 91(7), then for any initial stater and any element of the algebra,

Tt (@) (x) = 0(T;(x)) = 0(EST) (x)) = wso(x) @ast — oo. Throughout the remains of the paper a semigroup

is said to bawveakly ergodic(or simply ergodic) when the above property holds. Since we are assuming all states
to be normal, this means that for any initial density mapixZ,, (o) weakly converges to the invariant faithful
density matrixp., associated ta, ast — oo. This result has been extended by Fagnola and Rebolledo in [15]
to a general class of QMS. Moreover, for a generator given by a form like (7),Wwidls in (6), whereH is a
self-adjoint operator with pure point spectrum, one obtains the following nice characterization of weak ergodicity.

Theorem 5(Fagnola—Rebolledo, Theorem 1.2, [158uppose that the minimal semigroup 7 associated to-£(-) is
Markov and that it has a normal faithful stationary state we.
Assume in addition that H is a self-adjoint operator with pure point spectrum and either

(a) H isbounded;
or _
(b) H issdfadjoint and €' (D) € D(G), where D € D(G) isa dense linear subspace.

Let w denote an arbitrary normal state. Then 7;.. (w) convergesin the w*-topology to w~, ast — oo if and only
if

{Li, L, H; k>1) ={Ly, L; k>1Y. (33)

It is worth mentioning that sufficient conditions for the existence Gf-atationary normal faithful state have
been obtained in terms of the generator too in [16] and [17]. On the other hand, no stationary state exist for
a transient quantum Markov semigroup. Transience and recurrence of quantum Markov semigroups have been
studied in [18].

We now proceed with the definition of decoherence in our framework. To keep this notion close to the first ap-
proach of physicistghroughout this section we consider a self-adjoint operatorX with pure point spectrum
and denotéde, ),y an orthonormal basis of eigenvectorskof

Definition 4. We say thatk induces decoherence of the quantum Markov semigfbupthere exists a faithful
7T -stationary density matrix which commutes wikh

Equivalently,K induces decoherence &fif there exists a common faithful stationary density matrix for ibth
and the groupr of automorphisms associated&q o, (x) = exp(ir K)x exp(—itK), (x € M, t € R).
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Remark 8. In an interesting article (see [26]), Majewski and Streater introduced what they callédltrece
condition Il . Their definition, applied to the dynamiasand7 before, allows to easily infer a sufficient condition
for decoherence as we show below.

Proposition 2. Assume K to be a self-adjoint operator with pure-point spectrumand | et « denote the automor phism
group it induces. Suppose that there exists a normal faithful state » such that the following balance egquation
(balance condition Il in [26]) is satisfied,

a)(oz, (a*)b) = w(a*’]}(b)), (34)
for all a, b € 9. Then w isa stationary state for both « and 7°, and K induces decoherence of the semigroup 7 .

Proof. To derive thex-invariance ofw, choose firsb = 1 in (34) and use the Markov property @f. Similarly,
takinga = 1 and lettingb in (34) arbitrary, yields th€ -invariance ofw. Moreover, since» is normal, there exists
a density matrixo which commutes wittk and such thab () =tr(p -). ThusK induces decoherence @f. O

In concrete physical models though, condition (34) is oftenly hard to verify. Our aim in the remaining of the
paper, is to look for applicable criteria on decoherence based on the structure of the semigroup géneévator
start by some remarks and straightforward consequences of Definition 4.

Remark 9. Notice that if K is non-degenerate, Definition 4 implies that for all density magrithere exists a
sequencet, )N such that, — oo and for alln # m,

I

tl/(ems Iks(p)en)ds — 0.

7

0

Moreover, we have the following easy proposition improving the above remark.
Proposition 3. Assume that a non-degenerate self-adjoint operator K with pure point spectrum as before induces
decoherence of 7 and that the semigroup is ergodic. Then, given any density matrix p € J1(h), and n # m, it holds
<em, Tt (P)€n> — 0,
ast — oo.
Proof. Since the semigroup is ergodic akdinduces decoherence, it holds th&fig (p)x) converges to tiosox)

for all x € M, ast — oo and any density matrig, wherepo, is a faithful density matrix which commutes with.
The last statement follows straightforward from the above s{ageose,) =0forn#m. 0O

Proposition 4. Suppose that the self-adjoint operator K is non-degenerate and that W*(K) reduces the quan-
tum Markov semigroup 7. If K induces decoherence of 7, then the reduced semigroup has a faithful stationary
probability measure.

Proof. Call p a faithful stationary density matrix which commutes wikth So thate can be written as

p=Y_ pmlesenl,

where) ", p(n) =tr(p) = 1, and eactp(n) > 0 due to the faithfulness ¢f. Given any bounded functiofi on
the spectrum oK, it holds:

tr(pTi(f(K))) = pT, f(n) =tr(pf (K)) =Y _ p(n) f(n),
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for all + > 0. Thus, the density (n) defines a probability measure &p(K) which is stationary under the reduced
semigroup(T;);cg+. O

It is an important problem for applications to Physics to know whether the knowledge of a stationary proba-
bility for a reduced semigroup leads to decoherence. To give a partial answer for a wide class of semigroups, we
previously need to take care of some technical matters concerning the domain of the generator. Suppose that we
are given a form-generateé(-) with which we construct the associated minimal quantum Markov semigroup (see
[11,8]). We will assume here that the orthonormal basis of eigenvectdfsoain be chosen on the dense sulizet
which is a core for the operatdr and all the operators; defining£(-). Then, as proved in [11], Sections 2 and 3,
the linear space spanned by all the projectipn$(e,, |, (n, m € N), is a core for the predual generat®y. As a
result, all the operatorS, (e, ) (e,|) are well defined.

Theorem 6. Suppose that the self-adjoint operator K is non-degenerate and that W*(K) reduces the quantum
Markov semigroup 7. Assume that there exists a faithful probability density (p(1))xespk) on the spectrum of K
which is stationary for the reduced semigroup. If for all n € N, L. (Je,){e,]) commutes with K, then K induces
decoherence of 7.

Proof. Callp = p(K) =7}, p(:)les)(es|. We will prove thatp € D(L,) and thatl.(p) = 0. Given any bounded
function f on Sp(K), call L the reduction of the generator, thatis, L(f(K))e,) = Lf (1,). The hypothesis on
the stationarity op is then expressed 3s, p(A,)Lf (1,) =0.

Define

pn =Y pOu)len)ienl (N €N).
n<N

Notice thatpy € D(L,), since each projectiofe,)(e,| belongs toD(L,). Moreover,L,(py) is a trace-class
operator as well (see Subsection 2.3). Sidgé€le,){e,|) commutes withK and K is non-degenerate;, (p,) €
W*(K) too.

TakingN, M € N, with N > M say, one obtains

N
tr((LeCon) = La(oa))x)| SCx) D" pha),
n=M+1
for any fixedx € D(L), for a constanC (x) > 0. Since)_, p(x,) = 1, we obtain that’,(oy) weakly converges
asN — oo. On the other handyy converges in the norm of the trace 40 Since L, (-) is weakly closed, then
Li(p)=limy Li(ony) andp € D(L,). Moreover,L,(p) is a trace-class operator which commutes wkth
After the previous result, to prove thét (o) = 0 it suffices to show thale, L. (p)er) =tr(Ly(p)lex){ex]) =0

for all k € N. Now,

tr(L(p)lex) (exl) =tr(pL(ex) (ex]))
=Y pOu){en, L(lex) (exl)en)

=" PO L1y ()

n

=0 (sincep is stationary for the reduced semigroup).

Thus,L.(p) =0 andp is a stationary state fdf . As a result,K induces decoherence of the quantum Markov
semigroup. O
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Corollary 3. Suppose that the semigroup 7 is norm-continuous with generator given by (5) and satisfies the
following hypotheses:

(i) H hasa pure point spectrum;

(i) [H,Lgl=oarLy,ar e R, forall k >1;
(iii) the generalized commutants {H, L, L}, k € N} and {Ly, L}, k € N}’ coincide;
(iv) Thereisa faithful probability p on the spectrum of H solving the equation

Lip(H)Ly = LiLyp(H) = p(H)L{Ly (keN). (35)

Thenthesemigroup isreduced by H, p(H) definesa stationary state for the semigroup and H induces decoherence
of 7. Given any density matrix p, 74 (p) — p(H) inthe w*-topology. As a result,

<en, ,Z:kt(p)em>_> 0,
ast — oo, for all n #m, n,m € N, where (e,),,en isan orthonormal basis of eigenvectors of H.

Proof. Hypothesis (ii) implies that/ reduces the semigroup. Then (iv) determines the existence of a faithful and
normal stationary state given by a density magrix = p(H), sinceL.(p(H)) = 0. ThusH induces decoherence

of 7. Condition (iii) implies the convergence @, (p) t0 po for any density matrixp by Theorem I1.2 in [15]
which has been recalled here in Theorem 5. Finally Proposition 3 leads to the conclusion.

The above result can be improved to consider more general QMS as follows

Corollary 4. Let K beasin Theorem 6. Assume that the semigroup 7 isreduced by W*(K) andthat L, (le,){e,]) €
W*(K) for all n € N. Suppose in addition that the generalized commutant {L, L;*, k € N} isreduced to C1.

If there exists a faithful stationary probability on Sp(K) for the reduced semigroup, then the QMSiis ergodic
and K induces decoherence of 7.

Proof. By Theorem 6,p(K) defines a faithful normal stationary state for the semigr@upo that, from one
hand,K induces decoherence %fand in addition, the results on ergodicity of [15] can be applied. Sii@e C
N(T) C {Ly, Li*, k € N} and the latter is trivial, one obtaify7) = 9(7) = C1, so that7 is ergodic after
Theorem I1.1in [15]. O

5.1. Examples
We come back to our well-known examples.

5.1.1. The harmonic oscillator

Clearly the hypothesis of the last corollary apply here. The algebra generated:byand 1 is topologically
irreducible, that means that the commutarft i The birth and death semigroup has a faithful invariant probability
measurep sincei, < u,, for all n. So thatH induces decoherence of the semigrdup

5.1.2. The quantum exclusion process

Here, the elements of the orthonormal basis are dengjeatcording to the notations introduced in the second
guantization procedure. We summarize below the application of the previous corollaries to this model. Consider
first a density matrix which is of the form(H), that is:

p=>Y_ pmInnl, (36)
n
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wheren — p(n) is a summable function wit[,7 p(n) =1

Proposition 5. Let assume that
)y, =n(Dyji G jeN) (37)

where (7 (i));en IS any sequence of positive numbers. Then a normal state w with density matrix o given by (36)
isstationary if

p) = [Jei(n@)).

ieN
for all n € S, where; :{0,1} — [0, 1] is, for each i € N, a probability measure given by
_ (@@)” .
a;(x) = e (l eN, x €{0, 1}). (38)

Moreover, H induces decoherence of the semigroup 7.

Proof. After proving the classical reduction of the semigroup, the expression of the stationary prohaijiig

indeed a straightforward consequence of Theorem 2.1 in Chapter VIII of [23], however, we provide here a direct
proof for the sake of completeness. We first notice that given the probabiities {0, 1}, by Kolmogorov's
Theorem there is a unique probability measBgeon the set of configuratiorfSwith marginals

Po({neS n@)=1 foralliel: n(j)=0, forall j e J})=[Jai(@® [ ] ;0.
iel jeJ

And p(n) = Py({n}).
Let be givenp by (36). ThenZ,(p) =0 if and only if tr(L.(0)|n)(n]) =0 foralln € S.
Notice that; —1; 4+ 1; =qnifandonlyif; =n—1;4+1;,forn, ¢ €S, i, j e N. Thus, if we write

p=>_p@I)el,
¢

the previous theorem yields

Lap) =) Y viip@(t =L+ 1)(¢ — L+ 11— [£)(¢l).
¢

Lo
L,jii—>]j
Now, tr(|¢ —1; +1;)(¢ —1; + 1;|In){n]) =1 ifand only if ¢ =5 — 1; + 1;. Thus, t(L.(p)|n)(n]) =0 if and
only if
> (@=n@O)nG)(vijp =1+ L) = yj.ip()) =0.
ij
Notice thatx; (0)p(n + 1;) = p(n)e; (1) ande; (D p(n — 1;) = p(n)a;(0). These equations yields
(i) )
—— — Vi |p(m),
Gy )P
and the last term between brackets is zero, by the hypothesis (37). The last expression implipgrthat 0.
Moreover the above computations yield

Lo(Imnl) = cijm(In =L+ 1) — L+ 1;] = ) (n]).
i,J
which commutes withH, so that Theorem 6 applies and the proof is complete.

vijpm—=1;+1) —vy;ip(n) = <Vi,j
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The above result can be rephrased in a slightly different framework to recover a unique faithful stationary state
in the Gibbs form. We add a cemetery to the classical Markov chain by complétingh a pointoc ¢ N. We
assume that; «, ¥, > 0 butyss oo = 0. On the other hand, we pilt o = /¥i .00 bi; Loo,j = ij for all
i,j €N, andLy, ~ = 0. Configurations are now defined b= N U {co}. Finally defineE., = u > 0, which we
call thechemical potential. The generatof(-) is naturally extended taking the sum in (30) running over all indexes
(i, j) € N x N. Moreover, this time the s¢L; , Lfjsije N} includes all the operatotg (k), b(k) generating the
CAR algebra, so that its generalized commutant algebra is trivial. Thus, in this case wg(fiave 21(7) = C1
and the semigroup is ergodic as soon as we provide a faithful stationary state.

In the following we assumg > 0, and remind thaH is supposed to be bounded from below. A straightforward
computation yields

tr(e PH M) =TT (14 e PEM) < o0,
ieN

Corollary 5. Assume that the Hamiltonian H given by (18) is bounded from below. Moreover, suppose that (37)is
satisfied with

(i) =ePE-  (jeN), (39)
where 8 > 0. Denote

Z(B. p) = tr(ePHTHY),

Then
1

T Z(B.w)
is a faithful stationary state of the quantum Markov semigroup associated to H and the operators L, considered
in the previous results. The semigroup is ergodic and H induces decoherence of 7.

0 e B(H—1N)

’

Remark 10. As a final remark, it is worth noticing that if a quantum Markov semigroup is transient, there is no
stationary state. As a result, decoherence as defined here cannot take place. As an example of a transient QMS
the reader is referred to [18] where it is showed that the semigroup of a quantum Brownian motion fis
transient.
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