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Abstract

Let a be a non-isolated point of a topological spatand X% = x%0<1 < 9, PO) be a symmetric diffusion o5y =
S\ {a} such thatPO(; < 00, X? =a) > 0, x € Sp. By making use of Poisson point processes taking values in the spaces of

excursions around whose characterlstlc measures are uniquely determméoobyve construct a symmetric diffusia¥ on

S with no killing inside S which extendsx© on So- We also prove that such a procéSsss unique in law and its resolvent and
Dirichlet form admit explicit expressions in terms %P.

0 2005 Elsevier SAS. All rights reserved.

Résumé
Etant donné un point non isolé d’un espace topologige nous considérons une diffusion symétricxie = (x9, PQ)
dansSp = $ \ {a} telle queP9(¢0 < oo, X?O_ =a)>0etPd(¢0 < 0o, X0 € Sp) =0 pour toutr € Sp ot 0 est la durée
de vie. En utilisant les processus de Poisson ponctuels des excursions paradomteles mesures caractéristiques sont
déterminées pak©, nous construirons une diffusion symétrigiiedanss qui est une extension de? et dont les trajectoires
ne disparaisssent pas a l'intérieur $leNous montrons aussi qu’une telle extension est unique en loi et que sa résolvente et sa

forme de Dirichlet admettent les expressions explicites en terméPde
0 2005 Elsevier SAS. All rights reserved.

Keywords:Symmetric diffusion; Poisson point process; Excursions; Entrance law; Energy functional; Dirichlet form

* Corresponding author.
E-mail addressfuku@ipcku.kansai-u.ac.jp (M. Fukushima).

0246-0203/$ — see front mattér 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.10.004



420 M. Fukushima, H. Tanaka / Ann. I. H. Poincaré — PR 41 (2005) 419-459

1. Introduction

Let S be a locally compact separable metric space@hd a non-isolated point &f. We putSo = S\ {a}. The
one point compactification o is denoted bys 4. WhensS is compact already is added as an isolated point. Let
m be a positive Radon measure Sxnwith Supfm] = Sp. m is extended t& by settingm ({a}) =

We assume that we are given masymmetric diffusionX® = (x°, P9) on Sp with life time ; satlsfymg the
following four conditions:

A1 PY(¢0 < oo, x?o_ efa}u{a})=P(%<o0), VxeSo.

We define the functiong(x), uy (x), « > 0, of x € Sg by

)
o) = PY(° <00, X0 =a), ua(x)=EQE ;X =a).

A.2 ¢(x) >0, Vx € Sp.
A.3 ug € LY(Sg; m), Ya > 0.
A4 uy € Cp(So), G2(Ch(S0)) C Ch(So), a >0,

WhereGg is the resolvent ok © andC;,(So) is the space of all bounded continuous functionssgn

By making use of excursion-valued Poisson point processes whose characteristic measures are uniquely deter
mined byX©, or to be a little more precise, by piecing together those excursions which stark famah return to
a and then possibly by adding the last one that never returaswe shall construct in 84 of the present paper a
processﬁ? on S satisfying

D) X is anm-symmetric diffusion process anwith no killing inside S,
2) X is an extension ok©: the process 01§y obtained fromX by killing upon the hitting time ot: is identical
in law with X©.

We call a procesg on S satisfying (1), (2) symmetric extension of©.
We shall also prove in §5 that, under conditions A.1, A.2 for the gimesymmetric diffusionx® on So, its
symmetric extension is unique in law, satisfies condition A.3 automatically and admits the resolvent expressible as

(g, f)
a(utg, ) + L(mo, ¥)’

where(-, -) denotes the inner product it (So; m) and L (mo, ¥) is the energy functional in Meyer's sense [21] of
the X%-excessive measurey = ¢ - m and X%-excessive functiony = 1 — ¢.

Furthermore the associated Dirichlet foréy F) on L2(S; m) will be seen in §5 to have the following simple
expression; if we denote by, its extended Dirichlet space, then

Gouf(x)=Gof(x) +ug(x)-Goufla), x€So, Gofla)=

Fo={w=uo+ ce: ug € Fo., cconstany, F=F.NL3S;m),
E(w, w) = E(uo, uo) + 2 (g, @), E(p, ) = L(mo, ¥),

where(Fo., €) is the extended Dirichlet space for the given diffusivh

In 86, we shall present four examples. Example 6.1 concerns the uniqueness of the symmetric extension of the
one-dimensional absorbing Brownian motion.

Example 6.2 treats the case whekgis a bounded open subsetRf (d > 1), S = So U {a} is the one point
compactification ofSp and X© is the absorbing Brownian motion ofp. In this caseg(x) = 1, x € So. The
resulting Dirichlet form onL2(S; m) (m is the Lebesgue measure Sgextended ta by m({a}) = 0) is given by
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F ={w=uo+c: uo € Hy(So), c constan},

E(w, w) = %/IWOIZ(X)dx,
So

which is easily seen to be regular, strongly local and irreducible recurrent. A more general Dirichlet form of this
type will be presented in 83.2. This type of Dirichlet form first appeared in the paper [8] by the first author and it
is recently utilized in a study of the asymptotics of the spectral gap for one parameter family of energy forms [17].
Our study is motivated by a wish to conceive a clearer picture of the sample path of the diffusicaseaciated

with such a Dirichlet form.

Example 6.3 is essentially one-dimensional, where we shall see that the conditions A.2 and A.3 are satisfied if
and only if the boundary is regular in Feller's sense. This example is reminiscent of an example by N. Ikeda and
S. Watanabe [14].

Example 6.4 is higher dimensional, where the Dirichlet form associated with the constructed pfocagsiot
be regular.

In order to identify right quantities to describe the excursion-valued Poisson point processes to be constructed
in 84, we shall study in §2 and §3 a strongly local regular Dirichlet fornL.é¢s; m) for which the point{a} has a
positive capacity. In particular, we shall find that the Dirichlet form and the associated resolvent admit exactly the
above mentioned expressions. Furthermore, we shall see that the entrarige}l@everning the excursion law
ought to be determined by

e ¢]

mo:/,utdt,

0

an equation investigated by E.B. Dynkin, R.K. Getoor, P.J. Fitzsimmons and others [11].

In a seminal work [15], K. It6 considered a standard procésmn S for which a pointa is regular for itself.
A Poisson point process taking value in the space of excursions arounglas then associated, and it was shown
that the stopped proce&€’ obtained fromx by the hitting time at and the characteristic measureYofogether
determine the law ok uniquely. It was implicitly assumed in [15] that the poinis recurrent in the sense that

p(x)=Py(og <o0)=1 x€8, o,=inf{t>0: X;=a}.

But, as was shown in P.A. Meyer [20], absorbedPoisson point process can be still associated Witlthen{a}
is non-recurrent. See Remark 4.2 in this regard.

Since our present assumption &A requiresy only to be positive, we must handle not only returning excusions
from the pointa but also non-returning excursions. By restricting ourselves to the case thakBathd X are
symmetric diffusions however, we shall see that the characteristic measures on these different type of excursion
spaces are uniquely determinedX¥§ so that, starting witl©, we can give an explicit construction af

The Dirichlet form(&, F) on L2(S; m) associated with a symmetric extensiBrof X° may not be regular but it
is quasi-regular in the sense of [19]. Accordingly we can make use of the quasi-homeomorphism in [3] to connect
X with the regular Dirichlet form studied in §2, yielding the uniquenesE ahd the explicit expression ¢f, F).

There are quite a few works [1,23-25] dealing with generalizationséd tine [15]. See Remark 2.2 and
Remark 4.1 in these regards. But construction and uniqueness of a symmetric extengiarsymmetricx® as
are formulated in the present paper have never been considered.
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2. Strongly local Dirichlet form with a point of positive capacity
2.1. Description of the form and resolvent by absorbed process

Let S be a locally compact separable metric spaceabé a non-isolated point of. We denote the comple-
mentary sefS \ {a} by Sp. Letm be a positive Radon measure 8mwith Supgm] = S and withm({a}) = 0. The
inner product in each of the space&(S; m), L2(So, m) will be designated by, -).

A Dirichlet form (£, F) on L2(S; m) is calledregular if F N Co(S) is £1-dense inF and uniformly dense in
Co(S), whereCo(S) denotes the space of continuous functionsSomith compact support. It is callestrongly
local if £(u, v) vanishes whenever, v € F, Supgu], Supfv] are compact and is constant on a neighbourhood
of Supfu], where Supfi] denotes the topological support of the measure:. For the sake of a use in §3.2, we
make here a remark:

Remark 2.1. If a Dirichlet form (£, F) on L2(S; m) is regular and strongly local, then the strong locality stated
above holds without assuming that Sigpis compact. Indeed, assuming the boundedness tafke a function

w € FNCo(S) with w = 1 on a neighbourhood & = Supfu] and putvy = v-w, vo = v—wv1. ThenE(u, v1) = 0.
Sincevg belongs to the patfs of (£, F) on the open sef = S\ K and (&, F¢) is a regular Dirichlet form on
L2(G; m) (cf. [9, Theorem 4.4.3]), we can fing, € F N Co(G) which are€;-convergent tay. Hencef (i, vg) =

lim, 00 £(u, v,) =0 and&(u, v) = 0.

We consider a strongly local regular Dirichlet for@, F) on L2(S; m) and an associated-symmetric Hunt
processX = (X;, Py) onS. In view of [9, Theorem 4.5.3]X can then be taken to be a diffusion 8p in the sense
that all sample paths are continuous functions fi@ro) to S, whereS, is the one-point compactification of
S when S is non-compact and is an extra point isolated frorfi when S is compact. In either casé will be the
cemetery of the sample paths. Furthermadfesan be taken to be of no killing insidein the sense that

Pi(X;—=A,8 <00)=Py({ <00), xE€S8,

where¢ (w) denotes the life time, namely, the hitting time of the cemet&rgf the sample path. In particular,
whensS is compactP,(; =oo)=1forallx € S.
We make the assumption that

B.1 Capl{a}) > O.

Here CapA) for A C S is its 1-capacity relative to€, F). In what follows, the quasi-continuity of functions
on S will be understood with respect to this capacity. Each functicnF admits its quasi-continuous version
denoted byi. ‘g.e.” will means ‘except for a set of zero capacity’.

The hitting probability and the-order hitting probability ofa} are denoted by andu, respectively:

@(x) = Pr(0 <00), ug(x)=E,(€%), x€S, (2.1)
whereo is the hitting time ofz by the procesX defined by
o =inf{t > 0: X; =a}. (2.2)

The assumption B.1 implies that, is a non-trivial element ofF and it is thex-potential U, v, of a positive
measure,, concentrated ofu} (cf. [9, §2.2]):

Eo(Ug, v) = V(a)vy ({Cl}), ve F. (2.3)
Put
foz{ue}": ﬂ(a):O}. (2.4)
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Then (€, Fo) is a regular strongly local Dirichlet form oh?(So; m), which is associated with the paki® =
(X9, PO) of X on the setSp, namely, the diffusion procesg® obtained fromx by killing upon the hitting times
(cf. [9, 84.4]). XC is of no killing inside Sg and, if we denote the life time aX® by ¢°, theng, u, admit the
expressions

()= PA% <00, X%_=a), ua(x)=EX€ " X0 =a), xeS, (2.5)
in terms of the absorbed proceX8. We further consider the functions
Yy @) =PY(t% <00, X,0_=2), ¥P@)=PA°=00), xe S (2.6)

and puty = D 4y @ sothaty =1 — ¢.

Denote byp; and G, the transition function and the resolvent ¥frespectively. The same notions for the
absorbed procesk® will be denoted byp® and G2. The functionsp, ¢, @ on Sy are X%-excessive. In
particular, @ is X%invariant in the sense that® = p%4@ t > 0. Because of the:-symmetry ofX°, the
measure

is an X %-excessive measure withg p® = pQ¢ - m.

Our first aim in this section is to show under the present setting that thef@aswell as the resolveri, are
uniquely and explicitly determined by quantities depending only on the absorbed piftess

We prepare a lemma.

Lemma 2.1. For an X%excessive function on S,
Limo.v) =lim & 0, vy = lim 2 (o — PO, v)(< o) (2.8)
mo,v—twtmo mop,,v—twt(p Pre, v)(< 00). .

is well defined as an increasing limit and it holds that

L(mg,v) = Iim a(uy, v). (2.9)
a—>00
If v is p%-invariant, then for each > 0 anda > 0,

1
L(mo,v) = —(¢ = o, v) = a(ug, v).

Proof. If we sete(t) = (¢ — p%p, v), then
e(t+5)=e(t) + (pDp — p 9, v) = e(t) + (9 — plp, plv) <e(t) + e(s),
and hence(r)/t is increasing as decreases and constanbifs p,o—invariant. We also see that
0o
(g, v) = (¢ —aGop, v) = f e (t/a) (g — PPy, V)Lt
0
increases td.(v) asa 1+ co. O

We note thai (mo, v) is nothing but thenergy functionabf the X %-excessive measungy and thex %-excessive
functionv in the sense of P.A. Meyer [21] whex? is transient (cf. [4, §39], [11, p. 16]). In [4, §39], it is called
the mass ob relative tomg.

Let 7, (resp.Fo.) be the extended Dirichlet space ©F, &) (resp.(Fo, £)). Each elemeni € F, admits its
guasi continuous version denotedibwggain. In view of [9, §4.6], it holds then that
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Foe=Feo={uecF: ii(a)=0},

peFe, E(p,u)=0 VueFpo, (2.10)

F=F,NL%S,m), Fo=FoeNL*So,m). (2.11)
Furthermore any € F, can be decomposed as

w=uo+cep, uoeF.o0, cconstant (2.12)
and

E(w, w) = E(uo, uo) + 2 (g, ¢). (2.13)
Theorem 2.1.

(i) It holds that

E(p,9) = Lmo,¥) (= L(mo, ¥ V) + L(mo, ¥@)). (2.14)

(i) uy is a non-trivial element ofF N L1(So; m).
(iiiy Forany f e L?(S,m) andx € S,
(ua, f) (ua’ f)
Gaszgx—i— Ug(X), Gy fla)= .
(iv) Lets, be a unit mass concentrated{at}. Then it is of finite energy integral and iispotentialU,§,, is related
touy by

(2.15)

— 1

Uydy = Ug. 2.16
O alug, 9) + Lmo, ) (2.18)

(v) The pointa is regular for itself and also an instantaneous state with respeat:to
P,(c=01,=0=1, 1, = inf{r > 0: X, € Sp}. (2.17)

Proof. We first give a proof of (ii). According to a general theorem [9, Chapter 4], the formula obtained by the
strong Markov property

Gof(X)=Gf(x) +ug(x)Gof(@), x€S, feL?S,m), (2.18)
represents the orthogonal decompositionGeff € F into the spaceFy and its orthogonal complemefit, =
{c-uy: c constantin the Hilbert spacér - &,). We see thaG,, f (a) > 0 for somef € CE{(S), because otherwise
F = FO from (2.18) contradicting ta, € F. By (2.18),

1

(e, DGo f(a) < (Go f, D =(f,GaD) < E(f’ 1) <oo.

Next we prove (i) and (iii). Forf € Co(S), the functionw = G, f has two expressions:
w=Gof +cuy =uo+cp, c¢=Gqf(a), uo€ Fop.

By [9, Corollary 1.6.3, Theorem 2.1.7], we can find a sequdggé¢ of uniformly bounded functions itF such
that

lim g, =¢ m-a.e, lim £(gn — ¢, gn — @) =0.
n—o0 n—oo
Lettingn — oo in the equation

E(w, gn) +a(w, gr) = (f, gn),
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we get
cE(@, ) + caluq, 9) = (f,9) — (@GO f, ¢).
Since the right-hand side equals
(f.0 —aGYp) = (f.ua).
we arrive at
(uOlv f)

Gl = ) + .9
(2.19) holds for any bounded Borégl In particular, we have for any > 0,
(e, D < E
aa, ) +E(p9) o’

f e Co(S). (2.19)

Gol(a) =

and hence
E(p, 9) Z aua, V).

By letting ¢ — oo, we get from Lemma 2.1
E(p, 9) = L(mo, ¥).

In order to prove (2.14), notice that the assumption of the strong local&yimplies that the killing measure
in the Beurling—Deny representation®anishes (cf. [9, Theorem 4.5.3]). On account of [9, Lemma 4.5.2],

/f2dk:ali_)moooz/f(x)z(l—ocGal(x))m(dx), feFNCy(S).
S S

From (2.18) and (2.19), we have

_ _1_ 0 B a(ug, 1) B o (i, 1)

1-0Gullx) =1-aG,1(x) Ot(ua,w)—i-é'((p,go)ua(x)>ua(x) ot(uo,,gp)—i—g((p,(p)u“(x)
:g(govgo)_a(uolv w)u ()C)
a(a. @) +E@, ) “

Take f € F N Cp(S) such thatf (a) £ 0. We have from (2.19) and the above inequality

Ot/fz(l—aGal) dm > (E(¢. ¢) — (e, ¥)) (@Ga f2)(@).
S

By letting o« — oo, we get
0> (E(p. ¢) — L(mo, ¥)) f (@)?,
proving the desired identity (2.14).
Proof of (iv). By (2.3),
(g, [) = Eatta, Ga ) = Go f(@)ve({a}),
which combined with (2.15) gives
Vo = (a (i, 9) + L(mo, ¥))3q.

Proof of (v). The regularityP, (¢ = 0) = 1 of the pointa for itself follows from A.1 and a general fact that, for
any Borel setB, the set of irregular points € B for B is of zero capacity [9, Chapter 4]. K,(0 < 7, < 00) > 0,
thenP, (X, € SoU A) =1 contradicting the sample continuity and absence of the killing inSitbe X . If « were
a trap with respect t&, thenG, f (a) = f(a)/a for any f € L?(S; m) contradicting (2.15). Accordingly; is an
instantaneous state.n
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Remark 2.2. (i) The present assumptions can be relaxed as follows:

(a) The measura on S is replaced byn = m + y§, for a non-negative constapt

(b) (€, F) is assumed to be a (not necessarily strongly) local regular Dirichlet forfi? a8t i), while its part
(€, Fo) on Sy is assumed to be a strongly local Dirichlet form bf(So; m).

Then, in view of the above proof of Theorem 2.1, we readily see that (2.14) and (2.15) remain true under the
following modifications:

E(p, ) = L(mo, ¥) + 9,
(l/la, f) + yf(a)

— 0
G”‘f(x)_G"‘f(x)+oc(ua,<p)+L(mo, w)+8~|—ocyu“(x)’

for a non-negative constaéit

Example 6.1 will indicate stochastic interpretations of the parametersds.

(i) The parameterg, § have appeared in Rogers’ description [23] of the most general extension of a general re-
solventGS under a setting correspondingi#d? = 0. Another parameter appearing in [23] is a family of measures
ng, @ >0, onSp, which is reduced ta, - m under the present symmetry assumption.

(iii) In the setting (i) in the aboveG, is conservative if and only if/V = 0 ands = 0, and in this case the
above expression is reduced to

(1—aG3L, /) +yf(a)
a(l— ongl, D +ay

Such a formula was found by Y. Le Jan [18] (see also [4, §78]) in a general setting to produce conservative
resolvents out of a (hot necessarily symmetric) sub-Markovian resolvent and its dual preserving the duality.

Gaf(X)=Gof(x)+ (1—aGO1(x)).

2.2. Description of the inverse local time

In 84, we shall construct a diffusion a$iwith resolvent (2.15) by means of Poisson point processes of ex-
cursions, namely, by piecing together the excursions. In this subsection, let us study more about the roles of the
measureng and the energy functiondl(mo, ¥) played in the present diffusioki on S.

Let L(¢) be the positive continuous additive functional (admitting exceptional set) associated with the smooth
measuré, (cf.[9, 85.1]):

oo
UgBa(x) = Ex(/e“” dL(t)) forg.e.x € S. (2.20)
0
In particular, (2.20) holds far = a. L(¢) is a local time afa} in the sense that it increases only whén=a:
t
L(t) =/Ia(Xs)dL(s).
0

We consider the right continuous invers&) = inf{s: L(s) >t} of L(z).

Itis well known that the increasing proces¥t), P,) is a subordinator killed upon an exponential holding time
(cf. [2]). Theorem 2.1 enables us to identify the Lévy measure of the subordinator and the killing rate. Indeed,
according to [2, v (3.17)], (2.20) implies the identity

E,(e750) = exp(—1/Uy84(a)),
which combined with (2.16) leads us to
E (e 5"y = e 'EmoV) exp —ta(uq, ¢)]- (2.21)
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We need a lemma which will play a basic role in 84 again. A farfily, .o of o -finite measures of is called
an X%-entrance lawif v,p? =514, 5,¢ > 0. Theny (f), f € BT (So), is measurable inand we may let

e ¢]

Ga(f)zfe_“’vt(f)dt, a>0, feB(S.
0

Lemma?2.2.

() There exists a uniqui©-entrance law{,} such that

e e]

mozf,u[ dr. (2.22)
0

(i) fg(f)= (ug, f), a >0, fe€BT(Sp). Consequently,

t

/,us(f) ds = f P(t°<t, Xpo_=a) f(x)m(dx), >0, feB(So. (2.23)
0 So

(i) s (So) < 00, t > 0.

(iv) For any boundedk%-excessive function on Sg, 1 (v) is right continuous irr > 0.

(v) For any X%-excessive function on Sp, the energy functional (mo, v) introduced in Lemma.1 admits an
expression

L ,v) =lim .
(mo, v) wo“’(v)

Whenv is p,o—invariant, it holds for any > 0O that
L(mo, v) = ps (v).
(Vi) L(mo, ¢) = oc.

Proof. (i) Since
PPp()=P2(t <% <00, X2 =a) |0, 1 oo,

lim; ,0mop?(f) = (pPp, f) =0 for f € L1(So, m), namely,mg is purely excessive. Hence the desired assertion
follows from a well known representation theorem provided #fais transient [11, Theorem 5.25]. But the present
situation can be reduced to this case by observing that

S1= {x € So: p(x) > 0}

is a non-trivial X °-invariant set g.e. and the restrictionf to S is transient (cf. [9, §4.6]).
(ii) For f € Cg (So), we have

/ Jo(f) di = / pos (F) i = / 1 (P0F)ds = (0, P 1),
t 0 0

and

— d 0
Mt(f)——a((/”l’;f)» ae.t.
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Hence
~ T _ d _ o r —
fa(f) =~ / e (. pl b =[P D]y ~e / e (g, ]
0 0

= (¢, ) —al, G2 f) = (9 — G, f) = (ug, f).

(iii) By (ii) and Theorem 2.1 (ii),itq (1) = (uy, 1) < 0o, from which the desired finiteness follows.
(iv) On account of (iii), we havey, s (v) = w, (p2v) — u,(v), s | 0.
(v) Since(u,, v) is increasing as |, 0 (independent of whenw is p-invariant), the assertions follow from

t

(mo —mop®, v) = / (is, v) ds.
0

(vi) Since S(¢) is the right continuous inverse of an increasing continuous praces3sP,(S(t) > 0) =1 and
consequently we have

L(mo, )= lim a(uq, ) =00

by lettinge — oo in (2.21). O
We see by the above lemma that(¢) is decreasing and right continuoussin- 0 and so we can define a

measure® on (0, co) by

O((s.11) = ps(9) — pi(p), O<s<rt. (2.24)
It then holds that

O((s.11) = ps (9 — pP_y9) = (s P.(o <1 —5)),
and we get by letting — oo,

O((s,00)) = ps(9). (2.25)
We note that

O([8,00)) < 00

for eachs > 0 by virtue of Lemma 2.2 (iii).

Lemma 2.3. It holds that

a(ig, p) = /(1— e “Ye(du).
0

Proof. We have from Lemma 2.2 (ii) and (2.25)

[e.e]

a(ua,<p)=aﬁa(¢)=afe*a'(~)((t,oo))dt=//ae*°” dt@(ds):/(l—e*“)@(ds). O
0 00 0

On account of the formula (2.21), Lemma 2.3 and by noting that lyu (1, ¢) = 0, we can get the next
theorem from [2, Theorem 3.21].
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Theorem 2.2. Define a measuré® on (0, co) by (2.24) On a certain probability spacés?, 3, P), construct a
subordinator{Y;};>o with Lévy measur® and zero drift and a random variablg, independent ofY;}, with

P(Z>1)=eLmodt ;>0
If we let

Yt), t<Z,

* —_—
so={2" 127

then the proces§S*(¢)}; >0, P) is equivalent in law taq{S(#)}; >0, Pa).

3. Strongly local Dirichlet form with arecurrent point

Let S andm be as in 82. In this section, we consider a special case of the Dirichlet form of 82 for which the
pointa is recurrent.

3.1. Description of associated Poisson point process and entrance law

Let (£, F) be a strongly local regular Dirichlet form at?(S; m) andX = (X;, P,) be an associated diffusion
on S. In place of the assumption B.1 of §2, let us assume that

B.2 ¢(x) > 0,m-a.e.x € Sp;
B.3 1€ ¥, and&(1,1) =0.

In the next subsection, we shall construct a typical example of a Dirichlet 6r#) satisfying these conditions
by a method of the one point compactification.

The assumption B.2 implies that > 0, m-a.e. and Caja}) = £1(u1, u1) > (u1, u1) > 0, namely, the assump-
tion B.1 of 81 (cf. [9, Lemma 4.2.1]). Further, the Dirichlet for&, F) becomes irreducible because, from (2.15),
we have for any Borel setB;1, Bo C S of positivem-measures

(IE’ GO{IF) 2 (Ma, IE)(MC{’ IF)/“(MOH (p) > 0
Since(&, F) is recurrent by B.3, we have actually the property
p(x)=1 gexes, (3.1)

stronger than the assumption B.2 in view of [9, Theorem 4.6.6].
Thus the point: is not only regular for itself, instantaneous, but also recurrent. (2.15) is now reduced to

(uar, f)  (a. )
a(ua,l)ua(x)’ x €S, Gaf(a)_oz(ua,l)'

The positive continuous additive functionalr) of X associated with the unit magg has the property that
L(o00) = oo and its right continuous invers¥r) is a subordinator satisfying

Ea( f e @5 ds) 1 (3.3)
a(ug, 1)

0

on account of (2.16) and (2.20).
Therefore we can follow directly the argument of [15, 86, case 2(b)] to conclude that

Gaf(x)=GJf(x)+ (3.2)
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Dp = {s: S(s) — S(s—) > 0}, (3.4)

Ps(t) = X5(s—)+1, § € Dp, 0<t < S(s) — S(s—), (3.5
defines, under the law,, a W,-valued Poisson point procepswhereW, is the space of continuous excursions
in Sp froma toa:

W, ={w:[0, {(w)) — So. continuous 0 < ¢ (w) < 0o, w(0) =a,w((—)=a}. (3.6)

Let n be the characteristic measure of the Poisson point prqeeBlsenn is ao-finite measure on the space
W, and{w(t), n} is Markovian with respect to the transition functipﬁ of X9. Theentrance law{v;} associated
with the characteristic measureis defined by

v (B)=n{w: ¢(w)>1, wt)e B}, BeB(S), t>0. (3.7
Recall that we have already consideredhentrance lawu;} specified by (2.22) which is now reduced to
(0.¢]
m= f e de. (3.8)
0

The description (2.23) dfu,} now reads

t

/ s (f)ds = f PO <) f(x)m(dx), >0, feB(So). (3.9)

0 So

Theorem 3.1. v; = uy, t > 0.

Proof. By virtue of Lemma 2.2, it suffices to show that
Vo (f) = (ua, ), [ € Bp(S0). (3.10)

We make use of the next general formula

Ea<Za(s,ps,a))) =Ea< / a(s, w, w)n(dw) ds) (3.11)

st Wax(0,t]
holding for any non-negative predictable functio@, w, w) on [0, co) x W, x £2, §2 being a filtered sample space
on which the diffusion process is defined (cf. [14, p. 62]).

Sincem({a}) is assumed to be zer(fooo I,(X,)dt = 0, P,-almost surely. By (3.4) and (3.5), we have for
f € Bp(S),

00 S(s)
Gofla)= Eu</e_‘”f(Xt)dt> = Ea(Z / e“”f(X,)dt>
0 s>0g(_)
¢(ps)
=E, ( > et / e f(ps(1)) dt).
s>0 0

We let

I'(w)= / e f(w())dr.
0
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a(s, w, ) = I'(w) - e~*56=) js then predictable and we get by (3.11)

Gaf<a)=Ea<2e—“s“‘>r(ps)) = f I (w)n(dw) - f E,(e7*%®)ds.
s>0 W, 0
Since

[ ran@n =i,
Wa
(3.2) and (3.3) lead us to the desired identity (3.10).

By Theorem 3.1 and [15, Theorem 6.3], the finite dimensional distributiofiof n} can be described as
follows:

/ A(w@) fo(w(t) - fu(wt))NOW) = py frpo_ f2 POy o Fa-1P2 1 fao (3.12)
Wa
forany O<tn <t <--- <ty_1,ty, f1, f2,..., fn € Bp(So). Here we use the convention thate W satisfies

w(t) = A, Vt > ¢ (w), and any functionf on Sy is extended tdy U A by settingf(A) =0.

In 84, we shall start with am-symmetric diffusionx® on S and an expression like the above wijth being
specified by (2.22). See 84 for the abbreviated notation appearing on the right-hand side of (3.12).

Actually Theorem 3.1 can be extended to a general case where condition B.3 of the recurrence is not assumec
as we shall see in Remark 4.2 at the end of §4.

We note that the excursion law around a regular point of a general Markov process can be also formulated in
terms of Maisonneuve’s exit system [5]. Some property of the integralahthe associated entrance law was
investigated by R.K. Getoor [10].

3.2. Construction of form by one-point compactification

In this subsection, we start with a Dirichlet form with underlying sp&igand extend it by the one-point com-
pactification to a Dirichlet form with underlying spase= So U a satisfying B.2 and B.3 (and consequently B.1).
Let So be a locally compact separable metric space andbe a bounded positive measure g with
Supfm] = So. We consider a regular strongly local Dirichlet for@, Fo) on L2(So; m) satisfying thePoincaré

inequality.

(u,u) <A-&wu,u), wueFy IA>0. (3.13)

Denote byS = So U a the one-point compactification 6§ and byL2(S; m) (= L?(So; m)) the space of square
integrable functions off with respect tds, - m. Let us introduce a spacé, F) by

F = Fo + constant functions oS, (3.14)
E(wy, w2) =E(f1, f2), wi= f1+c1, wa= fo+c2, fi €Fp, ¢; constant (3.15)
Theorem 3.2.

() (£, F)is aregular strongly local Dirichlet form ol.?(S; m) possessing as its core the space
C = Cp + constant functions oS,

whereCo = Fo N Co(So).
(i) (£, F) and the associated diffusion dhsatisfyB.2, B.3
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Proof. (i) Supposef € Fop is a constant. By the regularity @€, o), there existf, € Fo N Co(So) wWhich are
&1-convergent tof . We have the (£, ) =lim,_. . £(f, f») = 0 on account of the strong locality ¢f, 7o) and
Remark 2.1 stated in the beginning of 82.1. (3.13) then implies0 and the definition (3.14) and (3.15) makes
sense.

If w, = fu + ¢ € F is an&1-Cauchy sequence, thef is £1-convergent to somg¢ € Fo by (3.13) and hence
w, is £1-convergent tof + ¢ for some constant.

ClearlyC is dense both itF andC(S), namely,(€, F) is regular.

Suppose, fow; = f; +¢; € C, thatw is constant on a neighbourhood of Supp). Whenc, =0, £ (w1, wp) =
0 by the strong locality of&, Fp). Whenc, # 0, the setU = S \ Suppwy) is either empty or a non-empty
relatively compact open subset &f. In the former casefs = 0 and& (w1, wz) = 0. In the latter casefo = —c2
on U, while Supg f1) C U and&(w1, w2) = £(f1, f2) = 0 again. Hencé&, F) is strongly local on account of
[9, Theorem 3.1.2].

The Markov property

weF=v=0vw)aleF, E,v)<E(w,w)

is evident, because, far = f + ¢, w € Fo, ¢ constant, we have=[(—c) VvV f1A (1 —¢) +c.
(i) B.2 follows from the Poincaré inequality (3.13). Denote ¥yand X° = (X2, P9, ¢9) the diffusions associ-

t> x>

ated with(€, F) and (&, Fo) respectively. TheX? is the part ofX on So and hence
o) =P <00), xS

Denote byGP the 0-order resolvent operator &P. Sincem (Sp) < oo, (3.13) implies thatG%1 € Fy and
E°%=G1(x) <00 qee.

proving (3.1). It is obvious from (3.14), (3.15) thatlF and£(1,1) =0. O

(&€, Fo) is not necessarily irreducible dfy, but (£, F) defined by (3.14), (3.15) is irreducible recurrentom
view of the observation made in the preceding subsection. See Example 6.2.

4. Construction of a symmetric extension via excursion valued Poisson point processes

In this section, we start with an-symmetric diffusionX® on Sp and construct first an excursion law with which
Poisson point processes of two different kinds of excursions around thegpaistassociated. We then construct
an m-symmetric diffusionX on S = Sp U a by piecing together those excursions. The resolvent of the resulting
diffusion X turns out to be identical with (2.15).

4.1. An excursion law and its basic properties

Let S be a locally compact separable metric spacemhd a non-isolated point &f. We putSo= S\ {a}. The
one point compactification of is denoted bys 4. WhensS is compact already) is added as an isolated point. Let
m be a positive Radon measure §nwith Supgm] = Sp. m is extended t& by settingm ({a}) = 0.

We assume that we are given masymmetric diffusionx® = (X9, P?) on So with life time ¢ satisfying the
following:

Al PO(¢0 < oo, X?L e {a}u{a}) = POt < 0), Vx € Sp.

We define the functiong, uy, v ®, v @,y by (2.5) and (2.6), namely, for € So,
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000 = PAE0 <00, X0_=a), ua() = EAE " X,o_ =a),
p=1-p=yP+y@ yD)=Pl¢% <00, X,0_=2), ¥?Px)=P(%=00).
Let us assume that

A.2 ¢(x) > 0,Vx € So,
and
A.3 uy € LY(Sg; m), Vo > 0.

Denote byp?, Gg the transition function and the resolventf respectively. Our last assumption concerns the
regularity:

A4 uy € Cp(So), G2(Cp(So)) C Cp(So), @ >0,

whereCj,(Sp) is the space of all bounded continuous functionssgn
The measure: could be infinite on a compact neighbourhood:dh S, but it is finite on each level set af,
due to the condition A.3. We also note here the next relation which will be utilized in the sequel:

Ug(x) =@(x) — aGg(p(x) <1- aGgl(x), x € 8.
Definemg by
mo=¢-m,

which is anXx %-excessive measure withg p® = p% - m. In view of Lemma 2.2, there exists a unigké-entrance
law {u,} related to the measureg by (2.22), namely,

e ¢]

mo= f e de.
0

and it satisfies that

fio(f) = (ua, ). f €BT(S0). (4.1)
On account of the assumption (A.3), we then have that

1
w(Sp) < oo, t>0, fut(So) dr < 0. (4.2)
0

We now introduce the spac#g’, W of excursions by
W’ = {w: 3¢ (w) € (0, 0], w is a continuous function fror(0, ¢ (w)) to So},
W={we W if {(w) < oo, thenFw(¢(w)—) € {a} U{A}}. (4.3)

¢ (w) will be called theterminal timeof the excursionw.
We are concerned with a measuren the spacéV specified in terms of the entrance I&w; } and the transition
function p? by

/ f(w) f2(w2) - fu(wE))Ndw) = iy fpd_ f2- POy fae1PP i fao (4.4)
w
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foranyO<ty <o <---<ty, f1, fo, -+, fu € Bp(Sp). Here, we use the convention that W satisfieaw () = A,
vVt > ¢(w), and any functionf on Sp is extended t&y U A by settingf (A) = 0. Further, on the right-hand side of
(4.4), we employ an abbreviated notation for the repeated operations

RNV NIRRT G Ay ey 1 1
Proposition 4.1. There exists a uniqgue measur®n the spacéV satisfying(4.4).
Proof. Letn be the Kuznetsov measure & uniquely associated with the transition semigrdpf} and the
entrance ruldn,} defined by

n, =0 foru<O, ny=pn, foru=0

as is constructed in [5, Chapter XIX, 9] for a right semigroup. Because of the present choice of the entrance rule,
it holds thate = O wherew is the birth time which is random in general (cf. [11, p. 54]).

On account of the assumption A.1 for the diffusia® on Sp, the same method of the construction of the
Kuznetsov measure as in [5, Chapter XIX, 9] works in proving thas supported by the spad& and satis-
fies (4.4). O

We calln theexcursion lanassociated with the entrance 14w, }. We split the spac® of excursions into two
parts:
Wt ={weW: t(w) <oo, w¢—)=a}, W =W\Wt. (4.5)
Note thatW ™~ = W, U W, with
Wi ={weW: t(w) <oco,w(@—)=4},  W; ={weW: {(w)=o00}.
Forw e W+, we definew € W by
wit)=w( —1), O<t<c. (4.6)

The next lemma says that the restriction of the excursion law tois invariant under time reversion. This is a
present variant of the time reversal arguments that have been formulated in general contexts [22,12,6,7].

Lemma4.1. For anys, > 0and f; € B, (So) (L <k <n),

n{]‘[ fe(w(r+ -+ 1) W*} =ty f1pof2- - Py, fa1Ds fa® (4.7)

k=1

n{l_[fk(w(t1+~--+tk)); W+} = n{l_[fk(z’ﬁ(t1+~--+tk)); W+}. (4.8)
k=1 k=1

Proof. (4.7) readily follows from (4.4) and the Markov property of As for (4.8) we observe that, for
o1, ...,0, >0,

o o0 n
/---/e“lfl“‘“"f"n{l_[fk(w(t1+-~+tk)); W*} dry - - dpy, (4.9
0 0 k=1

equals

n{F(w); ¢ <oo,w((—)=a}
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F(w):/--~ f [ [{e @ % fi(wo) }dry -ty (to=0).

O<ty <<ty <¢ k=1
Hence, for (4.8), it suffices to prove
n{F(w); ¢ <oo,w(¢—)=a}=n{F@);¢ <oo,w(—)=a}.
Performing the change of variables
C—tr=sk, 1<k<n,
in the expression of (w) and by noting that
=8¢ =Sk, W—t-1=sp-1—5k, 1<k<n, so=¢,
O<n<---<ty<¢ <— O<s;<---<s51<¢,

we obtain
n
F(@):/--- / [ [{e 1% fi(w(sp)) } dsa - - - dis,
O<sp<--<s1<C k=1
=/ [ Tyevs, (W) dsq - - - s,
O<s1<:-<s, <00
with
n—1
Ly, (W) = l_[{e_ak(s"’l_sk)fk(W(Sk))} e 1SV 6 4 (s1).
k=1

On the other hand, we get from (4.4) and the Markov property thfat
n{]_jylszm.&‘n (U)), é‘ < 00, U)(é‘—) = a}
= n{fn (w(sn))fnfl(w(snfl)) g onn-1=5n) .
fo((w(s2)) €302 f1 (w(s1)) € 201Dy, (wlsp); 51 < ¢ }

—a % (Sn—1—Sn)—0p—-1(Sp—2—Sp—1)——02(s1—52)

Therefore,

o1’

o
n{F@): ¢ <oo,w((—)=a} = / dsy s, fn GO, fu-1GO, -+ [3GO, f2GO, filay
0

In view of (2.7), the symmetry otﬂg, (4.7) and (4.9), we arrive at

n{F®); ¢ < oo, w(g—) =a} = (mo, f,Gy, fu-1G3, |+ f3GQ, f2Ga, filla;)

a1

= (fup. GO fa-1GY .-+ f3GQ, f2Gay filley) = (f1GQ, f2GO, f3+ - Gay fn . Uar)
o0
= / ey, 1G9, £2G, 3+ G, fapdiy =n{F(w): ¢ < oo, w(¢—) =a}
0
the desired identity (4.10).0

435

(4.10)

0 0 0 0
Wy JnPs, y—s, Jn=1Ps, 5=, 1 Jn—1""" Pyy—s3J2Ps; 5, F1lherr-
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Next we put

W, = {we W: Itiiraw(t):a}. (4.11)

Lemma4.2. n{W\ W,} =0.

Proof. The preceding lemma implies that

W\ Wa} =n{W" N (wO0+) =a)} =n{Wn(@0+) =a)} =n{W N (w(i-)=a)}=0.
We then have for each> 0

n{e(w®): ¢ >0 N (wOH) =a)} =n{WF\ W) N >0}=0,
which combined with the assumption A.2 leads us to

n{(W\W,) N >n}=0.

It then sufficestolet | 0. O

Lemma 4.3. For any neighbourhood’ of e in S, we let
e =inf{r >0: w(r) e U}, weWw.
It holds then that

n{rtyc < ¢} < oo.

Proof. We may assume that the closurein S is compact. Letf (x) = ¢(x) — u1(x), x € So. Then
fx)= Eg{l— effo; ;0 <00, X, 0_=a}>0, VxeSo.
Sinceuy (x) —u1(x) t f(x), @ | 0, the assumption A.3 implies thgtis lower semicontinuous ofy and hence
= nf, 1)
is positive. We then have, for eagh- 0 andx € U,
PO <% <00, Xpo_=a) > EQ1— €35 < (0 < 00, X,0_ = a)
>c—E%1-e"¢0<8, Xpo_ =a) 2 c— (1—€7).
Choose’ > 0 so small that
r=c—(1-e?)
is positive. For such,
P8 <t®<o00,X,0_=a)>r, VxedU. (4.12)
We shall use the notatioty;c not only forw € W but also for the sample path of the Markov proc&$s Using

the preceding lemma, (4.12) and (4.2), we are led to

n{rye <¢}= ”?(1) Nfe < tye <¢}= |i57(1)/ue(dx)P)?{Tuc <9
U

< liﬁQo/Me(dx)ES{flp,?mc 6 <¢ <00, X0 =a) tye <¢°)
U
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<rtlim / 1e (@) PY(8 < 0 < 00, X,0_ =a) <rtlim / e (dx) PO(5 < ¢0)
€l0 €l0
So So

= r‘lg%ue+a<so) <rps(So) <oo. O

The next lemma states a relation of the excursiomdwenergy functionalé (mg, v) introduced in Lemma 2.1.
Lemma4.4.

() n(W*) =L(mo,¢), n(W™) = L(mo, ¥), n(W; ) = L(mo, y ), i =1,2.
(i) (W) <oo, n(Wy) =, (¥?) = afta(¥?) = altta, ¥?) < 00, 1 > 0,0 > 0.

Proof. (i) Sincen(¢ > t; W) = (i, @), the first identity follows from Lemma 2.2 (v) by letting| 0. The proof
of the other identities is the same. B
(ii) Take a neighbourhood of a in S with compactl/. We have then by the preceding lemma

n(w;) =n(§ < oo,w(;—):A) <N{tye < ¢} < o0.

Sincey @ is p,o—invariant, the second assertion follows from (i), Lemmas 2.1, 2.2 and assumption.3.
In particular,n(W~) = n(W; ) + n(W, ) is finite. We shall see that(W*) = oc.
4.2. Poisson point processes 8f, and a new proces¥

By Lemma 4.2, the excursion lamis concentrated on the spaidg defined by (4.11). Accordingly, we consider
the spaces

a

wi=lwewtimwin=al, Wy ={wew limwn=al,
Y 110

so thatW, = W, + W, . In the sequel however, we shall employ slightly modified but equivalent definitions of
those spaces by extending eaglfirom anSp-valued excursion t§-valued continuous one as follows:
W, = {w: 3¢(w) € (0, o0], w is a continuous function frof0, ¢ (w)) to S, w(0) =a.
w(t) € So, 1 € (0,¢(w)), w(¢(w)—) € {a} U{A}if ¢(w) < oo}. (4.13)
Any w € W, for which ¢ (w) < oo, w(¢(w)—) = a will be regarded to be a continuous function fr¢@ ¢ (w)] to
S by settingw (¢ (w)) = a. We further let
W, ={w: 3¢ (w) € (0, 00), w is a continuous function frorf0, ¢ (w)] to S,
w(t) € So, 1 € (0,¢(w)), w0 =w(¢(w)) =a}, (4.14)
W, =W, \W,. (4.15)
The excursion lawn will be considered to be a measure B defined by (4.13) and we denote hy, n—, the
restrictions ofn to W,F, W, defined by (4.14) and (4.15) respectively.

Let {ps,s > O} be a Poisson point process &, with characteristic measune defined on an appropriate
probability spacés2, P). We then let

+_|ps ifpse Wy,
Py = { d  otherwise, (4.16)

—_Jps ifpsewW,,
Ps = { d  otherwise, (4.17)
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whered is an extra point disjoint of/,. Then{p;, s > 0}, {p,’, s > O} are mutually independent Poisson point

s

processes oW, W~ with characteristic measures, n~ respectively. Furthermore

Ps=py +p;. (4.18)
By means of the terminal timg(p;") of the excursiomp;, we let
J)=Y_¢@), s>0. (4.19)
r<s

We putJ(0) =0.
Lemma4.5.

(i) J(s) <ooa.s.fors >0.
(i) {J(s)}s>0 is a subordinator with

E{e_‘”(s)} = exp{—a(ua, (p)s}. (4.20)

Proof. (i) We write J(s) asJ(s) = I + Il with

1= Y weh. = > ph.

r<s,c(ph)< r<s,s(pf)>1

Sincen™ (¢ > 1) < u1(So) < oo by (4.2),r in the sumll is finite a.s. and hendé < oo a.s. On the other hand,
1 1 1
E(I)=sn"((;¢ <1><sn+(¢A1>=sn*{/1(o,o(r>dr} =s/n+(¢ >t)dt<S/Mt(So)dt,
0 0 0

which is finite by (4.2). Hencé < oo a.s.
(i) Clearly {J (s)}s>0 is increasing and of stationary independent increment. Since

el () — Z{e—‘“(’) —e ) = Z el (r-) {e—ac<p,+> ~1},
r<s r<s
we have
s
Ele®/®) = ¢ / E{e®/®)dr,
0
with
¢
c=nt(l-e*)=n(l-e;¢ <00, w(()=a)= n{a/e“” dr; ¢ < oo, w(t)=a
0

:a/e_“’n(t <¢<oo,w(¢)=a)ds :a/e“”m(q)) df = afie () = a(ug, @) < 0o. O
0 0

In virtue of Lemmas 4.3 and 4.5, we may assume that the next three properties holddos @nyy subtracting
a P-negligible set from2 if necessary:
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J(s) <oo Vs>0, (4.21)

Simoo J(s) = o0, (4.22)
and, for any finite interval C (0, co) and any neighbourhood of a in S,

{sel:we@)H) <t} isafinite set (4.23)

Let T be the time of occurrence of the first excursion of the point profEss s > 0}, namely,

T =min{s > 0: p; # d}. (4.24)
Sincen(W,") = L(mg, ¥) < oo by Lemma 4.4, we can see thatandp;. are independent and

P(T > 1) = e Lmo)t - the distribution ofp; = L(mo, ¥) ~n~. (4.25)

We are now in a position to produce a new prockss {X,};>o out of the point processes of excursigis

(i) For0<t < J(T—), we determing by

J(s—) <t < J(s), (4.26)
and let
_Ipf(t—v@s—) ifJs)—J(s—)>0,
Xi= {a if J(s)—J(s—)=0. (4.27)

(i) For J(T—) <t <%= J(T—) +¢(py), we let
X, =pr(t—J(T-)). (4.28)

In this way, theS-valued continuous path
X, 0<t <&y,
is defined and
Xe,—=A4 ifg, <oo.

Continuity of the path is a consequence of (4.23).
For this proces$X,, 0<t < ¢,, P}, let us put
tw
Gof(a)= E(/ e Y f(X,) dt), a>0, feB(S). (4.29)

0

Proposition 4.2. It holds that

(g, f)

Gl @)= @)+ Limo,9)

(4.30)
Proof. We use the notation
¢(w)

fa(w) = / e fw®)d, weW,.

We have then
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L J1(s) J(T=)+¢(p7)
/e‘“’f(Xt)dt = Z / e f(X,)dt + / e f(X,)dt
0 $<Tys-) J(T-)
=Y e @ +e T fupp),
s<T

and consequently

Gof(a)= E( Do e I e+ e“"”T"fa(p}))
s<T
T
= < / g a0 ds) n*(fo) + E(e " OT)L(mo, v) "I~ (fo)
0
M )
afla(p) + Limo, ¥)  afla(p) + L(mo, V)
_ N(fo) _ P (f)
afla (@) + L(mo, ¥)  afla(g) + L(mo, ¥)’
It then suffices to substitute (4.1) in the last expressian.

4.3. Continuity of resolvent along

Lemma4.6. For « > 0 and f € B(S), defineG,, f (a) by the right-hand side d#.30)and extend it to a function
on S by setting
Guf(x)=GYf(x)+ Gof(@ua(x), x€S. (4.31)

Then{Gy}¢>0 is anm-symmetriqsuhMarkovian resolvent o1§.

Proof. By making use of the resolvent equation tég, them-symmetry ong and the equation
g (x) —ug(x) + (@ — B)Goug(x) =0, a,B>0, x € S,
we can easily check the resolvent equation
Gof(x) = Gpfx)+(a—p)GaGpf(x)=0, xe€S.
Them-symmetry ofG,
/ Go f(x)g(x)m(dx) = / F(x)Gag(x)m(dr)
S

N
holding for any non-negative Borel functiorfsg is clear. Moreover we get by Lemma 2.1 that
(g, 9 +¥)

a(ug, ) + L(mo, ¥)
<l—ug(x)+ue(x)=1, x € So,

aGo1(x) = aG21(x) 4 uy (x)

and similarly,aG,1(a) <1. O
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Let {U,} be a decreasing sequence of open neighbourhoods of theg@ins such that, > U,,1 and
MNy—1 Uy = {a}. Let

A=Ay, ={x eS80 ug(x) <p} fora>00<p<1l
We then set

on=inf(r>0: X2 U, NS},  o,= lim o,, 1, =inf{r>0: X2 U, N A},
n—od

with the convention that inf = oo.

Lemma4.7. For anya > 0, p € (0,1) andx € Sp,
lim Pf{rn <o, <00} =0. (4.32)

n—o0
Proof. Since
{oa <00} = (t% <00, XPo_ =a)
ando, = ¢9 on the sefo, < oo}, we have forx € Sp andm < n
o (x) = EX€°%; 1, < 04} + EHE 1 1y > 04} = EN{€ “™ua (X2 ): Ty < 04} + EHE % 7, > 04}
<PENE ™ 1, <04} + EAe % 1y > 04} < pEe ™) 1,y < 0} + EAE: 1,y > 04 ).
By letting firstn — oo and thenn — oo, we obtain
ug(x) <p lim E)?{e_”‘”“; Tn < 0q)+ lim E)?{e_“”“; T, = 04}
m— 00 n—0oo
= ENe %} — (1—p) lim ENe ™" 1, <oy}
n— o0
=ua(x) — (1= p) lim ENe ™ 1, < 0q},
n— o0
which implies
lim Eg{ef‘w”; T, <0, =0

n—oo

and so (4.32) must hold.O
Lemma4.8. Leta > 0.

(i) Foranyx € So,

limu, (X% =1 P%-as onfo, < oo}. (4.33)

t1oq

(i) n(A)=0where
- +. i
A= |w € W, 3a > 0.lim g (w(1)) # 1].

Proof. If o, < o0 and if Ii_m,TUauo,(X?) < p, then for any smalk > O there exists € (o, — €, 0,) such that
ua(X?) < p, and sor,, < g, for all n. Therefore by the preceding lemma
P)?{Ii_mM(X?) <p,04 < oo} =0.
tto,

Sinceu,, is decreasing ix andp can be taken arbitrarily close to 1, we obtain (4.33).
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(i) follows from (i) as

. o of 0 _
() =limn(ante <)) =tim [ u@)PY(mu(x) #1) =0, o
So

We extendu, to a function onS by settinguy(a) = 1. By Lemma 4.8(ii) combined with Lemma 4.1 and a
similar reasoning as in the proof of Lemma 4.2, we may assume, subtracting a suitadgégible set fromw -
(resp.W.), thatuy(w(z)) is continuous irr € [0, ¢] (resp.t € [0, ¢)).

Lemma4.9. LetO < p < 1and set
~ . B
W, = {w eW,: Ogaéx{{l ul(w(t))} > ,0}.
Thenn®(W,) < .
Proof. The proof is similar to that of Lemma 4.3. For anguch that - u1(x) > p and for§ = —log(1 — %) >0,
we have
P, >8) > E%1—e %0, > 8} =E%1—e %} — E%1—e%;0, <6}
>1-mm-A-eNzp-a-ehH=1.
Therefore if we set
A:{xeSo: 1—u1(x)<,0}, r:inf{t>0: w(t)eSo\A},
then
ntf(W,)=nT(r<o)=limnt(e <t <%= Iimf,ue(dx)Pf(r <9
€l0 €l0
A
_ 2 p—
< E%/Me(dx)Eg{(;>P§9(Ua S8t < ;0} <2 i [ el P2(a, > 0
A 0
< glim/u (de)PO0 > 8) + Elimf,u (dx)PO(° < 0, = 00)
X 0 €l0 € x 0 €l0 € X a
So So
= 2im ey + 2 lim e (6 D)
€40 €+ 0 €l0 € s
which is finite in view of (4.2) and Lemma 4.4.0

Fora >0, f € B(S), we defined the resolveit, f by
Gaf(¥) =G f () + Gaf(@uax), x €S,
with G, f (a) of Proposition 4.2. We now exter@gf(x) to S by setting
G2 f(a)=0.
In the last subsection, we have constructed a profEgsco,r,) out of the Poisson point processgs, p~ on
W, W, defined on a probability spac¢e2, P).

Proposition 4.3. Letu = G, f with f € C,(S). Thenu(X,) is continuous irt € [0, ¢,), P-a.s.
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Proof. As was remarked immediately after the proof of Lemma 48js continuous along any sample point
functions ofp™ = {p{, s > 0} andp™ = {p,, s > O}. Moreover, by Lemma 4.9, we can subtract a suitable
negligible set froms2 so that, in addition to the properties (4.21), (4.22) and (4.g3)satisfies the following
property for every sample poiat € £2: for any finite intervall c (0, o0) and for anyp € (0, 1),

{s el: max (L—ui(pf(®))> ,0} is a finite set (4.34)
0 <¢(py)

Then it is not hard to see that not onk; but alsou1(X;) are continuous it € [0, ¢,,). From the inequality
G1(x) < 1—u1(x), x € S, we see that

lim G1(X,) =0 if X, =a.

I1—1o
HenceG(l’f(X,) has the same property as the above foe C,(S). SinceG(l)f(X,) is clearly continuous on
{t € [0,¢,): X; # a} by the assumption A.4, it is continuous @ ¢,,). We have thus proved the continuity of
G1f(X;). The continuity ofG, f (X,) follows from the resolvent equation proved in Lemma 4.6

4.4, Markov property ok

Let us definep; f(x) fort > 0,x € S, f € B(S), as follows:

pif(@)=E(f(X:); {w > 1), (4.35)

pif ()= p2f () + EX prg, f@);oa <t}, x €S0 (4.36)
Evidently

/ef‘”p,fdt =Guf, a>0. (4.37)

0

Lemma4.10. p;ys = prps, t,s > 0.

Proof. Take anyf € C»(S). By (4.36) and the resolvent equation in Lemma 4.6, we have foxany

/ e“”{ / 5 pris () ds} o = / e {p(Gp )}, (4.38)
0 0 0

because the left-hand side equaa%(Gﬂf(x) —Gof(x))=GoGg f(x).
We first consider the case where= a. Then the functions insidé¢} of the both hand sides of (4.38) are
continuous irr > 0 in virtue of the continuity of{ and Proposition 4.3. Hence we have for any 0

oo oo

/e_“spz+sf(a) ds = ps(Gg f)(a) = / e P pi(ps f)(a) ds.
0 0
Since bothp, ;s f (@), p:(ps f)(a) are right continuous in > 0, we get

Pits f(a) = pi(psf)@), t>0,s>0. (4.39)
We next consider the case where Sg. Using (4.37), we obtain
Pras f () = PPy £ () + EX prvs—o, f(@); 0 <1 +5)
= PPos L) + EX pro, (ps )@ 00 <t} + EX pras—o, f(@): 1 <0 <145},
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On the other hand,
Pi(ps [)@) = pL(ps () + EX P, (ps [)(@); 00 <1}
Hence it suffices to prove that
Py FOO) + ENpras—o, f@); t <0 <t 45} = plps )(x).
Put
g(x) = EXY{ps—o, f(@); 04 <5},
then, we are led from; £ (x) = pO f (x) 4+ g(x) to
PR [)X) = pLys f () + pPg(x),
and consequently, (4.40) is reduced to
EX pris—o, f(@)i1 <04 <145} = EQ(g(X0): (0> 1).
With the notatiort; to denote the usual shift, the left-hand side of (4.41) equals
E¥ pras—o, f(@); ¢°> 1,04 > 1,0, 06, <5} = E¥ py_s,00, [ (@); £0 > 1,04 06, <5}
= ES[E?(p{psw,,f(a); oa <shi¢%>1],

which coincides with the right-hand side of (4.41) as was to be proved.

Lemma4.11. Supposg € B(S) andlim¢ o peg(x) = g(x), x € S. Then, for anyf € C,(S),t > 0,

LI?Q) Pe(frig)(x) = f(x)pig(x), x€S.

Proof. Fix x € S. Clearly, for any neighbourhood of x,
li I =1
J%pe U(x) )

and hence

Pel fP181(x) = pel f Iy p1g1(x) + O(€).
For anys > 0, take a neighbourhodd of x such that

|f()’)—f(X)|<6, yeU.
Then

|pe(fPi@)(x) — F(X)pe(prg) )| < pe(|f — F(O)|Ipegl) (x)

< pe(|f = FO|Iulpigl) (x) + 0(e) < 8liglloo + O(€).

On the other hand, we have from the preceding lemma that
Li% FX)pe(pig)(x) = IEI% FX)pi(peg)(x) = f(x)prg(x).
Consequently
im|pe(fpig) () = f () prg ()] < 8lgllo:

which means (4.45) becauée- 0 can be taken arbitrarily small.c

(4.40)

(4.41)

(4.42)
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Proposition 4.4.
(i) Forag,...,a, >0,

E! / / H(e_ak(tk_tk_l)fk(xtk)) dtl"'dtn} = GalflGasz"'Ganfn(a)a (4-43)

O<tp<-<ty<lw k=1

where we sefy = 0 by convention.
(i) X={X,;, 0<t <¢,, P}isaMarkov process of with transition functionp, and initial distribution concen-
trated at{a}.

Proof. We shall employ the following notations:

n

F(X;t;a1, fi,...,Qn, fn) = /f l_[{e_ak([k_tk_l)fk(xtk)}dtl'"dtn’
t<t1 <<ty <l k=1

and, forw € W,,

n

F(w:t;ag, f1,....0n, fa) = [/ [ [{e %2 fi(w(t))}dea - - dy.
t<ty<--<ty<C(w) k=1
(i) The left-hand side of (4.43) will be denoted BY(«1, f1, ..., oy, fn), Nnamely,
E{F(X;0; 01, f1.....0n, f)} =G(a1, f1,.... 00, fu). (4.44)

For O0<s < T, we denote by (s) the expression

e—altlfl(th){ //
k

n<ty<--<ty<lu" =

(em =) £ (X)) dtp - - - dtn} dry.
J(s—)<t1<J(s) 2
Then
F(X; 001, fi,ooostn f) = Y 1)+ F(X; J(T=)s a1, fi,ooo s, fo)-
O<s<T
Further, if we put for I< m <n
In(s) = / e / [ [{e ™% fi(x;) ) dia - - dlty

J(s—)<tp<--<tym<J(s) k=1
n

X / l_[ {e_ww_tl_l)fi(xtg)}dtm+l'" dtn:
J () <tma1<-<ty<lo t=m+1

then

1(s) = Z Ly ().
m=1

Moreover, eacl,, (s) can be written as
Ly (s) = Fiu(s)Gpi (s)
with
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m

F(s) = / .. / n{e—ak(fk—tk—l)fk(xtk)} @ ¥m+1(J ($)~1m) drq--- dt,,,
J(s—)<tp<--<tym<J(s) k=1
n

Gu(s) = f / @ Ym+1(tmt1—J(5)) 1_[ {e“"‘f("f_’“—l)fe(Xu)} dtypy1--- dty.

J($)<tmp1<--<tp <Co t=m+2

Therefore

FX:0an fio.coom )= D Y Fu(@)Gn(s) + F(X: J(T=)i a1, f1..... . f)-

O<s<T m=1

Next, let us put (with the convention that; = 0)

F(w; a1, f1,...,0m, fm; @my1)
m

— .. 1_[ {efak (tg—1x—1) fk (w(tk)) } efamﬁ»l({(w)*lm) dtl . dtm ,
O<ty <<ty <C(w) k=1

so that

Fu(s) =€ YO FF ar, fi, ..., tms fns @msd)-

We furthermore put; = X )+ SO that

n

Gp(s) = /f 1_[ {efae(tzftefl)fe(xtz)} dtyp1--- dy,

O<typ1<-<ty<Lp—J () t=m+1

where we set,, = 0.
Forp = {p;, t > 0}, we may use the following notations:

G(p; O(m-l-la fm+l’ ey Opy fn)

n

_ // 1_[ {efaz(teftzfl)fz(xtl)} ey dry,

L=m+1
O<tm+1<"'<tn<§(u +

(with the convention that,, = 0), and

exp = {ps+t» > O}

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

0,p then has the same distribution@and independent dp;, 0 < ¢ < s}. SinceY, is constructed fromd,p in the

same way a¥, is fromp, (4.48) can be rewritten as
Gm(s) = G(OsP; otms1, fnt1s -5 s fn)s
which is identical in law to
G(P; am+1, fmts -, fn)
for each fixeds > 0. Further
F(X: J(T—)s01, f1,....on, fr) =€ VTP 0 s, fi....,an, fo).
Combining (4.45), (4.47), (4.51) and (4.52), we arrive at

(4.51)

(4.52)
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F(X;0;01, f1,..., 00, fa)

n
= Z Z e-C(lJ(S—)F(pj-; al? fl’ ceey am’ fI’H9 am+l)

O<s<T m=1
X G(OsP; Umt1s futs - os s fu) +€ Y TIF(L 0 an, f1, ..., f)- (4.53)
Here we compute the expectations of the random variables appearing in the last formula.
N F(wian, f1. .o @ fnl @) | = Ry (AG, 2GS fn-1GO, fnlheysr)- (4.54)

Whenm = n, the last factou,,, in the above expression is understood ta/pe= ¢. In fact, the left-hand side
equals

n{ / H( ek (ke —ti— ka (w(tk))) @ ¥m+1(§(w)— tm)dtl -ty W;_}

O<t1<-- <ty <C(w) k=1

/ / : —ak(tk—tk_l) fk(w(tk)))uarn+l (w(tm)); >ty } >

O<t1<:+ <ty <00

which can be seen to coincide with the right-hand side of (4.54) by (4.4).
We further have for any constant time- 0,

E{G(Qsp; Um+1, fm+lv ey Opy fn)} = G(am+lv fm+lv ey Oy fn) (455)
On the other hand, we have in view of 84.2
E{F(p7: 0 a1, fi.....on. fa)} = L(mo, ¥) " 'n" {F(w; O a1, f1..... 0. f)}
= L(mo. ¥) ey (G, f2+ - G) | fu1Go fath),

T
E / a1l g b ! , (4.56)
J (g, ) + L(mo, V)
E{efalJ(Tf)} — L(mo, ¥) (4.57)

a(ual’ (p) + L(m07 I//) .
We can now get from (4.53) that

G(a, fl,...,O(n,fn)ZE{F(X;O;Oll, fl,...,an,fn)}

n T
=> E{ /e*‘”’(s) dS}rﬁ{F(w; @1, Sy O Omt1) )
m=1 0

x G(a,n+1 Fuite e f) + E{e YT NVEL P 0 an, f1. ., fo))

. 0 0 0
Z a(ug, )+ L(mO ) Mal(flGo‘Zfz o GamflfmflGam fmu‘)‘nHl)

1 .
X G(@m+1, fingls - s On, fn)+a(u 2) + L(mo w)ﬂal(fngsz“' o 1fn lGOlanl(p)
L(mo, ¥)

N 0
(g, 9) + L(mo, w)L(m& ) ,U«ozl(flGasz"' o lfn lGanfnlﬂ)
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1
" (g, 9) + L(mo,

n
¥) Z ﬁ‘al(fngsz te Gg,,,,lfm—ngm fmuam+1)G(am+l, Smt1s ooy 0,y o).
m=1

In the above and in what follows, we use the convention that
Ug, 1 = G(am+1, fm+1 ----- an, fa)=1

for m = n. This combined with (4.1) and (4.30) eventually leads us to

G(C{l, f19 9an’ fn)

n
=Y Gy (G, f2+++ GO, | fn-1GO, fnlhety ;1)@ G (@i, futds - s fo)- (4.58)
m=1
Based on this formula, we shall prove the desired identity (4.43), namely,
G(ala f].’ cey Ofna f}’l) = GO(lflGO(ZfZ e GOln fn(a) (459)

by induction inn.

(1) Whenn =1, (4.59) is just (4.30).
(2) Suppose (4.59) holds up#o— 1. Then
G(otm41, fntl, -5 0n, fr) = (Gam+1fm+l ce Ga,, fa)(a),

and (4.58) can be written as

n
G fr..n, f) =D Gay (GO, f2++ GO, fin-1GQ, fnlhar,1)(@)

m=1
X (Gapyy fmt1- - Ga, fu)(a). (4.60)
Let us rewrite the right-hand side of (4.59) by applying the formula (4.31) to the opef@gipim getting

(Gay iGay f2+ - Gay fu)(@) = (Gay G, f2Gas f3++* Gy, f)(@) + (Gay fittay) (@) Gy f2+ -+ Ga, fu)(@).
Apply the same procedure to the operat@g, to see that the right-hand side of (4.59) equals

(Gay 1GY, 1263, f3Gays fa- Gay f)(@) + (Gay [1G, fotta3) (@) (Gag f3 - - Ga, fu) (@)
+ (Goy fittay) (@) (Gay fo - Ga, ) (@).

Repeating the same procedures, we finally find that the right-hand side of (4.59) coincides with the right-hand side
of (4.60) as was to be proved.
(iForry >0,...,1,>0,let

n
F(ty,....ty) = E! nfk(Xt1+~-~+lk); $o > t1+"'+tn}y

k=1
Gt ....tn) = (P f1P f2- - - Pr, ) (@).
(4.43) is then equivalent to

o0 o0 o0 o0
/---/e‘“‘ltl“““""tnF(tl,...,z,,)dtl--« dr, =/«--/e‘“ltl"“‘“"’"G(tl,...,tn)dtl«-' dr,,. (4.61)
0 0 0o 0
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Clearly F(t1, ..., t,) is right continuous. Further, by virtue of Lemma 4.11, we can easily se&that. . ., 1,) is
separately right continuous. Consequently, (4.61) implies

F(tla"'atﬂ)ZG(tla"'atn)
the desired Markov property of. O

We add a lemma saying that the painis regular for itself with respect taX,, P).
Lemma4.12.

(i) P(n, =0) =1, wheren, =inf{t > 0: X, =a}.
(i) nT(W,) = 0.

Proof. (i) In view of the proof of Proposition 4.3, limou1(X;) = 1. Hence, if we putj,  =inf{r > ¢ X; =a},
then owing to the Markov property
E(€ ) =limE(e ") =lim E(e “u1(Xe); ¢w =1
(e") €w( ) ew( u1(Xe); Lo > €)

(i) By the construction ofX,, the pointa is evidently instantaneous in the sense that
P(t, =0 =1, wherer, =inf{r >0: X, € Sp}.
Hence (i) holds if and only if the domainy,+ of the Poisson point procegd” accumulates at @-a.s., which is
also equivalent to (i) (cf. [15, 84]). O

4.5. A symmetric extensiof of X°

In 84.1, we have started with am-symmetric diffusion
X0={x% 0<r<¢O PP, xeSo)

on So, wherePf, x € So, are probability measures on a certain sample space8ay
In 84.2, we have constructed a continuous process

X ={X;, 0<t <&y, P}

on S by piecing together the excursions, whetds a probability measure on another sample spade define
the excursion valued Poisson point processes.

For convenience, we assume thaP contains an extra poinb® with Pf({w“}) =0, x € So, and we set
Pa0 =644, w representing a path taking valueat any time.

We now let

ﬁzﬂoxﬂ, Fx:Pfo, xeS. (4.62)

For® = (o°, w) € £2, let us defineX, = X, (@) as follows:
(1) Wheno? € 20\ {0%},

X%, 0<t <¢%0% < o,(00) < o0,

Xi 6,09 (@), 0a(@0%) <t <04(0%) + Lo, if 04(°) < o0. (4.63)

gt(@‘) = {
(2) Whenw® = ¢,
X,(@) =X, (w), 0<t <. (4.64)
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The life timeZ of X, is defined by

:_|¢° if o,(0?) = 00,
6= {Ua(wo) +¢, if 04(00) < 00. (4.65)

Lemma4.13. X = (X, 0<1t < z, P, x e S} is a Markov process off with transition function{p,} defined by
(4.35)and (4.36)

Proof. This is an easy consequence of the Markov property}fﬁ, Pf) and the Markov property ofX,, P)
proved in Proposition 4.4. To see this, we put, forany < s> < --- <sy, f1, fo,..., fu € B(S),
Ik =E(iXs) -+ fioa Ky ) oK) -+ fu(X5,)s 5521 < 00 < 1),
for 1 < k < n with sg=0, and
J=E (X)) fa(Xs,)s 50 < 0a).
Using the definition of{, Proposition 4.4, the Markov property &° and (4.36) successively, we are led to

L= EXAi(X2)+ fiea (X9 DE(fi(Xg—0,) + fu(Xg,—0,))i Sk-1 < Ou < 5%)
= EX(fa(X2) -+ fiea(XD ) P00 (fiPsisrms fet1 s Psy—sy1 ) (@) Sk—1 < 04 < 5k)
=EAXD) - ficr(x2 )

0 . .
X Eng (pskfsk,lfoa (kaersk S Psy 7sn,1fn)7 Oq < Sk — skfl), Sk—1 < 0g < Sk}
k—1

= EQ(AAXD) -+ fima (XS )
X (Pskfskfl - chfskfl)(fkpsHlfsk Jier1--- Px,lfs,l,lfn)(xgk&ﬁ Sk—1 < 0g < Sk).

By the Markov property o °, we thus get

Iy = P?lfl T p?k,l—sk,zfk—lpsk—sk_lfkpsk+1—sk Sev1-- ps,,—s,,_lfn (x)
- P?lfl EE P?k,lfsk,zfkflpg(fsk,lfkpskﬂfsk Ji+1 7 Psy—s,_1 Jn ().

Clearly we also have

J=EX(fu(x2) - fu(XO)isp <o) = p2 fr-- P2 s L fo-
Hence we arrive at

n
Ex (fl(Xsl)fZ(st) T fn(Xs,,)) = Z Ik +J = pslflpszfsle t Ps,,fs,l,lfn(X),
k=1
the desired Markov property of. O
We now state main theorems of the present paper. In this section, we have startedmvslgmmetric diffusion

X%on Sy satisfying conditions A.1-A.4 and constructed a Markov proéém S. The resolven{G,}q-0 Of the
Markov process is defined by

[e¢]

Go f(x)=Ey (/ e‘“’f(i?gdz), feB(S). (4.66)

0

The resolvent o was denoted by;0.
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Theorem 4.1. The proces§ enjoys the following properties

(1) X is anm-symmetric diffusion process ¢h It admits no killing insideS and is a Hunt process ofi in the
sense that

)’ZE@_@) =A ifI(@) < oo.
(2) XV isidentical in law with the process obtained froi‘nby killing upon the hitting time, of the pointa.

Further the resolvent ok admits the next expression fgre B(S):

G f () = GO f(x) st (r)—— P g 4.67)

a(uy, @) + L(mo, ¥)
(g, )

Gl @)= @) + Limo, 9 (4.68)

whereL(mo, ) is the energy functional of th&C-excessive measureg = ¢ - m and theX°-excessive function
Yv=1-—¢.

Proof of Theorem 4.1. By Lemma 4.6, (4.37) and Lemma 4.13, we see thas a Markov process ofi with the
m-symmetric resolvent (4.67), (4.68).
On account of A.1, we may assume that

x2(?) is continuous int € [0, ¢%(«%) andX,0(,0,_(@%) =aU A
for everyw? e £2°. We have already chosen in a way that
X, (w) is continuous it € [0, ¢,) andXo(w) = a.

Hence the patb?i(a) defined by (4.63)—(4.65) is continuous @h¢).

Consider a functiont = G, f on S for f € Cp(S). By the assumptions A.2, A.3 and the expression (4.67),
(4.68),u(X%(w?%) is then continuous im € [0, o,) for any »° € £2°. By the proof of Proposition 4.34(X;())
is continuous irr € [0, ¢,) for anyw € £2. Henceu(Xt(w)) is right Contlnuous in € [0, g(w)) foranyw € Q.
(In view of (4.33), we even know that(X,) is continuous ir € [0,7) Py-a.s. for anyx € S.) Therefore we
can conclude thEiX is a strong Markov process with continuous sample paths, namely, a diffusion procg&ss on
(cf. [2]). Clearly X is of no killing inside S and a Hunt process of. The property (2) is also evident from the
construction ofX. O

Remark 4.1. A prime reason for us to impose a regularity condition A.4 on the given proc@sm S is in that
it implies an important property in Lemma 4.3 of the excursion taaf (4.4), which is essential in deriving the
continuity near the point of the process constructed in §4.2.

Given a standard proce&son S for which the point is recurrent, K. Itd [15] associated wiffia Poisson point
proces of excursions in the manner of §3.1 and gave a list of necessary conditions for the characteristic measure
n of p should obey. Conversely T.S. Salisbury [24,25] constructed a right procesfoomvhich a is recurrent by
means ofx? and an excursion law satisfying 1td’s conditions being strengthened by adding the property as in
Lemma 4.3 and some others.

Remark 4.2. By invoking the work of P.A. Meyer [20] on the absorbed Poisson point process and by adopting a
similar argument to 84.2, we can show that Theorem 3.1 of §3.1 remains true without assuming condition B.3 on
the recurrence of the poifit}.
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In this general case, the right continuous invesgg of the local timeL(¢) at{a} of the given procesX on §
is defined fors > L(c0) asS(s) = oo, and we see from Lemma 2.3 and by lettiag 0 in (2.21) thatL (c0) has
an exponential distribution with medn(mo, ) 1.

Let

Dp = {s: S(s) — S(s—) > 0},
Ps(t) = X541, s € Dp, 0<t < S(s) — S(s—).

Then Dp C (0, L(c0)], L(oo) € Dp and{py,s > 0} is a point process with values in the spa¥®g defined by
(4.13) instead of (3.6). Moreover, if we define the spaées W, by (4.14), (4.15) respectively, then

ps € W, forseDpN(0,L(c0)), Pricc) € W, .

By Theorem 5 of Meyer [20]{ps, s > O} is anabsorbed Poisson point proceddore precisely, on a certain
probability space(.Q P), there is a Poisson point procef®, s > 0} on W, with domain D5 and with the
following properties.

(@) Let =inf{s > 0: ps € W, } and consider the stopped point procgsss > 0}:
ps =Ps forse Dp=DpN(0,¢]

Then the point proced®;, s > 0} and{p,, s > 0} are equivalent in law.

(b) Letn be the characteristic measure{pf, s > 0}. Then{w(z), n} is Markovian with respect to the transition
function p? of X0. Let {v,} be the entrance law associated withTheny, is a finite measure for each> 0
and f0°° e v, dr has a total mass not greater than 1.

We now prove that Theorem 3rémains valid for this{v;} and for the entrance lawu,} specified by the
Eq.(2.22).

Take a bounded Borel functiofion S and definefa(w), w € W,,a > 0, as in the proof of Proposition 4.2. We
have, almost surely with respect g,

¢ S(s) %
/e“”f(Xt)dt= > /e“’”f(Xt)dt—i— / e f(X,)dt
0 s<L(e)g(s5-) S(L(00)-)
Z e @567 £, (py) + € 4SECID £ (D) (0)),
s<L(00)
which is equivalent in law to
> e S £ ) + e fupp), (4.69)

s<{

where{f, s > 0} is a Poisson point process definedfgy = p; for s € Dg+ = Dy N {s: p; € W'} and S(s) =
> <s (0. The characteristic measure (@, s > 0} is the restrictiom™ of n on W;". In the same way as in
the proof of Lemma 4.5, we can prove that

o0
E(e*“g(”) =exp(—abe (), Do =/e*°"v, dr.
0

Now the valueG,, f (a) equals the expectation of the random variable (4.69) with respeEt tohich can be
evaluated by taking into account of the following facts.
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() The three object§d;, s > 0}, ¢ andﬁg are independent.

(i) ¢ has an exponential distribution with me&ing, v¥)~L.
(iii) The law of |52 is L(mo, ¥)~tn~ wheren~ is the restriction ofh on W, .

Indeed, exactly the same computation as in the proof of Proposition 4.2 leads us to
Vo (f)
avy () + L(mo, )’
which combined with (2.15) and Lemma 2.2(ii) yields
Vo (f) _ Ao (f)
avy () + L(mo, )  @fie(@) + L(mo, ¥)

Therefore for eaclr > 0 there is a constant, such thatd, = ¢, /i,. Inserting this into the above equation, we
easily obtairnc, =1 and sov, = iy, t > 0.

Gaf(d) =

(4.70)

5. Uniqueness of the symmetric extension and expression of its Dirichlet form

In the preceding section, we have started withsasymmetric diffusionX® on Sy satisfying conditions
A.1-A.4, and constructed a procegson S satisfying properties (1), (2) stated in Theorem 4.1. Let us call a
process oI satisfying conditions (1), (22 symmetric extension of°. In this section, we are concerned with the
uniqueness of a symmetric extensiondf and explicit expression of its Dirichlet form ab?(S; m). We aim at
proving the following:

Theorem 5.1. Assume that am-symmetric diffusiok® on So satisfies conditionA.1, A.2. LetX be a symmetric
extension of(% and (£, F) be the Dirichlet form or.2(S; m) of X.

0] X admits the resolvent identical wifl.67), (4.68)
(iiy (&, F) admits the expression

Fo={w=uo+ cg: ug € Foe, cconstant, F=F,NL3S;m), (5.1)
E(w, w) = Euo, uo) + c28(p, 9),  E(p, ) = L(mo, ¥), (5.2)

where(Fo,., £) is the extended Dirichlet space &P and L(mo, ¥) is the energy functional ofig = ¢ - m
andy with respect tax©,

(i) X© satisfiesA.3 automatically u, € L1(S; m), « > 0.

(iv) Py(0,=0, 1, =0)=1whereo, =inf{r > 0: X, =a}, 7, =inf{r > 0: X, € So}.

(V) (&, F)isirreducible.

Corollary 5.1. Under the conditiong\.1, A.2 for an m-symmetric diffusiorX© on So, the symmetric extension of
X0 is unique in law.

Corollary 5.1 follows from Theorem 5.1(i). We prepare a lemma before the proof of Theorem 5.1.

Assume tha¥X = (X;, Py) is anm-symmetric Hunt process asiand(&, F) is the associated Dirichlet form on
L?(S; m). No regularity for the Dirichlet form{&, F) is assumed in advance.

In accordance with [19], we set for a closed Bet S,

Fr={ueF: u=0m-a.e.onS\ F},
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and call an increasing familyF,} of closed subsets of an £-nestif the spacel Jo- ; Fr, is £1-dense inF.
A setN is calledé-exceptionalf N C (0,2 F for some&-nest{F,}. On the other hand, we call a S€tC S an
X-exceptional seif there exists a Borel seé?; D B with

Pm(O'Bl < OO) =0.
A nearly Borel setV C S is called X -properly exceptionaf m(N) =0 andS \ N is X-invariant in the sense that

Pi(X;eSA\NoOrX;_eSp\NIt>0=1 VxeS\N.
Lemmab.l.

(i) The following properties of a s&f C S are equivalent each other
a. N is E-exceptional.
B. N is X-exceptional.
y. N is contained in anX-properly exceptional Borel set.

(iiy If {F,}is an&-nest, then

Px(nlewGS\E’ = {) =1 qe, (5.3)

where ge. means ‘except on a sEtC S satisfying one of the properties ('
(i) (£, F) is a quasi-regular Dirichlet form ori.2(S; m) in the sense dfL9, §IV 3].

Proof. (i) The equivalences < 8 and 8 < y were proved in [19, Theorem 5.29] and in [9, Theorem 4.1.1]
respectively.

(if) Put 0 = lim,_. o o5\F,. On account of [19, Theorem 2.11, Theorem 5.4], we have for a strictly positive
boundedn-integrable functionf on S,

¢
Ex<fe_sf(Xs)ds)=0 m—aexes.

oNC

Since the function of on the left-hand side of the above equatioXigxcessive, it is finely continuous ¢hand
hence the above equation holds g.e. by [9, Lemma 4.1.5].

(i) Since (£, F) is associated with a Hunt proceds it must be quasi-regular by virtue of [19, Theo-
rem5.1]. O

Proof of Theorem 5.1. SinceX is not only a diffusion process but also a Hunt process pte Dirichlet form
(€, F)of X is guasi-regular by the above lemma.

Consequently we can invoke [3, Theorem 3.7] to find a regular Dirichlet s@#ce:’, 7', £') related to the
quasi-regular Dirichlet spadg, m, F, £) by a quasi-homeomorphisg there exist arf-nest{F,} on S and an
&'-nest{F,} on §’ such thay is a one to one mapping frosy = | J,—, F, onto S; = | J,—, F, and its restriction
on each¥F, is homeomorphic ta,. Further,n’ is the image measure of by ¢ and the spaceF’, £’) is also the
image of(F, £) by ¢. Thus, if we put(@u)(x") = u(g~1(x")), x’' € S;, then

/(qﬁu)dm/:/udm, Yu>0, F =0F), & (Pu,®v)=Eu,v), u,velkF. (5.4)
S/

S

We note thats \ 1 (resp.S"\ S7) is £-(resp.£’-)exceptional and, wheN’ = ¢(N), N is £-exceptional if and only
if N is &’-exceptional (cf. [3, Corollary 3.6)).
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For a Borel seB C S, we denote byB 4 the subseB U A of S, with induced topology. The abovecan then
be extended to a homeomorphism betwégn » and(F,) - for eachn, whereA’ denotes the point at infinity of
S’ (which is added as an isolated point wh€ns compact).

We now apply Lemma 5.1 to the abogenest{F,} in finding anX- -properly exceptional Borel SEN cS
containingsS \ Sy such that (5.3) holds for any € S\ N. g is then a one-to-one mapping betwegn N and
S'\ N', where

N'=(5'\S)Ug(SNN).

In view of condition A.2 forX®, condition (2) forX and the above observation, the one point{gétis not
X-exceptional and consequently it is ndtexceptional by virtue of Lemma 5.1. Therefarenust be located in
S\ N and furthermore

{a’} is not&’-exceptional (5.5)
wherea’ =g (a) C S’ \ N
The restriction ofX to S \ N is a diffusion with no killing insides \ N and we denote it again by
X = (82, F;, X,, {, Px).
Let us transfeX to a process
=(Q,F.X,,7',P))
on s’ \ N’ by the mapping;:

f(’(w)—q@‘,)(w) '@ =¢), we, 1>0,
P{(A)=P,1,(4), xeS\N, AeFu.

We may extend the state space)Bfto S’ by making each point o’ trap. It is then easy to see that is a
diffusion process o8’ with no killing inside S’ in the sense that

P <oo,)?’2,_ =A)=Pl({' <o0). (5.6)

FurtherX’ is associated with the Dirichlet fori€’, F’) which is regular. Sinc&” is a diffusion without killing
inside S’, (£¢/, F') must be strongly local (cf. [9, Theorem 4.5.3]). By (5.5) and Lemma 5.1, we see that the one
point set{a’} is notf’-exceptional and consequently it has a positive capacity with respé€t,t8”) in virtue of
[9, Theorem 4.2.1].

Therefore(&’, ') and X' fit the setting of §2 and they satisfy all the properties stated in Theorem 2.1 of §2.
In particular, we have the next expressions of the resolvent&nd’) of X’ in terms of the parf’-® of X’ on
So=S"\ {a'}: if we denote the transition function and the resolvenk6{resp.X"-0) by p;, G, (resp.p;’o, G.:9),
then

’ / (g, &)m
G = ) 5.7
«8@@) a(u, @ ) + L’(mé), %) (5.7)
E'(¢' ") =L (mg, ¥, (5.8)

whereg’ (resp.u/,) is the hitting (respee-order hitting) probability ofa’} of the procesX’, ¥/ =1 — ¢’ and
/ H 1 /
L' (mg, y') = lim A %0 Y - (5.9)

Notice that the part&’, Fp) of (£', ') on S; is associated witi"-© which can be sent fronx® on So by the
mappingg in the same way as above on account of the property (?).cb*lence we have far € §' \ N’
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D (Gaf)(X)=GL(@f)(x), D(G)X)=GAP,H(x), PP f)(x)=p2(@f)(x),

(5.10)
D(P)(x) =¢'(x), D (ug)(x) =1 (x).
(5.4)—(5.9) and (5.10) now imply’ (mg, ") = L(mo, ) and furthermore
E@.0)=Lono. V). Guf@)=— o)) (5.11)

a(ug, ¢) + L(mo, ¥)

We have obtained the expression (4.68) of the resol@enof X. It then satisfies (4.67) for all € So because
of the property (2) ofX. We can also readily get the assertions (ii) and (iii) of Theorem 5.1 using (5.4) and (5.10).
As for (iv), we have obviously

Py(04=0,7,=0)= P, (6, =0, 7, =0),

and the right-hand side equals 1 by virtue of Theorem 2.1. From the expression (4.67) of the resak/eneof
have

(I, Golp) >0 foranyA, B € B(S) with m(A) > 0, m(B) > 0.
This property is equivalent to the irreducibility of the Dirichlet fo#, F) proving (v). O

Remark 5.1. For the symmetric extensiaki of X° constructed in §4, not only the expression (4.67), (4.68) of its
resolvent but also the property (iv) in Theorem 5.1 have been directly proved in Lemma 4.12.

6. Examples

Example 6.1. Let X be the Brownian motion of®, X° be the absorbed Brownian motion &n\ {0} andm be
the Lebesgue measure dnR. ThenX is the uniquen-symmetric extension ak© (in the sense thaX satisfies
conditions (1), (2) of Theorem 4.1) in accordance with Corollary 5.1.

Let L(¢) be the local time of at 0 andZ be an independent exponential random variable with rdeanThe
processX; obtained fromx killed upon the first time thak(r) > Z is a diffusion process extending® but not a
symmetric extension af? in the present sense because it violates the above condition (1).

Fory > 0, let X” be the process oR obtained fromX by a time change with respect to the inverse of its
additive functionalr + y L(¢). X is then a diffusion orR with a canonical scale 2dand the speed measure
m(dx) = dx 4 y8p(dx). X? extendsX? but violates our assumption that{0}) = 0.

The resolvents and Dirichlet forms &f;, X¥ have been exhibited in Remark 2.2.

Example 6.2. Let D be a bounded open set®f (4 > 1), and L?(D) be theL?-space based on the Lebesgue
measure orD. Denote byH&(D) the closure oCcl)(D) in the Sobolev space

3
HY(D) = {u e L2(D): a—” € L2(D), 1<i < n}
Xi

and put

D(u,v):/Vu~Vv(x)dx, u,v € H}(D).
D

Then (%D, H&(D)) is a strongly local Dirichlet form orL2(D) satisfying the Poincaré inequality (3.13). The
associated symmetric diffusior® = (X9, 0<r < ¢%, PY) on D is the absorbing Brownian motion.
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Let D* = D U {a} be the one point compactification 6. RegardingD as a subspace @®*, we have then
go(x):Pf(g“o<oo,X?07 =a)=1 Yx)=1—¢kx)=0, VxeD, (6.1)
1o (x) = E%e ", X?of = a) is continuous inx € D (« > 0). (6.2)

Obviouslyu, € L1(D). Hence conditions A.1-A.4 are satisfied K§ and we can construct a diffusion on D*
as in 84. By virtue of Theorem 4.1, the resolventofs expressed as

(ttas ) e f)
w1 TP CGel@=C0 5y

and in particularX is conservative.

L?(D*) denotes thd.2-space based on the 0-extension of the Lebesgue measubetorD*. By virtue of
Theorems 4.1 and 5.X is symmetric with respect to this measure and its Dirichlet féémF) on L2(D*) is
describable as

Gaf(x)=Gof(x) +ug(x)

F = H(D) + constant functions o*, (6.3)
1
E(wy, wp) = ED(fl, f2), wi=fi+ci, fi € H}(D), ¢; constanti =1,2. (6.4)

On account of Theorem 3.2 and a related observation in 83.1, this is a regular, strongly local and irreducible
recurrent Dirichlet form. This Dirichlet form first appeared in [8].

The entrance lawu,};~o governing the characteristic measure of the excursion valued Poisson point process
attached to¥ is given by

e (B) dt =/Pf(g°edr) dv, BeB(D), (6.5)
B

in view of (3.9). LetD = | J; D; be the decomposition of the open g2tinto connected components. The above
identity tells us that the sample path Efentering from the point is distributed amongD;} proportionally to
their volumes and enters if; according to the restriction of, to D;. As was observed in §3.X is irreducible
recurrent.

According to (2.24), the Lévy measure of the inverse local tim¥ at the pointz is given by—du, (D).

Example 6.3. We consider a finite number of disjointragis i =1, ..., N, onR2 merging at a point € R2. Each
ray ¢; is homeomorphic to the open half liri, co) and the point: is the boundary of each ray at 0-side. We put

N
So=)Y ti. S=So+a.
i=1

S is endowed with the induced topology as a subs@-of

Let m be a positive Radon measure Sxwith Supgm] = So. m is extended t&5 by settingm ({a}) = 0. The
restriction ofm to ¢; is denoted bym;. For any functiong on Sy, its restriction to¢; will be denoted byg;.
We consider a diffusion procesg® = {x9, ¢%, P0} on Sy such that its restrictiok®’ to each open half line
£; ~ (0, 00) is the absorbing diffusion governed by the speed measuend a canonical scale, say

We notice thatx© satisfies A.2, A.3 if and only if O is a regular boundary in Feller’s sense for each diffix&tén
on¢;,1<i < N.Indeed, A.2 holds if and only if O is exit (in the terminology used by [16]). If O is additionally
non-entrance, them;((0, 1)) = oo and A.3 is not satisfied. If O is regular, then ((0, 1)) < co anduy,; is m;
integrable on(0, 1), while u, ; is alwaysm;-integrable o1, co) (cf. [16, p 130]).

Thus we assume that 0 is regular for ev&S/ so that A.1-A.3 are satisfied L. A.4 is also clearly satisfied.
m is finite on any compact neighbourhood«of
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Therefore, a diffusiorX on S can be constructed as in §4 and it is a unigigymmetric extension at© with
no killing inside S according to Theorem 5.1. The resolventohas the expression

Zi(ua,ir fi)mi
o (Ugis@i)m + 2 L(gi ~mj, i)

The Dirichlet form(&, F) of X on L2(S; m) is regular, strongly local, irreducible and can be described as follows:

Gofla)=

Fe={w=uo+ cyp: upg € Fo,, c constany,
E(w, w) = E(uo, uo) + (g, ¢),
E(p. @) =) L(gi -mi, ¥),

where

Fo.e= {u: u; is absolutely continuous with respectsto

00

du; \ 2 _

/(dl> dSi < 00, MI(O) =0, u;(00) = 0, whenevemro is I’egular 1<i < I’l},
S'i

5(u,u):2/<d—?> ds;, u € Foe.
i !

Related Dirichlet forms and diffusions first appeared in [13].
The entrance law from is describable as

w(fyde =" P, (€% edr, X, =0). (6.6)
i
We have a freedom of choice of the entrance law (6.6) in the following sense. Choose any positive numbers
{p1. ..., py} and observe that the absorbed diffusiohon Sg is unchanged if we replage;, s;, 1<i <N, by
m; = p;-mi, 5 =P,~_1'Si, 1<i<N,

respectively. Lefiz be the measure afiwhose restriction té; equalsn; foreachi = 1,2, ..., N, withm({a}) = 0.
Then we can consider thie-symmetric extensio of X° whose entrance lay from a is given by (6.6) but with
the replacement ofi; by m; for 1 <i < N.

Example 6.4. Let G1, G» be open sets d&k? (d > 1), such that

G1C Go, Gyis compact

We letSp = G2 \ G1. We consider the space= So U {a} equipped with the topology where a gétcontaininga
is defined to be an open set if

U \ {a} = {open subset ofi> containingG1} \ G1.

Let X9 be the absorbing Brownian motion 6p. Then conditions A.1-A.4 are satisfied K. A.3 can be verified
by a comparison with the Brownian motion &¢.

Let m be the Lebesgue measure &nextended tas by m({a}) = 0. LetX be them-symmetric diffusion or§
as is constructed in §4. Then, by Theorem 5.1, its Dirichlet fafndF) on L2(S; m) is expressed as
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F=F.N LZ(S; m), F.= {w =ug+ce: ug € H&E(So), c constan}, (6.7)
1
€(w, w) = SD(uo, uo) +PL(p -m, ¥), (6.8)

whereHg, (So) denotes the extended Dirichlet spaceffi(So).

(€, F) is a quasi-regular Dirichlet form oh?(S; m) but may not be regular. It is a regular Dirichlet space if
each point 0BG is a regular boundary point 6p with respect to the Dirichlet problem fde — %A) on Sp.
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