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Abstract

Stochastic convolution cocycles on a coalgebra are obtained by solving quantum stochastic differential equations. W
a direct approach to solving such QSDE’s by iterated quantum stochastic integration of matrix-sum kernels. The cocycl
this way satisfy a Hölder condition, and it is shown that conversely every such Hölder-continuous cocycle is govern
QSDE. Algebraic structure enjoyed by matrix-sum kernels yields a unital∗-algebra of processes which allows easy deduc
of homomorphic properties of cocycles on a ‘quantum semigroup’. This yields a simple proof that every quantum Lévy
may be realised in Fock space. Finally perturbation of cocycles by Weyl cocycles is shown to be implemented by the
the corresponding Euclidean group on Schürmann triples.
 2005 Elsevier SAS. All rights reserved.

Résumé

Des cocycles de convolution stochastiques sur une coalgèbre sont obtenus par résolution des équations différentiell
tiques (EDS) quantiques. Nous décrivons une méthode directe pour résoudre les EDS quantiques par intégration st
quantique itérée de noyaux matrice-somme. Les cocycles qui sont obtenus par cette méthode satisfont une condition
et nous montrons réciproquement que chaque cocycle Hölder-continu est gouverné par une EDS quantique. La stru
brique des noyaux matrice-somme donne une *-algèbre de processus, qui nous permet une déduction facile des pro
momorphiques de cocycles sur un groupe quantique. Ce résultat permet d’obtenir un argument simple pour montrer q
processus de Lévy quantique peut être realisé dans l’espace de Fock. Finalement, nous montrons que la perturbation d
par des cocycles de Weyl est mise en oeuvre par l’action du groupe euclidien correspondant sur les triplets de Schürm
 2005 Elsevier SAS. All rights reserved.
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Stochastic cocycles on operator algebras [1] arise as solutions of noncommutative stochastic different
tions. In turn such cocycles may often be shown to havestochastic generatorsin the sense that they satisfy a
exponential Itô type stochastic differential equation. In the context of quantum stochastic calculus [19,32
this has been studied in [18,20,2,8,10,3,27,29], and in an abstract context of noncommutative white noise
Quantum Lévy processes [5,34,35,13,36,31,12,11] are natural noncommutative analogues of stochastic se
[38]. They are defined with respect to a unital involutive bialgebra, in other words a quantum semigroup, a
construction was achieved by the use of integral-sum kernel operators on symmetric Fock space [30,31
tended to deal with a (possibly infinite-dimensional) multiplicity space for the noise [35,36].

In this paper we analyse stochastic convolution cocycles on a coalgebra. The cocycle relation invo
coproduct

ks+t = ks � (σs ◦ kt ),

whereα � β := ·(α ⊗ β)�, and the initial condition involves the counit

k0 = ι ◦ ε,

a �→ ε(a)I . The maps(σs)s�0 comprise a semigroup of shifts of the driving noise (a CCR flow in other
lance, see [4]), the (partially defined) product· multiplies independent parts of the noise algebra andι is a simple
ampliation.

Heeding Meyer’s dictum: “The construction becomes very clear if we separate the coalgebraic and th
braic structure” ([31], p. 204), we first establish existence and uniqueness for the coalgebra quantum s
differential equation

dkt = dΛϕ(t) � kt

with the same initial condition. Hereϕ is any linear map from the coalgebra intoO(D̂), the linear space of operato
on a Hilbert spacêk := C ⊕ k with dense domain̂D. The solution acts on an exponential domain (withD-valued
step functions as test functions), and is obtained as the composition of a linear mapυϕ , from the coalgebra into
space of sequences inSD := ∏

O(D̂⊗n), and an ‘integral’:kt = Λt ◦ υϕ . Integration of a sequence is realised
summing the iterated quantum stochastic integrals of its terms (cf. [17,28]). Solutions form a cocycle in th
sense, with respect to the standard shift on Fock space overL2(R+; k), and are strongly12-Hölder-continuous. We
show that conversely every such Hölder-continuous cocycle having a Hölder-continuous adjoint process s
coalgebra quantum stochastic differential equation.

The integralΛ is injective and is involutive, unital and (weakly) multiplicative, on suitable subspaces ofSD , for
a simplematrix-sum convolution producton such sequences. This entails necessary and sufficient conditio
the generatorϕ for the stochastic convolution cocycle to be unital, involutive or weakly multiplicative respect
when the coalgebra is endowed with ‘unit’ or involution, or is a bialgebra. A priori the conditions involve the
sequence of mapsυϕ ; we show how in fact they reduce to a condition on the first term only (cf. [28]). The p
ends with a discussion of the perturbation of stochastic convolution cocycles by operator cocycles (cf.
Perturbation of quantum Lévy processes by ‘Weyl’ cocycles corresponds at the generator level precise
action of the Euclidean group on Schürmann triples (cf. [11]).

Schürmann’s ingeneous original construction of quantum Lévy processes on Fock space [35,36], which
hitherto been superseded, is somewhat complicated. As mentioned above the construction used families
argument integral-sum kernel operators [31]. We now see that augmenting the multiplicity space of the n
one dimension and using single-argument block-matrix sum kernels both simplifies the construction cons
and reveals more clearly the algebraic structure. Indeed the kernels used here depend only on the card
the (finite set) argument, and directly deliver processes so that there is no need to refer to a separately d
calculus of measurable families of kernels as in the original approach. Reconnecting with the spirit of Glo
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contribution [13], our approach is fully incorporated into the canon of quantum stochastic analysis [19,
it is thereby more easily adaptable for other uses and developments such as the study of completely po∗-
bialgebraic processes [37], and the construction and analysis of quantum Lévy processes on (locally)
quantum groups [40,41,22,21].

General notations. Set theoretic notations⊂⊂ and # are used to denote respectively, subset of finite cardin
and, for such a set, its cardinality. In this paper tensor products arealgebraic, unless adorned. Thus⊗ is used
for the Hilbert space tensor product of spaces and bounded operators, whereas for unbounded operatorsS andT ,
S ⊗ T denotes the operator with domain DomS ⊗ DomT and obvious action. Here DomT denotes the domain o
the operatorT ; similarly RanT denotes its image{T x: x ∈ DomT }. Tensor symbols between vectors are usu
dropped when it is safe to do so. For a vector-valued functionf :R+ → V and subintervalJ of R+, fJ denotes the
function which coincides withf on J and vanishes outsideJ ; this notation is also used for vectorsv by viewing
them as constant functions.L(V ;W) denotes the vector space of linear maps between vector spacesV andW ;
B(X;Y) denotes the Banach space of bounded operators between Banach spacesX andY . Hilbert space inne
products are linear in theirsecondargument and we employ the following Dirac-inspired notation. For an ele
ξ of a Hilbert spaceh, |ξ 〉 ∈ B(C;h) and〈ξ | ∈ B(h;C) are defined by

|ξ 〉 :α �→ αξ and 〈ξ | :η �→ 〈ξ, η〉; (0.1)

we also writeEξ for Ik⊗|ξ 〉 or |ξ 〉⊗Ik with context dictating which order and which Hilbert spacek, andEξ

for (Eξ )
∗.

1. Preliminaries

Involution. For any mapψ :S → T between sets with involution,ψ† :S → T will denote the maps �→ ψ(s∗)∗.
Thus if ψ is a linear map between involutive vector spaces then so isψ†, and if ψ is an algebra homomorphis
between∗-algebras then so isψ†; in all cases we callψ real if ψ = ψ†. Warning: whenA1 andA2 are∗-algebras,
L(A1;A2) is a ∗-algebra under thepointwise productand involution†; however whenA2 = A1 this is not the
algebra one is usually interested in. For an involutive vector spaceV , † is a linear involution on the endomorphis
algebraL(V ) but is homomorphic (rather than being antihomomorphic) and so isnot an algebra involution in gen
eral. That said, it (obviously) becomes an algebraic involution once it is restricted to any Abelian subalgebr
under†. This remark is relevant to present considerations since we are interested in one-parameter semig
maps.

The positive elementsof an involutive algebraA are understood to be those that are expressible in the∑n
i=1 a∗

i ai . ThusA+ is a cone inA however, whereasA is the linear span of its hermitian elements, the inclus
LinA+ ⊂ A may be proper — in particular a positive map between involutive algebrasψ :A1 → A2 need not be
real — whenA1 is nonunital. Astateon a unital∗-algebraA is a positive linear functionalω :A → C which is
normalised, i.e.ω(1A) = 1.

Coalgebras and convolution semigroups.A complex vector spaceC is a coalgebra if there are linear map
� :C → C ⊗ C andε :C → C, called thecoproductandcounitrespectively, enjoying coassociativity and the cou
property, namely

(id⊗�) ◦ � = (� ⊗ id) ◦ � and (1.1)

(id⊗ ε) ◦ � = (ε ⊗ id) ◦ � = id (1.2)
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(regrettably the more usual symbol for coproduct is unavailable due to its ubiquitous use in quantum stoc
and in this paper, as the orthogonal projection (2.1)). Sweedler has bequeathed the handy notationa(1) ⊗ a(2) for
�a, in which both summation and indices are supressed [39]. With this, (1.1) and (1.2) read

a(1) ⊗ a(2)(1) ⊗ a(2)(2) = a(1)(1) ⊗ a(1)(2) ⊗ a(2), and a(1)ε(a(2)) = ε(a(1))a(2) = a.

Let �0 := id and forn ∈ N define

�n := (id⊗(n−1) ⊗�) ◦ · · · ◦ (id⊗�) ◦ �, (1.3)

noting that coassociativity implies that moving any� to any of the available tensor places within its bracket (ra
than the right-most, as here) has no effect. It is easily verified that the family{�n: n ∈ Z+} enjoys the relationship

(�i ⊗ �j ) ◦ � = �i+j+1. (1.4)

The Sweedler notation extends to writinga(1) ⊗· · ·⊗ a(n+1) for �na (n � 1). Thus, for example,a(1) ⊗ a(2) ⊗ a(3)

becomes a neutral notation for the effect of (1.1) on an elementa.
The Fundamental Theorem on Coalgebras states that the coalgebra generated by a finite subset of a co

necessarily finite dimensional. This is an indispensible tool in the present context (see Lemma 4.3 below).
For linear mapsα :C → U , β :C → V from a coalgebra into vector spaces, define

α✩ β := (α ⊗ β) ◦ � :C → U ⊗ V. (1.5)

When there is a natural ‘product’U ⊗ V → W we writeα � β for the resulting mapC → W . This notation will be
useful in several contexts. Thus, for example, the counit property (1.2) implies thatε � α = α � ε = α for any linear
mapα from C into a vector space. In particular(L(C;C), �) is a unital algebra with identityε.

A continuous convolution semigroup of functionals(CCSF, for short) on a coalgebraC:

κs+t = κs � κt , κt (a) → ε(a) ast → 0; (1.6)

has agenerator

γ :a �→ lim
t→0

t−1(κt (a) − ε(a)
)

from which the semigroup may be recovered:

κt = exp� tγ :a �→
∑
n�0

(n!)−1tnγ �n(a) (1.7)

whereγ �0 := ε. The generator owes its existence to the Fundamental Theorem on Coalgebras and the fo
fact whose proof we include for the convenience of the reader; the convergence in (1.7) is similarly indebte

Lemma 1.1.LetC be a coalgebra. The mapκ �→ id�κ = (id⊗κ)◦� defines an injective unital algebra homomo
phismR : (L(C;C), �) → L(C), with left inverseφ �→ ε ◦ φ, which respects linear involution whenC is involutive
(see below). Moreover, the elements ofRanR leave each sub-coalgebra ofC invariant.

Proof. In view of coassociativity and the identity

� ◦ (id⊗κ) = (id⊗ id⊗κ) ◦ (� ⊗ id),

if κ1, κ2 ∈ L(C;C) then

id�(κ1 � κ2) = {
id⊗(

(κ1 ⊗ κ2) ◦ �
)} ◦ �

= (id⊗κ1 ⊗ κ2) ◦ (id⊗�) ◦ �
= (id⊗κ1) ◦ (id⊗ id⊗κ2) ◦ (� ⊗ id) ◦ �
= (id⊗κ ) ◦ � ◦ (id⊗κ ) ◦ �,
1 2
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soR is multiplicative. It is unital by the counit property. WhenC is involutive,� is involutive so

(id�κ)†(a) = (
(id⊗κ)�a∗)∗ = (

κ(a∗
(2))a

∗
(1)

)∗ = κ†(a(2))a(1) = (id⊗κ†)(�a),

thusR respects linear involution. By the counit property

ε ◦ (id⊗κ) ◦ � = κ ◦ (ε ⊗ id) ◦ � = κ,

soR has left inverseφ �→ ε ◦ φ. The invariance is clear.�
Further algebraic structure. An involutionon a coalgebraC (mentioned in the previous lemma) is a vector sp
involution compatible with the coalgebra operations:ε(c∗) = ε(c)∗, �(c∗) = (c(1))

∗ ⊗ (c(2))
∗. A coalgebra isunital

if it contains a specified element 1 satisfyingε(1) = 1 and�1 = 1 ⊗ 1. An algebraA is a bialgebra if it is also
a coalgebra with multiplicative coproduct and counit. A∗-bialgebra is a bialgebra with involution which is bot
algebraic and coalgebraic.Unitality for a bialgebra means that it is unital as an algebra and the coproduc
counit are unital.

Note the following traffic between properties of a CCSF(κt )t�0 and its generatorγ when the coalgebra ha
more structure. Each functional is real (respectively, unital) if and only if the generator is real (resp. vanishe
unit). Moreover, on a∗-bialgebraB, if the functionals are positive then the generator isconditionally positive:

γ (a) � 0 for a ∈ B+ ∩ Kerε, (1.8)

since, for such elementsa,

t−1(κt (a) − ε(a)
) = t−1κt (a) � 0 for all t > 0.

Spaces of unbounded operators.For a dense subspaceE of a Hilbert spaceh let O(E) denote the vector spac
of linear operators onh with domainE, and define subspaces as follows:

O†(E) := {
T ∈O(E) | DomT ∗ ⊃ E

}
,

Oinv(E) := {
T ∈ O(E) | RanT ⊂ E

}
and

O∗(E) := {
T ∈O†(E) | T ,T † ∈Oinv(E)

}
(“inv” for invariant), where forT ∈O†(E),

T † := T ∗|E. (1.9)

ThusO†(E) is an involutive vector space,Oinv(E) is a unital algebra, andO∗(E) is a unital∗-algebra; the forme
following from the inclusion Dom(S + λT )∗ ⊃ DomS∗ ∩ DomT ∗. To lighten notation in the sequel we writeIE ,
or simplyI , for the identity element of these algebras, namelyI |E . ClearlyO(E) ∼= L(E;h) andOinv(E) ∼= L(E).

Operator compositionO†(E) × Oinv(E) → O(E) extends to pairs(S,T ) in O†(E) × O(E) for which
Dom(S†)∗ ⊃ RanT , as follows:

S ·T := (S†)∗T . (1.10)

This partially defined product is bilinear in an obvious sense. However, due to the vagaries of unbounded o
associativity relations have to be justified. This said, we shallnot need any of the well-developed theory [33]
algebras of unbounded operators here.

2. Matrix-sum kernels

In this section we identify some sequences of iterated quantum stochastic integrands, here dubbedmatrix-
sum kernels, for solving quantum group quantum stochastic differential equations. The multiplicative struct
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iterated quantum stochastic integrals is distilled in a simple convolution product on matrix-sum kernels in
only finite sums (see (2.2)). The convolution combines with bialgebra to establish multiplicative proper
solutions of quantum group QSDE’s in Section 6.

Fix a dense subspaceD of a Hilbert spacek, define

k̂ = C ⊕ k, D̂ = C ⊕ D, and ∆ = Pk (orthogonal projection) (2.1)

and writeD̂⊗ for the tensor algebra over̂D viewed as a dense subspace of the full Fock space overk̂, with D̂⊗n

(n � 0) viewed as subspaces. Also viewO(D̂⊗n) as a subspace ofO(D̂⊗). Let SD denote the vector space
mapsF :Z+ → O(D̂⊗) such thatFn ∈ O(D̂⊗n) and consider the following subspaces ofSD , in which F † is
defined pointwise:F †

n := (Fn)
†, whenF is O†(D̂⊗)-valued:

S†
D := {

F ∈ SD | ∀n∈Z+ Fn ∈O†(D̂⊗n)
}
,

S inv
D := {

F ∈ SD | ∀n∈Z+ Fn ∈ Oinv(D̂⊗n)
}

and

S∗
D := {

F ∈ S†
D | F,F † ∈ S inv

D

}
.

ClearlyS†
D is an involutive vector space. Next consider thematrix-sum convolution product∗ :SD × S inv

D → SD ,
given by

(F ∗ G)n =
∑

|α|={1,...,n}
F(α1 ∪ α2;n)∆[α2;n]G(α2 ∪ α3;n) (2.2)

where the sum is over all 3n disjoint partitionsα1 ∪ α2 ∪ α3 of {1, . . . , n}, and the components of the summan
are defined as follows: forF ∈ SD andα ⊂ {1, . . . , n} define

F(α;n) := Π∗
α;n(Fk ⊗ In−k)Πα;n ∈O(D̂⊗n) (2.3)

where, writingα = {α1 < · · · < αk} and{1, . . . , n} \ α = {α1 < · · · < αn−k}, Πα;n ∈ O∗(D̂⊗n) is the linear exten
sion of the map

χ1 ⊗ · · · ⊗ χn �→ χα1 ⊗ · · · ⊗ χαk
⊗ χα1 ⊗ · · · ⊗ χαn−k

,

and, (with∆ defined in (2.1))

∆[α;n] := ∆⊗(α;n) where∆⊗
n := ∆⊗n.

Thus ifFn is a simple tensorT1 ⊗ · · · ⊗ Tn, as is the case forF = ∆⊗, thenF(α;n) = S1 ⊗ · · · ⊗ Sn where

Si =
{

Ti if i ∈ α,

I otherwise.

This is the product which reflects multiplication of iterated quantum stochastic integrals, as we shall see.

Lemma 2.1.The product enjoys the following properties:

(a) If F,G ∈ S inv
D thenF ∗ G ∈ S inv

D ;
(b) If F ∈ SD andG,H ∈ S inv

D thenF ∗ (G ∗ H) = (F ∗ G) ∗ H ;
(c) If E = 1δ0 thenE ∈ S∗

D andE ∗ F = F ∗ E = F for all F ∈ SD ;

(d) If F,G ∈ S†
D with G,F † ∈ S inv

D thenF ∗ G ∈ S†
D and(F ∗ G)† = G† ∗ F †.

In particular, (S∗ ,∗) is a unital∗-algebra.
D
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Proof. To see (b) note that∑
|α|={1,...,n}

F(α1 ∪ α2;n)∆[α2;n]G(α2 ∪ α3;n)∆[α3;n]H(α3 ∪ α4;n)

is a common expression for(F ∗ (G ∗ H))n and((F ∗ G) ∗ H)n. The rest is easily verified.�
For quantum stochastic purposes we need to impose a growth condition. Thus letGD denote thoseF ∈ SD

satisfying

∀S⊂⊂D̂ ∃C1,C2>0 ∀n∈Z+,χ1,...,χn∈S

∥∥Fn(χ1 ⊗ · · · ⊗ χn)
∥∥ � C1C

n
2 , (2.4)

and define subspaces

G†
D := {

F ∈ S†
D

∣∣ F,F † ∈ GD

}
,

G inv
D := GD ∩ S inv

D and

G∗
D := {

F ∈ G†
D

∣∣ F,F † ∈ G inv
D

}
.

(2.5)

To obtainalgebras of processeswe need to restrict further. Our choice of restriction here is manifestly informe
the Fundamental Theorem of Coalgebra. Thus letHD denote the set ofF ∈ SD satisfying

∃p,q∈N,R⊂⊂O(D̂) ∀n∈Z+Fn may be expressed as a sum ofpqn terms

of the formX1 ⊗ · · · ⊗ Xnwith X1, . . . ,Xn ∈ R, (2.6)

with H†
D,Hinv

D andH∗
D defined as forG. All of these are subspaces ofGD .

Proposition 2.2.LetF ∈ GD andG ∈Hinv
D . ThenF ∗ G ∈ GD , moreover ifF ∈HD thenF ∗ G ∈HD too.

Proof. Let H = F ∗ G and choosep,q and R for G according to (2.6). LetS ⊂⊂ D̂ and let n ∈ N

andχ1, . . . χn ∈ S. Then, for any partitionα ∪ β ∪ γ of {1, . . . , n},
F(α ∪ β;n)∆[β;n]G(β ∪ γ ;n)(χ1 ⊗ · · · ⊗ χn)

is a sum ofpq#(β∪γ ) terms of the form

F(α ∪ β;n)(η1 ⊗ · · · ⊗ ηn)

where eachηi belongs to the finite setS′ := RS ∪ ∆RS. Thus, choosingC1 and C2 � 1 for the pair(F,S′)
according to (2.4), and settingM = max{‖η‖: η ∈ S′},∥∥Hn(χ1 ⊗ · · · ⊗ χn)

∥∥ �
∑

pq#(β∪γ )C1C
#(α∪β)

2 M#γ = C′
1(C

′
2)

n,

whereC′
1 = pC1 andC′

2 = (C2 + qC2 + qM). ThusH ∈ GD .
If F ∈ HD then, choosingp′, q ′ and R′ for F (and assuming without loss thatI ∈ R ∩ R′), F(α ∪

β;n)∆[β;n]G(β ∪ γ ;n) is a sum ofp′(q ′)#(α∪β)pq#(β∪γ ) terms of the formZ1 ⊗ · · · ⊗ Zn where Zi ∈
R′R ∪ R′∆R. ThusHn is a sum ofpp′(q + qq ′ + q ′)n terms of this form. ThusH ∈ HD . �
Remark. There are alternative hypotheses which are also useful, for example:F ∈ G†

D , G ∈ HD and the finite se

R may be chosen so thatX1χ1 ⊗ · · · ⊗ Xkχk ∈ DomF
†∗
k , for all k ∈ N, X1, . . . ,Xk ∈ R andχ1, . . . , χk ∈ D̂. This

is relevant to remarks in Section 6.

As an immediate consequence we have the following result.

Theorem 2.3.(H∗ ,∗) is a unital∗-subalgebra of(S∗ ,∗).
D D
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This algebra is sufficiently regular to admit quantum stochastic integration (Theorem 3.3 below) whils
sufficiently large to house the mechanism for solving coalgebra QSDE’s (Theorem 4.4).

3. Quantum stochastics

Fock space. For a subintervalJ of R+ and Hilbert spacek, Fk,J denotes the symmetric Fock space overL2(J ; k)
with Fk := Fk,R+ . By the exponential propertyFk,[a,b[⊗Fk,[b,c[ is identified asFk,[a,c[ for 0 � a � b � c � ∞.
Exponential vectors are denotedε(f ) for f ∈ L2(J ; k) with ε(0) denotedΩk,J . For t � 0, γ k

t denotes the shif
B(Fk) → B(Fk,[t,∞[) so that theCCR flow of indexk is given by

σ k
t :B(Fk) → B(Fk), T �→ Ik,[0,t[ ⊗γ k

t (T ), (3.1)

whereIk,J is used to denote the identity onFk,J . Sinceγ k
t is implemented by a unitary operatorFk → Fk,[t,∞[,

these extend to maps of unbounded operatorsO(ED) → O(ED,[t,∞[) (resp.O(ED)) where, for a subsetD of k,

ED,J := Lin
{
ε(f ): f ∈ SD,J

}
(3.2)

andSD,J := Lin{d[a,b[: d ∈ D, [a, b[⊂ J }; we setED := ED,R+ . Similarly the vector stateωΩ on B(Fk) (where
Ω := Ωk,R+ ) extends toO(ED) by the same formula. Oncek or D is fixed then it is dropped from the notation.

Convention. We do not notationally distinguish between an operatorXs of the form X ⊗ I[s,∞[|ED
and the

operatorX ⊗ I[s,∞[. In this wayXsσs(T ) makes sense forT ∈ O(ED); moreover, by further minor abuse w
sometimes denote it

Xs ⊗ γs(T ). (3.3)

This is consistent with the partially defined product (1.10).

Processes and integrals. Fix now, once and for all,a dense subspaceD of a Hilbert spacek. Let ED denote
the exponential domain Lin

{
ε(f )

∣∣ f ∈ SD

}
whereSD = Lin

{
d[0,t[

∣∣ d ∈ D, t > 0
}
. Following the notation and

terminology adopted in [28], forD of the formE ⊗ED , whereE is a dense subspace of a Hilbert spaceh, let P(D)

denote the vector space of (adapted, weakly measurable) operatorh-processes with domainD, with its subspaces

PHc(D) := {X ∈ P(D): ∀ξ∈D t �→ Xtξ is locally Hölder-continuous with exponent1
2},

Pc(D) := {X ∈ P(D): ∀ξ∈D t �→ Xtξ is continuous},
Plb(D) := {X ∈ P(D): ∀ξ∈D t �→ Xtξ is (measurable and) locally bounded},
P2(D) := {X ∈ P(D): ∀ξ∈D t �→ Xtξ is locally square-integrable},
Pwc(D) := {X ∈ P(D): ∀ξ,ξ ′∈D t �→ 〈ξ,Xtξ

′〉 is continuous},
Pwr(D) := {X ∈ P(D): ∀f,g∈SD

Eε(f )XtEε(g) is bounded, locally uniformly int}

(3.4)

of (Hölder-)continuous, locally bounded, square-integrable, weakly continuousandweakly regular processesre-
spectively. Integrability here is in the Bochner sense and equality of processesX andY means that, for eachξ ∈ D,
Xtξ = Ytξ for almost all t . In the definition ofPwr the notation described below (0.1) is used. IfE = C then
Pwc(D) ⊂ Pwr(D). Also let

P†(D) := {
X ∈ P(D) | ∀t�0 Xt ∈O†(D)

}
and

P†
α(D) := {

X ∈ P†(D) | X,X† ∈ Pα(D)
}
,

whereα may be any of the above subscripts andX �→ X† is the pointwise induced linear involution onP†(D).
Quantum stochastic integration [32,24] gives a linear map

P (E ⊗ D̂ ⊗ E ) → P (E ⊗ E ), (3.5)
2 D c D
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stricts

ve,
denoted
∫ ·

0 L(s)dΛ(s), enjoying theFundamental FormulaeandFundamental Estimatebelow. Letx, y ∈ E, f,g ∈
SD and 0� r � t � T , and letX = ∫ ·

0 L(s)dΛ(s) andY = ∫ ·
0 M(s)dΛ(s). Then

〈
xε(f ),X(t)yε(g)

〉 = t∫
0

〈
ζ(s),L(s)η(s)

〉
ds,

〈
X(t)xε(f ),X(t)yε(g)

〉 = t∫
0

{〈
L(s)ζ(s), Ỹ (s)η(s)

〉 + 〈
X̃(s)ζ(s),M(s)η(s)

〉
+ 〈

L(s)ζ(s),∆M(s)η(s)
〉}

ds and∥∥[
X(t) − X(r)

]
xε(f )

∥∥2 � C(f,T )

t∫
r

∥∥L(s)ζ(s)
∥∥2 ds,

(3.6)

whereζ(s) := xf̂ (s)ε(f ), η(s) := yĝ(s)ε(g) andC is a constant depending only onf andT . The tilde notation
here is defined bỹX(s) = τ(Ik̂ ⊗ X(s)) whereτ is the tensor flipO(D̂ ⊗ E ⊗ ED) →O(E ⊗ D̂ ⊗ ED). Moreover,

if L ∈ P
†
2(E ⊗ D̂ ⊗ ED) thenX ∈ P

†
c(E ⊗ ED) and( t∫

0

L(s)dΛ(s)

)†

=
t∫

0

L†(s)dΛ(s). (3.7)

Quantum stochastic integration is injective ([26], Proposition 2.2). Moreover, from (3.6) it is clear that (3.5) re
to a map

Plb(E ⊗ D̂ ⊗ ED) → PHc(E ⊗ ED). (3.8)

Iterated quantum stochastic integrals.For L ∈ O(E ⊗ D̂⊗n), whereE is a dense subspace of a Hilbert spaceh,
defineΛn(L) ∈ Pc(E ⊗ ED) recursively as follows:

Λ0
t (L) = L ⊗ I |ED

, and, forn � 1, Λn
t (L) =

t∫
0

Λn−1
s (L)dΛ(s),

by viewingE ⊗ D̂⊗n as(E ⊗ D̂) ⊗ D̂⊗(n−1). Lettingx, y, f , g andT be as in the Fundamental Formulae abo
these satisfy the identity〈

xε(f ),Λn
t (L)yε(g)

〉 = ∫
∆n[0,t]

〈
ζ(s), (L ⊗ IF )η(s)

〉
ds, (3.9)

and estimate∥∥Λn
t (L)xε(f )

∥∥2 � C(f,T )n
∫

∆n[0,t]

∥∥(L ⊗ IF )ζ(s)
∥∥2 ds, (3.10)

where∆n[0, t] is the simplex
{
s ∈ [0, t]n | sn � · · · � s1

}
, and we are using the notationζ(s) := xf̂ ⊗n(s)ε(f )

wheref̂ ⊗n(s) := f̂ (sn) · · · f̂ (s1) and similarly forη. Moreover ifL ∈ O†(E ⊗ D̂⊗n) thenΛn(L) ∈ P
†
c(E ⊗ ED)

and

Λn(L†) = Λn(L)†. (3.11)
t t
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e imme-
in

f

-

The multiplicative structure of iterated integrals is revealed by embracing a sequence of them at once. Not
diately that ifF ∈ GD then

∑
n�0 Λn

t (Fn)ε(f ) converges absolutely, and the convergence is locally uniformt .
Clearly the resulting map

Λ : GD → Pc(ED) (3.12)

is linear. In the Guichardet notationΓJ := {σ ⊂ J | #σ < ∞} for J ⊂ R+,

π
f̂
(σ ) = f̂ ⊗n(s) for σ = {sn > · · · > s1}, (3.13)

(3.9) yields the useful identity〈
ε(f ),Λt (F )ε(g)

〉 = ∫
Γ[0,t[

dσ
〈
π

f̂
(σ ),F#σ πĝ(σ )

〉〈
ε(f ), ε(g)

〉
, (3.14)

where
∫

dσ denotes integration with respect to the symmetric measure of Lebesgue measure [15].
Using the Fundamental Estimates for (iterated) quantum stochastic integration it is easily verified that

Λ(GD) ⊂ PHc(ED). (3.15)

If F ∈ G†
D then it follows from (3.11) thatΛ(F) ∈ P

†
Hc(ED), and

Λ(F †) = Λ(F)†. (3.16)

The argument given in the proof of Proposition 2.3 of [28] yields injectivity of the mapΛ, whereas those o
Theorem 2.2 of that paper yield the following.

Theorem 3.1.LetF ∈ G†
D andG ∈ G inv

D . Then, for eachN ∈ Z+,

N∑
i,j=0

〈
Λi

t (Fi)ε(f ),Λ
j
t (Gj )ε(g)

〉 = 2N∑
k=0

〈
ε(f ),Λk

t (Hk)ε(g)
〉

whereH = F † ∗ G.

Recall the partially defined product (1.10).

Proposition 3.2. Let F ∈ G†
D and G ∈ G inv

D be such thatF ∗ G ∈ GD . Then, for eacht � 0, DomΛt(F )†∗ ⊃
RanΛt(G) and

Λt(F ∗ G) = Λt(F ) ·Λt(G).

Proof. ForH ∈ SD andN � 0 writeΛ[N ](H) for
∑N

i=0 Λi(Hi) ∈ Pc(ED), so that ifH ∈ GD thenΛ
[N ]
t (H)ε(f ) →

Λt(H)ε(f ) asN → ∞. By Theorem 3.1 and (3.11)〈
Λt(F )†ε(f ),Λt (G)ε(g)

〉 = lim
N→∞

〈
ε(f ),Λ

[N ]
t (F ∗ G)ε(g)

〉 = 〈
ε(f ),Λt (F ∗ G)ε(g)

〉
,

and so the result follows.�
The following is an immediate consequence of this and Theorem 2.3.

Theorem 3.3.LetP = Λ(H∗
D) ⊂ P

†
Hc(ED). Then, with respect to the product defined in(1.10)— extended point

wise, the mapΛ restricts to a unital∗-algebra isomorphism of unital∗-algebras:

(H∗
D,∗) → (P, ·).
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n,

-

ators)
4. Coalgebra stochastic differential equations

For this section and the next we fix a coalgebraC.

Coalgebraic processes.A linear mapk :C → P(D), whereD is of the formE ⊗ ED for a dense subspaceE of
a Hilbert spaceh, is called anh-process onC with domainD (dropping theh- whenh = C). The vector space
consisting of these is denotedP(C,D), with subspaces

Pα(C,D) := {
k ∈ P(C,D) | k(C) ⊂ Pα(D)

}
,

P†
α(C,D) := {

k ∈ P(C,D) | k(C) ⊂ P†
α(D)

} (4.1)

whereα is any of the available subscripts from (3.4). Usually for usD will simply be ED . An involution onC
induces an involution onP†(C,D): k†· (x) := k·(x∗)†. A processk in P†(C,ED) is then calledreal if k† = k. If C is
unital, respectively a bialgebra, thenk is unital if kt (1) = I for all t � 0, resp. (weakly) multiplicativeif

Domkt (a)†∗ ⊃ Rankt (b) and kt (a) ·kt (b) = kt (ab)

for all a, b ∈ C andt � 0.

Remark. Note the following inclusion

Pwc(C,ED) ⊂ Pwr(C,ED), (4.2)

which follows from the corresponding inclusion for operator processes:Pwc(ED) ⊂ Pwr(ED).

Lemma 4.1.Let k ∈ Pwr(C,ED) and letV be a finite dimensional subspace ofC equipped with some norm. The
for eachf,g ∈ SD andT � 0,

Cf,g,T ,V := sup
{∣∣〈ε(f ), kt (x)ε(g)

〉∣∣: x ∈ V, ‖x‖ � 1, 0� t � T
}

< ∞. (4.3)

Proof. Let e1, . . . eN be a basis forV . Then, forx ∈ V ,∣∣〈ε(f ), kt (x)ε(g)
〉∣∣ � ‖x‖′ max

i

∣∣〈ε(f ), kt (ei)ε(g)
〉∣∣

where‖ · ‖′ is thel1-norm with respect to this basis. Since all norms onV are equivalent, the result follows.�
Coalgebra QSDE’s. Let ϕ ∈ L(C;O(D̂)). Thenk ∈ P(C,ED) is aweak solutionof thecoalgebra quantum sto
chastic differential equation

dkt = dΛϕ(t) � kt , k0 = ι ◦ ε (4.4)

(ι indicating an ampliation), if it satisfies

〈
ε(f ),

(
kt (a) − ε(a)I

)
ε(g)

〉 = t∫
0

〈
f̂ (s), ϕ(a(1))ĝ(s)

〉〈
ε(f ), ks(a(2))ε(g)

〉
ds. (4.5)

Thus a weak solutionk is necessarily weakly continuous and ifk ∈ P2(C,ED) then

kt (a) = ε(a)I +
t∫

0

ks(a(2))dΛϕ(a(1))(s) = ε(a)I +
t∫

0

(
ϕ(a(1)) ⊗ ks(a(2))

)
dΛs,

whereΛϕ ∈ PHc(C,ED) is defined (in terms of creation, differential second quantisation and annihilation oper
as follows
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Λϕ(a)(t) := a∗(ϕ1
0(a) ⊗ |1[0,t[〉

) + dΓ
(
ϕ1

1(a) ⊗ M[0,t[
) + a

(
ϕ0

1(a) ⊗ 〈1[0,t[|
) + tϕ0

0(a) ⊗ I,

whereM[0,t[ denotes miltiplication by 1[0,t[ and so may be called astrong solution.

Remark. In view of (3.5) and (3.8) strong solutions necessarily belong toPHc(C,ED).

In terms of the mapφ := (ϕ ⊗ idC) ◦ ∆ ∈ L(C;O(D̂) ⊗ C) a weak solutionk satisfies

〈
ε(f ),

(
kt (a) − ε(a)I

)
ε(g)

〉 = t∫
0

〈
ε(f ), ks(E

f̂ (s)φ(a)Eĝ(s))ε(g)
〉
ds, (4.6)

and a strong solution satisfies

kt (a) = ε(a)I +
t∫

0

(k̂s ◦ φ)(a)dΛs,

wherek̂s := idO(D̂) ⊗ ks .

Proposition 4.2.The coalgebra QSDE(4.4)has at most one weak solution.

Proof. Let k ∈ P(C,ED) be the difference of two weak solutions, and leta ∈ C, f,g ∈ SD and T � 0. Then
k ∈ Pwc(C,ED) ⊂ Pwr(C,ED), by (4.2). By iteration〈

ε(f ), kt (a)ε(g)
〉 = ∫

∆n[0,t]

〈
ε(f ), ks1

(
φ

f̂ (s1)

ĝ(s1)
◦ · · · ◦ φ

f̂ (sn)

ĝ(sn)
(a)

)
ε(g)

〉
ds

for eachn ∈ N andt ∈ [0, T ], where

φχ
η := Eχφ(·)Eη = (

(ωχ,η ◦ ϕ) ⊗ idC
) ◦ �,

andωχ,η is the functionalR �→ 〈χ,Rη〉 on O(D̂). Since eachφχ
η leavesCa invariant, fixing a norm forCa and

appealing to Lemma 4.1, we see that the integrand is bounded by(
max

{∥∥φ
f̂ (s)

ĝ(s)

∥∥: 0� s � T
})n

Cf,g,T ,Ca
,

and so the result follows.�
Next we establish an existence theorem for the coalgebra QSDE. Letυϕ be the mapC → SD defined by

υϕ(a)n = υ
ϕ
n (a) whereυ

ϕ
0 := ε and, in the notation (1.3),

υϕ
n = ϕ⊗n ◦ �n−1 :C → O(D̂)⊗n ⊂ O(D̂⊗n) for n � 1. (4.7)

Note the recursive identity

υ
ϕ
n+1 = (ϕ ⊗ υϕ

n ) ◦ �. (4.8)

Note also that ifC is involutive then

(υϕ)† = υψ, whereψ = ϕ†. (4.9)

In terms of the associated mapφ := (ϕ ⊗ idC) ◦ ∆,

υϕ
n = εn ◦ φ(n)

where the mapsφ(n) :C → O(D̂)⊗n ⊗ C andε :O(D̂)⊗n ⊗ C → O(D̂)⊗n are defined (recursively) by
n
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m

a

the
φ(0) = idC, ε0 = ε and, forn � 1, φ(n) = (idn ⊗φ) ◦ φ(n−1) and εn = idn ⊗ε,

idn standing for idO(D̂)⊗n .

Lemma 4.3.For anyϕ ∈ L(C;O(D̂)), υϕ ∈ L(C;HD). Moreover, ifϕ is Oinv(D̂)-valued(respectively,O†(D̂)-
valued, orO∗(D̂)-valued) thenυϕ is Hinv

D -valued(respectivelyH†
D-valued, orH∗

D-valued).

Proof. Fix an elementa ∈ C \ {0} and letCa denote the coalgebra generated bya. By the Fundamental Theore
on coalgebras this is finite dimensional; leta1, . . . , aN be a basis in whicha1 = a. Let (νi

jk) be the coefficients
of � (viewed as a mapCa → Ca ⊗ Ca) with respect to this basis, and set

T i
k =

∑
j

νi
jkϕ(aj ) ∈O(D̂).

Thenφ(ai) = ∑
k T i

k ⊗ ak and

υϕ
n (a) =

∑
k

ε(akn)T 1
k1

⊗ T
k1
k2

⊗ · · · ⊗ T
kn−1
kn

,

a sum ofNn terms of the formX1 ⊗ · · · ⊗ Xn in which

Xi ∈ {T j
k : 1� j, k � N} ∪ {

ε(aj )T 1
k : 1� j, k � N

}
,

soυϕ(a) ∈ HD . Clearlyυϕ is linear. The rest is easily verified.�
Theorem 4.4.Let ϕ ∈ L(C;O(D̂)) and setυ = υϕ . Then the processk := Λ ◦ υ strongly satisfies the coalgebr
quantum stochastic differential equation(4.4).

Proof. By (3.12) and Lemma 4.3 the processk is continuous. It therefore suffices to show that it satisfies
equation weakly. By (3.13), (3.14) and (4.8),

t∫
0

ds
〈
f̂ (s), ϕ(a(1))ĝ(s)

〉〈
ε(f ), ks(a(2))ε(g)

〉

=
t∫

0

ds

∫
Γ[0,s]

dτ
〈
π

f̂
(τ ∪ s),

(
ϕ(a(1)) ⊗ υ#τ (a(2))

)
πĝ(τ ∪ s)

〉〈
ε(f ), ε(g)

〉
=

∫
Γ[0,t]

dσ
(
1− δ∅(σ )

)〈
π

f̂
(σ ),υ#σ (a)πĝ(σ )

〉〈
ε(f ), ε(g)

〉
= 〈

ε(f ), kt (a)ε(g)
〉 − ε(a)

〈
ε(f ), ε(g)

〉
,

(for all a ∈ C, f,g ∈ SD andt � 0) and so, by (4.5),k satisfies the equation weakly.�
Thus the coalgebra QSDE (4.4) has a unique weak solution; it is a strong solution and is given byΛ ◦ υϕ — we

denote itlϕ .

Lemma 4.5.Letϕ ∈ L(C;O(D̂)). Thenlϕ ∈ PHc(C,ED) and the following holds.

(a) The mapϕ �→ lϕ is injective.
(b) If ϕ ∈ L(C;O†(D̂)) thenlϕ ∈ P

†
(C,E ).
Hc D
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the fact
ycle in
(c) If C is unital thenlϕ is unital if and only ifϕ(1) = 0.
(d) If C is involutive andϕ ∈ L(C;O†(D̂)) then(lϕ)† = lψ , whereψ = ϕ†. In particular, lϕ is real if and only ifϕ

is real.

Proof. In view of (3.15), or the remark preceding Proposition 4.2,lϕ belongs toPHc(C,ED).
(a) follows from the identity〈

ĉ, ϕ(a)d̂
〉 = lim

t→0+ t−1(〈ε(c[0,t[), lϕt (a)ε(d[0,t[)
〉 − ε(a)et〈c,d〉), (4.10)

and the totality of{ĉ: c ∈ D} in k̂.
(b) follows from Lemma 4.3 and (3.16).
(c) follows from (4.5), (4.10) and the unitality ofε and∆.
(d) By part (b)lϕ ∈ P

†
Hc(C,ED) and by (4.9) and (3.16)

(lϕ)† = Λ ◦ (υϕ)† = Λ ◦ υψ = lψ .

The last part follows by injectivity. �
Remark. If we castϕ ∈ L(C;O(D̂)) in block matrix form:

ϕ =
[

γ α

χ ν − ι ◦ ε

]
,

whereι(z) := zIk, thenγ ∈ L(C;C), χ ∈ L(C;L(C;D)), α ∈ L(C;L(D;C)) andν ∈ L(C;O(D)), so that

ϕ(a) =
[

γ (a) α(a)

χ(a) ν(a) − ε(a)I

]
. (4.11)

Moreoverϕ ∈ L(C;O†(D̂)) if and only if α(C) ⊂ 〈D| := {〈d|: d ∈ D} andν(C) ⊂ O†(D). Thus ifC is involutive
then

ϕ† =
[

γ † χ†

α† ν† − ι ◦ ε

]
.

In particular,

ϕ = ϕ† if and only if γ = γ †, ν = ν† andα = χ†.

5. Quantum stochastic convolution cocycles

In this section we first note that solutions of the coalgebra QSDE enjoy a cocycle relation. Heeding
that solutions are12-Hölder continuous we then establish the converse: every stochastic convolution coc

P
†
Hc(C,ED) necessarily satisfies a coalgebra QSDE.

Lemma 5.1.Letϕ ∈ L(C;O(D̂)). Thenυ := υϕ (defined in(4.7))satisfies

υn+m = (υn ⊗ υm) ◦ �
for all n,m ∈ Z+.

Proof. Sinceυk = ϕ⊗k ◦ �k−1, this reduces to the identity (1.4).�
Recall the notational abuse (3.3).
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ly-

ipt

n

in [27].
Proposition 5.2.Let k = lϕ whereϕ ∈ L(C;O(D̂)). Thenk satisfies the cocycle relation

ks+t = ks � (σs ◦ kt ). (5.1)

Proof. Set υ = υϕ and leta ∈ C. In Sweedler’s notation, the effect of the right-hand side ona is ks(a(1)) ⊗
γs(kt (a(2))) = ks(a(1))σs(kt (a(2))) on ED,[0,s[ ⊗ ED,[s,∞[ = ED . Sandwiching with exponential vectors and app
ing (3.14) gives,〈

ε(f[0,s[), ks(a(1))ε(g[0,s[)
〉〈
ε(f[s,∞[), σs(kt (a(2)))ε(g[s,∞[)

〉
=

∫
Γ[0,s[

dσ
〈
π

f̂
(σ ),υ#σ (a(1))πĝ(σ )

〉 ∫
Γ[s,s+t[

dτ
〈
π

f̂
(τ ), υ#τ (a(2))πĝ(τ )

〉
e〈f,g〉

=
∫

Γ[0,s+t[

dω
〈
π

f̂
(ω),υ#ω∩[0,s[(a(1)) ⊗ υ#ω∩[s,s+t[(a(2))πĝ(ω)

〉
e〈f,g〉.

Applying Lemma 5.1, and identity (3.14) once more, we see that this is equal to〈ε(f ), ks+t (a)ε(g)〉, as re-
quired. �
Definition. A quantum stochastic convolution cocycle(on C with domainED) is a processk ∈ P(C,ED) satisfy-
ing (5.1), with initial conditionk0 = ι ◦ ε : x �→ ε(x)I .

The collection of these is denotedQSCC(C,ED), and we adorn this notation with subscripts and superscr†

according to the convention (4.1). Thusϕ �→ lϕ gives maps

L
(
C;O(D̂)

) → QSCCHc(C,ED) and L
(
C;O†(D̂)

) → QSCC
†
Hc(C,ED).

These maps are injective, by Lemma 4.5; our aim now is to establish bijectivity of the second map. Whenk = lϕ

we refer toϕ as thegeneratorof the quantum stochastic convolution cocyclek. Note that ifk is a cocycle in
P†(C,ED), andC is involutive, thenk† is a cocycle too.

Lemma 5.3.Let k ∈ QSCC(C,ED). Then, for eachf,g ∈ SD ,

e−〈f[0,t[,g[0,t[〉〈ε(f[0,t[), kt (a)ε(g[0,t[)
〉 = n−1∏

i=0

κ
f (ti ),g(ti )
ti+1−ti

(a(i+1)) (5.2)

where0 = t0 � t1 � · · · � tn = t contains the discontinuities off[0,t[ and g[0,t[, a(1) ⊗ · · · ⊗ a(n) = �n−1(a)

(Sweedler-style), and

κ
c,d
t := e−t〈c,d〉〈ε(c[0,t[), kt ( · )ε(d[0,t[)

〉
. (5.3)

Proof. This identity results from repeated application of the cocycle relation (5.1).�
Corollary 5.4. Letk ∈ QSCCwc(C,ED). Then(5.3)defines continuous convolution semigroups of functionals oC:
(κ

c,d
t )t�0 (c, d ∈ D).

Thus (5.2) is the analogue of the semigroup decomposition central to the analysis of Markovian cocycles
For a weakly continuous quantum stochastic convolution cocycle we shall refer to itsassociated CCSF’s. Clearly
two such cocycles with the same CCSF’s must be equal.

Lemma 5.5.Let k = lϕ for ϕ ∈ L(C;O(D̂)). Then its associated CCSF’s have generators{〈ĉ, ϕ( · )d̂〉: c, d ∈ D}.
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in
process
Proof. Sincekt (a) = Λt(υ
ϕ(a)) this is an immediate consequence of (3.14) and the definition ofυϕ (4.7). �

Proposition 5.6.Let k ∈ QSCC†
c(C,ED). Define a map

q : D̂ × D̂ → L(C;C),

((
z

c

)
,

(
w

d

))
�→ [ z − 1 1]

[
γ0,0 γ0,d

γc,0 γc,d

][
w − 1

1

]
,

where{γc,d : c, d ∈ D} are the generators of the CCSF’s associated withk. Thenq is sesquilinear.

Proof. The proposition amounts to the sesquilinearity of each formqa := q(·, ·)(a). Thus leta ∈ C. First note the
identity

qa(χ,η) = lim
t→0+ t−1〈ξ(t),

(
w,d[0,t[, (2!)−1/2(d[0,t[)⊗2, . . .

)〉
,

for χ = (
z
c

)
andη = (

w
d

)
in D̂, where

ξ(t) = [
kt (a)† − ε(a)I

](
(z − 1)ε(0) + ε(c[0,t[)

)
.

Thus ifη = η1 + αη2 then

qa(χ,η) − qa(χ,η1) − αqa(χ,η2) = lim
t→0+

〈
ξ(t), η(t)

〉
where

η(t) = t−1((n!)−1/2[d⊗n − (d1)
⊗n − α(d2)

⊗n
] ⊗ 1[0,t[n

)
n�2.

Sinceη is locally bounded andξ(t) → 0 ast → 0, by the continuity of the process(kt (a)†)t�0, this shows thatqa

is linear in its second argument. A very similar argument, this time using the continuity of the process(kt (a))t�0,
shows thatqa is conjugate linear in its first argument. The result follows.�
Proposition 5.7.Let k ∈ QSCC

†
Hc(C,ED) and letq be defined as in Proposition5.6. Then, for eacha ∈ C, the

sesquilinear formq(·, ·)(a) is separately continuous in each argument.

Proof. Let {γc,d : c, d ∈ D} be the CCSF generators associated withk, and leta ∈ C, andχ = (
z
c

)
, η = (

ω
d

) ∈ D̂.
Then

q(χ,η)(a) = z
(
(w − 1)γ0,0(a) + γ0,d (a)

) + (w − 1)
(
γc,0(a) − γ0,0(a)

) + (
γc,d(a) − γ0,d (a)

)
and, fore ∈ D andT > 0,∣∣γc,e(a) − γ0,e(a)

∣∣ = lim
t→0+ t−1

∣∣〈e−t〈e,c〉ε(c[0,t[) − ε(0),
(
kt (a) − ε(a)

)
ε(e[0,t[)

〉∣∣
= lim

t→0+ t−1
∣∣e−t〈c,e〉〈ε(c[0,t[) − ε(0),

(
kt (a) − ε(a)

)
ε(e[0,t[)

〉∣∣
� lim sup

t→0+
t−1/2

∥∥ε(c[0,t[) − ε(0)
∥∥t−1/2

∥∥[
kt (a) − ε(a)

]
ε(e[0,T [)

∥∥e−‖e‖2(T −t)/2

� ‖c‖C(a, e, T )

for some constantC depending only ona, e andT . Thus, settingT = 1,∣∣q(χ,η)(a)
∣∣ � |z|∣∣(w − 1)γ0,0(a) + γ0,d (a)

∣∣ + ‖c‖(|w − 1|C(a,0,1) + C(a, d,1)
)
� M‖χ‖

for a constantM depending only ona and η. This establishes continuity in the first argument. Continuity
the second argument is proved by a very similar argument, this time using the Hölder-continuity of the
(kt (a)†)t�0. �
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s (i)

-

s on a

ak
chastic
Remark. Proposition 5.7 may be proved under the following weaker hypothesis: estimates

lim sup
t→0+

t−1
∣∣〈ε(c[0,t[) − ε(0), lt (a)ε(d[0,t[)

〉∣∣ � Ma,d‖c‖,

for constantsMa,d depending only ona andd , should be satisfied by bothk andk†.

Theorem 5.8.Let k ∈ P(C,ED). Then the following are equivalent:

(i) k ∈ QSCC
†
Hc(C,ED).

(ii) k = lϕ for someϕ ∈ L(C;O†(D̂)).

Proof. Let k ∈ QSCC
†
Hc(C,ED) and let{γc,d : c, d ∈ D} denote the CCSF generators associated withk. By Propo-

sitions 5.6 and 5.7, there is a mapϕ ∈ L(C;O†(D̂)) such that〈(
z

c

)
, ϕ(a)

(
w

d

)〉
= [ z − 1 1]

[
γ0,0(a) γ0,d (a)

γc,0(a) γc,d(a)

][
w − 1

1

]
,

in particular,〈
ĉ, ϕ( · )d̂ 〉 = γc,d .

Thus, by Lemma 5.5, the stochastic convolution cocycleslϕ andk have the same CCSF’s and so coincide. Thu
implies (ii). The converse has already been established in Proposition 5.2 and Lemma 4.5(c).�
Remark. The transformation between the family{γc,d : c, d ∈ D} andϕ is a familiar one in the analysis of sto
chastic cocycle generators (cf. [27]).

As a special case of Theorem 5.8, takingC = C, we obtain the following result.

Corollary 5.9. LetX ∈ P
†
Hc(ED) with X0 = I . Then the following are equivalent:

(i) X is an operator Markovian cocycle: Xs+t = Xsσs(Xt ) for s, t � 0.
(ii) X satisfies a QSDE of the formdXt = (L ⊗ Xt)dΛt for someL ∈ O†(D̂).

This type of cocycle is used in the final section for perturbing quantum stochastic convolution cocycle
general coalgebra.

6. Multiplicativity

So far our results have been for (involutive) coalgebras. For this section we fix a bialgebraB. Since the quantum
stochastic mapΛ is multiplicativeH∗

D → P
†
Hc(ED) for the matrix-sum convolution product and pointwise we

operator product respectively (Theorem 3.3), we have reduced the question of multiplicativity for a sto
convolution cocycle onB to that of the mapυϕ :B → H∗

D derived from its generatorϕ (in and above (4.7)).
For the proof of the following result we adopt some notations for converting a subset of the set{1, . . . , n} into

subsets of{1, . . . , n + 1} developed in [28]:
◦→
ν := {1+ k : k ∈ ν} and

•→
ν := {1}∪ ◦→

ν .

Proposition 6.1.Letυ = υϕ for ϕ ∈ L(B;Oinv(D̂)). Then the following are equivalent:
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)

. Re-
sis
(i) ϕ(ab) = ϕ(a)ε(b) + ε(a)ϕ(b) + ϕ(a)∆ϕ(b) for all a, b ∈ B.
(ii) υ(ab) = υ(a) ∗ υ(b) for all a, b ∈ B.

Proof. (i) is contained in (ii) sinceυ1(ab) = ϕ(ab) and
(
υ(a) ∗ υ(b)

)
1 is the right-hand side of (i). Thus (ii

implies (i). Conversely, if (i) holds thenP(1) holds whereP(n) is the proposition

∀a, b ∈ C υn(ab) = (
υ(a) ∗ υ(b)

)
n
.

By the multiplicativity of ε = υ0, P(0) holds. Assume therefore thatP(k) holds for k � n, and fix a, b ∈ B.
Employing Sweedler notation and using (4.8),P(1) and thenP(n),

υn+1(ab) = ϕ(a(1)b(1)) ⊗ υn(a(2)b(2))

= [
ϕ(a(1))ε(b(1)) + ε(a(1))ϕ(b(1)) + ϕ(a(1))∆ϕ(b(1))

]
⊗

∑
|α|={1,...,n}

υ(a(2))(α1 ∪ α2;n)∆[α2;n]υ(b(2))(α2 ∪ α3;n),

where the sum is over all partitions of the set{1, . . . , n} into three disjoint subsets. The identity

ϕ(c(1)) ⊗ υ(c(2))(λ;n) = υ(c)(
•→

λ;n + 1),

gives the following equalities

ϕ(c(1)) ⊗ υ(c(2))(λ;n)∆[λ ∩ µ;n]υ(d)(µ;n) = υ(c)(
•→

λ;n + 1)∆[◦→
ν;n + 1]υ(d)(

◦→
µ;n + 1),

and

ϕ(c(1))∆ϕ(d(1)) ⊗ υ(c(2))(λ;n)∆[λ ∩ µ;n]υ(d(2))(µ;n) = υ(c)(
•→

λ;n + 1)∆[•→
ν;n + 1]υ(d)(

•→
µ;n + 1),

in which ν = λ ∩ µ. Thus

υn+1(ab) =
∑

|α|={1,...,n}

(
υ(a)(

•→
α1 ∪ ◦→

α2;n + 1)∆[ ◦→
α2;n + 1]υ(b)(

◦→
α2 ∪ ◦→

α3;n + 1)

+ υ(a)(
◦→
α1 ∪ ◦→

α2;n + 1)∆[ ◦→
α2;n + 1]υ(b)(

◦→
α2 ∪ •→

α3;n + 1)

+ υ(a)(
◦→
α1 ∪ •→

α2;n + 1)∆[ •→
α2;n + 1]υ(b)(

•→
α2 ∪ ◦→

α3;n + 1)
)

= (
υ(a) ∗ υ(b)

)
n+1.

The result therefore follows by induction.�
Remark. The invariance assumption in the above proposition is sufficient for the application below
placing ϕ(a)∆ϕ(b) by ϕ(a) · ∆ϕ(b) and υ(a) by υ(a)†∗, the result holds under the alternative hypothe
ϕ ∈ L(B;O†(D̂)).

Proposition 6.2.Letϕ ∈ L(B;O∗(D̂)) and setk = lϕ .

(a) If k is weakly multiplicative then, for alla, b ∈ B,

Dom
(
ϕ(a)†)∗ ⊃ Ran∆ϕ(b) and

ϕ(ab) = ϕ(a)ε(b) + ε(a)ϕ(b) + ϕ(a) ·∆ϕ(b). (6.1)

(b) Conversely, ifϕ satisfies(6.1) thenk is weakly multiplicative.
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Recall

from its
Proof. Let υ = υϕ . If k is weakly multiplicative then, using (4.10) and the Second Fundamental Formula,〈
ĉ, ϕ(ab)d̂

〉 = 〈
ϕ(a)†ĉ, ε(b)d̂

〉 + 〈
ε(a)∗ĉ, ϕ(b)d̂

〉 + 〈
ϕ(a)†ĉ,∆ϕ(b)d̂

〉
for all c, d ∈ D. By sesquilinearity, this implies that

〈ϕ(a)†χ,∆ϕ(b)η〉 = 〈
χ,

[
ϕ(ab) − ϕ(a)ε(b) − ε(a)ϕ(b)

]
η
〉

for all χ,η ∈ D̂, and so (a) holds.
Conversely, ifϕ satisfies (6.1) then, by Lemma 4.4,υ is H∗

D-valued and, by Proposition 6.1,υ(a) ∗ υ(b) =
υ(ab). Thus, by Theorem 3.3,k satisfies Dom(kt (a)†)∗ ⊃ Rankt (b) and

kt (a) ·kt (b) = Λt

(
υ(a) ∗ υ(b)

) = Λt

(
υ(ab)

) = kt (ab),

sok is weakly multiplicative. �
Remark. Further to the previous remark, this proposition also holds under the weaker hypothesisϕ ∈ L(B;O†(D̂)).
The remark following Proposition 2.2 is relevant here; the proof of part (a) already only relies onϕ beingO†(D̂)-
valued.

In view of Theorem 3.3, the following characterisation is obtained from Lemma 4.5 and Proposition 6.2.
the algebra of processes defined in Theorem 3.3, and the remark on block matrix forms after Lemma 4.5.

Theorem 6.3.Letk = lϕ , whereϕ ∈ L(B;O∗(D̂)), and suppose thatB be a unital∗-bialgebra. Then the following
are equivalent:

(i) k is unital and∗-homomorphic as a mapB → (P, ·).
(ii) ϕ vanishes at1B and satisfies

ϕ(a∗b) = ϕ(a)∗ε(b) + ε(a)∗ϕ(b) + ϕ(a)∗∆ϕ(b).

(iii) ϕ has block matrix form[
γ δ†

δ ρ − ι ◦ ε

]
(6.2)

in which ι is the ampliationz �→ zIk;

ρ :B →O∗(D) is a unital *-homomorphism; (6.3)

δ :B → |D〉 is aρ-ε-derivation:

δ(ab) = δ(a)ε(b) + ρ(a)δ(b); (6.4)

γ :B → C is linear and satisfies

γ (a∗b) = γ (a)∗ε(b) + ε(a)∗γ (b) + δ(a)∗δ(b). (6.5)

Following Paul-André Meyer [31] we shall refer to such(γ, δ, ρ) as aD-Schürmann tripleonB.

7. Quantum Lévy processes

In this section we describe Schürmann’s theorem on the reconstruction of a quantum Lévy process
‘generator’, and give a new simple proof of its realisation as a process on Fock space.

For this section letB be a unital∗-bialgebra. By aquantum Lévy processonB over a unital∗-algebra-with-state
(A,ω) is meant a family{j : B → A | 0� s � t} of unital∗-homomorphisms satisfying
s,t
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s

o
alently,
(QL1) jr,t = jr,s � js,t for 0 � r � s � t ; jt,t (x) = ε(x)1A for t � 0;
(QL2) {jsi ,ti (B): i = 1, . . . n} commute, and

ω

(
n∏

i=1

jsi ,ti (xi)

)
=

n∏
i=1

ω
(
jst ,ti (xi)

)
whenever the intervals[s1, t1[, . . . , [sn, tn[ are disjoint;

(QL3) ω ◦ js,t = ω ◦ j0,t−s for 0� s � t ;
(QL4) ω ◦ j0,t (x) → ε(x) ast → 0.

(QL1) is known as theincrement property[36,12]; the others respectively as (tensor) independence of increment,
time-homogeneityandcontinuity. It is immediately verified that

κt := ω ◦ j0,t

defines a continuous convolution semigroup ofstatesonB, called theone-dimensional distributionof the quantum
Lévy process; its generator is also referred to as thegeneratorof the quantum Lévy process.

Quantum Lévy processesj i onB over(Ai ,ωi) (i = 1,2) are said to beequivalentif they satisfy

ω1

(
n∏

i=1

j1
si ,ti

(xi)

)
= ω2

(
n∏

i=1

j2
si ,ti

(xi)

)
for all n ∈ N, intervals[si , ti[ and elementsxi (i = 1, . . . , n). In view of the axioms (QL1-3) it is clear that tw
quantum Lévy processes are equivalent if and only if their one-dimensional distributions coincide — equiv
if their generators are equal.

Let k ∈ QSCC
†
Hc(B,ED) be unital, real and weakly multiplicative with generatorϕ. Then, setting

Aϕ = Lin
{
ks1(x1) ·σs1

(
ks2−s1(x2)

) · · · · ·σsn−1

(
ksn−sn−1(xn)

)
: n ∈ N, 0� s1 � · · · � sn, x1, . . . , xn ∈ B

}
,

j
ϕ
s,t = σs ◦ kt−s :B →Aϕ, and

ωϕ = ωΩ |Aϕ ,

Aϕ is a unital∗-algebra in the involutive linear spaceO†(ED) with product given by (1.10),ωϕ is a state onAϕ

and it is easily checked thatjϕ is a quantum Lévy process over(Aϕ,ωϕ) with generatorγ , whereγ = ϕ0
0 (the

top-left component of the block matrix form ofϕ). Let us call this type aFock space quantum Lévy process.
Note that since a quantum Lévy process is unital (real) and positive, its generator vanishes on 1B, is real and is

conditionally positive (see (1.8)).

Theorem 7.1[35,36]. Letγ be a real, conditionally positive linear functional onB vanishing at1B. Then there is
a Fock space quantum Lévy process with generatorγ .

Proof. GNS-style, letD = Kerε/N where

N = {
a ∈ Kerε | γ (a∗a) = 0

}
.

Then([a], [b]) �→ γ (a∗b) defines an inner product onD; let k be its completion. Thenρ(a) : [c] �→ [ac] defines
operators onD which make up a unital representation ofB onD satisfying〈

ρ(a)[b], [c]〉 = 〈[b], ρ(a∗)[c]〉.
Thusρ is a unital∗-homomorphismB → O∗(D). Moreover the linear mapδ :a �→ |d(a)〉, whered(a) = [a −
ε(a)I ], is easily seen to be aρ-ε-derivationB → |D〉 satisfying

δ(a)∗δ(b) = γ (a∗b) − γ (a)∗ε(b) − ε(a)∗γ (b).
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o-

e

Setk = lϕ , whereϕ is the mapB → O∗(D̂) with block matrix form given by the prescription (6.2). Then The
rem 6.3 implies thatk is ∗-homomorphic (i.e. real and weakly multiplicative) and unital. Sinceϕ0

0 = γ the result
follows. �
Corollary 7.2. Every quantum Lévy process is equivalent to a Fock space quantum Lévy process.

8. Perturbation

Consider the case of the trivial bialgebraC, and letϕ ∈ L(C;O(D̂)). Thenϕ and lϕ are determined by th
operatorL := ϕ(1) ∈ O(D̂) and the processXL := lϕ(1) ∈ PHc(ED) which satisfies the operator QSDE

dXt = (L ⊗ Xt)dΛt, X0 = I. (8.1)

These processes have explicit action on exponential vectors:

XL
t ε(f ) = exp

(
tz +

t∫
0

β
(
f (s)

)
ds

)
ε
(
(Rf )[0,t[ + d[0,t[

)
(8.2)

where[
z β

|d〉 R − I

]
, with z ∈ C, d∈ k, β ∈ L(D;C), andR ∈O(D),

is the block matrix form ofL. From either of the above descriptions it is clear that the mapL �→ XL is injective
O(D̂) → PHc(ED). Moreover if L ∈ O†(D̂) (equivalently,R ∈ O†(D) andβ = 〈c| for somec ∈ k) thenXL ∈
P

†
Hc(ED) and(XL)† = XM whereM = L†. Similarly, if L ∈Oinv(D̂) (equivalently,R ∈Oinv(D) andd ∈ D) then

XL
t ∈Oinv(ED) for eacht . If L ∈O(D̂) andM ∈ Oinv(D̂) then, by the explicit action (8.2),

XLXM = XL�M (8.3)

where

L�M := L + M + L∆M (8.4)

By the above injectivity(Oinv(D̂),�) is a semigroup with identity 0; clearly(O∗(D̂),�) is an involutive semi-
group:(L�M)† = M†�L†. Note that these identities contain the Weyl commutation relations.

The above formula implies that forL ∈O∗(D̂)

XL is isometric ⇐⇒ L†�L = 0, whereasXL is coisometric ⇐⇒ L�L† = 0,

cf. analogous characterisations described in [26].
In the next proposition, (8.4) is extended by left and right actions of (parts of)O∗(D̂) on L(C;O(D̂)), for a

coalgebraC.

Proposition 8.1.Letϕ ∈ L(C;O(D̂)) and letL,M ∈ O(D̂).

(a) If ϕ ∈ L(C;O†(D̂)) andM ∈Oinv(D̂) then

lϕ( · )XM = lϕ�M,

(b) If L ∈ O†(D̂) andϕ ∈ L(C;Oinv(D̂)) then

l
ϕ
t (C) ⊂ Dom(XL

t )†∗ and XL · lϕ( · ) = lL�ϕ,
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ly

roup of
f. [11]).
where

(ϕ�M)(a) := ϕ(a)(I + ∆M) + ε(a)M

and

(L�ϕ)(a) := (I + L∆)ϕ(a) + ε(a)L.

Proof. These follow easily from the two Fundamental Formulae.�
That these extend (8.4) is confirmed by settingC = C anda = 1.
Let ϕ ∈ L

(
C;O∗(D̂)

)
andLi ∈O∗(D̂) (i = 1,2). Then their block matrix forms (see (4.11)) are respective[

γ α

χ ν − ι ◦ ε

]
and

[
zi 〈ci |

|di〉 Ri − I

]
,

wherezi ∈ C, ci ∈ D, Ri ∈O∗(D), and

(L
†
1�ϕ�L2)(a) = (I + ∆L1)

†ϕ(a)(I + ∆L2) + ε(a)L
†
1�L2

=
[

γ̃ (a) (α(a) + 〈d1|ν(a))R2 + ε(a)〈c2|
R

†
1(χ(a) + ν(a)|d2〉) + ε(a)|c1〉 R

†
1ν(a)R2 − ε(a)I

]
where

γ̃ (a) = γ (a) + (z∗
1 + z2)ε(a) + α(a)|d2〉 + 〈d1|χ(a) + 〈

d1, ν(a)d2
〉
.

In particular, consider conjugation by a single mapL ∈O∗(D̂):

ϕ̃ = L†�ϕ�L,

whereϕ ∈ L(B;O∗(D̂)) for a unital∗-bialgebraB. It is easily checked that iflϕ is real thenlϕ̃ is real; if lϕ is unital
then

lϕ̃ is unital ⇐⇒ XL is isometric;
and if lϕ is weakly multiplicative thenlϕ̃ is weakly multiplicative if and only if

∀a∈B (∆L + I )∗
(
∆ϕ(a) + ε(a)I

)†
L�L†(∆ϕ(a) + ε(a)I

)
(∆L + I ) = 0.

Therefore, considering perturbations by unitary (Weyl) cocycles, we obtain the action of the Euclidean g
D on Schürmann triples associated with unital *-homomorphic quantum stochastic convolution cocycles (c
This action has a simple matricial description, namely if

L =
[

iµ − 1
2‖v‖2 −〈v|V

|v〉 V − I

]
,

whereµ ∈ R, v ∈ D andV ∈O∗(D) is unitary, then

ϕ̃(a) =
[

1 〈v|
0 V ∗

]
ϕ(a)

[
1 0

|v〉 V

]
.

Thus if

ϕ =
[

γ δ†

δ ρ − ι ◦ ε

]
then
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(4) (1988)

bability to

ructure of
Springer-

Proba-

ordrecht,

–595.

.

γ̃ (a) = γ (a) + δ†(a)|v〉 + 〈v|δ(a) + 〈
v,

(
ρ(a) − ε(a)I

)
v
〉
,

δ̃(a) = V ∗(δ(a) + (
ρ(a) − ε(a)I

)|v〉) and

ρ̃(a) = V ∗ρ(a)V .

Notice that the part of the action determined byV is trivial in the sense that only a unitary transformation
the Schürmann triple(λ, δ, ρ) leavingλ invariant is effected, so that the perturbed quantum Lévy processlϕ̃ is
equivalent to the unperturbed onelϕ . For nonzerov the perturbation still does not change the characteristic
the quantum Lévy process. ThusGaussianprocesses remain Gaussian and the same is true forPoissonanddrift
processes (see [11]).

9. Note added in proof

The principal results of this paper have now been extended to a topological context (see [25]).
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