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Abstract

Stochastic convolution cocycles on a coalgebra are obtained by solving quantum stochastic differential equations. We describe
a direct approach to solving such QSDE’s by iterated quantum stochastic integration of matrix-sum kernels. The cocycles arising
this way satisfy a Holder condition, and it is shown that conversely every such Hélder-continuous cocycle is governed by a
QSDE. Algebraic structure enjoyed by matrix-sum kernels yields a usiddebra of processes which allows easy deduction
of homomaorphic properties of cocycles on a ‘quantum semigroup’. This yields a simple proof that every quantum Lévy process
may be realised in Fock space. Finally perturbation of cocycles by Weyl cocycles is shown to be implemented by the action of
the corresponding Euclidean group on Schirmann triples.
0 2005 Elsevier SAS. All rights reserved.

Résumeé

Des cocycles de convolution stochastiques sur une coalgebre sont obtenus par résolution des équations différentielles stochas
tiques (EDS) quantiques. Nous décrivons une méthode directe pour résoudre les EDS quantiques par intégration stochastiqut
guantique itérée de noyaux matrice-somme. Les cocycles qui sont obtenus par cette méthode satisfont une condition de Holder
et nous montrons réciproquement que chaque cocycle Holder-continu est gouverné par une EDS quantique. La structure algé
brique des noyaux matrice-somme donne une *-algébre de processus, qui nous permet une déduction facile des propriétés hc
momorphiques de cocycles sur un groupe quantique. Ce résultat permet d’obtenir un argument simple pour montrer que chaque
processus de Lévy quantique peut étre realisé dans I'espace de Fock. Finalement, nous montrons que la perturbation des cocycle
par des cocycles de Weyl est mise en oeuvre par I'action du groupe euclidien correspondant sur les triplets de Schirmann.
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Introduction

Stochastic cocycles on operator algebras [1] arise as solutions of noncommutative stochastic differential equa-
tions. In turn such cocycles may often be shown to heteehastic generators the sense that they satisfy an
exponential Ité type stochastic differential equation. In the context of quantum stochastic calculus [19,32,31,24]
this has been studied in [18,20,2,8,10,3,27,29], and in an abstract context of noncommutative white noise in [16].
Quantum Lévy processes [5,34,35,13,36,31,12,11] are natural noncommutative analogues of stochastic semigroup
[38]. They are defined with respect to a unital involutive bialgebra, in other words a quantum semigroup, and their
construction was achieved by the use of integral-sum kernel operators on symmetric Fock space [30,31,23], ex-
tended to deal with a (possibly infinite-dimensional) multiplicity space for the noise [35,36].

In this paper we analyse stochastic convolution cocycles on a coalgebra. The cocycle relation involves the
coproduct

ks+t =ks x (05 0 k;),
wherea x 8 := - (@ ® B) A, and the initial condition involves the counit
ko=toe€,

a +— €(a)l. The maps(os)s>0 comprise a semigroup of shifts of the driving noise (a CCR flow in other par-
lance, see [4]), the (partially defined) produchultiplies independent parts of the noise algebra@isdh simple
ampliation.

Heeding Meyer’s dictum: “The construction becomes very clear if we separate the coalgebraic and the alge-
braic structure” ([31], p. 204), we first establish existence and uniqueness for the coalgebra quantum stochastic
differential equation

dk[ = dA(p(t) * kl

with the same initial condition. Hekgis any linear map from the coalgebra i D), the linear space of operators

on a Hilbert spacé := C @ k with dense domaiD. The solution acts on an exponential domain (withvalued

step functions as test functions), and is obtained as the composition of a lineat’ifapm the coalgebra into a

space of sequences #) := ]'[(’)(5®”), and an ‘integral’k, = A, o v¥. Integration of a sequence is realised by
summing the iterated quantum stochastic integrals of its terms (cf. [17,28]). Solutions form a cocycle in the above
sense, with respect to the standard shift on Fock spacelG¥&, ; k), and are strongl)%-Hdlder-continuous. We

show that conversely every such Hélder-continuous cocycle having a Hoélder-continuous adjoint process satisfies a
coalgebra quantum stochastic differential equation.

The integralA is injective and is involutive, unital and (weakly) multiplicative, on suitable subspacgs,dbr
a simplematrix-sum convolution produatn such sequences. This entails necessary and sufficient conditions on
the generatop for the stochastic convolution cocycle to be unital, involutive or weakly multiplicative respectively,
when the coalgebra is endowed with ‘unit’ or involution, or is a bialgebra. A priori the conditions involve the whole
sequence of maps?; we show how in fact they reduce to a condition on the first term only (cf. [28]). The paper
ends with a discussion of the perturbation of stochastic convolution cocycles by operator cocycles (cf. [9,14]).
Perturbation of quantum Lévy processes by ‘Weyl’ cocycles corresponds at the generator level precisely to the
action of the Euclidean group on Schiirmann triples (cf. [11]).

Schiirmann’s ingeneous original construction of quantum Lévy processes on Fock space [35,36], which has not
hitherto been superseded, is somewhat complicated. As mentioned above the construction used families of three-
argument integral-sum kernel operators [31]. We now see that augmenting the multiplicity space of the noise by
one dimension and using single-argument block-matrix sum kernels both simplifies the construction considerably
and reveals more clearly the algebraic structure. Indeed the kernels used here depend only on the cardinality of
the (finite set) argument, and directly deliver processes so that there is no need to refer to a separately developec
calculus of measurable families of kernels as in the original approach. Reconnecting with the spirit of Glockner’s
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contribution [13], our approach is fully incorporated into the canon of quantum stochastic analysis [19,32,24];
it is thereby more easily adaptable for other uses and developments such as the study of completelypositive
bialgebraic processes [37], and the construction and analysis of quantum Lévy processes on (locally) compact
guantum groups [40,41,22,21].

General notations. Set theoretic notations C and # are used to denote respectively, subset of finite cardinality
and, for such a set, its cardinality. In this paper tensor productalgedraic unless adorned. Thu® is used

for the Hilbert space tensor product of spaces and bounded operators, whereas for unbounded Szaraiors

S ® T denotes the operator with domain D&r® DomT and obvious action. Here Dofdenotes the domain of
the operatof; similarly RanT denotes its imagélx: x € DomT}. Tensor symbols between vectors are usually
dropped when it is safe to do so. For a vector-valued funcfioR . — V and subinterval of R, f; denotes the
function which coincides witly’ on J and vanishes outsidg; this notation is also used for vectardy viewing
them as constant functions(V; W) denotes the vector space of linear maps between vector spaasd W
B(X;Y) denotes the Banach space of bounded operators between BanachXmawE. Hilbert space inner
products are linear in theiecondargument and we employ the following Dirac-inspired notation. For an element
& of a Hilbert spacé, |£) € B(C; h) and(&| € B(h; C) are defined by

&) ia>aé and (&|ine (&, n); (0.1)

we also writeE¢ for Ik®|&) or |£)®I with context dictating which order and which Hilbert spaceand E¢
for (Eg)*.

1. Preliminaries

Involution. For any mapy : S — T between sets with involution;T: § — 7' will denote the map > ¥ (s*)*.
Thus if ¢ is a linear map between involutive vector spaces then gd jand if ¥ is an algebra homomorphism
betweenx-algebras then so isT; in all cases we calp real if ¢ = 1. Warning: whenA; and.A, arex-algebras,
L(A1; Ay) is ax-algebra under theointwise productnd involution’; however whend, = A; this is not the
algebra one is usually interested in. For an involutive vector spacds a linear involution on the endomorphism
algebralL (V) but is homomorphic (rather than being antihomomaorphic) and sotian algebra involution in gen-
eral. That said, it (obviously) becomes an algebraic involution once it is restricted to any Abelian subalgebra closed
under’. This remark is relevant to present considerations since we are interested in one-parameter semigroups of
maps.

The positive elementesf an involutive algebrad are understood to be those that are expressible in the form
Y i_1afa;. Thus A, is a cone ind however, wheread! is the linear span of its hermitian elements, the inclusion
Lin Ay c A may be proper — in particular a positive map between involutive algera$; — .A> need not be
real — whenA; is nonunital. Astateon a unitalx-algebraA is a positive linear functionab: A — C which is
normalised, i.ew(14) = 1.

Coalgebras and convolution semigroupsA complex vector spac€ is a coalgebraif there are linear maps
A:C— C®Cande:C — C, called thecoproductandcounitrespectively, enjoying coassociativity and the counit
property, namely
(([d®A)oA=(A®Iid)oAa and (1.1)
(i[d®e)oa=(e®id)o A =id 1.2)
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(regrettably the more usual symbol for coproduct is unavailable due to its ubiquitous use in quantum stochastics,
and in this paper, as the orthogonal projection (2.1)). Sweedler has bequeathed the handymgtaiop, for
Aa, in which both summation and indices are supressed [39]. With this, (1.1) and (1.2) read

aw) ®a) ®ae)E =amm @awe ®ae, and age(ae) =elam)ae =a.
Let Ap:=id and forn € N define
A, = ({d®" V@a)o---o(idRA) oA, (1.3)

noting that coassociativity implies that moving a&yo any of the available tensor places within its bracket (rather
than the right-most, as here) has no effect. It is easily verified that the fémilyn € Z. } enjoys the relationships

(A; ® Aj) CA=Ajijy1. (1.4)

The Sweedler notation extends to writing) ® - - - ® a,+1) for Aya (n > 1). Thus, for exampley) ® a2 ® a(3)
becomes a neutral notation for the effect of (1.1) on an element

The Fundamental Theorem on Coalgebras states that the coalgebra generated by a finite subset of a coalgebra
necessarily finite dimensional. This is an indispensible tool in the present context (see Lemma 4.3 below).

For linear maps:C — U, B:C — V from a coalgebra into vector spaces, define

aif =@ B oA C—>URV. (1.5)

When there is a natural ‘produd/ ® V — W we writea x 8 for the resulting mag — W. This notation will be
useful in several contexts. Thus, for example, the counit property (1.2) impliesthat o x ¢ = « for any linear
mapa from C into a vector space. In particulék (C; C), ) is a unital algebra with identity.

A continuous convolution semigroup of function@XCSF, for short) on a coalgebfa

Ksir =Ks*xky, ki(a) — €(a) ast— 0, (1.6)
has agenerator
yiar> |imofl(/cl(a) — e(a))
—
from which the semigroup may be recovered:
K =exp,ty ia—> Z(n!)_lt"y*" (@) 1.7)
n=>0

wherey*? .= ¢. The generator owes its existence to the Fundamental Theorem on Coalgebras and the following
fact whose proof we include for the convenience of the reader; the convergence in (1.7) is similarly indebted.

Lemma 1.1.LetC be a coalgebra. The map— id+x = (id ® ) o A defines an injective unital algebra homomor-
phismR: (L(C; C),x) — L(C), with left inversep > ¢ o ¢, which respects linear involution whehis involutive
(see below Moreover, the elements BfanR leave each sub-coalgebra Gfinvariant.

Proof. In view of coassociativity and the identity
Ao (id®Kk) =(dRId®«K) o (A ®id),
if k1,2 € L(C; C) then
idx(k1 * k) = {id ®((K1 ® Kk2) o A)} oA
=((dQ®k1 ®«2) o (I(dRQA) 0 A
=([d®«k1) o ([d®iId®K2) o (A®id) o A
=(i[d®«1) o Ao (id®«k2) o A,
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SO R is multiplicative. It is unital by the counit property. Whéns involutive, A is involutive so
(idxx) (@) = ((d®K)Aa*)" = (k(afy)af) =k (@@)aw = (dorT)(Aa),

thus R respects linear involution. By the counit property
co(ild®k)oA=kKko(e®id)o A =x,

SO R has left inverse +— € o ¢. The invariance is clear. O

Further algebraic structure. An involutionon a coalgebr& (mentioned in the previous lemma) is a vector space
involution compatible with the coalgebra operation@:*) = €(c)*, A(c*) = (c1))* ® (c(2))*. A coalgebra isinital
if it contains a specified element 1 satisfyia@l) = 1 andal=1® 1. An algebraA is abialgebraif it is also
a coalgebra with multiplicative coproduct and counitx/ialgebrais a bialgebra with involution which is both
algebraic and coalgebraitinitality for a bialgebra means that it is unital as an algebra and the coproduct and
counit are unital.

Note the following traffic between properties of a CC&h), o and its generatoy when the coalgebra has
more structure. Each functional is real (respectively, unital) if and only if the generator is real (resp. vanishes at the
unit). Moreover, on &-bialgebral, if the functionals are positive then the generatardaditionally positive

y(a) 20 forae BLNKere, (1.8)
since, for such elements
t_l(/c,(a) — e(a)) =1, a) >0 forallz>O0.

Spaces of unbounded operatordzor a dense subspaéeof a Hilbert spacén let O(E) denote the vector space
of linear operators oh with domainE, and define subspaces as follows:

O'(E) :={T € O(E) | DomT* > E},
O™(E):={T e O(E) |RanT C E} and
O(E):={T e OV E) | T, TT c O™(E))
(“inv” for invariant), where forT € O1(E),
V.= T* L. (1.9)

ThusOT(E) is an involutive vector spacé)i”V(E) is a unital algebra, an@*(E) is a unital«x-algebra; the former
following from the inclusion DorgS + AT)* > DomS* N DomT*. To lighten notation in the sequel we writg,
or simply I, for the identity element of these algebras, nani¢ly. ClearlyO(E) = L(E; h) andO"™ (E) = L(E).

Operator compositiorOT(E) x O™(E) — O(E) extends to pairgs,T) in OT(E) x O(E) for which
Dom(sT)* > RanT, as follows:

ST :=(STH*T. (1.10)

This partially defined product is bilinear in an obvious sense. However, due to the vagaries of unbounded operators,
associativity relations have to be justified. This said, we giatiheed any of the well-developed theory [33] of
algebras of unbounded operators here.

2. Matrix-sum kernels

In this section we identify some sequences of iterated quantum stochastic integrands, herenciatiolxed
sum kernelsfor solving quantum group quantum stochastic differential equations. The multiplicative structure of
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iterated quantum stochastic integrals is distilled in a simple convolution product on matrix-sum kernels involving
only finite sums (see (2.2)). The convolution combines with bialgebra to establish multiplicative properties of
solutions of quantum group QSDE's in Section 6.

Fix a dense subspad® of a Hilbert spacé, define

k=Ce@k, D=Co®D, and A=P (orthogonal projection (2.2)

and write D® for the tensor algebra oved viewed as a dense subspace of the full Fock spacekoweith D®n
(n > 0) viewed as §ubspaces. Also vie(W(AD®”) as a subspace @ (D®). Let 8, denote the vector space of
mapsF:Z, — O(D®) such thatF, € O(D®") and consider the following subspaces&, in which FT is
defined pointwiseF, := (F,)t, whenF is O1(D®)-valued:

81 = [F € 8p | Vuez, F, € OT(D®)),

SNV .= [F € 8p | Vuez, Fn € O™(D®)} and

85 :={Fesh | F Fles).
Clearlysz, is an involutive vector space. Next consider thatrix-sum convolution produet: §p x JiD”V — 4p,
given by

(FxG)y= Y  Fle1Uagn)Alaz;nlGlezUas;n) (2.2)

le|={1,....n}

where the sum is over all’'3isjoint partitionsa; U ap U 3 of {1, ..., n}, and the components of the summands
are defined as follows: faF € 8p anda C {1, ..., n} define

F(o;n):=IT*

o;n

(Fk ® In—k)na;n € O(5®n) (2-3)

where, writinge = {1 <--- <ag}and{l,...,n}\a={a1 < - <&y—k}, Hy:n € (’)*(5®”) is the linear exten-
sion of the map

X1® @ Yn > Xay @ @ Xy ® Xy @+ @ Xau_»
and, (withA defined in (2.1))
Ala; n] = A®(a; n) whereA;‘f’ = A%,
Thus if F,, is a simple tensol ® - - - ® T,,, as is the case faF = A®, thenF(a;n) =51 ® --- ® S, where

5 — { T, ifiea,
"7 L1 otherwise
This is the product which reflects multiplication of iterated quantum stochastic integrals, as we shall see.

Lemma 2.1.The product enjoys the following properties

(@) If F,G € 81V thenF % G € 810",
b) If Fe8pandG, He 8WthenFx(G+H)=(F +«G) * H,;
D
(c) If E=150thenE € 8;,andE x F = F x E = F forall F € $p;,
(d) If F,G e 8] with G, FT € 8V thenF + G € 8], and (F « G) = GT % F1.

In particular, (8%, *) is a unital x-algebra.
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Proof. To see (b) note that

Y FlenUazin)Alaz; nlG ez Uas: n) Ales: nlH(es U as; n)

is a common expression foF x (G x H)), and((F = G) = H),. The rest is easily verified. O

For quantum stochastic purposes we need to impose a growth condition. THi}s tienote those: € $p

satisfying

Vsced 301,650 Vaezy s, pnes  [Fa(x1® -+ ® x| < C1C3, (2.4)
and define subspaces

Gh=|{Fesl|F Ffegpl,

gnv.=gpn 48N and (2.5)

Gy = {Fegh| F.FTegivl.
To obtainalgebras of processege need to restrict further. Our choice of restriction here is manifestly informed by
the Fundamental Theorem of Coalgebra. Thugdgtdenote the set of € §p satisfying

3, 4N, RccOD) Ynez, Fn may be expressed as a sunpaf’ terms
of the formX1 ® --- ® X,with X1, ..., X,, € R, (2.6)
with HE, HIV and?%, defined as fog. All of these are subspaces @f.

Proposition 2.2.Let F € Gp andG € Hig". ThenF x G € Gp, moreover ifF € Hp thenF x G € Hp too.
Proof. Let H = F « G and choosep,q and R for G according to (2.6). LetS cC D and letn € N
andysi, ... x, € S. Then, for any partitiom U U y of {1, ...,n},

FlaUBnA[B;nlGBUY;n)(x1® -+ Q xn)
is a sum ofpg™ A7) terms of the form

FlaUBin)m®: - ®nn)
where eachy; belongs to the finite sef’ := RS U ARS. Thus, choosing”; and C, > 1 for the pair(F, S’)
according to (2.4), and setting = max{||n||: n € S'},

|H 1 ® - @ x| <Y pg* P i cy P M = cycy,

whereC] = pC1 andC, = (C2+qC2+gM). ThusH € Gp.

If F € Hp then, choosingp’,q’ and R’ for F (and assuming without loss thdte R N R’), F(a U
B:n)A[B;n]G(B U y;n) is a sum of p/(¢g") @) pg#Bv) terms of the formZ; ® --- ® Z, where Z;
R'RUR'AR. ThusH, is asum ofpp’(q + qq’ + ¢")" terms of this form. Thusf € Hp. O

Remark. There are alternative hypotheses which are also useful, for exaﬁ\m@;, G € Hp and the finite set

R may be chosensothatiy1 ® --- ® X xx € DokaT*, forallkeN, X1,..., Xy e Randyy,..., xx € D. This
is relevant to remarks in Section 6.

As an immediate consequence we have the following result.

Theorem 2.3.(H7%,, %) is a unital x-subalgebra of 8%, x).
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This algebra is sufficiently regular to admit quantum stochastic integration (Theorem 3.3 below) whilst being
sufficiently large to house the mechanism for solving coalgebra QSDE’s (Theorem 4.4).

3. Quantum stochastics

Fock space. For a subinterval of R, and Hilbert spack, Fi ; denotes the symmetric Fock space olé¢J; k)
with Fi := Fi r, . By the exponential propert§i (4,5 ®Fi[,c[ IS identified asFi 4, for 0 <a < b < ¢ < oo.
Exponential vectors are denotedf) for f € L?(J; k) with £(0) denoteds2y ;. Fortr > 0, ytk denotes the shift
B(Fx) = B(Fk1,00) SO that theCCR flow of index is given by

of B(F) — B(F), T Lo ®yT), (3.1)

wherely ; is used to denote the identity ofi ;. Sincey,k is implemented by a unitary operat®i — F [1,00[
these extend to maps of unbounded operafi&p) — O(Ep. 1,001) (resp.O(Ep)) where, for a subsed of k,

SDJ = Lin{e(f): fESD’j} (32)

andSp,; :=Lin{djqp: d € D,[a,b[C J};, we set€p := Ep g, . Similarly the vector state, on B(Fy) (where
Q2 := 2 r,) extends tad(Ep) by the same formula. Ondeor D is fixed then it is dropped from the notation.

Convention We do not notationally distinguish between an operaiprof the form X ® Ijs «(lg,, and the
operatorX ® Ifs,oo- In this way X0,(T) makes sense fof € O(Ep); moreover, by further minor abuse we
sometimes denote it

X5 ® ys(T). (3-3)
This is consistent with the partially defined product (1.10).

Processes and integrals. Fix now, once and for alldense subspade of a Hilbert spacek. Let £p denote
the exponential domain L{z(f)| f € Sp} whereSp = Lin{do,( | d € D, t > 0}. Following the notation and
terminology adopted in [28], fdP of the formE ® £p, whereE is a dense subspace of a Hilbert spadet P(D)
denote the vector space of (adapted, weakly measurable) opefqatocesses with domaiB, with its subspaces

PHe(D) :={X € P(D): Veep t = X,& is locally Holder-continuous with expone%},
Pe(D) :={X € P(D): Veep t = X;£ is continuous,

Pih(D) :={X e P(D): Veep t — X;£ is (measurable and) locally bounded

P2(D) :={X e P(D): Ye¢ep t — X,& is locally square-integrabje

Pwe(D) :={X € P(D): Ve zrep t — (&, X&) is continuous,

Pur(D) :={X € P(D): Y 4es, E*Y) X Ee () is bounded, locally uniformly im}

(3.4)

of (Hoélder-)continuouslocally boundedsquare-integrableweakly continuousndweakly regular processag-
spectively. Integrability here is in the Bochner sense and equality of procEssedY means that, for eache D,
X:& = Y& for almost allz. In the definition of P, the notation described below (0.1) is usedElt= C then
Pwe(D) C Pur(D). Also let

PY(D) :=|X e P(D) | V;»0 X, € OT(D)} and
PI(D):={X eP'(D)| X, XT e Po (D)},

wherea may be any of the above subscripts ahe> X is the pointwise induced linear involution & (D).
Quantum stochastic integration [32,24] gives a linear map

P2(E® D ® Ep) — Pe(E ® Ep), (3.5)
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denotedf(;L(s) dA(s), enjoying theFundamental FormulaandFundamental Estimateelow. Letx, y € E, f, g €
Sp and 0<r <t < T, and letX = [jL(s)dA(s) andY = ;M (s) dA(s). Then

t

(xe(f), X()ye(g)) = /(C(s), L(s)n(s))ds

0
t

(X @Oxe(f). X ()ye(9)) = f {L6)EE)., T ©n©)+(X6)56), Me)n) (3.6)

0
+(L()t(s), AM(s)n(s))} ds and

t
I[x) = X" ]xe(H|> < C£ T) / |Z(s)¢(s)| % ds,

where¢ (s) := xf(s)e(f) n(s) :=yg(s)e(g) andC is a constant depending only ghand7 . The tilde notation
here is defined by((s) =t([® X(s)) wherer is the tensor qu:O(D QEREP)— O(ER® D® Ep). Moreover,

if L e PY(E® D®&p)thenX e PL(E ® Ep) and
t t t
(/L(s)dA(s)) :/LT(s)dA(s). (3.7)
0 0

Quantum stochastic integration is injective ([26], Proposition 2.2). Moreover, from (3.6) itis clear that (3.5) restricts
to a map

Pib(E ® D ® £p) — Phc(E ® Ep). (3.8)

Iterated quantum stochastic integralsFor L € O(E ® D®m), whereE is a dense subspace of a Hilbert sphace
defineA™ (L) e Pc(E ® Ep) recursively as follows:

t
AALy=L®Ilg,, and, forn>1, A7(L)=/A;’—1(L)dA(s),
0

by viewing E ® D®" as(E ® D) ® D®"~1_ Lettingx, y, f, g andT be as in the Fundamental Formulae above,
these satisfy the identity

(xe(f), A} (L)ye(g)) = / (c(), (L@ IF)n(s))ds, (3.9)

A,[0,1]
and estimate

|ArLyxe(h)| < C(f T f |(L® 120 ds, (3.10)

A,[0,7]

where A, [0, 1] is the simplex{s € [0,7]" | 5, > --- > 51}, and we are using the notatiatis) := x f®(s)e(f)
Wheref®” (s) := f(s,,) o f(sl) and similarly foryn. Moreover if L € ONE ® 5®”) then A" (L) € IP’E(E ® Ep)
and

ANy = arL)T. (3.11)
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The multiplicative structure of iterated integrals is revealed by embracing a sequence of them at once. Note imme-
diately that if F € Gp then Zn>o A} (Fy)e(f) converges absolutely, and the convergence is locally uniform in
Clearly the resulting map

A:Gp — Pc(Ep) (3.12)
is linear. In the Guichardet notatidry := {o C J | #0 < 00} for J C R,
nf(a):f®"(s) foro ={s, > --- > s1}, (3.13)
(3.9) yields the useful identity
(e(f). Ai(F)e(g)) = / dff(ﬂf(a), Fyom3(0))e(f). £(8)), (3.14)
o1

where [ do denotes integration with respect to the symmetric measure of Lebesgue measure [15].
Using the Fundamental Estimates for (iterated) quantum stochastic integration it is easily verified that

A(Gp) CPuc(€p). (3.15)
If F e G then it follows from (3.11) that\ (F) € P},.(€p), and
AFY = AT, (3.16)
The argument given in the proof of Proposition 2.3 of [28] yields injectivity of the mawhereas those of
Theorem 2.2 of that paper yield the following.

Theorem 3.1.LetF € g}, andG e GV, Then, for eactv € Z..,

N 2N
D (AL FDe(f), A (G pe(@) =Y (e(f), Af(Hi)e(g))
i,j=0 k=0

whereH = F1« G.
Recall the partially defined product (1.10).

Proposition 3.2.Let F € g}) and G € giD“V be such thatF x G € Gp. Then, for eachr > 0, DomA,(F)™ >
RanA,(G) and

A (F xG) = Ai(F) - A4(G).

Proof. ForH € 8p andN > 0write AINI(H) for "N o A/(H;) € Pe(Ep), sothatifH € Gp thenaAN (H)e(f) —
A;(H)e(f) asN — oo. By Theorem 3.1 and (3.11)

(A:(F)Te(f), A,(G)e(g)) (e(f), ANUF % GYe(9)) = (e(f), A(F % G)e(g)),

and so the result follows. O

= lim
N—o0

The following is an immediate consequence of this and Theorem 2.3.

Theorem 3.3.Let P = A(H},) C IPLC(&)). Then, with respect to the product definedinl0)— extended point-
wise, the map! restricts to a unitak-algebra isomorphism of unitad-algebras

(Hps*) = (P, ).
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4. Coalgebra stochastic differential equations
For this section and the next we fix a coalgefira

Coalgebraic processes.A linear mapk :C — P(D), whereD is of the formE ® £p for a dense subspade of
a Hilbert space, is called anh-process orC with domainD (dropping theh- whenh = C). The vector space
consisting of these is denot@dC, D), with subspaces

Po(C, D) :={k € P(C, D) | k(C) C Pu(D)},

PI(C. D) := [k e P(C.D) | k(C) C PL(D)}
whereq is any of the available subscripts from (3.4). Usually foraswill simply be £p. An involution onC
induces an involution o™ (C, D): kI (x) := k.(x*)T. A process in PT(C, £p) is then calledeal if kT =k. If C is
unital, respectively a bialgebra, théns unital if k,(1) = I for all + > 0, resp. (eakly multiplicativeif

Domk; (a)T* D Rank,(b) and k;(a) -k;(b) = k;(ab)

foralla,b eC andr > 0.

(4.1)

Remark. Note the following inclusion
IP)WC(Ca gD) C ]P)Wl’(cv gD)? (42)

which follows from the corresponding inclusion for operator proceRgsEp) C Puwr(Ep).

Lemma 4.1.Letk € Py (C, Ep) and letV be a finite dimensional subspace®équipped with some norm. Then,
foreachf,geSp andT >0,

Crorv :=sup|(e(f). k()e@)|: x eV, x| <1 0<r < T} <oo0. (4.3)

Proof. Letes,...ey be a basis fo#. Then, forx e V,
|(8(f), ky (X)e(g))| < xll’ mia><|(8(f), ky (ei)8(g))|

where| - ||’ is the/t-norm with respect to this basis. Since all normsioare equivalent, the result follows.o

Coalgebra QSDE's. Let ¢ € L(C; 0(5)). Thenk € P(C, £p) is aweak solutiorof the coalgebra quantum sto-
chastic differential equation
dk; =dA,(t) ki, ko=t10€ 4.4)
(v indicating an ampliation), if it satisfies
t
(e(f), (ki(a) —e(@)1)e(g)) = /(f(s), 9(a@)E®))e(f). ks(a)e(g))ds. (4.5)
0
Thus a weak solutiok is necessarily weakly continuous and i€ P»(C, £p) then
t t
(@) = @1 + [ la) dAgiuny©) =@ + [ (plaw) © kitae)) A,
0 0

whereA, € Puc(C, Ep) is defined (in terms of creation, differential second quantisation and annihilation operators)
as follows
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Ag@ (1) = a*(p3(@) ® [10.1)) + AT (p1(@) ® Myo,1) +a(¢(@) @ (Lo1]) + t9(@) @ 1,
whereMjg,; denotes miltiplication by 3 ,; and so may be calledsirong solution

Remark. In view of (3.5) and (3.8) strong solutions necessarily belorBgC, £p).

In terms of the mag := (¢ ®id¢) o A € L(C; (9(5) ® C) a weak solutiork satisfies

t

(e(f). (ki(a) — e(@)])e(g)) = /(8(f),ks(Ef(s)¢(a)Eg(s>)8(g)>ds, (4.6)
0
and a strong solution satisfies

1
ki(a) =e(a)l +/(/2s o ¢)(a) dA;,
0

wherek, :=idpp, ® ks.
Proposition 4.2.The coalgebra QSD.4) has at most one weak solution.

Proof. Let k € P(C, Ep) be the difference of two weak solutions, and de€ C, f,g € Sp andT > 0. Then
k € Pwe(C, Ep) C Pwr(C, Ep), by (4.2). By iteration

N k@e@) = [ (ka8 o ol @)e(o) o
An[0,7]

for eachn € N andr € [0, T'], where
¢;)7( = EX¢(')E17 = ((wx,n 0p)® idC) oA,

andw, , is the functionalR — (x, Rn) on O(D). Since eachp,’,‘ leavesC, invariant, fixing a norm folC, and
appealing to Lemma 4.1, we see that the integrand is bounded by

ol 0<s<TY Crare,

and so the result follows. O

(max{|

Next we establish an existence theorem for the coalgebra QSDEvA.bk the mapC — §p defined by
v¥(a), = vy, (a) wherev§ := € and, in the notation (1.3),

v =¢® oA, 1:C— OD)®" cOD®") forn>1. 4.7
Note the recursive identity

vf+1=(<ﬂ®u,‘f)oA. (4.8)
Note also that i is involutive then

W) =v¥, wherey =¢'. (4.9)

In terms of the associated map= (¢ R id¢) o A,
v =€, 00"

where the maps™ :C — O(D)®" ® C ande, : O(D)®" ® C — O(D)®" are defined (recursively) by
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¢ =idc,eo=¢ and, forn>1, ¢" =(id,Rp) 09"V and ¢,=id, e,
id, standing for igh 5en -

Lemma 4.3.For any ¢ € L(C; O(D)), v¥ € L(C: Hp). Moreover, ifp is O™ (D)-valued (respectivelyO(D)-
valued, orO*(D)-valued thenv? is H'B"-valued(respectiverH}r)-valued, orHj,-valuegd.

Proof. Fix an element: € C \ {0} and letC, denote the coalgebra generatedabyBy the Fundamental Theorem
on coalgebras this is finite dimensional; tét, ..., a" be a basis in which! = a. Let (v;.k) be the coefficients
of A (viewed as a mag, — C, ® C,) with respect to this basis, and set

T =Y vipla’) e OD).
j

Theng(a') =Y, T} ® a* and

k ky—
vl (a) = Ze(ak”)Tkll ® Tkzl QT L
k

a sum ofN” terms of the formX1 ® - -- ® X,, in which
X; (T} 1< j,k <N} U [e@)TE 1< j,k < NJ,

sov?(a) € Hp. Clearlyv? is linear. The rest is easily verified.O

Theorem 4.4.Lety € L(C; O(D)) and setv = v¥. Then the procesk:= A o v strongly satisfies the coalgebra
quantum stochastic differential equati¢h4).

Proof. By (3.12) and Lemma 4.3 the procelsds continuous. It therefore suffices to show that it satisfies the
equation weakly. By (3.13), (3.14) and (4.8),

t
/dS(f(S), 9(a@)&))e(f). ks(ae)e(g))
0

t

_ / ds / e (r Us), (p(aw) ® vie (a@)ma(z Us))fe(), e(2)

0 To,s)

= f do (1= 8¢(0)) (7 1(0), vite (@) () (e (f). £(8))
To
=(e(). ki(@)e(g)) — e(@)(e(f). £(2)).
(foralla €C, f, g € Sp andt > 0) and so, by (4.5)% satisfies the equation weaklyD

Thus the coalgebra QSDE (4.4) has a unique weak solution; it is a strong solution and is giverviy— we
denote it7%.

Lemma4.5.Letp € L(C; 0(5)). Thenl? € Pyc(C, £p) and the following holds.

(a) The mapy — 17 is injective.
(b) If ¢ € L(C; OT(D)) thent® e P},.(C, &p).
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(c) If C is unital then/? is unital if and only ifp (1) = 0.
(d) If Cis involutive andp € L(C; OT(D)) then(1)T =1V, wherey = ¢'. In particular, ¢ is real if and only ify
is real.

Proof. In view of (3.15), or the remark preceding Proposition 4°2yelongs tdPHc(C, Ep).
(a) follows from the identity
<5,<p(a)c§):tlil’g+ 17 (e Ccro), If (@edio ) — €(a) €14, (4.10)
and the totality off¢: ¢ € D} in k.
(b) follows from Lemma 4.3 and (3.16).

(c) follows from (4.5), (4.10) and the unitality efand A.
(d) By part (b)I? IP’LC(C, Ep) and by (4.9) and (3.16)

IHT=Ao@")T=A0v? =1V,

The last part follows by injectivity. O

Remark. If we casty € L(C; (’)(5)) in block matrix form:

_|Y o
(p_[x v—toe]

wheret(z) := zlk, theny € L(C; C), x € L(C; L(C; D)), @ € L(C; L(D; C)) andv € L(C; O(D)), so that

_|v@ a(a)
wla)= |:X(¢1) v(a) — e(a)I} ‘ (4.11)

Moreovery € L(C; OT(ﬁ)) if and only if «(C) C (D| := {(d|: d € D} andv(C) c OT(D). Thus ifC is involutive
then

T T
t_ |V X
¢ _I:O!T vT—Loe]'

In particular,

10 :(pJr if and only if y = yT, v=v'anda = XT.

5. Quantum stochastic convolution cocycles

In this section we first note that solutions of the coalgebra QSDE enjoy a cocycle relation. Heeding the fact
that solutions are}-HﬁIder continuous we then establish the converse: every stochastic convolution cocycle in

]P’LC(C, Ep) necessarily satisfies a coalgebra QSDE.

Lemma5.1.Letp € L(C; O(D)). Thenv := v¥ (defined in(4.7)) satisfies
Un4+m = (V, ®@Upy)o A

foralln,meZ,.
Proof. Sinceu, = ¢® o A,_1, this reduces to the identity (1.4).0

Recall the notational abuse (3.3).
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Proposition 5.2.Letk =19 whereg € L(C; (9(5)). Thenk satisfies the cocycle relation
kst =ks* (05 0kt). (51)
Proof. Setv = v¥ and leta € C. In Sweedler’s notation, the effect of the right-hand sideaois k;(a(1)) ®

vs(ki(a@)) = ks(aqy)os (ki (a@)) onEp 0,51 ® Ep,[s,00] = Ep. Sandwiching with exponential vectors and apply-
ing (3.14) gives,

<8(f[0,s[)a ks (a(l))8(8[0,_?[))(8(‘]([&00[)5 o (k; (0(2)))8(g[x,oo[))

= / do (7 (0), Vo (1) 74 (0)) / de (7 1 (2), v () (v)) €8
o s( g s

= / dw(ﬂf(w)yU#wm[o,s[(aa))®U#wm[s,s+z[(a(2))ﬂg(w))e<f’g>-

F[O..Hrt[

Applying Lemma 5.1, and identity (3.14) once more, we see that this is equal 10, ks1(a)e(g)), as re-
quired. O

Definition. A quantum stochastic convolution cocyé C with domain&p) is a process € P(C, £p) satisfy-
ing (5.1), with initial conditionkg =t o € : x > e(x)1.

The collection of these is denot€SCC(C, £p), and we adorn this notation with subscripts and super§cript
according to the convention (4.1). Thus—~ [¥ gives maps

L(C; O(D)) = QSCCwe(C, Ep) and L(C; OT(D)) - QSCC(C, Ep).

These maps are injective, by Lemma 4.5; our aim now is to establish bijectivity of the second mapk Wien
we refer top as thegeneratorof the quantum stochastic convolution cocygleNote that ifk is a cocycle in
PY(C, £p), andC is involutive, therk™ is a cocycle too.

Lemma 5.3.Letk € QSCC(C, £p). Then, for eacly, g € Sp,
n—1
e~ o800 (e fio.40). ki (@)e(gro.)) = [ | Kﬁfl’f(li)(a(wl)) (5.2)
i=0

where0 =19 <11 <--- <1, =t contains the discontinuities ofjo,; and g/, a) @ -+ ® aw) = Ap—1(a)
(Sweedler-style and

ki = e D e(co.). ke (e(dio). (5.3)
Proof. This identity results from repeated application of the cocycle relation (51).

Corollary 5.4. Letk € QSCC,,(C, £p). Then(5.3)defines continuous convolution semigroups of functionats on
(k") i>0 (c.d € D).

Thus (5.2) is the analogue of the semigroup decomposition central to the analysis of Markovian cocycles in [27].
For a weakly continuous quantum stochastic convolution cocycle we shall refelassisiated CCSF'Clearly
two such cocycles with the same CCSF's must be equal.

Lemmab5.5.Letk =% for ¢ € L(C; (9(5)). Then its associated CCSF’s have generaféfse( - )c?): c,d € D}.
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Proof. Sincek;(a) = A;(v?(a)) this is an immediate consequence of (3.14) and the definitiotf ¢8.7). O

Proposition 5.6.Letk QS(C(CE(C, Ep). Define a map

PO . Z w — vo0 Yod ||w—1
q:DxD— L(C;C), <<C),(d>>*—>[z 1 1]|:7/c,0 Vc,d:||: 1 i|’

where{y, 4: c,d € D} are the generators of the CCSF’s associated Witfiheng is sesquilinear.

Proof. The proposition amounts to the sesquilinearity of each fgym= g (-, -)(a). Thus leta € C. First note the
identity

9a (Ot m) = lim 1=He@), (w, dio.1 )72 0,0 . )
for x = (}) andn = (%) in D, where

£(t) = [ki(@)" = €@1]((z = De(0) + e(cro.).
Thus ifn = n1 + anz then

qa(X: 1) — qa (X 11) — @qa (X, 12) = tir&(é(t), n(t))
where

() =17 () "V2[d®" — [@)®" — a(@)®"] @ Losr) 5,

Sincep is locally bounded ané(r) — 0 ast — 0, by the continuity of the process; (a)T),>o, this shows thag,
is linear in its second argument. A very similar argument, this time using the continuity of the ptacess >o,
shows thaty, is conjugate linear in its first argument. The result follows

Proposition 5.7.Letk QS(C(CLC(C, Ep) and letq be defined as in Propositiob.6. Then, for each: € C, the
sesquilinear forny (-, -)(a) is separately continuous in each argument.

Proof. Let{y.q: c¢,d € D} be the CCSF generators associated witand leta € C, andx = (%), n= (%) € D.
Then

q(x. m (@) =Z((w — Dyoo@) + y0.a(@) + (w — 1)(ye,0(@) — v0,0(@) + (Ve.a(@) — yo.a(a))
and, fore ¢ D andT > 0,

[Ve.e@ = yoe(@)| = lim 1=H(e™" e (eio,) —£(0), (ki (@) — e(@)eeon)|

= lim ¢7|e7" O e(cio) — £(0), (ki (a) — €(@))e(efor))]

t—0t
< limsupt 2| ecpo. ) — O |2 [k (@) — e(@)]e(ejo.rp | €711 T =0/
t—0t
< llellCla, e, T)

for some constant depending only o, e andT. Thus, settingl’ = 1,

la(x, M@ < lzl|(w — Dyoo@) + yoa(@]| + llcl(jw — 1IC(a,0,1) + C(a.d, 1)) < M|l x|l

for a constantM depending only oz andn. This establishes continuity in the first argument. Continuity in
the second argument is proved by a very similar argument, this time using the Hoélder-continuity of the process
(k@0 O
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Remark. Proposition 5.7 may be proved under the following weaker hypothesis: estimates

lim supr (e (cjo..) — £(0), i (@)e(djo.))| < Ma,alicll,
t

—0t

for constants\/,, ; depending only o andd, should be satisfied by bothandk™.
Theorem 5.8.Letk € P(C, £p). Then the following are equivalent

(i) keQSCC.(C,Ep). R
(i) k=1¢ for somey € L(C; OT(D)).

Proof. Letk € QSCCLC(C, Ep) and let{y, 4: c,d € D} denote the CCSF generators associated aviBy Propo-
sitions 5.6 and 5.7, there is a map L(C; O (D)) such that

2 w — vo0(a@) yoala) ||w—1
, =[z—-1 1 ' ' ,
<(c) “”(“)(d» = ] [Vc,o(a) m(a)] [ 1 }
in particular,
(€. 0()d)=vea
Thus, by Lemma 5.5, the stochastic convolution cocyMeandk have the same CCSF's and so coincide. Thus (i)

implies (ii). The converse has already been established in Proposition 5.2 and Lemma 45(c).

Remark. The transformation between the family. 4: ¢, d € D} andg is a familiar one in the analysis of sto-
chastic cocycle generators (cf. [27]).

As a special case of Theorem 5.8, takihg: C, we obtain the following result.

Corollary 5.9. Let X € IP’LC(ED) with Xo = 1. Then the following are equivalent

(i) X is an operator Markovian cocycle ., = X04(X;) fors,t > 0. R
(i) X satisfies a QSDE of the fordhX; = (L ® X;)d A, for someL < o' (D).

This type of cocycle is used in the final section for perturbing quantum stochastic convolution cocycles on a
general coalgebra.

6. Multiplicativity

So far our results have been for (involutive) coalgebras. For this section we fix a bialgjekirece the quantum
stochastic mapt is multiplicative 17, — IPLC(ED) for the matrix-sum convolution product and pointwise weak
operator product respectively (Theorem 3.3), we have reduced the question of multiplicativity for a stochastic
convolution cocycle o to that of the map¥ : B — 'H7}, derived from its generatar (in and above (4.7)).

For the proof of the following result we adopt some notations for converting a subset of fie.setn} into
subsets of1, ..., n + 1} developed in [28]:

vi={l+k:kev} and vi={ljUuv.

Proposition 6.1.Letv = v? for ¢ € L(B; (9"“’(5)). Then the following are equivalent
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(i) @(ab) =¢(a)ed) +€(a)ed) + p(a)Ap) forall a, b € B.
@iy v(ab) =v(a)*v)foralla,bechB.

Proof. (i) is contained in (ii) sincev;(ab) = ¢(ab) and (u(a) * u(b))1 is the right-hand side of (i). Thus (ii)
implies (i). Conversely, if (i) holds the®(1) holds whereP (n) is the proposition

Ya,be(C wvy(ab) = (U(a) * U(b))n.
By the multiplicativity of e = vg, P(0) holds. Assume therefore th@(k) holds fork < n, and fixa, b € B.
Employing Sweedler notation and using (4B),1) and therP(n),

unt+1(ab) = p(a@yb)) ® un(a@)b2)
= [e(a@)ebay) + €(aw)ebay) + ¢law) Ap(bay)]

® Y vlag)(a1Uazn)Alaz; nlulbe)(ez Uas; ),
lee|={1,...,n}

where the sum is over all partitions of the §&t.. ., n} into three disjoint subsets. The identity
() ® (@) n) =v(e) (s n+ 1),
gives the following equalities
@) ® vlc@) (ki m) AL N s nlu(d) (s n) = v(e) s n + DAW; 1+ Lu(d) (s n + 1),
and
p(c) Ap(d) ® v(ce) (ki n) ALL N s nlu(d@) (s ) = v(e) (ks n+ D A[V; 1+ Lu(d) (i n + 1),
in whichv=AxnNpu. Thus

Uns1(ab) = Z (v(a)(@1 U az; n + 1) Alaz; n + Lu(b) (@2 Uaz; n + 1)

+ v(a) (a1 Uaz; n+ 1) Alaz; n+ 1u(b) (@2 Uaz; n + 1)
+ v(a)(a1 Uag; n + 1) Alaz; n + Hu(b) (a2 U az; n + 1))
= (U(a) * U(b))n+1.
The result therefore follows by induction.c
Remark. The invariance assumption in the above proposition is sufficient for the application below. Re-

placing ¢(a) Ap(b) by ¢(a) - Ap(b) and v(a) by v(a)™, the result holds under the alternative hypothesis
¢ € L(B; OT(D)).

Proposition 6.2.Lety € L(B; O*(D)) and setk = ¢.

(a) If k is weakly multiplicative then, for all, b € 15,

Dom(p(a)")* > Ranag(») and
@(ab) = p(a)e(b) + e(a)p(b) + ¢(a) - Ap(b). (6.1)

(b) Conversely, ifp satisfieq6.1)thenk is weakly multiplicative.
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Proof. Letv =v?. If k is weakly multiplicative then, using (4.10) and the Second Fundamental Formula,
(¢, plab)d) = (p(@) ¢, e(b)d) + (e(@)*¢, p(b)d) + (p(@) ¢, Ap(b)d)

for all ¢, d € D. By sesquilinearity, this implies that
(@) x, Apb)n) = (x. [(ab) — p(a)e(b) — e(@)p(b)]n)

forall x,n e D, and so (a) holds.
Conversely, ify satisfies (6.1) then, by Lemma 44.is 17} -valued and, by Proposition 6.1(a) * v(b) =
v(ab). Thus, by Theorem 3.%, satisfies Dork; (@)M* > Rank; (b) and

ki(a) -k (b) = A (v(a) x v(b)) = A;(v(ab)) = ki (ab),
SOk is weakly multiplicative. O
Remark. Further to the previous remark, this proposition also holds under the weaker hypethes(#; ot(Dy).

The remark following Proposition 2.2 is relevant here; the proof of part (a) already only reli,ebngOT(ﬁ)-
valued.

In view of Theorem 3.3, the following characterisation is obtained from Lemma 4.5 and Proposition 6.2. Recall
the algebra of processes defined in Theorem 3.3, and the remark on block matrix forms after Lemma 4.5.

Theorem 6.3.Letk =¥, wherep € L(B; 0*(D)), and suppose thd be a unitalx-bialgebra. Then the following
are equivalent

(i) k is unital and«-homomorphic as a ma8 — (P, -).
(ii) ¢ vanishes aflg and satisfies
p(a*b) = p(a)*e(b) + (@) p(b) + p(a)* Ap(b).
(iii) ¢ has block matrix form

T
I:)(; p—Stoej| (6.2)
in which is the ampliatiorg — zl;
p:B— O*(D) is a unital *-homomorphism (6.3)
§:B — |D) is a p-e-derivation
8(ab) =48(a)e(b) + p(a)d(b); (6.4)
y :B— Cis linear and satisfies
y(@*b) =y (a)*e(d) + €@y (b) + 5(a)*5(b). (6.5)

Following Paul-André Meyer [31] we shall refer to su@h 8, p) as aD-Schiirmann triplen B.

7. Quantum Lévy processes

In this section we describe Schirmann’s theorem on the reconstruction of a quantum Lévy process from its
‘generator’, and give a new simple proof of its realisation as a process on Fock space.

For this section lef3 be a unitak-bialgebra. By ayjuantum Lévy procesm B over a unitak-algebra-with-state
(A, w) is meant a family{ j; ;: B— A| 0< s < r} of unital x--homomorphisms satisfying
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(QL]-) jr,t = jr,s *js,t for 0O<r<s<r; jt,t(x) = G(X)lA fort > 0;
(QL2) {js;.,;(B): i =1,...n} commute, and

w ( 1_[ jS,',tl‘ (xi)> = 1_[ w(jx,,t,' (xi))
i=1

i=1
whenever the intervalgy, r1[, . . ., s, t,[ are disjoint;
(QL3) wo jsr=wo jo;—s for0O<s <t
(QL4) wo jo(x) — €(x) ast — O.

(QL1) is known as théncrement property36,12]; the others respectively asifsol)) independence of increments
time-homogeneitgndcontinuity. It is immediately verified that

Kt == wo jO’t

defines a continuous convolution semigrou@iteson 3, called theone-dimensional distributioof the quantum
Leévy process; its generator is also referred to agjéreeratorof the quantum Lévy process.
Quantum Lévy processgs on B over (A', ') (i = 1, 2) are said to bequivalentf they satisfy

w! ( [T (xi)> =’ ( [172. (M))
i=1 i=1

for all n € N, intervals[s;, ;[ and elements; (i =1,...,n). In view of the axioms (QL1-3) it is clear that two
quantum Lévy processes are equivalent if and only if their one-dimensional distributions coincide — equivalently,
if their generators are equal.
Letk e QSC(CLC(B, Ep) be unital, real and weakly multiplicative with generagorThen, setting
A? =Lin {ksl(xl) *Ogq (ksz—sl (XZ)) *rc 005, 4 (ksn—s,,_l(xn)): neN, 0<s1 < <8y, x1,..., X, € B}»
j{i=oy0ki—y:B— A?, and
@’ = wgl e,

A¢ is a unital«-algebra in the involutive linear spac@'(£p) with product given by (1.10)¢ is a state onA¢
and it is easily checked thg? is a quantum Lévy process oved?, »?) with generatory, wherey = <p8 (the
top-left component of the block matrix form @f). Let us call this type &ock space quantum Lévy process

Note that since a quantum Lévy process is unital (real) and positive, its generator vanishessaedl and is
conditionally positive (see (1.8)).

Theorem 7.1[35,36] Lety be a real, conditionally positive linear functional @ghvanishing atlz. Then there is
a Fock space quantum Lévy process with generator
Proof. GNS-style, leth = Kere/N where

N = {a cKere | y(a*a) = O}.

Then([a], [b]) — ¥ (a*b) defines an inner product aB; let k be its completion. Thep(a) : [c] — [ac] defines
operators orD which make up a unital representation®bn D satisfying

(o@)Ib]. [c]) = ([b]. p(a®)[c]).

Thus p is a unitalx-homomorphism5 — O*(D). Moreover the linear map:a +— |d(a)), whered(a) = [a —
€(a)I], is easily seen to be @¢-derivation8 — | D) satisfying

8(@)*8(b) =y (a*b) —y(@)*e(d) — @)y (b).
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Setk = 1%, whereg is the map5 — O*(D) with block matrix form given by the prescription (6.2). Then Theo-
rem 6.3 implies that is x-homomorphic (i.e. real and weakly multiplicative) and unital. Sicpge_— y the result
follows. O

Corollary 7.2. Every quantum Lévy process is equivalent to a Fock space quantum Lévy process.

8. Perturbation

Consider the case qjthe trivial bialgebta and letg € L(C; (’)(5)). Theng and!? are determined by the
operatorL := ¢(1) € O(D) and the proces¥’ :=1¢(1) € Pyc(Ep) Which satisfies the operator QSDE

dX; = (L ® X;)dA,, Xo=1. (8.1)
These processes have explicit action on exponential vectors:
t
Xfe(f) = exr)(tz + / B(f () dS)E((Rf)[o,z[ +djo.1) (8.2)
0
where

z p ; )
[|d) R—I]’ withz € C, dek, B € L(D;C), andR € O(D),
is the block matrix form ofL. From either of the above descriptions it is clear that the map XL is injective
O(D) — Phc(Ep). Moreover if L € OT(D) (equivalently,R € (’)T(D) and 8 = (c| for somec € k) then X~ ¢
IP’HC(ED) and(x)T = x™ wherem = L". Similarly, if L € O™ (D) (equivalently,R € O™ (D) andd € D) then
XEe O™ (&p) foreachr. If L € O(D) andM € O"(D) then, by the explicit action (8.2),

XLxM = xLeM (8.3)
where
LOM:=L+M+LAM (8.4)

By the above injectivity((?i”"(f)) ¢) is a semigroup with identity O; clearlw*(ﬁ) 4) is an involutive semi-
group: (LeM)T = MTeLT. Note that these identities contain the Weyl commutation relations.
The above formula implies that fdr € O*(D)

XxLisisometric <= LT#L =0, whereasx’ is coisometric <= L4L' =

cf. analogous characterisations described in [26]. R R
In the next proposition, (8.4) is extended by left and right actions of (part®bdfp) on L(C; O(D)), for a
coalgebra’.

Proposition 8.1.Lety € L(C; O(D)) and letL, M € O(D).

(@) If g € L(C; OT(D)) and M € O™ (D) then
l‘p(-)XM — l¢0M7
(b) If L € ©1(D) andg € L(C; O™ (D)) then
1#(C) c Dom(X5)™ and XL .19(.)=1"%¢,
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where
(p#M)(a) :=gp(a)(I + AM) + e(a)M
and

(L4p)(a) =+ LA)Yp(a) +e(a)L.
Proof. These follow easily from the two Fundamental Formulag.

That these extend (8.4) is confirmed by settihg C anda = 1.
Letp € L(C; (’)*(D)) andL; € O*(D) (i =1, 2). Then their block matrix forms (see (4.11)) are respectively

14 o Zi {cil

[x v—Lo€:| and |:|d,-) Ri —1]’
wherez; € C, ¢; € D, R; € O*(D), and

(L1#0#L2)(@) = (I + AL p(a)(I + AL) + (@) L]#L,

_ [ y(a) (ae(a) + (d1]v(a)) R2 + €(a)(c2] }
RI(X(a)JrV(a)Idz))+6(a)I61) RIv(a)Rz—e(a)I

where

V(@) =y(a) + (2] + z2)€(a) + ala)|d2) + (di] x (a) + (d1, v(a)da).

In particular, consider conjugation by a single niag 0*(D):
¢=L"0p8L,

wheregp € L(B; O*(D)) fora unitalx-bialgebraB. It is easily checked that i’ is real therl? is real; if 1 is unital
then

?isunital < X' isisometric
and if /¥ is weakly multiplicative ther? is weakly multiplicative if and only if
Voes (AL +D*(Apa) + @) LOLT(Ap(a) + (@) (AL +I) =0,

Therefore, considering perturbations by unitary (Weyl) cocycles, we obtain the action of the Euclidean group of
D on Schurmann triples associated with unital *-homomorphic quantum stochastic convolution cocycles (cf. [11]).
This action has a simple matricial description, namely if

L [in=3II? =V
[v) V—I1|

whereu € R, v € D andV € O*(D) is unitary, then

NN (] 1 0
w(a)—[o V*]w(a)[w) V]-

Thus if

st
o
p—LoE€

then
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7(@) =y (@) +8" @) + (v]8(@) + (v, (p(a) — e(@1)v),
8(a) =V*(8(a) + (p(a) — e(@I)|v)) and
pla)=V-p@V.

Notice that the part of the action determined Wyis trivial in the sense that only a unitary transformation of
the Schirmann tripléx, 8, p) leaving A invariant is effected, so that the perturbed quantum Lévy prafeiss
equivalent to the unperturbed offe For nonzerov the perturbation still does not change the characteristics of
the quantum Lévy process. Th@aussianprocesses remain Gaussian and the same is truéofssonanddrift
processes (see [11]).

9. Note added in proof

The principal results of this paper have now been extended to a topological context (see [25]).
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