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Abstract

Given a finite typed rooted treeT with n vertices, theempirical subtree measureis the uniform measure on then typed
subtrees ofT formed by taking all descendants of a single vertex. We prove a large deviation principle inn, with explicit rate
function, for the empirical subtree measures of multitype Galton–Watson trees conditioned to have exactlyn vertices. In the
process, we extend the notions of shift-invariance and specific relative entropy—as typically understood for Markov
deterministic graphs such asZd—to Markov fields on random trees. We also develop single-generation empirical measur
deviation principles for a more general class of random trees including trees sampled uniformly from the set of all treen

vertices.
 2005 Elsevier SAS. All rights reserved.

Résumé

Etant donné un arbre enracinéT àn sommets, on appelle mesure empirique des sous arbres la mesure uniforme sur
arbres obtenus en prenant les descendants desn sommets. On demande notamment un principe explicite de grandes dév
enn pour la mesure empirique des sous arbres des arbres de Galton–Watson multitypes conditionnés à avoirn sommets.
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1. Introduction

Theempirical measuresof Markov fields on large, deterministic subsetsΛ of Zd—and the limit points of thes
empirical measures—play a central role in statistical physics and the theory of Gibbs measures. The lim
are always shift-invariant, and the rate functions of the empirical measure large deviation principles are g
defined in terms ofspecific relative entropyor specific free energy, see, e.g., Chapters 14–16 of [8].

WhenZd is replaced with a random graph, the large deviation analysis of even the simplest models—sa
or Potts models—becomes more difficult. How does one even define ‘shift-invariance’, for example, wh
graphs on which the models are defined are random and almost surely possess no translational symmetr
is the most natural analogue of ‘specific relative entropy’? For that matter, what is the most useful defin
‘empirical measure’?

The purpose of this paper is to answer the above questions for some natural random planar rooted tre
By planar we mean that the offspring of each vertex are implicitly ordered—from left to right; this ord
determines an embedding of the tree in the plane.

Given a finite planar rooted treeT with n vertices with types drawn from a finite type setX , the empirical
subtree measureνT is the uniform measure on then typed subtrees ofT that are formed by taking all descenda
of a single vertex ofT . We will prove a large deviation principle, with an explicit rate function defined in term
specific relative entropy on the empirical subtree measures of multitype Galton–Watson trees conditioned
exactlyn vertices.

The rate function of this large deviation principle will be infinite on measures that lack a natural
invariance’ property. We show that every shift-invariant measure can be extended backwards to describe the
past’ of a sample from the tree, this is in the spirit of Kallenberg’sbackward treesestablished in [10]. We may als
view this backward tree construction as a general technique for examining the steady state of a randomly
ing system. It is on these backward tree measures that we will actually define specific relative entropy
conditional entropy of the offspring measure at the rootgivenits infinite past.

One motivation for pursuing this problem is the study oftree-indexed Markov chains, defined as follows. Firs
we sample a tree from some probability measure, and then, given this tree, we run a Markov chain on the
of the tree in such a way that the state of a vertex depends only on the state of its parent. The result of
step experiment can also be interpreted as atyped tree. We always look at probabilities with respect to the wh
experiment, or, in the language of random environments, at theannealedprobabilities. These tree-indexed proce
are a natural concept of increasing interest in probability and applications (see, e.g., [3,17] and [14]), of
new way of looking at existing models. Our analysis will show that large deviations results, which are well-
for classical Markov chains, can be extended to Markov chains indexed by random trees.

When we restrict our attention to a single generation of the empirical measure (the ‘empirical offsprin
sure’) or to an empirical measure recording only the transitions of types along each edge (the ‘empiri
measure’) we will obtain a generalized large deviation principle for which the classical Markov results (
veloped in, e.g., [4] and the references therein) are a special case. These problems turn out to be amon
problems for which large deviation rates can be stated completely explicitly in a closed form. Indeed, the r
find in this setting are hardly more complicated than the rates for classical Markov chains. For example,
functions are simple enough to allow one to compute the pressure and related macroscopic quantities f
measures corresponding to a short-range potential with configuration space that is the set of all typed roote
n vertices with types inX . This is in sharp contrast with the large deviation principle for the distance from the
of simple random walk on supercritical Galton–Watson trees, for which no explicit rate function is known, s

In another application, from the case of binary trees and uniform distribution of types, we calculate an
growth rate for the total number of binary trees of sizen (odd) with types in a finite alphabetX , which have an
empirical pair measure in a given set of measures. In [12] the analogous combinatorial formula for the
of tuples of lengthn with a given empirical pair measure was used to analyse the tail behaviour of Bro
intersection local times. We hope that the formulas derived here give rise to a similar analysis of the tail beha
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integrated super-Brownian excursion, as formulas for high moments of intersection local times involve sum
over large binary trees, see e.g. [13].

There are a number of technical issues that make the analysis of tree-indexed Markov chains more com
than the analogous work for classical Markov chains. One arises from the fact that, for some models of
Watson trees, the probability of having exactlyn vertices is zero forn in an infinite subset ofZ. It is therefore
necessary to restrict our attention to thosen for which the probability is positive and to prove lower bounds
probabilities that apply only for select values ofn. Another arises from the possibility of an unbounded numbe
offspring at a single step, which necessitates the use of a technical ‘mass exchange’ argument in Lemma

The precise statements of our results are given in Section 2 beginning with empirical pair and empirical o
measures and then progressing to the empirical subtree measures. The former results will apply to a large
random trees than the latter, which will only be proved for bounded-offspring multitype Galton–Watson tre
proofs of all of these results are then given in Section 3.

2. Statement of the results

2.1. Large deviations for tree-indexed Markov chains

We start by looking at the situation where the tree is generated independently of the types, in which c
rate functions are particularly simple.

By T we denote the set of all finite rooted planar treesT , by V = V (T ) the set of all vertices and byE = E(T )

the set of all edges oriented away from the root, which is always denoted byρ. We write |T | for the number of
vertices in the treeT , with thek-th generation ofT being the subset of vertices ofT of distancek from its root and
the height ofT is the largestk such that thek-th generation ofT is nonempty.

Suppose thatT is any finite tree and we are given an initial probability measureµ on a finite alphabetX and a
Markovian transition kernelQ from X to X . We can obtain atree indexed Markov chainX :V → X by choosing
X(ρ) according toµ and choosingX(v), for each vertexv �= ρ, using the transition kernel given the value of
parent, independently of everything else. If the tree is chosen randomly, we always considerX = {X(v): v ∈ T }
under thejoint law of tree and chain. It is sometimes convenient to interpretX as atyped tree, consideringX(v) as
thetypeof the vertexv.

For the generation of the trees themselves we look at the class ofsimply generated trees. These are obtaine
by conditioning a critical Galton–Watson on its total number of vertices. More precisely, we look at the c
Galton–Watson trees, where the number of childrenN(v) of eachv ∈ T is an independent random variable, w
the same lawp( · ) = P{N(v) = · } for all v ∈ T , such that 0< p(0) < 1. We assume thatp is critical, i.e. the mean
offspring number

∑∞
�=0 �p(�) is one, but this assumption is not restrictive: It is easy to see that the distrib

of T conditioned on{|T | = n} is exactly the same as when the offspring law ispθ(�) = p(�)eθ�/
∑

j p(j)eθj ,
regardless of the value ofθ ∈ R. With 0< p(0) < 1− p(1) there exists a uniqueθ∗ such that

∑
� �pθ∗(�) = 1, see

e.g. [11]. Hence all our results hold in the noncritical cases withpθ∗ in place ofp.
We allow offspring lawsp with unbounded support, but we need to restrict attention to those laws, which

superexponential decay at infinity, i.e. we require that�−1 logp(�) → −∞. We also allow that the support ofp

is a proper subset ofN, and assume throughout the paper that all statements conditioned on the event{|T | = n}
are made only for those values ofn where this event has positive probability. In particular, our large devia
approximation of probabilities hold for those values ofn whereP{|T | = n} > 0. For the general structure of the s
of admissible values, see the proof of Lemma 3.1.

With each finite tree and sampleX we associate a probability measure onX × X , the empirical pair mea-
sureLX, by

LX(a, b) = 1

|E|
∑

δ(X(e1),X(e2))(a, b), for a, b ∈ X , (2.1)

e∈E
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wheree1, e2 are the beginning and end vertex of the edgee ∈ E (soe1 is closer toρ thane2). The empirical pair
measure is the natural object to study in this context, as it is a sufficient statistic for the estimation of the tr
kernelQ.

Our first result is a large deviation principle forLX, conditional upon the event{|T | = n} with n chosen such
that the latter has positive probability. For its formulation recall the definition of the relative entropyH(· ‖ ·) from
[4, (2.1.5)] and Cramér’s rate function, as in [4, (2.1.26)],

Ip(x) = sup
λ∈R

{
λx − log

[ ∞∑
n=0

p(n)eλn

]}
. (2.2)

Theorem 2.1. Suppose thatT is a Galton–Watson tree, with offspring lawp(·) such that0 < p(0) < 1 − p(1),∑
� �p(�) = 1 and�−1 logp(�) → −∞. LetX be a Markov chain indexed byT with arbitrary initial distribution

and an irreducible Markovian transition kernelQ. Then, forn → ∞, the empirical pair measureLX , conditioned
on {|T | = n} satisfies a large deviation principle in the space of probability vectors onX × X with speedn and
the convex, good rate function

I (µ) =
H(µ‖µ1 ⊗ Q) +

∑
a∈X

µ2(a)Ip

(
µ1(a)

µ2(a)

)
if µ1 � µ2,

∞ otherwise,

(2.3)

whereµ1 andµ2 are the first and second marginal ofµ andµ1 ⊗ Q(a,b) = Q{b | a}µ1(a).

Remark. The representation (2.3) ofI (·) provides the interpretation of the large deviations ofLX as the result o
two independent contributions: whenµ1 = µ2 we have only the termH(µ‖µ1 ⊗ Q) which is the rate function
for the large deviation principle of empirical pair measures of the Markov chain with kernelQ, see e.g. [4, Sec
tion 3.1.3]. The hard constraint ofµ1 = µ2 of the Markov chain setting is replaced here by the additional t∑

a µ2(a)Ip(µ1(a)/µ2(a)) which reflects the large deviations contribution due to the geometry of the treeT . In
loose terms, while the event{LX ≈ µ} for measuresµ satisfyingµ1 = µ2 is still concentrated on the typical tree
in the case of measures withµ1 �= µ2 the event is concentrated on an exponentially shrinking set of trees, w
exponential rate given by the second term.

Examples. The class of Galton–Watson trees conditioned on the total size appears in the combinatorial lit
see e.g. [15], under the namesimply generated treesand is surveyed in [1]. We look at some interesting examp

• Choose the offspring lawp( · ) such thatp(k) = 1 − p(0) = 1/k. In this caseP{|T | = n} > 0 if and only
if n − 1 is divisible byk. The law ofT conditional on{|T | = n} is exactly the same as sampling the t
uniformly from the collection of all possiblek-ary trees withn vertices. We have thatIp(x) = (x/k) logx +
(1− x/k) log((1− x/k)/(1− 1/k)), leading to the good rate function

I (µ) =
{

H(µ‖µ1 ⊗ Q) + k−1
k

H
( 1

k−1(kµ2 − µ1)‖µ2
)+ 1

k
H(µ1 ‖µ2) if kµ2 � µ1,

∞ otherwise,
(2.4)

for the large deviation principle ofLX.
• Choose the offspring lawp( · ) as the standard Poisson distribution,p(�) = e−�/�! for � = 0,1,2, . . . . Now

P{|T | = n} > 0 for all n � 1 and the law ofT conditioned on{|T | = n} is that of a tree chosen uniformly from
all unordered trees withn vertices. We haveIp(x) = 1− x + x logx, and get a large deviations rate of

I (µ) = H(µ‖µ1 ⊗ Q) + H(µ1 ‖µ2), (2.5)

for the large deviation principle ofLX.
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• Choose the offspring lawp( · ) asp(0) = p(1) = · · · = p(k) = 1/(k + 1). Note that this law is only critical if
k = 2, and recall our remark on the noncritical case preceding the theorem. AgainP{|T | = n} > 0 for all n � 1,
and now the law ofT conditional on{|T | = n} is the same as sampling the tree uniformly from the collec
of all ordered trees withn vertices and offspring number bounded byk.

2.2. Large deviations for multitype Galton–Watson trees

In order to prove the results of the previous section, it is necessary to pass to a larger class of typed tree
are also of independent interest. Indeed one can go much beyond the previous setting and consider trees
chosensimultaneouslyaccording to amultitype Galton–Watson tree.

We writeX ∗ =⋃∞
n=0{n} × X n and equip it with the discrete topology. Note that the offspring of any ve

v ∈ T is characterized by an element ofX ∗ and that there is an element(0,∅) in X ∗ symbolizing absence o
offspring. For each typed treeX and each vertexv we denote by

C(v) = (N(v),X1(v), . . . ,XN(v)(v)
) ∈X ∗

the number and types of the children ofv, ordered from left to right.
We now describe the joint law of a treeT and tree-indexed chainX, which defines a multitype Galton–Wats

tree. The ingredients are a probability measureµ onX , serving as the initial distribution, and an offspring transit
kernelQ from X to X ∗. We define the lawP of a tree-indexed processX by the following rules:

• The rootρ carries a random typeX(ρ) chosen according to the probability measureµ onX .
• For each vertex with typea ∈ X the offspring number and types are given independently of everything

by the offspring lawQ{ · | a} onX ∗. We write

Q{ · | a} = Q
{
(N,X1, . . . ,XN) ∈ · | a},

i.e. we have a random numberN of offspring particles with typesX1, . . . ,XN .

We assume that the exponential momentsQ{eηN | a} < ∞, for all a ∈ X andη > 0. We also need a weak form
irreducibility assumption. Denote, for everyc = (n, a1, . . . , an) ∈ X ∗ anda ∈ X , themultiplicity of the symbola
in c by

m(a, c) =
n∑

i=1

1{ai=a}. (2.6)

Define the matrixA with index setX ×X and nonnegative entries by

A(a,b) =
∑
c∈X ∗

Q{c | b}m(a, c), for a, b ∈X , (2.7)

i.e.A(a,b) are the expected number of offspring of typea of a vertex of typeb. With A∗(a, b) =∑∞
k=1 Ak(a, b) ∈

[0,∞] we say that the matrixA is weakly irreducibleif X can be partitioned into a nonempty setXr of recurrent
statesand a disjoint setXt of transient statessuch that

• A∗(a, b) > 0 wheneverb ∈ Xr , while
• A∗(a, b) = 0 wheneverb ∈ Xt and eithera = b or a ∈ Xr .

For example, anyirreduciblematrixA hasA∗ strictly positive, hence is also weakly irreducible withXr = X . The
multitype Galton–Watson tree is called weakly irreducible (or irreducible) if the matrixA is weakly irreducible (or
irreducible, respectively) and the number

∑
a∈X m(a, c) of transient offspring is uniformly bounded underQ.
t



976 A. Dembo et al. / Ann. I. H. Poincaré – PR 41 (2005) 971–996

akly

real and
s called

of
le chain

its

onals

law

e

g

details.

ne

ay have

ge
Note that a weakly irreducible matrix hasA(a,b) = 0 wheneverb ∈ Xt and a ∈ Xr . MoreoverXt may be
ordered such thatA(a,b) = 0 whena � b are both inXt . Consequently, the non-zero eigenvalues of a we
irreducible matrixA are exactly those of the irreducible matrix obtained by its restriction toXr . Recall that, by the
Perron–Frobenius theorem, see e.g. [4, Theorem 3.1.1], the largest eigenvalue of an irreducible matrix is
positive. Obviously, the same applies to weakly irreducible matrices. The multitype Galton–Watson tree i
critical if this eigenvalue is 1 for the matrixA.

In our new setup the empirical pair measureLX defined in (2.1) isnot a sufficient statistic for the estimation
Q and therefore it is useful to replace the empirical pair measure by a more inclusive object. To each samp
X we associate theempirical offspring measureMX onX ×X ∗, which is defined by

MX(a, c) = 1

|T |
∑
v∈V

δ(X(v),C(v))(a, c). (2.8)

Our second main result is a large deviation principle forMX if X is a multitype Galton–Watson tree. For
formulation denote, for every probability measureν on X × X ∗, by ν1 the X -marginal ofν. We call ν shift-
invariant if

ν1(a) =
∑

(b,c)∈X×X ∗
m(a, c)ν(b, c) for all a ∈X . (2.9)

We denote byM(X × X ∗) the space of probability measuresν on X × X ∗ with
∫

nν(da, dc) < ∞, using the
conventionc = (n, a1, . . . , an). We endow this space with the smallest topology which makes the functi
ν �→ ∫

f (b, c)ν(db, dc) continuous, forf :X × X ∗ → R either bounded, orf (b, c) = m(a, c)1b0(b) for some
a, b0 ∈ X . Define the functionJ onM(X ×X ∗) by

J (ν) =
{

H(ν ‖ν1 ⊗ Q) if ν is shift-invariant,
∞ otherwise.

(2.10)

In general, the topology onM(X × X ∗) is stronger than the weak topology, making the functionJ lower semi-
continuous, as shown in Lemma 3.4.

Theorem 2.2. Suppose thatX is a weakly irreducible, critical multitype Galton–Watson tree with an offspring
whose exponential moments are all finite, conditioned to have exactlyn vertices. Then, forn → ∞, the empirical
offspring measureMX satisfies a large deviation principle inM(X ×X ∗) with speedn and the convex, good rat
functionJ .

Examples.

• The situation of Theorem 2.1 corresponds to offspring kernelsQ{ · |a} choosing offspring numbers accordin
to the lawp( · ) and then choosing the offspring types independently, according to the marginal lawQ{ · | a}
onX . Consequently, Theorem 2.1 follows by contraction from Theorem 2.2, see Section 3.4 for more
As its proof reveals, Theorem 2.1 applies even when the law of offspring numbersp( · | a) depends on the
type of the parent, provided the matrixQ{b | a}∑� �p(� | a) is weakly irreducible, with largest eigenvalue o
(then, of course,Ip(·|a) replacesIp in (2.3)).

• For a more concrete example contained in our framework, we suppose that individuals in a population m
two genetic types,a andb. Individuals of typea (resp.b) breed offspring according to the lawpa (resp.pb),
typically of the same type, but independently, mutations occur with a small probabilityp > 0. Letna andnb

denote the positive mean offspring number ofpa andpb andη = na/nb representing the genetic advanta
of type a. Assumingpa(0) + pb(0) > 0 and criticality, namelynanb(1 − 2p) + 1 = (na + nb)(1 − p) < 2,
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in a large family of sizen the probability that the ratio of the numbers of individuals of typea andb in the
population is close tox ∈ [0,1] is approximately equal to exp(−nI (x)) for

I (x) = inf

{
x

x + 1
H(νa ‖qa) + 1

x + 1
H(νb ‖qb)

}
, (2.11)

whereqa(n,m) = pa(n+m)
(

n+m
m

)
pm(1−p)n andqb(n,m) = pb(n+m)

(
n+m
m

)
pn(1−p)m and the infimum

is over all probability measuresνa, νb on N × N satisfying

x =
∞∑

n,m=0

nxνa(n,m) + nνb(n,m) and 1=
∞∑

n,m=0

mxνa(n,m) + mνb(n,m). (2.12)

This rate function is zero exactly at the typical ratio, which is given by the solutionx > 0 of the equation
x/(1 + x) = (xη(1 − p) + p)/(xη + 1). Our result gives the probability of a significant deviation from t
ratio, the precise rate is depending of course on the exact offspring laws of particles of either gene
represented bypa,pb.

2.3. A large-deviation principle on the process level

We conclude with the extension to aprocess levellarge deviation principle. This will also allow us to make t
concept ofshift-invariancemore transparent.

For the rest of this section we assume that the offspring numbers generated by the kernelQ are uniformly
bounded by someN0 ∈ N. We denote by�X the set of all finite or infinite rooted, planar trees such that every ve
has at mostN0 offspring, with types from the finite alphabetX attached to the vertices. Recall that the fact t
the trees are embedded in the plane imposes an ordering (say from left to right) on the children of each ve
laws of multitype Galton–Watson trees are probability measures on�X . We equip�X with the topology generate
by the functionsf : �X → R depending only on a finite number of generations.

If v ∈ V is a vertex of a treeT andX ∈ �X a sample chain on this tree, we denote byXv the sample chain
obtained from the subtree ofT consisting ofv and all successors ofv. To eachfinite sample chainX we associate
a probability measureTX on �X , theempirical subtree measure, defined by

TX(x) = 1

|T |
∑
v∈V

δXv (x), for x ∈ �X . (2.13)

Note that for fixedX the measureTX lives on the sample space�X of the actual process, which justifies t
terminology of a process level large-deviation principle.

Before formulating a large deviation principle for the random variableTX we need the concept of abackward
treeassociated to a class of multitype Galton–Watson trees. We denote byN [k] the number of vertices in gene
ation k, and in particular byN = N [1] the number of children of the root inT . Suppose thatµ is a probability
measure on�X with

∫
N dµ = 1. Then we can define ashiftedprobability measureS(µ) on �X by

S(µ)(Γ ) =
∫

dµ(X)

N∑
i=1

1{Xvi ∈Γ }, for any Borel setΓ ⊂ �X , (2.14)

wherev1, . . . , vN are the children of the root. We define

µ is shift-invariant ⇐⇒ S(µ) = µ. (2.15)

Intuitively, one obtains the shifted tree by choosing a child of the root and selecting the subtree consistin
progeny. Clearly this operation leads to trees which are less deep than the original tree, and for shift-invari
this effect is compensated by weighting the trees according to the number of offspring of the root. It is im
to note that shift-invariance can be defined only formeasures on trees, not for the individual trees themselves.
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Fig. 1. The projectionp53, the double circle is the centre and the filled circle the root.

To any shift-invariant measureµ on �X we can associate abackward tree measureµ∗ in the following way.
Suppose thatX is a sample chain on a (finite or infinite) tree of height at leastk, and mark a vertex in generatio
k of X as thecentreof the tree. Denote byX [k] the set of all objects(x, ζ ) (typed treex with centre atζ ) arising
in this way, endowed with the canonical topology inherited from�X . For k � l there are canonical projection
pkl :X [k] → X [l] obtained by keeping the same centre and removing all vertices from the tree whose last c
ancestor with the centre lived before generationk − l. Note that the root of the projected treepklX is the ancesto
of the centre in generationk − l, see Fig. 1.

The spacesX [l] and projectionspkl, k � l form a projective system. Hence there exists a projective l
spaceX , the space ofbackward trees, and canonical projectionspk :X → X [k]. See [4, Appendix B] for more
information about projective limits.

Intuitively, the backward trees have a centre, which may have offspring itself, and an infinite ancestral l
spineor backbone, from whose vertices offspring is emanating.

If µ is a shift-invariant measure then we can associate a measureµk onX [k] by

µk(Γ ) =
∫

dµ(X)

N [k]∑
i=1

1{(X,vi )∈Γ }, for any Borel setΓ ⊂ X [k], (2.16)

wherev1, . . . , vN [k] are the vertices in generationk of X.
Shift-invariance ofµ ensures that allµk are probability measures and thatµl = µk ◦ p−1

kl for all k � l. Hence,
by Kolmogorov’s extension theorem, there exists a unique probability measureµ∗ onX such thatµ∗ ◦ p−1

k = µk .
This is the backward tree measureµ∗ associated toµ.

For eachk � 1 we denote byp1,k :X [k] →X [k] the projection obtained by removing all vertices of distanc
leastk + 2 from the root and all those of distancek + 1 from the root whose parent is to the right of the cen
Similarly, we denote byp0,k :X [k] →X [k] the projection which in addition to all the vertices removed byp1,k also
removes all children of the centre. Note thatpkl ◦p0,k = p0,l ◦pkl andpkl ◦p1,k = p1,l ◦pkl for all k � l. Hence, the
projective limitsp1 :X → X andp0 :X →X of p1,k andp0,k , respectively, are well defined withpk ◦p0 = p0,k ◦pk

andpk ◦ p1 = p1,k ◦ pk for all k � 1.
Heuristically,p1 is the projection obtained by removing all vertices of the backward tree further from the

than the centre except the children of the centre and those of the vertices to the left of the centre whose
from the root is the same as the centre, withp0 removing also the children of the centre, see Fig. 2 (again tree
growing upwards, and centres are marked by a double circle).

If Q is an offspring transition kernel, we defineµ∗ ◦ p
−1
0 ⊗ Q as the probability measure generated by star

with a backward tree sampled according toµ∗ ◦ p
−1
0 and adding independently offspring according toQ to the

centre.
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Fig. 2. The projectionsp0 andp1.

Let M( �X ) be the set of probability measures on�X . Define the functionK onM( �X ) by

K(µ) =
{

H(µ∗ ◦ p
−1
1 ‖µ∗ ◦ p

−1
0 ⊗ Q) if µ is shift-invariant,

∞ otherwise.
(2.17)

We equipM( �X ) with the smallest topology which makes the functionalsµ �→ ∫
f dµ continuous, for each con

tinuous and boundedf : �X → R.

Theorem 2.3. Suppose thatX is an irreducible, critical multitype Galton–Watson tree with uniformly boun
offspring sizes, conditioned to have exactlyn vertices. Then, forn → ∞, the empirical subtree measureTX satisfies
a large deviation principle inM( �X ) with speedn and the convex, good rate functionK .

Example. To give an example, which isnot covered by the previous theorems, suppose we have a mul
Galton–Watson tree with two types, saya andb, which satisfies our assumptions. LetXa ⊆ X denote the smalles
subtree containing the root and all vertices of typea, andMa ⊂ �X denote the open set of all typed trees contain
at least one vertex of typea. Note thatv ∈ Xa if and only if Xv ∈ Ma . Hence,|Xa| = nTX(Ma) and by Theorem 2.3
we have, forx ∈ [0,1], that

lim sup
n→∞

1
n

logP
{|Xa| � nx

∣∣ |T | = n
}

� − inf
{
K(µ): µ ∈M( �X ), µ(Ma) � x

}
.

While this rate seems difficult to evaluate more explicitly, it is easy to check thatK(·) has a unique minimise
given by the law of the multitype Galton–Watson treeX with transition kernelQ and initial distribution given by
the normed principal right eigenvector of the associated matrixA, recall (2.7). Denoting byp the probability that
such a tree contains at least one vertex of typea, for anyε > 0,

lim
n→∞ P

{
1

n
|Xa| � p − ε

∣∣ |T | = n

}
= 0.

While this may not be difficult to guess, it appears to be difficult to prove directly.
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3. Proof of the large deviation principles

We first give a brief overview of this section, which contains the proofs of our results. First we need to es
the fact that for a critical multitype Galton–Watson tree our conditioning events{|T | = n} decay with an exponentia
rate zero over the set of admissible values ofn. The proof of this fact requires a careful analysis of the lat
structure of the setS = {n ∈ N: P{|T | = n} > 0} in the multitype case, and is of some independent interest. In
single type case this and much finer results onP{|T | = n} are known for some time, see e.g. [16,7,9]. Our res
which seems to be the first for the multitype case, is proved in Section 3.1.

Equipped with this result, in Section 3.2 the upper bound of Theorem 2.2 is derived. Exponential tigh
established in the topology onM(X ×X ∗) using the moment conditions imposed onQ. Based on the exponenti
Chebyshev inequality we first represent the upper bound in a variational form, and then solve the va
problem. Nonstandard arguments arise in the proof from the fact that we endowM(X × X ∗) with a topology,
which is stronger than the weak topology of measures. This is necessary in order to make the set of shift-
measures a closed set in our topology.

The lower bound, proved in Section 3.3, is based on a change of measure technique. As we allow for po
unbounded offspring numbers intricate approximation arguments are needed to show that this change of
provides sufficient freedom to represent a sufficiently large class of offspring measures. This will be achi
means of an intricate mass exchange argument, see Lemma 3.6. In Section 3.4 we prove Theorem 2.1 by c
from Theorem 2.2.

Finally, in Section 3.5 we prove Theorem 2.3. For this purpose we first extend Theorem 2.2 from one-ge
offspring measures tok-generation offspring measures, see Lemma 3.8. This extension is based on expan
statespace and needs crucially the fact that in Theorem 2.2 we are only requiringweakirreducibility. The step from
k-generation offspring measures to empirical subtree measures is then based on the Dawson–Gärtner Th

3.1. On the rate of decay ofP{|T | = n}

An important role in our proofs is played by the fact that for critical multitype Galton–Watson trees the
ability P{|T | = n} decays only subexponentially on the setS of integersn where the probability is positive. W
exclude the trivial case whenS fails to be infinite from our consideration (in particular, we assume throughou
µ(Xr ) > 0).

Lemma 3.1. SupposeT is the random tree generated by a weakly irreducible, critical multitype Galton–Watso
with finite second moment. Then

lim
n→∞
n∈S

1

n
logP

{|T | = n
}= 0.

Proof. Recall that the number of children of any givenv ∈ T with types inXt is uniformly bounded. Moreove
if X(u) ∈ Xt for someu ∈ T then there are only types fromXt in the sample chainXu consisting ofu and all
successors ofu, and the height of the corresponding subtreeT u is uniformly bounded (by the size ofXt ). Let
G(v) =∑i |T ui | where the sum extends over the childrenu1, u2, . . . of v such thatX(ui) ∈ Xt . HenceG(v) is
also uniformly bounded, say byN1 < ∞. Forc ∈X ∗ let c|Xr be the natural restriction ofc toX ∗

r . For eachb ∈Xr ,
c ∈ X ∗

r andg ∈ {0, . . . ,N1} let Qr {(c, g) | b} denote the probability induced byQ that givenX(v) = b we have
C(v)|X ∗

r = c andG(v) = g. Then, for eachcr ∈ X ∗
r ,

N1∑
g=0

Qr

{
(cr , g) | b}=

∑
c∈X ∗

Q{c | b}. (3.1)
c|Xr=cr
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HenceQr is a transition probability measure fromXr to X ∗
r × {0, . . . ,N1} such that

Ar(a, b) =
∑
c∈X ∗

r

N1∑
g=0

m(a, c)Qr

{
(c, g) | b}

is exactly the restriction of the matrixA to Xr . In particular, sinceA is weakly irreducible and critical, it follow
thatAr is irreducible and critical onXr . Further,Qr constructs the restriction of the multitype Galton–Watson
X to Xr with G(v) keeping track of the number of vertices with types inXt that have been omitted as a result
being inT u for some childu of v such thatX(u) ∈ Xt . Thus, fix a typea ∈ Xr and construct a multitype Galton
Watson tree with lawP, for µ = δa as follows: Start at sizen = 0 with oneactivevertexρ of typea. At each future
step choose an active vertexv uniformly from all active vertices, independently of everything else, provide it w
offspringC(v) according toQr{· | X(v)}, addingG(v) + 1 to the current tree sizen, deactivatingv and activating
its offspring. When there are no active vertices left, the process terminates, producing the restriction toXr of a
typed tree of lawP and sizen for µ = δa .

Let pa,b(n) be the probability that when the size isn we have exactly one active vertex, which is of typeb. For
anya1, a2, a3 ∈Xr and positive integersn1, n2 we have

pa1,a2(n1)pa2,a3(n2) � pa1,a3(n1 + n2). (3.2)

Indeed,pa1,a2(n1)pa2,a3(n2) is the probability of having exactly one active vertex when the size isn1 and again
when the size isn1 + n2, having typesa2 anda3, respectively.

Since the restricted multitype Galton–Watson tree is irreducible, starting witha ∈ Xr active vertices of eac
type appear with positive probability and our procedure allows each active vertex to eventually remain t
active vertex with positive probability. Hence for anya1, a2 ∈ Xr , there existsn such thatpa1,a2(n) > 0. Together
with (3.2) this suffices to make the structure of the sets

Sa,b = {n ∈ N: pa,b(n) > 0
}

(3.3)

for a, b ∈ Xr , analogous to that of the sets{n ∈ N: (P n)a,b > 0} for a finite state irreducible Markov chain wit
transition matrixP . Namely, there exists a periodd = gcdSa,a , independent ofa ∈ Xr , andka,b ∈ {0, . . . , d − 1}
such thatSa,b ⊂ ka,b + dN with |(ka,b + dN) \ Sa,b| < ∞, see for example the proof in [6, Lemmas 5.5.3, 5.
and 5.5.6]. Analogously to the theory ofd-periodic finite state irreducible Markov chains, (3.2) and subaddit
imply the existence ofI < ∞ such that, for alla, b ∈Xr ,

lim
l→∞− 1

ld
logpa,b(ka,b + ld) = I. (3.4)

(Indeed, one can take firsta = b ∈ Xr showing existence of limitsIa,a < ∞, then show thatIa,a � Ib,b for all
a, b ∈Xr , hence for each sucha andb the limit Ia,b exists and is equal toIa,a by a sandwich argument.) Now le

pa(n) = P
{|T | = n | X(ρ) = a

}
, and Sa = {n: pa(n) > 0

}
. (3.5)

Define

Xg = {b: Qr

{(
(0,∅), g

) | b}> 0
}
, (3.6)

noting that the latter set is nonempty for someg, as otherwise no finite trees are possible. The event{|T | = n}
corresponds tooneactive vertex fromXg at sizen − 1− g producingg omitted vertices of types fromXt and no
offspring with type inXr . Summing over the possible types of this vertex we get

pa(n) =
N1∑
g=0

∑
b∈X

pa,b(n − 1− g)Qr

{(
(0,∅), g

) | b},

g
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implying (recall (3.3)) thatSa = {n: n − 1− g ∈ Sa,b for someg � 0 andb ∈Xg} and, for anya ∈ Xr ,

lim
n→∞
n∈Sa

−1

n
logpa(n) = I.

Now suppose for contradiction thatI > 0. Then, fora ∈ Xr and all n ∈ Sa with n � n0, we havepa(n) �
exp(−nI/2). As pa(n) = 0 for all n /∈ Sa , this implies that

P
{|T | � n | X(ρ) = a

}
� exp(−nI/2)

1− exp(−I/2)
for all n � n0.

But this probability is at least as large as the corresponding probability for the restriction ofT to vertices whose
type is inXr . The latter is an irreducible, critical multitype Galton–Watson tree, so by [9, (4.2.3)] or by the cor
in [2, p. 191] under the hypothesis of finite second moment this probability is bounded from below by a c
multiple of 1/n, which is a contradiction. Hence,I = 0 and the result of the lemma follows since by the we
irreducibility of X we have thatpa(n) = 0 for all n � n0 anda ∈Xt . �
3.2. Proof of the upper bound in Theorem 2.2

Given a bounded functioñg :X ×X ∗ → R we define the function

Ug̃(a) = log
∑
c∈X ∗

Q{c | a}eg̃(a,c), (3.7)

for a ∈X . We useg̃ to define a new multitype Galton–Watson tree as follows:

• the type of the rootρ is a ∈X with probability

µg̃(a) = eUg̃(a)µ(a)∫
eUg̃(b)µ(db)

; (3.8)

• for each vertex with typea ∈ X the offspring number and types are given independently of everything els
the offspring law̃Q{ · | a} given by

Q̃{c | a} = exp
(
g̃(a, c) − Ug̃(a)

)
Q{c | a}. (3.9)

We denote the transformed law bỹP and make the simple observation thatP̃ is absolutely continuous with respe
to P, as for each finiteX ∈ �X ,

d̃P

dP
(X) = eUg̃(X(ρ))∫

eUg̃(b)µ(db)

∏
v∈V

exp
[
g̃
(
X(v),C(v)

)− Ug̃

(
X(v)

)]
(3.10)

= 1∫
eUg̃(a)µ(da)

∏
v∈V

exp

[
g̃
(
X(v),C(v)

)− N(v)∑
j=1

Ug̃

(
Xj(v)

)]
, (3.11)

recalling thatC(v) = (N(v),X1(v), . . . ,XN(v)).
We begin by establishing exponential tightness of the family of laws ofMX on the spaceM(X ×X ∗).

Lemma 3.2. For everyα > 0 there exists a compactKα ⊂ M(X ×X ∗) with

lim sup
n→∞

1

n
logP

{
MX /∈ Kα

∣∣ |T | = n
}

� −α.
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Proof. Recall thatQ{eηN |a} < ∞ for all η > 0. Hence, givenl ∈ N, we may choosek(l) ∈ N so large that

Q
{
exp(l2N1{N>k(l)})

∣∣ a}< 2 for all a ∈X .

Using the exponential Chebyshev inequality,

P

{ ∫
{N>k(l)}

N dMX � 1

l
, |T | = n

}
� e−ln E

{
exp

(
l2n

∫
{N>k(l)}

N dMX

)
, |T | = n

}

= e−lnE

{∏
v∈T

exp
(
l21{N(v)>k(l)}N(v)

)
, |T | = n

}
� e−ln

(
sup
a∈X

Q
{
exp(l2N1{N>k(l)})

∣∣ a})n � e−n(l−log 2).

Now chooseM > α + log2. Define the set

ΓM =
{
ν ∈M(X ×X ∗):

∫
{N>k(l)}

N dν <
1

l
, for all l � M

}
.

As {N � k(l)} ⊂ X × X ∗ is compact, the setΓM is pre-compact in the weak topology, by Prohorov’s criteri
Moreover, sincem(a, c) � N , it is easy to see by truncation that for every weakly convergent sequenceνn → ν

with νn ∈ ΓM , we also have limn→∞
∫

m(a, c)νn(b,dc) = ∫ m(a, c)ν(b,dc). Hence,ΓM is even pre-compact i
the stronger topology we are using on the spaceM(X ×X ∗). As

P
{
MX /∈ ΓM

∣∣ |T | = n
}

� 1

P{|T | = n}
1

1− e−1
exp
(−n(M − log2)

)
,

we can use Lemma 3.1 to infer that

lim sup
n→∞

1

n
logP

{
MX /∈ Kα

∣∣ |T | = n
}

� −α,

for the closureKα of ΓM as required for the proof.�
Next we derive an upper bound in a variational formulation. Denote byC the space of bounded functions

X ×X ∗ and define for eachν ∈M(X ×X ∗),

Ĵ (ν) = sup
g∈C

{∫ [
g(b, c) −

n∑
j=1

Ug(aj )

]
ν(db,dc)

}
, (3.12)

wherec = (n, a1, . . . , an).

Lemma 3.3. For each closed setF ⊂ M(X ×X ∗),

lim sup
n→∞

1

n
logP

{
MX ∈ F

∣∣ |T | = n
}

� − inf
ν∈F

Ĵ (ν).

Proof. Fix g̃ ∈ C bounded by someM > 0, then also
∫

eUg̃(a)µ(da) � eM . Defineh :X × X ∗ → R by h(b, c) =
g̃(b, c) −∑n

i=1 Ug̃(ai), where as usualc = (n, a1, . . . , an), and observe that, by (3.11),

eM � P̃
{|T | = n

}∫
eUg̃(a)µ(da) = E

{∏
v∈V

exp

[
g̃
(
X(v),C(v)

)− N(v)∑
j=1

Ug̃

(
Xj(v)

)]
1{|T |=n}

}
= E{en〈h,MX〉1{|T |=n}}.
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Together with Lemma 3.1 this shows that

lim sup
n→∞

1

n
logE

{
en〈h,MX〉 ∣∣ |T | = n

}
� 0. (3.13)

In view of (3.10) the same bound (3.13) applies forh :X ×X ∗ → R of the formh(b, c) = g̃(b, c) − Ug̃(b).
Now fix ε > 0, and letĴε(ν) = min{Ĵ (ν), ε−1} − ε. Suppose first thatν ∈ F is shift-invariant. Then, for any

g̃ ∈ C,∫ n∑
j=1

Ug̃(aj )ν(db,dc) =
∑

(b,c)∈X×X ∗

∑
a∈X

m(a, c)ν(b, c)Ug̃(a) =
∑
a∈X

Ug̃(a)ν1(a) =
∫

Ug̃(b)ν1(db). (3.14)

Chooseg̃ν ∈ C such thathν(b, c) = g̃ν(b, c) − Ug̃(b) satisfies

〈hν, ν〉 :=
∫

hν(b, c)ν(db,dc) =
∫ [

g̃ν(b, c) −
n∑

j=1

Ug̃ν
(aj )

]
ν(db,dc) � Ĵε(ν). (3.15)

Sincehν is bounded, the mapping〈hν, ·〉 is continuous inM(X ×X ∗). Hence there exists an open neighbourh
Bν of ν such that

inf
µ∈Bν

〈hν,µ〉 � 〈hν, ν〉 − ε � Ĵε(ν) − ε.

Using the exponential Chebyshev inequality and the remark following (3.13) we obtain that,

lim sup
n→∞

1

n
logP

{
MX ∈ Bν

∣∣ |T | = n
}

� lim sup
n→∞

1

n
logE

{
en〈hν,MX〉 ∣∣ |T | = n

}− Ĵε(ν) + ε

� − inf
ν∈F

Ĵε(ν) + ε. (3.16)

Now suppose thatν fails to be shift-invariant. Assume first that there existsa ∈ X such that

ν1(a) <
∑
(b,c)

m(a, c)ν(b, c). (3.17)

Recall that the mappingsν �→∑
b,c m(a, c) ν(b, c) are continuous in our topology. Hence there existδ > 0 and a

small open neighbourhoodBν ⊂ M(X ×X ∗) such that

ν̃1(a) <
∑
(b,c)

m(a, c)ν̃(b, c) − δ, for all ν̃ ∈ Bν. (3.18)

Let g̃ ∈ C be defined bỹg(b, c) = −(δε)−11a(b) andh(b, c) = g̃(b, c) −∑n
j=1 Ug̃(aj ). Note that, by the defini

tion (3.7), we haveUg̃(b) = g̃(b, c) for all b and this vanishes unlessb = a. Hence, by (3.18), for everỹν ∈ Bν we
have that

∫
hdν̃ > ε−1. Then, using the exponential Chebyshev inequality and (3.13),

lim sup
n→∞

1

n
logP

{
MX ∈ Bν

∣∣ |T | = n
}

� lim sup
n→∞

1

n
logE

{
en〈h,MX〉 ∣∣ |T | = n

}− ε−1

� −ε−1 � − inf
ν∈F

Ĵε(ν). (3.19)

In case the opposite inequality holds in (3.17) the same argument leads to (3.19) ifg̃ is defined asg̃(b, c) =
(δε)−11a(b).

Now we use Lemma 3.2 to choose a compact setKα (for α = ε−1) with

lim sup
1

logP
{
MX /∈ Kα

∣∣ |T | = n
}

� −ε−1. (3.20)

n→∞ n
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The setKα ∩ F is compact and hence it may be covered by finitely many of the setsBν1, . . . ,Bνm , with νi ∈ F for
i = 1, . . . ,m. Hence,

P
{
MX ∈ F

∣∣ |T | = n
}

�
m∑

i=1

P
{
MX ∈ Bνi

∣∣ |T | = n
}+ P

{
MX /∈ Kα

∣∣ |T | = n
}
.

Using (3.16) and (3.19) we obtain, for small enoughε > 0, that

lim sup
n→∞

1

n
logP

{
MX ∈ F

∣∣ |T | = n
}

� m
max
i=1

lim sup
n→∞

1

n
logP

{
MX ∈ Bνi

∣∣ |T | = n
}

� − inf
ν∈F

Ĵε(ν) + ε.

Takingε ↓ 0 gives the required statement.�
We next show that the convex rate functionJ may replace the function̂J of (3.12) in the upper bound o

Lemma 3.3.

Lemma 3.4. The functionJ (·) is convex and lower semicontinuous onM(X × X ∗). Moreover,J (ν) � Ĵ (ν) for
anyν ∈ M(X ×X ∗).

Proof. We start by proving the inequalityJ (ν) � Ĵ (ν). To this end, suppose first thatν �� ν1 ⊗ Q. Then, there
exists(a′, c′) ∈ X × X ∗ with ν(a′, c′) > 0 andQ{c′ | a′} = 0. Consequently, recalling (3.7), we haveUg̃ = 0 for
g̃(b, c) = R1(a′,c′)(b, c) and anyR. Considering such̃g in (3.12) withR ↑ ∞ we see that̂J (ν) = ∞ in this case.

Suppose now thatν fails to be shift-invariant, in which case there existsa ∈ X such thatν1(a) �=∑
(b,c)∈X×X ∗ m(a, c)ν(b, c). Chooseg̃(b, c) = R1a(b), for whichUg̃(b) = R1a(b) and∫ [

g̃(b, c) −
n∑

j=1

Ug̃(aj )

]
ν(db,dc) = R

(
ν1(a) −

∫
m(a, c)ν(db,dc)

)
−→ ∞,

for |R| ↑ ∞, with the sign ofR chosen so that the right-hand side is positive.
Finally suppose thatν is shift-invariant andν � ν1 ⊗ Q. By the variational characterisation of the relat

entropy, see e.g. [4, Lemma 6.2.13], the definition ofUg , Jensen’s inequality, and (3.14),

H(ν ‖ν1 ⊗ Q) = sup
g∈C

{∫
g dν − log

∫ ∫
eg(a,c)Q{dc | a}ν1(da)

}
= sup

g∈C

{∫
g dν − log

∫
eUg(a)ν1(da)

}
� sup

g∈C

{∫
g dν −

∫
Ug(a)ν1(da)

}
= Ĵ (ν). (3.21)

If ν, ν′ ∈ M(X × X ∗) are both shift-invariant thenνλ = λν + (1 − λ)ν′ is also shift-invariant for any 0< λ < 1.
Moreover,ν �→ ∫

m(a, c)ν(b,dc) is continuous for eacha, b ∈ X , implying that the setS = {ν: ν is shift-invariant}
is convex and closed in the topology we use onM(X × X ∗). Note that ifg ∈ C, then so isUg and the mapping
ν �→ ∫

g dν − log
∫

eUg(a)ν1(da) is continuous and convex. Consequently, the identity (3.21) implies thatν �→
H(ν ‖ν1 ⊗ Q) is lower semicontinuous and convex. For anyα < ∞, the level set{ν: J (ν) � α} is the intersection
of the convex, closed setsS and{ν: H(ν ‖ν1 ⊗ Q) � α}. Consequently,J (·) is a convex rate function.�
3.3. Proof of the lower bound in Theorem 2.2

Recall the definition of the multiplicitym(a, c) of the symbola in c and of the matrixAg̃ with index setX ×X
associated with the transformed multitype Galton–Watson tree,

Ag̃(a, b) =
∑

∗
Q̃{c | b}m(a, c), for a, b ∈X . (3.22)
c∈X
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By our assumptions the matrixAg̃ which has the same set of non-zero entries asA, is weakly irreducible. Reca
that, by the Perron–Frobenius theorem, see e.g. [4, Theorem 3.1.1], the largest eigenvalue
g̃ of the irreducible
restriction ofAg̃ to Xr is real and positive, with strictly positive right and left eigenvectors. SinceAg̃ is weakly
irreducible, the largest eigenvalue ofAg̃ is also
g̃ . Further, recall thatAg̃(a, b) = 0 wheneverb ∈ Xt anda ∈ Xr

or b � a ∈ Xt , while
∑

b∈Xr
Ag̃(a, b) > 0 for anya ∈ Xt . Consequently, there exists a unique right eigenve

ug̃ ∈ RX for the eigenvalue
g̃ of Ag̃ having strictly positive entries, which add up to one. The next lemma gu
the choice ofg̃ associated with a large deviations lower bound atν ∈ M(X ×X ∗) for whichJ (ν) < ∞.

Lemma 3.5. Supposeν ∈ M(X ×X ∗) with ν1 strictly positive. The following statements are equivalent.

(i) ν is shift-invariant andν � ν1 ⊗ Q.
(ii) There exists a functioñg :X × X ∗ → R with Ug̃ = 0, such that
g̃ = 1 and the corresponding Perron

Frobenius eigenvectorug̃ satisfiesν(a, c) = Q̃{c | a}ug̃(a), for every(a, c) ∈X ×X ∗.

Moreover, if (ii) holds, thenH(ν ‖ν1 ⊗ Q) = ∫ g̃(b, c)ν(db,dc).

Proof. Suppose first thatν is shift-invariant andν � ν1 ⊗ Q. Defineg̃ by

g̃(a, c) = log

(
ν(a, c)

ν1(a)Q{c | a}
)

whenQ{c | a} > 0, (3.23)

and otherwisẽg(a, c) = 0. Then, for alla ∈X ,∑
c∈X ∗

Q{c | a}eg̃(a,c) = 1,

and henceUg̃(a) = 0. We infer that

Q̃{c | a} = eg̃(a,c)Q{c | a}. (3.24)

Using this and the definition (3.23) ofg̃ we see that

ν(a, c) = eg̃(a,c)Q{c | a}ν1(a) = Q̃{c | a}ν1(a). (3.25)

To identify 
g̃ , by Perron–Frobenius theorem, we only have to find the eigenvalue corresponding to a
positive (right) eigenvector, which turns out to beν1. Indeed, for alla ∈X ,∑

b∈X
Ag̃(a, b)ν1(b) =

∑
(b,c)∈X×X ∗

Q̃{c | b}m(a, c)ν1(b) =
∑

(b,c)∈X×X ∗
ν(b, c)m(a, c) = ν1(a),

using the shift-invariance ofν in the final step. This shows that
g̃ = 1 and, by uniqueness of the eigenvec
ν1 = ug̃ . Hence (ii) follows from (3.25).

Conversely, fixg̃ for which
g̃ = 1 and (ii) holds. Summing overc ∈X ∗ in (ii) we have thatν1 = ug̃ and hence
ν � ν1 ⊗ Q. Moreover, for alla ∈ X ,

ν1(a) =
∑
b∈X

Ag̃(a, b)ν1(b) =
∑

(b,c)∈X×X ∗
m(a, c)Q̃{c | b}ν1(b) =

∑
(b,c)∈X×X ∗

m(a, c)ν(b, c),

henceν is shift-invariant. Moreover, usingν(a, c) = Q̃{c | a}ν1(a) and the definition of̃Q, we get

H(ν ‖ν1 ⊗ Q) =
∑

(a,c)∈X×X ∗
ν(a, c) log

Q̃{c | a}
Q{c | a} =

∫
g̃(a, c)ν(da,dc),

which completes the proof.�
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The next lemma is key to the proof of the lower bound in Theorem 2.2. It allows us to focus on those
invariantν ∈ M(X × X ∗) with strictly positive first marginal, for which̃g of Lemma 3.5 is bounded above.
ν ∈M(X ×X ∗) anda ∈X we writeν( · | a) = ν( · , a)/ν1(a).

Lemma 3.6. SupposeO is an open subset ofM(X ×X ∗) andν ∈ O with J (ν) < ∞. Then, for anyδ > 0, there
existsν̃ ∈ O with J (ν̃) � J (ν) + δ, such thatν̃1 is strictly positive and̃ν(c | a) � Q{c | a}/y for somey > 0 and
all (a, c) ∈ X ×X ∗.

Proof. Recall our assumption thatX is weakly irreducible and critical. This implies the existence of a stri
positive probability vectoru0 onX such that

ν∗(a, c) = Q{c | a}u0(a) ∈M(X ×X ∗)

is shift-invariant withν∗
1(a) = u0(a) andJ (ν∗) = 0. Fixing ν ∈ O with J (ν) < ∞, we have for each 0< ε < 1

thatνε = (1− ε)ν + εν∗ is shift-invariant inM(X ×X ∗) with (νε)1 strictly positive and

νε(c | a) = 0 ⇐⇒ (a, c) ∈X ×X ∗ satisfiesQ{c | a} = 0.

By convexity ofJ (·) we know thatJ (νε) � (1−ε)J (ν). Further,
∫

f dνε → ∫
f dν asε ↓ 0, for anyf :X ×X ∗ →

R which is either bounded or satisfiesf (b, c) = m(a, c)1b0(b) for somea, b0 ∈ X . As O is open inM(X ×X ∗),
it follows thatνε ∈ O for all ε > 0 small enough.

In view of the above, we may and shall assume hereafter thatν1 is strictly positive andν(c | a) = 0 exactly for
those values(a, c) ∈X ×X ∗ whereQ{c | a} = 0. In particular, the matrixA0,0 given by

A0,0(a, b) =
∑
c∈X ∗

m(a, c)ν(c | b), for a, b ∈X , (3.26)

has nonnegative entries and is weakly irreducible. Its Perron–Frobenius eigenvalue, denoted
(A0,0), equals 1, and
the corresponding right eigenvectoru0,0 equalsν1 and hence is a strictly positive probability vector onX . The
corresponding left eigenvectorv0,0 is a probability vector which is strictly positive onXr . Clearly, for eachb ∈Xr

there existsc1 = c1(b) such thatQ{c1 | b} > 0, hence alsoν(c1 | b) > 0. Recall that forb ∈ Xt we haveQ{c | b} > 0
(and henceν(c | b) > 0) for only finitely manyc ∈X ∗. Consequently,ν(c | b) � Q{c | b}/y for somey > 0 and all
c ∈ X ∗, b ∈ Xt . The proof of the lemma is complete if the same applies for allb ∈ Xr .

Assuming hereafter that this is not the case, with
∑

a∈Xt
m(a, c) uniformly bounded underQ, there must exis

b0 ∈ Xr and c2 = c2(b0) ∈ X ∗ such thatQ{c2 | b0} > 0 (and hence alsoν(c2 | b0) > 0), with
∑

a∈Xr
m(a, c2)

large enough to guarantee that
∑

a∈Xr
v0,0(a)(m(a, c2) − m(a, c1(b0))) > 0. Letc1(b) be arbitrary forb ∈Xt , and

c2 = c1(b) for all b �= b0.
Using thesec1 andc2 we next construct probability measuresνx,y( · | b) onX ∗ for 0 < y < y0 and|x| < 1/2,

such that for eachb ∈ X andc ∈X ∗ we have

• νx,y(c | b) � Q{c | b}/y,
• νx,y(c | b) → ν0,0(c | b) = ν(c | b) asx → 0 andy ↓ 0,
• νx,y(c | b) = 0 if and only if ν(c | b) = 0.

Further,

lim sup
x→0
y↓0

H
(
νx,y(· | b)

∥∥Q{· | b})� H
(
ν0,0( · | b)

∥∥Q{· | b}), (3.27)

and

Ax,y(a, b) =
∑

∗
m(a, c)νx,y(c | b) → A0,0(a, b), for anya, b ∈ X . (3.28)
c∈X
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Note thatAx,y(a, b) = 0 if and only if A0,0(a, b) = 0, so withA0,0 weakly irreducible, the same applies toAx,y .
The functionf (x, y) = 
(Ax,y) is thus continuous in this range of(x, y), as is also the strictly positive Perron
Frobenius right eigenvectorux,y of Ax,y , normalized to be a probability vector onX . Our construction is suc
thatAx,0 = A0,0 +xB whereB(a, b) = ν(c2 | b)ν(c1 | b)(m(a, c2)−m(a, c1)). Therefore,f (x,0) is continuously
differentiable atx = 0 with

∂f

∂x
(0,0) =

∑
a,b v0,0(a)B(a, b)u0,0(b)∑

a v0,0(a)u0,0(a)
> 0.

By the implicit function theorem, there existx(y) → 0 asy ↓ 0 such thatf (x(y), y) = f (0,0) = 1 for all y > 0
small enough. It follows thatνx,y(b, c) = νx,y(c | b)ux,y(b) defines a shift-invariant probability measureνx,y ∈
M(X ×X ∗) for x = x(y) and ally > 0 small enough. Moreover,∫

m(a, c)νx(y),y(b,dc) = Ax(y),y(a, b)ux(y),y(b) → A0,0(a, b)u0,0(b) =
∫

m(a, c)ν(b,dc),

for eacha, b ∈ X andy ↓ 0, implying the convergence ofνx(y),y to ν in the topology ofM(X × X ∗), and by
(3.27) and shift-invariance, also

lim sup
y↓0

J (νx(y),y) = lim sup
y↓0

∑
b∈X

ux(y),y(b)H
(
νx(y),y( · | b)

∥∥Q{ · | b})
�
∑
b∈X

u0,0(b)H
(
ν0,0( · | b)

∥∥Q{ · | b})= J (ν),

which completes the proof of the lemma subject to the construction ofνx,y( · | b).
We now turn to this construction. For any|x| < 1/2 we define the probability measure

νx,0(c | b) = ν(c | b) + xν(c2 | b)ν(c1 | b)(1{c=c2} − 1{c=c1}). (3.29)

In particular, νx,0(c | b) = 0 exactly whereν(c | b) = 0 and Ax,0 = A0,0 + xB as stated. Lety0 =
Q{c2 | b0}minb∈Xr

Q{c1 | b} > 0 further reducingy0 as needed to ensure thatν(c | b) � Q{c | b}/y0 for any
c ∈ X ∗ andb ∈Xt . For any 0< y < y0 define the probability measuresνx,y( · | b) by

νx,y(c | b) = min
(
νx,0(c | b),Q{c | b}/y) for c �= c1,

νx,y(c1 | b) = νx,0(c1 | b) +
∑
c �=c1

(
ν(c | b) − Q{c | b}/y)+, (3.30)

with + indicating the positive part. Our choice ofy0 results inνx,y( · | b) = ν( · | b) wheneverb ∈ Xt and further
guarantees that

νx,y(c2 | b0) = νx,0(c2 | b0) � Q{c2 | b0}/y
and νx,y(c1 | b) � 1 � Q{c1 | b}/y for all b ∈ Xr , |x| < 1/2 and 0< y < y0. Hence we have as stated th
νx,y(c | b) � Q{c | b}/y for all c ∈X ∗, andνx,y(c | b) = 0 if and only ifν(c | b) = 0. Moreover,Ax,y = Ax,0 +Ey ,
for

Ey(a, b) =
∑
c∈X ∗

(
m(a, c1) − m(a, c)

)(
ν(c | b) − Q{c | b}/y)+,

in particular,Ey(a, b) = 0 for b ∈ Xt . Writing n(c) = n if c ∈ X n. Recall that
∑

c n(c)ν(c | b) =∑a A0,0(a, b) <

∞ for all b ∈X , so by dominated convergence∣∣Ey(a, b)
∣∣� ∑

c∈X ∗

(
n(c1) + n(c)

)
ν(c | b)1{ν(c|b)>Q{c|b}/y} −→

y↓0
0,

and consequently, as stated, each entry ofAx,y is continuous in(x, y) ∈ (−1/2,1/2) × [0, y0). By the same argu
ment,

∑
c �=c (ν(c | b) − Q{c | b}/y)+ → 0 asy ↓ 0, implying the pointwise convergenceνx,y(c | b) → ν(c | b) for
1
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each(b, c) ∈ X × X ∗. Turning to (3.27), note that it suffices to consider onlyb ∈ Xr . Recall that for anyq > 0
the functionz log(z/q) increases inz ∈ [q,1], and if νx,y(c | b) �= ν0,0(c | b) andc �= c1, c �= c2, then necessarily
0< Q{c | b} � νx,y(c | b) < ν0,0(c | b) < 1. Consequently,∑

c �=c1
c �=c2

νx,y(c | b) log
νx,y(c | b)

Q{c | b} �
∑
c �=c1
c �=c2

ν0,0(c | b) log
ν0,0(c | b)

Q{c | b} ,

yielding (3.27) sinceνx,y(ci | b) → ν0,0(ci | b) andQ{ci | b} > 0 for i = 1,2 andb ∈ Xr . �
Using Lemma 3.6 we now establish the lower bound in Theorem 2.2.

Lemma 3.7. For each open setO ⊂ M(X ×X ∗),

lim inf
n→∞

1

n
logP

{
MX ∈ O

∣∣ |T | = n
}

� − inf
ν∈O

J(ν).

Proof. Suppose thatν is an approximate minimizer on the right-hand side. We can assume without loss o
erality thatJ (ν) < ∞, henceν is shift-invariant withν � ν1 ⊗ Q. By Lemma 3.6 we may and shall assume
addition thatν1 is strictly positive and the functioñg associated toν via (3.23) is bounded from above. Recall fro
Lemma 3.5 that
g̃ = 1, and the corresponding Perron–Frobenius eigenvectorug̃ satisfies

ν(a, c) = Q̃{c | a}ug̃(a), for every(a, c) ∈X ×X ∗, (3.31)

and further thatH(ν ‖ν1 ⊗ Q) = ∫ g̃(b, c) ν(db,dc). It thus suffices to show that

lim inf
n→∞

1

n
logP

{
MX ∈ O

∣∣ |T | = n
}

� −
∫

g̃(b, c)ν(db,dc). (3.32)

Sinceg̃ is bounded above, fixingε > 0 we can choose an open setÕ ⊂ O such thatν ∈ Õ and〈g̃,µ〉 � 〈g̃, ν〉 + ε

for all µ ∈ Õ. We use the transformed probability measuresP̃ and the formula (3.10) for their density, to get

P
{
MX ∈ O, |T | = n

}
� Ẽ

{
dP

d̃P
(T )1{MX∈Õ}1{|T |=n}

}
= Ẽ

{∏
v∈V

exp
(−g̃
(
X(v),C(v)

))
1{MX∈Õ}1{|T |=n}

}
� exp

(−n〈g̃, ν〉 − nε
)× P̃

{
MX ∈ Õ, |T | = n

}
.

Dividing by P{|T | = n} and recalling Lemma 3.1 gives

lim inf
n→∞

1

n
logP

{
MX ∈ O

∣∣ |T | = n
}

� −n〈g̃, ν〉 − nε + lim inf
n→∞

1

n
logP̃

{
MX ∈ Õ

∣∣ |T | = n
}
.

The result follows once we show that

lim sup
n→∞

1

n
logP̃

{
MX /∈ Õ

∣∣ |T | = n
}

< 0. (3.33)

We use the upper bound (but now with the lawP replaced bỹP) to establish (3.33). Indeed, sinceg̃ is bounded
from above, we havẽQ{eηN | a} < ∞ for all a ∈ X andη > 0. So, denoting

J̃ (ν) =
{

H(ν ‖ν1 ⊗ Q̃) if ν is shift-invariant,
∞ otherwise,

(3.34)

the upper bound gives

lim sup
1

logP̃
{
MX /∈ Õ

∣∣ |T | = n
}

� − inf J̃ (ν̃),

n→∞ n ν̃∈Γ
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whereΓ ⊂ Õc is a compact subset ofM(X ×X ∗). It suffices to show that the infimum is positive. Suppose,
contradiction, that there exists a sequenceν̃n with J̃ (ν̃n) ↓ 0. By compactness ofΓ and lower semicontinuity o
ν �→ J̃ (ν), we can extract a limit point̃ν ∈ Γ with J̃ (ν̃) = 0, and hencẽν is shift-invariant andH(ν̃ ‖ ν̃1 ⊗ Q̃) = 0.
This implies thatν̃(a, c) = Q̃{c | a}ν̃1(a), for every(a, c) ∈ X × X ∗. Then, using shift-invariance of̃ν, for any
b ∈ X , ∑

(a,c)∈X×X ∗
Q̃{c | a}m(b, c)ν̃1(a) =

∑
(a,c)∈X×X ∗

ν̃(a, c)m(b, c) = ν̃1(b).

By the uniqueness of the Perron–Frobenius eigenvector we infer thatν̃1 = ug̃ = ν1 and this implies̃ν = ν, which
contradicts̃ν ∈ Γ . �

We complete the proof of Theorem 2.2 by noting that the rate functionJ has compact level sets, i.e. is agood
rate function. This follows from abstract considerations as stated, e.g., in [4, Theorem 1.2.18].

3.4. Proof of Theorem 2.1

Note thatX is an irreducible, critical multitype Galton–Watson tree with offspring law

Q{c | b} = p(n)

n∏
i=1

Q{ai | b}, for c = (n, a1, . . . , an), (3.35)

such that all exponential moments are finite. We derive Theorem 2.1 from Theorem 2.2 by applying the con
principle to the continuous linear mappingF :M(X ×X ∗) → RX×X , defined by

F(ν)(a, b) =
∑
c∈X ∗

m(b, c)ν(a, c) for all ν ∈M(X ×X ∗) anda, b ∈ X . (3.36)

Indeed, Theorem 2.2 implies the large deviation principle forF(MX) conditioned on{|T | = n} with the good rate
functionI (µ) = inf{J (ν): F(ν) = µ}, see for example [4, Theorem 4.2.1]. Convexity ofI follows easily from the
linearity of F and convexity ofJ . It is easy to see that on{|T | = n} we haveLX = n

n−1F(MX). It follows that
conditioned on{|T | = n} the random variablesLX are exponentially equivalent toF(MX), henceLX satisfy the
same large deviation principle asF(MX), see [4, Theorem 4.2.13]. Without loss of generality we restrict the s
for the large deviation principle ofLX to the set of all probability vectors onX ×X , see [4, Lemma 4.1.5(b)].

Turning to the proof of (2.3), recall thatν is shift-invariant if and only if
∑

a F (ν)(a, b) = ν1(b) for all b ∈ X .
Hence, if alsoF(ν) = µ, then necessarilyν1 = µ2 and consequently,

I (µ) = inf
{
H(ν ‖ν1 ⊗ Q): F(ν) = µ, ν1 = µ2

}
. (3.37)

Note thatν1(a) = 0 yields
∑

b F (ν)(a, b) = 0. Hence ifµ1(a) > 0 = µ2(a) for somea ∈ X then{ν: F(ν) = µ,

ν1 = µ2} is an empty set, and thereforeI (µ) = ∞. Assuming hereafter thatµ1 � µ2, it is not hard to check that

I (µ) =
∑
a∈X

µ2(a)Ĩ

(
µ(a, ·)
µ2(a)

,Q{ · | a}
)

, (3.38)

where forφ :X → R+ andq ∈M(X ∗),

Ĩ (φ, q) = inf

{
H(ν̃ ‖q): ν̃ ∈M(X ∗), φ(b) =

∑
c∈X ∗

m(b, c) ν̃(c) for all b ∈X
}
. (3.39)

Suppose now thatq(c) = p(n)
∏n

i=1 q̂(ai) for all c = (n, a1, . . . , an), whereq̂(·) is a probability vector onX and
p( · ) a probability measure with mean one on the nonnegative integers, whose exponential moments are
With z =∑b φ(b) we show next that,

Ĩ (φ, q) = zH(φ/z‖ q̂) + Ip(z). (3.40)
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Once this is done, we combine (3.40) forq̂(·) = Q{ · | a} andz = µ1(a)/µ2(a) with the representation (3.38) o
I (µ), which directly yields the formula (2.3), thus completing the proof of the theorem.

To prove (3.40), suppose first thatz = 0, i.e. φ(b) = 0 for all b ∈ X . In this case,̃ν((0,∅)) = 1 is the only
possible measure in (3.39), leading toĨ (φ, q) = − logq((0,∅)) = − logp(0), whereas it follows from (2.2) tha
Ip(0) = − logp(0) establishing (3.40) for suchφ(·). Assume hereafter thatz > 0. Now the possible measuresν̃(·)
in (3.39) are of the form̃ν(c) = s(n)vn(a1, . . . , an) for c = (n, a1, . . . , an), with v0 = 1, wheres(·) is a probability
measure on the nonnegative integers whose mean isz, andvn( · ), n � 1, are probability measures onX n with
marginalsvn,i( · ) such that

φ(b) =
∞∑

n=1

s(n)

n∑
i=1

vn,i(b) for all b ∈ X . (3.41)

By the assumed structure ofq( · ) we have for such̃ν( · ) that

H(ν̃ ‖q) =
∞∑

n=1

s(n)H(vn ‖ q̂n) + H(s ‖p), (3.42)

whereq̂n denotes the product measure onX n with equal marginalŝq. Recall that

∞∑
n=1

s(n)H(vn ‖ q̂n) �
∞∑

n=1

s(n)

n∑
i=1

H(vn,i ‖ q̂) � zH

(
z−1

∞∑
n=1

s(n)

n∑
i=1

vn,i

∥∥∥ q̂

)
,

with equality whenevervn =∏n
i=1 vn,i andvn,i are independent ofn and i (see [4, Lemma 7.3.25] for the fir

inequality, with the second inequality following by convexity ofH(· ‖ q̂) and the fact that
∑

n s(n)n = z). So, in
view of (3.41),

H(ν̃ ‖q) � zH(φ/z‖ q̂) + H(s ‖p), (3.43)

with equality whenvn = (z−1φ)n for all n � 1. Recall that with all exponential moments ofp(·) finite, Ip(z) =
inf{H(s ‖p): s(·) a probability measure on{0,1, . . .} and

∑
n s(n)n = z} (see [4, (2.1.27)] for a similar identity

Combining this with (3.43) leads to (3.40) and completes our proof.

3.5. Proof of Theorem 2.3

To help the reader struggle through the main definitions of space of trees and projections between them
added a table in an appendix at the end of the paper.

In the first step of the proof we extend the result of Theorem 2.2 tok-generation empirical offspring measure
for eachk � 2, in caseQ is irreducible and the offspring size is bounded by some non-randomN0 < ∞.

For eachk � 0, let X (k) be thefinite set of typed trees with height at mostk and maximal degreeN0 + 1,
equipped with the discrete topology (in particular,X (0) = X ). Let πk : �X → X (k) be the canonical projection ob
tained by removing all vertices in generations exceedingk andπk,l :X (k) → X (l), k � l, the projections obtaine
by removing all vertices in generations exceedingl.

If X is a finite typed tree andv is a vertex in this tree, we denote byXv the subtree rooted inv and let the
k-generation empirical offspring measuresMk

X associated toX be defined as

Mk
X(b) = 1

|T |
∑

δπk(X
v)(b), for all b ∈ X (k) (3.44)
v∈V



992 A. Dembo et al. / Ann. I. H. Poincaré – PR 41 (2005) 971–996

c-

ded

of
ion

the

lue
(for exampleM1
X(b) = MX(a, c) whereb ∈ X (1) has root of typea with n children of typesa1, . . . , an and

c = (n, a1, . . . , an)). Givena ∈ X (k − 1) andb ∈ X (k) we writemk(a, b) for the number of childrenv of the root
in b such thatbv = a. A measureµ onX (k) is calledshift-invariantif

µ ◦ π−1
k,k−1(a) =

∑
b∈X (k)

mk(a, b)µ(b), for all a ∈ X (k − 1). (3.45)

We equip the spaceM(X (k)) of probability measures onX (k) with the smallest topology which makes the fun
tionalsµ �→ ∫

f dµ continuous for each boundedf :X (k) → R (since the maximal degree is bounded inX (k), it
follows thatµ �→ ∫

mk(a, x)dµ(x) is also continuous for eacha ∈X (k − 1)).
Defineµ ◦ π−1

k,k−1 ⊗1 Q as the measure onX (k) obtained by providing children for each vertex of thek − 1
generation, independently according to the transition mechanismQ, and define the function

Jk(µ) =
{

H(µ‖µ ◦ π−1
k,k−1 ⊗1 Q) if µ is shift-invariant,

∞ otherwise,
(3.46)

onM(X (k)). Note thatJ1(·) coincides with the good rate functionJ (·) of Theorem 2.2.

Lemma 3.8. Suppose thatX is an irreducible, critical multitype Galton–Watson tree with uniformly boun
offspring sizes, conditioned to have exactlyn vertices. Then, forn → ∞, the k-generation empirical offspring
measureMk

X satisfies a large deviation principle inM(X (k)) with speedn and convex, good rate functionJk(·).

Proof. For l � 0 letX {l} ⊂ X (l) be the support ofπl(X) for a multitype Galton–Watson treeX corresponding to
the transition mechanismQ starting at any strictly positive measure forX(ρ). Let Xm{l} be the partition ofX {l}
according to the heightm = 0,1, . . . , l of the tree. Let

I :X {k} → X {k − 1} ×X {k − 1}∗ given by

{
I1(b) = πk,k−1(b) ∈X {k − 1},
I2(b) = (n, bv1, . . . , bvn) ∈X {k − 1}∗,

wherev1, . . . , vn are the vertices in the first generation ofb ∈X {k} ordered from left to right.
To prove Lemma 3.8 we intend to apply Theorem 2.2 to a multitype Galton–Watson treeX̃ on the enlarged

finite type spaceX {k − 1}. We mark the objects related to this new tree by.̃
The process̃X is constructed by choosing̃X(ρ) using the law ofπk−1(X), and the offspring number and types

a vertexv asC̃(v) = I2(b) for the typed treeb ∈ X {k} obtained by providing children for each vertex in generat
k − 1 of X̃(v) independently according to the transition mechanismQ.

With Q irreducible, it is easy to check that anya ∈ X {k − 1} can be reached by finitely many steps of
transition mechanism̃Q for X̃ starting at anyb ∈ Xk−1{k − 1}. Further,

b ∈Xl{k − 1} for somel < k − 1 �⇒ supp̃Q{· | b} ⊂
N0⋃
n=0

{n} ×X {l − 1}n,

implying that Ã(a, b) = 0 whenevera ∈ Xm{k − 1} for somem � l. Consequently,̃Q is weakly irreducible on
X {k − 1}. Let µ0 denote the Perron–Frobenius eigenvector of the irreducible matrixA, normalized to be a strictly
positive probability vector onX . Then,µl = µl−1 ⊗1 Q for l � 1 are strictly positive probability vectors onX {l},
such thatµl ◦ π−1

l,l−1 = µl−1 for all l � 1. Moreover, withµ0 the right eigenvector corresponding to the eigenva
1 of the matrixA, it follows by induction onl � 1 that µl are shift-invariant onX (l). In particular, for any
a ∈ X {k − 1},∑

b∈X {k−1}
Ã(a, b)µk−1(b) :=

∑
b∈X {k−1}

∑
c∈X {k−1}∗

m̃(a, c)Q̃(c | b)µk−1(b)

=
∑

¯
mk(a, b̄)µk−1 ⊗1 Q(b̄) = µk−1(a).
b∈X {k}
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With µk−1 a strictly positive right eigenvector for the eigenvalue 1 and the matrixÃ, we see that̃Q is also critical.
Consequently, we have from Theorem 2.2 thatMX̃ satisfy the large deviation principle inM(X {k−1}×X {k−1}∗)
with the good rate functioñJ (·) corresponding tõQ.

For eachν1 ∈ M(X {k − 1}) the measureν1 ◦ Q̃ is supported on the closed (finite) setI(X {k}). Consequently
MX̃ is supported onI(X {k}) as is anyν for which J̃ (ν) < ∞, allowing us to restrict this large deviation princip
to M(I(X {k})). IdentifyingM(I(X {k})) with M(X {k}) via the mappingµ = ν ◦ I, the law ofMX̃ is exactly
mapped to that ofMk

X . Moreover,

ν ∈ M
(
I
(
X {k})) is shift-invariant ⇐⇒ µ is shift-invariant onX (k),

as defined in (3.45), withν1 = µ ◦ π−1
k,k−1 and(ν1 ⊗ Q̃) ◦ I = (µ ◦ π−1

k,k−1) ⊗1 Q. This leads to the large deviatio

principle forMk
X with the good rate functionJk(·), restricted toM(X {k}).

To complete the proof it suffices to check that any shift-invariant measureµ ∈M(X (k)) with

µ � µ ◦ π−1
k,k−1 ⊗1 Q in M

(
X (k)

)
is supported byX {k}. To this end, fix a shift-invariantµ in M(X (k)) and note that

∫
N [m]dµ = 1 for m =

1, . . . , k. Hence we can associate shifted probability measuresSm(µ) ∈M(X (k − m)) with µ such that

S0(µ) = µ, Sm(µ) = S
(
Sm−1(µ)

)
, for m = 1, . . . , k,

whereS(µ) is defined as in (2.14). The shift-invariance ofµ implies thatSm(µ) ◦ π−1
k−m,1 is independent ofm =

0, . . . , k − 1.
Recall that the measureSk−1(µ) of each(a, c) ∈ X (1) is the expectation underµ of the number of vertice

of generationk − 1 of the tree whose type isa ∈ X and which have offspringc ∈ X ∗. Our assumption tha
µ � µ ◦ π−1

k,k−1 ⊗1 Q thus implies that

suppSk−1(µ) ⊂ suppµ1 = X {1}.
Consequently,Sm(µ) ◦ π−1

k−m,1 are supported byX {1} for all m = 0, . . . , k − 1, which implies thatµ is supported
by X {k} as claimed. �

To move from the empiricalk-generation offspring measuresMk
X to the empirical subtree measureTX we use

the Dawson–Gärtner theorem, see e.g. [4, Theorem 4.6.1]. Note that the spacesX (k) and the canonical projec
tionsπk,l , k � l, form a projective system of Polish spaces and that the projective limit coincides with the
space�X .

Similarly, the probability measures onX (k) with the projectionsπ∗
k,l defined byπ∗

k,l(µ) = µ ◦ π−1
k,l form a pro-

jective system and the projective limit is the Polish spaceM( �X ) described before Theorem 2.3 and the canon
projectionsπ∗

k :M( �X ) → M(X (k)) can be defined byπ∗
k (µ) = µ◦π−1

k . Details follow from an argument simila
to the one given in [4, Lemma 6.5.14]. Recalling thatMk

X = TX ◦ π−1
k , the Dawson–Gärtner theorem yields t

following corollary of Lemma 3.8 (see for example [4, Corollary 6.5.15] for a similar derivation).

Corollary 3.9. Suppose thatX is an irreducible, critical multitype Galton–Watson tree with uniformly boun
offspring sizes, conditioned to have exactlyn vertices. Then, forn → ∞, the empirical subtree measureTX satisfies
a large deviation principle inM( �X ) with speedn and convex, good rate function

K̃(µ) = sup
k�1

Jk

(
µ ◦ π−1

k

)
.

To complete the proof of Theorem 2.3 it just remains to show thatK̃(·) = K(·). For this purpose first assum
thatµ ∈ M( �X ) is shift-invariant. Then, for eachk � 1 anda ∈X (k − 1),
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(
µ ◦ π−1

k

) ◦ π−1
k,k−1(a) = S(µ) ◦ π−1

k−1(a) =
∫

dµ(X)

N∑
i=1

δ
X

vi
k−1

(a) =
∫

dµ(X)mk(a,πkX)

=
∑

b∈X (k)

µ ◦ π−1
k (b)mk(a, b).

In other words, for eachk � 1, the measureµ ◦ π−1
k is shift-invariant inM(X (k)). Conversely, ifµ ◦ π−1

k is
shift-invariant inM(X (k)) for everyk � 1, the same calculation shows thatµ = S(µ) on the collection of sets o
the formπ−1

k (A) for anyk � 1 andA ⊂ X (k). As this collection of sets is closed under finite intersections a
generates the Borelσ -field on �X , we infer thatµ itself is shift-invariant.

Recall the definition of the projectionsp0,p1 for backward trees from Section 2.3. For the proof of Theorem
it only remains to verify the following lemma.

Lemma 3.10. For every shift-invariant probability measureµ on �X we have

H(µ∗ ◦ p
−1
1 ‖µ∗ ◦ p

−1
0 ⊗ Q) = sup

k�2
H(µ ◦ π−1

k ‖µ ◦ π−1
k−1 ⊗1 Q). (3.47)

Proof. Define projectionsπj
k : �X → X (k) as follows: Order the verticesv1, v2, . . . in generationk − 1 of x ∈ �X

from left to right, withv1 the leftmost. The treeπj
k (x) is obtained by removing all vertices in generations excee

k and all vertices in generationk whose parent is somevl , l � j . In particular,π1
k (x) = πk−1(x) andπ

j
k (x) = πk(x)

for all j > N [k − 1](x). Letµ ◦ (π
j
k )−1 ⊗j Q denote the measure obtained by samplingX according toµ and then

independently adding offspring according toQ to each of the verticesvl for l � j in generationk − 1 of π
j
k (X).

Observe that we define this measure forall j and that in many cases no vertices in generationk are removed o
added. Assume first thatµ ◦ π−1

k � µ ◦ π−1
k−1 ⊗1 Q. Then, in caseµ ◦ π−1

k (x) > 0 andN [k − 1](x) = n � 1 we
find that

µ ◦ π−1
k (x)

µ ◦ π−1
k−1 ⊗1 Q(x)

=
n∏

j=1

µ ◦ (π
j+1
k )−1 ⊗j+1 Q(x)

µ ◦ (π
j
k )−1 ⊗j Q(x)

, (3.48)

with all the terms on the right-hand side positive. Recall the definition of the measureµk−1 = µ∗ ◦ p−1
k−1 and the

projectionsp0,k−1, p1,k−1 onX [k − 1] from Section 2.3. Also recall that(y, v) ∈ X [k − 1] denotes the treey ∈ �X
with centrev in generationk − 1 of y. Hence, for 1� j � n,

µ ◦ (π
j+1
k )−1 ⊗j+1 Q(x)

µ ◦ (π
j
k )−1 ⊗j Q(x)

= µk−1 ◦ p
−1
1,k−1(π

j
k (x), vj )

µk−1 ◦ p
−1
0,k−1 ⊗ Q(π

j
k (x), vj )

(3.49)

with all terms positive. Note that

N [k − 1](x) = 0 �⇒ µ ◦ π−1
k (x) = µ ◦ π−1

k−1 ⊗1 Q(x),

whereas ify = π
j
k (x) with N [k − 1](x) = n > 0 thenN [k − 1](y) = n andµ ◦ (π

j
k )−1(y) = µ ◦ p

−1
1,k−1(y, vj ) for

any 1� j � n. Hence, (3.48) and (3.49) imply that

H(µ ◦ π−1
k ‖µ ◦ π−1

k−1 ⊗1 Q) =
∑

x∈X (k)

N [k−1](x)∑
j=1

µ ◦ π−1
k (x) log

(
µk−1 ◦ p

−1
1,k−1(π

j
k (x), vj )

µk−1 ◦ p
−1
0,k−1 ⊗ Q(π

j
k (x), vj )

)
= H(µk−1 ◦ p

−1 ∥∥µk−1 ◦ p
−1 ⊗ Q). (3.50)
1,k−1 0,k−1
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Finally, note that

µ ◦ π−1
k (x) > 0 and µ ◦ π−1

k−1 ⊗1 Q(x) = 0 for somex ∈ X (k),

if and only if there exists 1� j � N [k − 1](x) such that

µk−1 ◦ p
−1
1,k−1

(
π

j
k (x), vj

)
> 0 and µk−1 ◦ p

−1
0,k−1 ⊗ Q

(
π

j
k (x), vj

)= 0.

Consequently,µ◦π−1
k � µ◦π−1

k−1 ⊗1 Q if and only if µk−1 ◦p
−1
1,k−1 � µk−1 ◦p

−1
0,k−1 ⊗Q, with (3.50) holding for

any shift-invariantµ ∈ M( �X ) andk � 2. By the identitiespk ◦ p0 = p0,k ◦ pk andpk ◦ p1 = p1,k ◦ pk this amounts
to

H(µ ◦ π−1
k ‖µ ◦ π−1

k−1 ⊗1 Q) = H
(
µ∗ ◦ p

−1
1 ◦ p−1

k−1

∥∥ (µ∗ ◦ p
−1
0 ⊗ Q) ◦ p−1

k−1

)
. (3.51)

The variational characterization of the relative entropy states that, for two probability measuresν1, ν2 on the Polish
spaceX ,

H(ν1 ◦ p−1
k ‖ν2 ◦ p−1

k ) = sup
φ∈Cb(X [k])

{∫
X

φ ◦ pk dν1 − log
∫
X

eφ◦pk dν2

}
,

whereCb(X [k]) is the set of continuous, bounded functions onX [k] (see for example [4, Lemma 6.2.13]). Obv
ously, this expression is increasing ink and by the same representation it is bounded byH(ν1 ‖ν2), which together
with (3.51) shows that the left-hand side of (3.47) is at least as large as its right-hand side.

Conversely, for any continuous bounded functionφ :X → R and ε > 0 there exists a uniformly continuou
functionψ :X → R such that∣∣∣∣log

∫
X

eφ dν2 − log
∫
X

eψ dν2

∣∣∣∣< ε and

∣∣∣∣∫
X

φ dν1 −
∫
X

ψ dν1

∣∣∣∣< ε.

Moreover, withX being the projective limit ofX [k], we can find ak � 1 and a continuous, bounded functi
ψk :X [k] → R such that|ψk ◦ pk(x) − ψ(x)| < ε for all x ∈X . Hence

sup
k�2

sup
φ∈Cb(X [k])

{∫
X

φ ◦ pk dν1 − log
∫
X

eφ◦pk dν2

}
� sup

φ∈Cb(X )

{∫
X

φ dν1 − log
∫
X

eφ dν2

}
,

which together with (3.51) shows that the right-hand side of (3.47) is at least as large as its left-hand si
completes the proof of the lemma.�

Appendix. Notation for spaces and projections

For the reader’s convenience we collect here the most important pieces of notation as they occur in the
our process level large deviation principle, Theorem 2.3.
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measure,
�X space of all finite and infinite rooted, planar trees

X (k) space of finite trees with height at mostk

πk : �X →X (k) canonical projection obtained by removing all vertices in generation> k

πk,l :X (k) →X (l) canonical projection obtained by removing all vertices in generation> l

X [k] space of trees of height at leastk with distinguished centre in generationk

pkl :X [k] → X [l] projection obtained by removing all vertices whose last common ancestor with the c
lived before generationk − l

p0,k :X [k] →X [k] projections removing all vertices in generationk + 2 and all those in generationk + 1, who
are offspring of the centre and its right siblings

p1,k :X [k] →X [k] projections removing all vertices in generationk + 2 and all those in generationk + 1, who
are offspring of right siblings of the centre

X space of backward trees, projective limit space of(X [k];pkl; k � l)

pk :X →X [k] canonical projection satisfyingpkl ◦ pk = pl for k � l

p0,p1 :X → X projective limits ofp0,k,p1,k defined bypk ◦ p0 = p0,k ◦ pk andpk ◦ p1 = p1,k ◦ pk
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