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Abstract

Given a finite typed rooted treg with n vertices, theempirical subtree measuiie the uniform measure on thetyped
subtrees of” formed by taking all descendants of a single vertex. We prove a large deviation principleith explicit rate
function, for the empirical subtree measures of multitype Galton—Watson trees conditioned to haverexadibes. In the
process, we extend the notions of shift-invariance and specific relative entropy—as typically understood for Markov fields on
deterministic graphs such Z€—to Markov fields on random trees. We also develop single-generation empirical measure large

deviation principles for a more general class of random trees including trees sampled uniformly from the set of all tiees with
vertices.
0 2005 Elsevier SAS. All rights reserved.

Résumé
Etant donné un arbre enracifiéan sommets, on appelle mesure empirique des sous arbres la mesure uniforme sur les sous
arbres obtenus en prenant les descendants desimets. On demande notamment un principe explicite de grandes déviations

enn pour la mesure empirique des sous arbres des arbres de Galton—Watson multitypes conditionnésaranoats.
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1. Introduction

Theempirical measuresf Markov fields on large, deterministic subsetof Z¢—and the limit points of these
empirical measures—play a central role in statistical physics and the theory of Gibbs measures. The limit points
are always shift-invariant, and the rate functions of the empirical measure large deviation principles are generally
defined in terms o$pecific relative entropgr specific free energygee, e.g., Chapters 14-16 of [8].

WhenZ¢ is replaced with a random graph, the large deviation analysis of even the simplest models—say, Ising
or Potts models—becomes more difficult. How does one even define ‘shift-invariance’, for example, when the
graphs on which the models are defined are random and almost surely possess no translational symmetries? Wh
is the most natural analogue of ‘specific relative entropy’? For that matter, what is the most useful definition of
‘empirical measure'?

The purpose of this paper is to answer the above questions for some natural random planar rooted tree models
By planar we mean that the offspring of each vertex are implicitly ordered—from left to right; this ordering
determines an embedding of the tree in the plane.

Given a finite planar rooted treg with n vertices with types drawn from a finite type s&t the empirical
subtree measure’ is the uniform measure on thetyped subtrees df that are formed by taking all descendants
of a single vertex of". We will prove a large deviation principle, with an explicit rate function defined in terms of
specific relative entropy on the empirical subtree measures of multitype Galton—Watson trees conditioned to have
exactlyn vertices.

The rate function of this large deviation principle will be infinite on measures that lack a natural ‘shift-
invariance’ property. We show that every shift-invariant measure can be extended backwards to describe the ‘infinite
past’ of a sample from the tree, this is in the spirit of Kallenbebgiskward treegstablished in [10]. We may also
view this backward tree construction as a general technique for examining the steady state of a randomly expand
ing system. It is on these backward tree measures that we will actually define specific relative entropy, as the
conditional entropy of the offspring measure at the igigénits infinite past.

One motivation for pursuing this problem is the studytrek-indexed Markov chaingefined as follows. First
we sample a tree from some probability measure, and then, given this tree, we run a Markov chain on the vertices
of the tree in such a way that the state of a vertex depends only on the state of its parent. The result of this two-
step experiment can also be interpreted agad tree We always look at probabilities with respect to the whole
experiment, or, in the language of random environments, arihealecbrobabilities. These tree-indexed process
are a natural concept of increasing interest in probability and applications (see, e.g., [3,17] and [14]), often as a
new way of looking at existing models. Our analysis will show that large deviations results, which are well-known
for classical Markov chains, can be extended to Markov chains indexed by random trees.

When we restrict our attention to a single generation of the empirical measure (the ‘empirical offspring mea-
sure’) or to an empirical measure recording only the transitions of types along each edge (the ‘empirical pair
measure’) we will obtain a generalized large deviation principle for which the classical Markov results (as de-
veloped in, e.g., [4] and the references therein) are a special case. These problems turn out to be among the rai
problems for which large deviation rates can be stated completely explicitly in a closed form. Indeed, the rates we
find in this setting are hardly more complicated than the rates for classical Markov chains. For example, our rate
functions are simple enough to allow one to compute the pressure and related macroscopic quantities for Gibbs
measures corresponding to a short-range potential with configuration space that is the set of all typed rooted trees o
n vertices with types irk’. This is in sharp contrast with the large deviation principle for the distance from the root
of simple random walk on supercritical Galton—Watson trees, for which no explicit rate function is known, see [5].

In another application, from the case of binary trees and uniform distribution of types, we calculate an explicit
growth rate for the total number of binary trees of sizéodd) with types in a finite alphabét, which have an
empirical pair measure in a given set of measures. In [12] the analogous combinatorial formula for the number
of tuples of lengthn with a given empirical pair measure was used to analyse the tail behaviour of Brownian
intersection local times. We hope that the formulas derived here give rise to a similar analysis of the tail behaviour of
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integrated super-Brownian excursion, as formulas for high moments of intersection local times involve summation
over large binary trees, see e.g. [13].

There are a number of technical issues that make the analysis of tree-indexed Markov chains more complicated
than the analogous work for classical Markov chains. One arises from the fact that, for some models of Galton—
Watson trees, the probability of having exactlyertices is zero for in an infinite subset of.. It is therefore
necessary to restrict our attention to thosdor which the probability is positive and to prove lower bounds on
probabilities that apply only for select valuesmofAnother arises from the possibility of an unbounded number of
offspring at a single step, which necessitates the use of a technical ‘mass exchange’ argument in Lemma 3.6.

The precise statements of our results are given in Section 2 beginning with empirical pair and empirical offspring
measures and then progressing to the empirical subtree measures. The former results will apply to a larger class of
random trees than the latter, which will only be proved for bounded-offspring multitype Galton—Watson trees. The
proofs of all of these results are then given in Section 3.

2. Statement of theresults
2.1. Large deviations for tree-indexed Markov chains

We start by looking at the situation where the tree is generated independently of the types, in which case our
rate functions are particularly simple.

By 7 we denote the set of all finite rooted planar tré&edy V = V (T) the set of all vertices and by = E(T)
the set of all edges oriented away from the root, which is always denoted We write |T| for the number of
vertices in the tred, with thek-th generation of” being the subset of vertices Bfof distancek from its root and
the height ofT is the largesk such that th&-th generation of” is nonempty.

Suppose thal is any finite tree and we are given an initial probability meagumn a finite alphabet’ and a
Markovian transition kernep from X' to X'. We can obtain &ee indexed Markov chaiX : V — X’ by choosing
X (p) according tou and choosingX (v), for each vertex # p, using the transition kernel given the value of its
parent, independently of everything else. If the tree is chosen randomly, we always cohsidgf (v): v € T}
under thgoint law of tree and chain. It is sometimes convenient to intergras atyped treeconsideringX (v) as
thetypeof the vertexv.

For the generation of the trees themselves we look at the clegimpfy generated treeThese are obtained
by conditioning a critical Galton—Watson on its total number of vertices. More precisely, we look at the class of
Galton—Watson trees, where the number of child¥gm) of eachv € T is an independent random variable, with
the same law () =P{N(v) = -} forall v € T, such that 6< p(0) < 1. We assume that is critical, i.e. the mean
offspring numbery_;2, ¢p(¢) is one, but this assumption is not restrictive: It is easy to see that the distribution
of T conditioned on{|T| = n} is exactly the same as when the offspring lawig¢) = p(£) e‘”/zj p(j) e,
regardless of the value 6fe R. With 0 < p(0) < 1 — p(1) there exists a unique,. such that) ", £pg, (¢) =1, see
e.g. [11]. Hence all our results hold in the noncritical cases within place ofp.

We allow offspring lawsp with unbounded support, but we need to restrict attention to those laws, which have
superexponential decay at infinity, i.e. we require thatlog p(¢) — —oo. We also allow that the support of
is a proper subset df, and assume throughout the paper that all statements conditioned on th¢|&yent:}
are made only for those values ofwhere this event has positive probability. In particular, our large deviation
approximation of probabilities hold for those valuesiafthereP{|T| =n} > 0. For the general structure of the set
of admissible values, see the proof of Lemma 3.1.

With each finite tree and samplé we associate a probability measure &nx X', the empirical pair mea-
sureLy, by

1

Lx(a,b)=m

Z(S(X(el)yx(gz))(a,b), fora,be X, (2.1)
ecE
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wheree, ez are the beginning and end vertex of the edgeE (soe; is closer top thanes). The empirical pair
measure is the natural object to study in this context, as it is a sufficient statistic for the estimation of the transition
kernel Q.

Our first result is a large deviation principle fory, conditional upon the evert7T | = n} with n chosen such
that the latter has positive probability. For its formulation recall the definition of the relative entfogly:) from
[4, (2.1.5)] and Cramér’s rate function, as in [4, (2.1.26)],

Ip(x):sup{kx —|og[zp(n)e““. (2.2)
LeR

n=0

Theorem 2.1. Suppose thaf is a Galton—Watson tree, with offspring lgw(-) such thatd0 < p(0) <1 — p(2),

Y etp®)=1and ¢~ Llog p(f) - —oo. Let X be a Markov chain indexed i# with arbitrary initial distribution

and an irreducible Markovian transition kernél. Then, forn — oo, the empirical pair measuré x, conditioned
on {|T| = n} satisfies a large deviation principle in the space of probability vector&’oxn X with speed: and
the convex, good rate function

ni(a)
e RO ETIOLD S uz(a)1p<

= u2(a) .
o0 otherwise

) i 1 < 1o, 03

whereu, and . are the first and second marginal pfand w1 ® Q(a, b) = Q{b | alui(a).

Remark. The representation (2.3) @{-) provides the interpretation of the large deviationd.gf as the result of

two independent contributions: when = u> we have only the tern# (u | ©1 ® Q) which is the rate function

for the large deviation principle of empirical pair measures of the Markov chain with kérneée e.g. [4, Sec-
tion 3.1.3]. The hard constraint @f; = u» of the Markov chain setting is replaced here by the additional term
> o 2(a)I,(1(a)/n2(a)) which reflects the large deviations contribution due to the geometry of th@'trere
loose terms, while the evefit x ~ 1} for measureg satisfyingui1 = u2 is still concentrated on the typical trees,

in the case of measures with # w2 the event is concentrated on an exponentially shrinking set of trees, with an
exponential rate given by the second term.

Examples. The class of Galton—Watson trees conditioned on the total size appears in the combinatorial literature,
see e.g. [15], under the naranply generated treeend is surveyed in [1]. We look at some interesting examples.

e Choose the offspring law(-) such thatp(k) =1 — p(0) = 1/k. In this caseP{|T| = n} > 0 if and only
if n — 1 is divisible byk. The law of T conditional on{|T| = n} is exactly the same as sampling the tree
uniformly from the collection of all possible-ary trees withn vertices. We have tha, (x) = (x/k)logx +
(1—x/k)log((1—x/k)/(1— 1/k)), leading to the good rate function

T = Bl ® Q) + 571 H (g (ke — i) | n2) + tH(ua | 2) - 1f kg > pa, (2.4)
00 otherwise

for the large deviation principle df x.

e Choose the offspring lay(-) as the standard Poisson distributigrif) = e~¢/¢! for £ =0,1,2,.... Now
P{|T|=n} > 0 foralln > 1 and the law off’ conditioned o{|T| = n} is that of a tree chosen uniformly from
all unordered trees with vertices. We havé,(x) = 1 —x 4 x logx, and get a large deviations rate of

I(W)=H(u| n1® Q)+ H(ull2), (2.5)

for the large deviation principle df x .
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e Choose the offspring law(-) asp(0) = p(1) = --- = p(k) = 1/(k + 1). Note that this law is only critical if
k = 2, and recall our remark on the noncritical case preceding the theorem. Bgd&in=n} > Oforalln > 1,
and now the law of”" conditional on{|T| = n} is the same as sampling the tree uniformly from the collection
of all ordered trees with vertices and offspring number boundediy

2.2. Large deviations for multitype Galton—Watson trees

In order to prove the results of the previous section, it is necessary to pass to a larger class of typed trees, which
are also of independent interest. Indeed one can go much beyond the previous setting and consider trees and type
chosersimultaneouslyccording to anultitype Galton—Watson tree

We write X* = (2 o{n} x X" and equip it with the discrete topology. Note that the offspring of any vertex
v € T is characterized by an element &f and that there is an eleme(, ¥) in X* symbolizing absence of
offspring. For each typed treé and each vertex we denote by

C(v) = (NW), X1(0), ..., Xnw)(v)) € X*

the number and types of the childremgfordered from left to right.

We now describe the joint law of a trdeand tree-indexed chaiki, which defines a multitype Galton—Watson
tree. The ingredients are a probability meagumn X', serving as the initial distribution, and an offspring transition
kernelQ from X’ to X*. We define the lavlP of a tree-indexed process by the following rules:

e The rootp carries a random typ& (p) chosen according to the probability measuren X'.
e For each vertex with type € X' the offspring number and types are given independently of everything else,
by the offspring lawQf{ - | a} on X'*. We write

Qf- la}=Q{(WN.X1.....Xn) € | a}.
i.e. we have a random numbat of offspring particles with typeX, ..., Xn.

We assume that the exponential momedtg”" | a} < oo, for alla € X andy > 0. We also need a weak form of

irreducibility assumption. Denote, for every= (n,ay, ..., a,) € X* anda € X, themultiplicity of the symbol
in ¢ by
n
ma,c) = 1ig=a). (2.6)
i=1
Define the matrixA with index setY x X and nonnegative entries by
Aa,b)= )" Q{c|bm(a.c), fora.beX, 2.7
ceX*

i.e. A(a, b) are the expected number of offspring of typef a vertex of type. With A*(a, b) = > 7o 4 Aka,b) €
[0, oo] we say that the matrid is weakly irreducibldf X' can be partitioned into a nonempty st of recurrent
statesand a disjoint sef; of transient statesuch that

e A*(a,b) > 0 wheneveb € X, while
e A*(a,b) =0 wheneveb € X; and eithew =b ora € X,.

For example, anirreduciblematrix A hasA* strictly positive, hence is also weakly irreducible with = X'. The
multitype Galton—Watson tree is called weakly irreducible (or irreducible) if the matisweakly irreducible (or
irreducible, respectively) and the numBey, .y, m(a, c) of transient offspring is uniformly bounded undgr
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Note that a weakly irreducible matrix has(a, b) = 0 whenever € X; anda € &,. Moreover X; may be
ordered such that (a, b)) = 0 whena > b are both inX;. Consequently, the non-zero eigenvalues of a weakly
irreducible matrixA are exactly those of the irreducible matrix obtained by its restrictiolj.tdRecall that, by the
Perron—-Frobenius theorem, see e.g. [4, Theorem 3.1.1], the largest eigenvalue of an irreducible matrix is real anc
positive. Obviously, the same applies to weakly irreducible matrices. The multitype Galton—Watson tree is called
critical if this eigenvalue is 1 for the matrik.

In our new setup the empirical pair measiirg defined in (2.1) isot a sufficient statistic for the estimation of
Q and therefore it is useful to replace the empirical pair measure by a more inclusive object. To each sample chain
X we associate thempirical offspring measur#y on X x X*, which is defined by

1
Mx(a,c) = T > dxw.con @ o). (2.8)
veV

Our second main result is a large deviation principle #6x if X is a multitype Galton—Watson tree. For its
formulation denote, for every probability measureon X x X*, by v the X-marginal ofv. We call v shift-
invariant if

vi(a) = Z m(a,c)v(b,c) forallae X. (2.9)
(b,c)eX x X*

We denote byM (X x X*) the space of probability measureon X' x X* with [‘nv(da, dc) < oo, using the
conventionc = (n,as, ..., a,). We endow this space with the smallest topology which makes the functionals
vi> [ f(b,c)v(db,dc) continuous, forf: X x X* — R either bounded, of (b, ¢) = m(a, ¢)1;,(b) for some

a, bg € X. Define the functiory on M(X x X*) by

T(v) = { H@W||vi®Q) if vis shift-invariant (2.10)
T leo otherwise '

In general, the topology oM (X x X*) is stronger than the weak topology, making the functiolower semi-
continuous, as shown in Lemma 3.4.

Theorem 2.2. Suppose thaX is a weakly irreducible, critical multitype Galton—Watson tree with an offspring law
whose exponential moments are all finite, conditioned to have exagtytices. Then, for — oo, the empirical
offspring measur@/x satisfies a large deviation principle i (X x X*) with speed: and the convex, good rate
functionJ.

Examples.

e The situation of Theorem 2.1 corresponds to offspring ker@¢lda} choosing offspring numbers according
to the lawp(-) and then choosing the offspring types independently, according to the margingi{lave:}
on X. Consequently, Theorem 2.1 follows by contraction from Theorem 2.2, see Section 3.4 for more details.
As its proof reveals, Theorem 2.1 applies even when the law of offspring nurploets:) depends on the
type of the parent, provided the matdXb | a} >, ¢p(£ | a) is weakly irreducible, with largest eigenvalue one
(then, of coursel, |, replaced, in (2.3)).

e Foramore concrete example contained in our framework, we suppose that individuals in a population may have
two genetic typesg andb. Individuals of typea (resp.b) breed offspring according to the lawy, (resp.ps),
typically of the same type, but independently, mutations occur with a small probagbititp. Letn, andn,
denote the positive mean offspring numberpgfand p, andn = n,/n, representing the genetic advantage
of type a. Assumingp,(0) + pp(0) > 0 and criticality, namelyi,ny (1 — 2p) + 1 = (ny, + np)(1 — p) < 2,



A. Dembo et al. / Ann. I. H. Poincaré — PR 41 (2005) 971-996 977

in a large family of sizex the probability that the ratio of the numbers of individuals of typandb in the
population is close ta € [0, 1] is approximately equal to expnl (x)) for

. X 1
I(x) =Inf{x—+1H(va Il ga) + x—+1H(vb IIQb)}, (2.11)

whereg, (n, m) = pa(n+m) ("1™ p™(1— p)" andg, (n, m) = pp(n+m) ("1™ p"(1— p)™ and the infimum
is over all probability measuresg, v, onN x N satisfying

o0 (o8]
x= Z nxv,(n,m) +nvp(n,m) and 1= Z mxvg(n, m) + mvp(n, m). (2.12)
n,m=0 n,m=0
This rate function is zero exactly at the typical ratio, which is given by the solutien0 of the equation
x/(1+x)=(xnl— p)+ p)/(xn+1). Our result gives the probability of a significant deviation from this
ratio, the precise rate is depending of course on the exact offspring laws of particles of either genetic type,
represented by,, pp.

2.3. Alarge-deviation principle on the process level

We conclude with the extension tqaocess levelarge deviation principle. This will also allow us to make the
concept ofshift-invariancemore transparent.

For the rest of this section we assume that the offspring numbers generated by theGkameeuniformly
bounded by som#/p € N. We denote byX' the set of all finite or infinite rooted, planar trees such that every vertex
has at mosiVy offspring, with types from the finite alphabat attached to the vertices. Recall that the fact that
the trees are embedded in the plane imposes an ordering (say from left to right) on the children of each vertex. The
laws of multitype Galton—Watson trees are probability measure¥ .oWe equipX’ with the topology generated
by the functionsf : ¥ — R depending only on a finite number of generations.

If veV is avertex of a tred’ and X € X a sample chain on this tree, we denoteXy the sample chain
obtained from the subtree @f consisting ofv and all successors of To eachfinite sample chairX we associate
a probability measur@x on X, theempirical subtree measurdefined by

Tx(x) = ZSXv(x) forx € X. (2.13)

vEV

Note that for fixedX the measurd’y lives on the sample spac¥ of the actual process, which justifies the
terminology of a process level large-deviation principle.

Before formulating a large deviation principle for the random varidtieve need the concept oflmckward
tree associated to a class of multitype Galton—Watson trees. We dendig¢idythe number of vertices in gener-
ationk, and in particular byV = N[1] the number of children of the root ifi. Suppose that is a probability
measure o’ with J N dw=1. Then we can defineshiftedprobability measure (i) on X by

N

S(u)(F)_/ d[L(X)Zl{XU,eF}, for any Borel set” C X, (2.14)
i=1

whereuvy, ..., vy are the children of the root. We define
wis shift-invariant <  S(u) =u. (2.15)

Intuitively, one obtains the shifted tree by choosing a child of the root and selecting the subtree consisting of its
progeny. Clearly this operation leads to trees which are less deep than the original tree, and for shift-invariant trees
this effect is compensated by weighting the trees according to the number of offspring of the root. It is important
to note that shift-invariance can be defined onlyrfarasures on tregsot for the individual trees themselves.
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Fig. 1. The projectiorpss, the double circle is the centre and the filled circle the root.

To any shift-invariant measure on X we can associate lsackward tree measure* in the following way.
Suppose thak is a sample chain on a (finite or infinite) tree of height at léastnd mark a vertex in generation
k of X as thecentreof the tree. Denote by'[k] the set of all objectgx, ¢) (typed treex with centre at;) arising
in this way, endowed with the canonical topology inherited framFor k > [ there are canonical projections
pii - X[k] — X[1] obtained by keeping the same centre and removing all vertices from the tree whose last common
ancestor with the centre lived before generafion!. Note that the root of the projected trgg X is the ancestor
of the centre in generatidn— [, see Fig. 1.

The spacesY[/] and projectionspy;, k > [ form a projective system. Hence there exists a projective limit
spaceX, the space obackward treesand canonical projectiongy : X — X[k]. See [4, Appendix B] for more
information about projective limits.

Intuitively, the backward trees have a centre, which may have offspring itself, and an infinite ancestral line, the
spineor backbonefrom whose vertices offspring is emanating.

If u is a shift-invariant measure then we can associate a meagune X'[k] by

NI[k]

wi () = / di(X) Z Lix.oner), forany Borel set”  X[k], (2.16)
im1

wherewvy, ..., vy are the vertices in generatiérof X.

Shift-invariance ofu ensures that ajk; are probability measures and that= py o pk_ll for all k > [. Hence,
by Kolmogorov's extension theorem, there exists a unique probability mea$we X such thafu* o p,:l = k.

This is the backward tree measyré associated to.

For eachk > 1 we denote by i : X'[k] — X[k] the projection obtained by removing all vertices of distance at
leastk + 2 from the root and all those of distanketr 1 from the root whose parent is to the right of the centre.
Similarly, we denote by . : X[k] — X'[k] the projection which in addition to all the vertices removedby also
removes all children of the centre. Note tipato po x = po; o pr; @andpy op1x = p1;0 px forall k > 1. Hence, the
projective limitsp1 : X — X andpg: X — X of p1 x andpo «, respectively, are well defined wigh o po = po.x © p
andpg opr=p1ro pr forall k > 1.

Heuristically,p is the projection obtained by removing all vertices of the backward tree further from the root
than the centre except the children of the centre and those of the vertices to the left of the centre whose distance
from the root is the same as the centre, witremoving also the children of the centre, see Fig. 2 (again trees are
growing upwards, and centres are marked by a double circle).

If Q is an offspring transition kernel, we defipg o pal ® Q as the probability measure generated by starting

with a backward tree sampled accordinguto o pal and adding independently offspring accordingQdo the
centre.
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Fig. 2. The projectiongg andp1.

Let M(X) be the set of probability measures &h Define the functiork on M(X) by

K(u) = { H(u*o le | u* o pal ® Q) if p is shift-invariant (2.17)
00 otherwise

We equipM (X) with the smallest topology which makes the functionals> J f du continuous, for each con-
tinuous and bounded : ¥ — R.

Theorem 2.3. Suppose thak is an irreducible, critical multitype Galton—Watson tree with uniformly bounded
offspring sizes, conditioned to have exaetljertices. Then, fot — oo, the empirical subtree measurg satisfies
a large deviation principle inM (X) with speed: and the convex, good rate functiégh

Example. To give an example, which isot covered by the previous theorems, suppose we have a multitype
Galton—-Watson tree with two types, sayndb, which satisfies our assumptions. D&t € X denote the smallest
subtree containing the root and all vertices of typandM,, C X’ denote the open set of all typed trees containing
at least one vertex of type Note thatv € X, ifand only if X* € M,. Hence|X,| =nTx (M,) and by Theorem 2.3

we have, forx € [0, 1], that

limsup2 logP{|X,| <nx | |T|=n} < —inf{K(u): p e M(X), p(M,) < x}.
n—0o0

While this rate seems difficult to evaluate more explicitly, it is easy to checkAligt has a unique minimiser
given by the law of the multitype Galton—Watson t€ewith transition kernelQ and initial distribution given by
the normed principal right eigenvector of the associated mdtrivecall (2.7). Denoting by the probability that
such a tree contains at least one vertex of typ@r anye > 0,

n—o0

. 1
lim P{—|Xa|<p—s}|T|=n}=o.
n

While this may not be difficult to guess, it appears to be difficult to prove directly.
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3. Proof of thelarge deviation principles

We first give a brief overview of this section, which contains the proofs of our results. First we need to establish
the fact that for a critical multitype Galton—Watson tree our conditioning e€hts= n} decay with an exponential
rate zero over the set of admissible valuesiofThe proof of this fact requires a careful analysis of the lattice
structure of the sef = {n € N: P{|T| = n} > 0} in the multitype case, and is of some independent interest. In the
single type case this and much finer resultsP¢|¥'| = n} are known for some time, see e.g. [16,7,9]. Our result,
which seems to be the first for the multitype case, is proved in Section 3.1.

Equipped with this result, in Section 3.2 the upper bound of Theorem 2.2 is derived. Exponential tightness is
established in the topology ol (X x X*) using the moment conditions imposed@nBased on the exponential
Chebyshev inequality we first represent the upper bound in a variational form, and then solve the variational
problem. Nonstandard arguments arise in the proof from the fact that we ehdoW x X*) with a topology,
which is stronger than the weak topology of measures. This is necessary in order to make the set of shift-invariant
measures a closed set in our topology.

The lower bound, proved in Section 3.3, is based on a change of measure technique. As we allow for potentially
unbounded offspring numbers intricate approximation arguments are needed to show that this change of measur
provides sufficient freedom to represent a sufficiently large class of offspring measures. This will be achieved by
means of an intricate mass exchange argument, see Lemma 3.6. In Section 3.4 we prove Theorem 2.1 by contractio
from Theorem 2.2.

Finally, in Section 3.5 we prove Theorem 2.3. For this purpose we first extend Theorem 2.2 from one-generation
offspring measures tb-generation offspring measures, see Lemma 3.8. This extension is based on expanding the
statespace and needs crucially the fact that in Theorem 2.2 we are only reqggkigreducibility. The step from
k-generation offspring measures to empirical subtree measures is then based on the Dawson—Gartner Theorem.

3.1. On the rate of decay &f|T| = n}

An important role in our proofs is played by the fact that for critical multitype Galton—Watson trees the prob-
ability P{|T| = n} decays only subexponentially on the $etf integersn where the probability is positive. We
exclude the trivial case whehfails to be infinite from our consideration (in particular, we assume throughout that
(&) > 0).

Lemma3.1. Supposé is the random tree generated by a weakly irreducible, critical multitype Galton—Watson tree
with finite second moment. Then

. 1
lim - logP{|T| =n}=0.

nes

Proof. Recall that the number of children of any givere T with types inA; is uniformly bounded. Moreover,
if X(u) € X; for someu € T then there are only types frofi; in the sample chailX* consisting ofu and all
successors af, and the height of the corresponding subti&eis uniformly bounded (by the size cf;). Let
G(v) =) ; IT"| where the sum extends over the childeenuo, ... of v such thatX (1;) € X;. HenceG (v) is
also uniformly bounded, say by, < oc. Forc € X* let c| X, be the natural restriction efto X*. For eactb € X,
ce XFandg €{0,..., N1} let Q. {(c, g) | b} denote the probability induced Y that givenX (v) = b we have
C(v)|XF =candG(v) = g. Then, for eacls, € X¥,

N1
> Q{9 1b}= > Qfclb) (3.1)
g:O ceX*

c|Xyr=c,
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HenceQ; is a transition probability measure frof} to X* x {0, ..., N1} such that

N1
Ar(a,b)= Y Y mla,Q{( g | b}

ceX¥ g=0

is exactly the restriction of the matrix to ;.. In particular, sinced is weakly irreducible and critical, it follows
that A, is irreducible and critical ork,. Further,Q, constructs the restriction of the multitype Galton—Watson tree
X to A, with G(v) keeping track of the number of vertices with typestinthat have been omitted as a result of
being inT* for some childu of v such thatX (u) € &;. Thus, fix a type: € &, and construct a multitype Galton—
Watson tree with laviP, for u = §, as follows: Start at size = 0 with oneactivevertexp of typea. At each future
step choose an active vertexuniformly from all active vertices, independently of everything else, provide it with
offspring C (v) according tdQ, {- | X (v)}, addingG (v) + 1 to the current tree size deactivating and activating
its offspring. When there are no active vertices left, the process terminates, producing the restridtioof &
typed tree of lawP and sizen for u =§,.

Let p, »(n) be the probability that when the sizerisve have exactly one active vertex, which is of typd-or
anyas, az, az € X, and positive integers;, no we have

Pal,ag(nl)]’az,% (n2) < Pal,ag(nl +no). (3.2)

Indeed, py, .4, (n1) Puy,az (n2) is the probability of having exactly one active vertex when the sizg iand again
when the size ig1 + 1, having types:; andas, respectively.
Since the restricted multitype Galton—Watson tree is irreducible, startingandti, active vertices of each
type appear with positive probability and our procedure allows each active vertex to eventually remain the only
active vertex with positive probability. Hence for amy, ap € &, there exists: such thatp,, 4, (n) > 0. Together
with (3.2) this suffices to make the structure of the sets

Sap= {n eN: pyp(n) > 0} (3.3)

for a, b € X, analogous to that of the sefis € N: (P"), , > 0} for a finite state irreducible Markov chain with
transition matrixP. Namely, there exists a periat= gcdS, ,, independent of € X, andk, , € {0,...,d — 1}
such thatS, , C k4. + dN with [(k, » + dN) \ S,.p| < 00, see for example the proof in [6, Lemmas 5.5.3, 5.5.4
and 5.5.6]. Analogously to the theory @fperiodic finite state irreducible Markov chains, (3.2) and subadditivity
imply the existence of < oo such that, for alk, b € A},

. 1
lim ——logpyptkep +1d)=1. (3.4)
-0 ld '

(Indeed, one can take firat= b € &, showing existence of limit$, , < oo, then show that, , < I, for all
a,b € X, hence for each suehandb the limit 7, ;, exists and is equal tf), , by a sandwich argument.) Now let

pa(n)zlP’{|T|=n|X(,0)=a}, and Su={n: pa(n)>0}. (3.5
Define
X, ={b: Q-{((0.9).g) | b} > 0}, (3.6)

noting that the latter set is nonempty for sogeas otherwise no finite trees are possible. The e{dht= n}
corresponds toneactive vertex from¥, at sizen — 1 — g producingg omitted vertices of types from; and no
offspring with type inX,.. Summing over the possible types of this vertex we get

N1
Pam) =" papn—1—g)Q{((0.9).g) | b},

g=0beX,



982 A. Dembo et al. / Ann. I. H. Poincaré — PR 41 (2005) 971-996

implying (recall (3.3)) thats, ={n: n —1—g e S, for someg > 0 andb € &} and, for anyz € X},

nll_)moo —— Iog pa(n)=1.
nes,

Now suppose for contradiction thdt> 0. Then, fora € X, and alln € S, with n > ng, we havep,(n) <
exp(—nl/2). As p,(n) =0foralln ¢ S,, this implies that

exp(—nl/2)
1-exp(—1/2)
But this probability is at least as large as the corresponding probability for the restrictibrhoobertices whose
type isinX,.. The latter is an irreducible, critical multitype Galton—Watson tree, so by [9, (4.2.3)] or by the corollary
in [2, p. 191] under the hypothesis of finite second moment this probability is bounded from below by a constant

multiple of 1/n, which is a contradiction. Hencé,= 0 and the result of the lemma follows since by the weak
irreducibility of X we have thap,(n) =0 foralln > nganda € X;. O

P{IT|2n|X(p)=a} < for all n > no.

3.2. Proof of the upper bound in Theorem 2.2

Given a bounded functiof: X x X* — R we define the function
Ug(a)=log > Qfc|a}e? @, (3.7)
ceX*
for a € X'. We useg to define a new multitype Galton—Watson tree as follows:

o the type of the roop is a € X’ with probability
e u@
[e%® by’

o for each vertex with type € A the offspring number and types are given independently of everything else, by
the offspring lawQ{ - | a} given by

Qfc la} =exp(g(a, ) — Uz(@))Qlc | a}. (3.9)

ugla) = (3.8)

We denote the transformed law ﬁyand make the simple observation tifais absolutely continuous with respect
to P, as for each finite&X € X,

o Uz (X(0)

= m [[exdz(X ). cw) — Uz (X ))] (3.10)
N(v)

(X(),C Uz (X; () |, 3.11

=7 %(d )U]Jexp[ ), C(v)) - ; (i ,(v))] (3.11)

recalling thatC (v) = (N (v), X1(v), ..., Xy (v)).
We begin by establishing exponential tightness of the family of law# gfon the spacéV (X x X*).

Lemma 3.2. For everya > 0 there exists a compaéf, C M (X x X*) with

I|msup logP{Mx ¢ Ko | IT| =n} < —0.

n—o0
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Proof. Recall thatQ{e""|a} < oo for all > 0. Hence, giver € N, we may choosé(!) € N so large that
Q{exp(lle{N>k(1)}) | a} <2 forallaeX.

Using the exponential Chebyshev inequality,

IP{ / NdMy > 1 |T|—n} _’”E{exp< / Nde), |T|=n}

(N>k(D)) (N>k(D))
= e‘l"]E{ [T exn(*1vw=kanN ). IT| = n}
veT
n
<en ( supQ{expi®N Ly =kay)) | a}) L gni-logd
aceX

Now chooseM > « + log 2. Define the set

1
FMz{veM(XXX*): / Ndv<7,f0ralll>M}.
{N>k(D)}

As {N < k()} Cc X x X* is compact, the sef), is pre-compact in the weak topology, by Prohorov’s criterion.
Moreover, sincen(a, c) < N, it is easy to see by truncation that for every weakly convergent sequgneev
with v, € 'y, we also have lin, o [ m(a,c)v,(b,dc) = [ m(a, c)v(b, dc). Hence,I'y is even pre-compact in
the stronger topology we are using on the spat¢eY x X*). As

1
P{|T|=n}1—e1
we can use Lemma 3.1 to infer that

P{Mx ¢ I'y | IT|=n} < exp(—n(M —log2)),

Ilmsup Iog]P’{ngéK |IT|=n} < —a,

n—oo

for the closurek, of I'y; as required for the proof. O

Next we derive an upper bound in a variational formulation. Denot€ bye space of bounded functions on
X x X* and define for each € M (X x X*),

J) = sup{/ |:g(b, BEDD Ug(a,-)}v(db, dc)}, (3.12)
geC j=1

wherec = (n,axs, ..., a,).
Lemma 3.3. For each closed sef ¢ M (X x X*),

Ilmsup Iog]P’{MX eF||T|=n}< |nf J).

n—o0

Proof. Fix g € C bounded by somé/ > 0, then alsof €@ i (da) < Y. Defineh: X x X* — R by h(b,c) =
g(b,c) — Y i_1Uz(a;), where as usual= (n, as, ..., a,), and observe that, by (3.11),

N®)

eM >ﬁ{|T|=n}er§<“>M(da) {l_[exp[ (X (), C() - ZUg(Xj(v))]l{,T,_,,}}

veV j=1
= E{e""MX) 17 1)
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Together with Lemma 3.1 this shows that

lim supE logE{e""Mx) | |T|=n} <O0. (3.13)

n—oo N

In view of (3.10) the same bound (3.13) appliesfiort’ x X* — R of the formha (b, c) = g(b, c) — Uz (D).

Now fix & > 0, and letJ,(v) = min{J (v), e~ 1} — ¢. Suppose first that € F is shift-invariant. Then, for any
geC,

/ZUg(aj)V(db, dy= > D m@cwb,Uz@ =Y Ugawi(a) =/U§(b)v1(db). (3.14)
j=1 (b,c)e X x X*acX acX
Chooseg, € C such thatr, (b, c) = g, (b, c) — Uz (b) satisfies

(hy, V) ::/hv(b,c)v(db, dc):/[gv(b,c) —ZUgv(aj)}v(db,dc) > Jo(v). (3.15)

j=1

Sincenh, is bounded, the mappin@,, -) is continuous iINM (X’ x X*). Hence there exists an open neighbourhood
B, of v such that

inf (hy, 1) > (hy,v) —& > Je(v) —e.
HEBy
Using the exponential Chebyshev inequality and the remark following (3.13) we obtain that,

IimsupE logP{Mx € B, | IT| =n} < IimsupE logE{e""MX) | |T| =n} — J;(v) +¢
n—oo N

n—oo N
< —inf Jo(v) +e. (3.16)
veF
Now suppose that fails to be shift-invariant. Assume first that there exists X such that
v1(a) < Z m(a, c)v(b,c). (3.17)
(b,c)

Recall that the mappings— »_, .m(a, c) v(b, ¢) are continuous in our topology. Hence there eist0 and a
small open neighbourhoaBl, ¢ M (X x X*) such that

P1(a) < Y m(a,c)i(b,c) -5, forallieB,. (3.18)
(b,c)

Let g € C be defined bys (b, ¢) = —(8¢) 11, (b) andh(b, c) = §(b, ¢) — Z;le U;(a;). Note that, by the defini-
tion (3.7), we havd/; (b) = g(b, c) for all b and this vanishes unlesés=a. Hence, by (3.18), for every € B, we
have that/ h db > e~L. Then, using the exponential Chebyshev inequality and (3.13),

Iimsup% logP{Mx € B, | |T| =n} < Iimsup1 logE{e"" M) | |T|=n} —e7?
n—o0

n—o0o ;
<—e 1< —inf Jo(v). (3.19)
veF

In case the opposite inequality holds in (3.17) the same argument leads to (3¢l8) defined ag (b, c) =
(68) 114 ().
Now we use Lemma 3.2 to choose a compactgetfor o = ¢ 1) with

lim sup% logP{Mx ¢ Ko | IT| =n} < —e1. (3.20)

n—o0
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The setK, N F is compact and hence it may be covered by finitely many of theBgts. ., B, , with v; € F for
i=1,...,m.Hence,

m
P{Mx e F||T|=n} <> P{Mxe€B, ||ITI=n}+P{Mx ¢ Ky | IT|=n}.
i=1
Using (3.16) and (3.19) we obtain, for small enough 0, that

Ilmsup Iog]P’{MX eF|IT|=n}< mfa1 IlmsupE logP{Mx € B, | IT| =n} < |nf Jo(v) +&.

n—00 n—oo N

Takinge | O gives the required statementd

We next show that the convex rate functidnmay replace the functiod of (3.12) in the upper bound of
Lemma 3.3.

Lemma 3.4. The functionJ () is convex and lower semicontinuous (X x X*). Moreover,J (v) < J(v) for
anyv € M(X x X*).

Proof. We start by proving the inequality(v) < J(v). To this end, suppose first that& v1 ® Q. Then, there
exists(a’, ¢') € X x X* with v(a’, ¢') > 0 andQ{c’ | a’} = 0. Consequently, recalling (3.7), we hal/g = 0 for
g(b,c) = Rl (b, c) and anyR. Considering suclg in (3.12) withR 1 oo we see that/ (v) = oo in this case.

Suppose now thav fails to be shift-invariant, in which case there existse X such thatvi(a) #
Z(b,c)eXxX* m(a, c)v(b, c). Chooseg (b, c) = R1,(b), for which Uz (b) = R1,(b) and

/[g(b, c) — Z Ug,(aj)]v(db, de) = R(vl(a) — /m(a, c)v(db, dc)) — 00,
j=1

for |R| 4 oo, with the sign ofR chosen so that the right-hand side is positive.
Finally suppose that is shift-invariant andv <« v; ® Q. By the variational characterisation of the relative
entropy, see e.g. [4, Lemma 6.2.13], the definitio@/gf Jensen’s inequality, and (3.14),

Hy|v®Q) = Sup{/gdv — IOg// e2@IQ{dc | a}vl(da)} = Sup{/ gdv — IOg/ Ug(“)vl(da)}
geC
p{/gdv—/U (a)vl(da)} = J(v) (3.21)
geC

If v,V € M(X x X*) are both shift-invariant them, = Av + (1 — A)V' is also shift-invariant for any & 1 < 1.
Moreover,y — [m(a, c)v(b, dc) is continuous for each, b € X, implying that the sef = {v: v is shift-invarian}
is convex and closed in the topology we use/et{X’ x X*). Note that ifg € C, then so isU, and the mapping
vi> [gdv —log [ €Y@y (da) is continuous and convex. Consequently, the identity (3.21) impliesvthat
H(®v | vi® Q) is lower semicontinuous and convex. For any oo, the level sefv: J(v) < a} is the intersection
of the convex, closed sefsand{v: H(v | v1 ® Q) < «}. Consequently/ (-) is a convex rate function. O

3.3. Proof of the lower bound in Theorem 2.2

Recall the definition of the multiplicityz(a, c) of the symbok in ¢ and of the matrix4 ; with index setX’ x X
associated with the transformed multitype Galton—Watson tree,

Aga.b)="Y" Qlc|bym(a,c), fora,beX. (3.22)
ceX*
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By our assumptions the matrix; which has the same set of non-zero entrieg as weakly irreducible. Recall
that, by the Perron—Frobenius theorem, see e.g. [4, Theorem 3.1.1], the largest eigep\aitiee irreducible
restriction ofA; to A, is real and positive, with strictly positive right and left eigenvectors. Siigés weakly
irreducible, the largest eigenvalue 4f is alsopz. Further, recall thai; (a, b) = 0 wheneveb € &; anda € X,
orb<aeX,while ),y Az(a,b) > 0 for anya € &;. Consequently, there exists a unique right eigenvector

ug € R for the eigenvalue; of A; having strictly positive entries, which add up to one. The next lemma guides
the choice ofg associated with a large deviations lower bound atM (X x X*) for which J (v) < oco.

Lemma 3.5. Suppose € M (X x X*) with vy strictly positive. The following statements are equivalent.

(i) v is shift-invariant andv <« v1 ® Q.
(i) There exists a functiog: X x X* — R with U; = 0, such thato; = 1 and the corresponding Perron—
Frobenius eigenvectar; satisfiesi(a, c) = Q{c | a}uz(a), for every(a,c) € X x X'*.

Moreover, if (i) holds, thenH (v | v1 ® Q) = [ g(b, c)v(db, dc).

Proof. Suppose first that is shift-invariant and <« v1 ® Q. Defineg by

v(a,c)
v1(@)Q{c | a}
and otherwis€ (a, ¢) = 0. Then, for alla € X,

> Qfcla}et @) =1,

gla,c)= |Og( ) whenQ{c | a} > 0, (3.23)

ceX*
and hencé/z(a) = 0. We infer that

Qlc|a) =e“IQ(c| a). (3.24)
Using this and the definition (3.23) gfwe see that

v(a, ¢) = €“IQ(c | apvi(@) = Qfe | a}ua(a). (3.25)

To identify oz, by Perron—Frobenius theorem, we only have to find the eigenvalue corresponding to a strictly
positive (right) eigenvector, which turns out to t3e Indeed, for all € X,

Y Az@byiby= Y Qclbim@ ondy= Y vb,omac)=via),
beX (b,c)e X x X* (b,c)eX x X'*

using the shift-invariance of in the final step. This shows that = 1 and, by uniqueness of the eigenvector,
v1 = ug. Hence (ii) follows from (3.25).

Conversely, fixg for which oz = 1 and (ii) holds. Summing overe X in (ii) we have that; = u; and hence
v < v1 ® Q. Moreover, for alla € X,

vi(@) =Y Agla,bnb)y= Y m@cQlclbb)= Y mac)vb,o),

beX (b,c)eX x X* (b,c)eX x X*
hencev is shift-invariant. Moreover, using(a, ¢) = Q{c | a}vi(a) and the definition of), we get
Qfc | a)
Qfc | a}

Hyllvi®Q) = Z v(a, c)log

(a,c)eX x X*

=/§(a, c)v(da, de),

which completes the proof.O
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The next lemma is key to the proof of the lower bound in Theorem 2.2. It allows us to focus on those shift-
invariantv € M(X x X*) with strictly positive first marginal, for whict§ of Lemma 3.5 is bounded above. If
veEM(X x X*)anda € X we writev(- | a) =v(-,a)/vi(a).

Lemma 3.6. Suppose) is an open subset o¥1(X x X'*) andv € O with J(v) < oco. Then, for any > 0, there
existsv € O with J(v) < J(v) + 8, such thati is strictly positive andi(c | a) < Q{c | a}/y for somey > 0 and
all (a,c) e X x X*.

Proof. Recall our assumption tha is weakly irreducible and critical. This implies the existence of a strictly
positive probability vectorg on X' such that

v¥i(a, ) =Qfc|aluo(a) € M(X x X™)

is shift-invariant withvj (a) = uo(a) and J (v*) = 0. Fixingv € O with J(v) < oo, we have for each @ ¢ < 1
thatv, = (1 — ¢)v + gv* is shift-invariant inM (X x X*) with (v.)1 strictly positive and

ve(cla)=0 < (a,c) € X x X* satisfieQ{c|a}=0.

By convexity ofJ (-) we know that/ (v;) < (1—¢)J (v). Further,[ fdv, — [ fdvase | 0,foranyf: X x X* —
R which is either bounded or satisfig$b, c) = m(a, ¢)1p,(b) for somea, bg € X. As O is open inM (X x X*),
it follows thatv, € O for all ¢ > 0 small enough.

In view of the above, we may and shall assume hereaftenthatstrictly positive and (¢ | a) = 0 exactly for
those valuega, ¢) € X x X* whereQ{c | a} = 0. In particular, the matrig g given by

Aoola,b)= Y m(a,c)v(c|b), fora,beX, (3.26)
ceX*

has nonnegative entries and is weakly irreducible. Its Perron—Frobenius eigenvalue, déagi®dequals 1, and
the corresponding right eigenvectes,o equalsvy and hence is a strictly positive probability vector 4h The
corresponding left eigenvectog g is a probability vector which is strictly positive okj.. Clearly, for eachb € X,
there existg1 = ¢1(b) such thatQ{c1 | b} > 0, hence also(c1 | b) > 0. Recall that fob € X; we haveQ{c | b} > 0
(and hencev(c | b) > 0) for only finitely manyc € X*. Consequentlyy (c | b) < Q{c | b}/y for somey > 0 and all
c € X*, b e X;. The proof of the lemma is complete if the same applies fab all¥,.

Assuming hereafter that this is not the case, VEDGX, m(a, ¢) uniformly bounded unde@, there must exist
bo € X, andc2 = c2(bg) € X* such thatQ{cz2 | bo} > 0 (and hence also(cz | bg) > 0), with Zan, m(a, c2)
large enough to guarantee t@faex, vo,0(a@)(m(a, c2) —m(a, c1(bg))) > 0. Letc1(b) be arbitrary fow € &;, and
c2 = c1(b) for all b # by.

Using these:; andc,; we next construct probability measungs, (- | b)) on X* for 0 < y < yp and|x| < 1/2,
such that for each € X andc € X* we have

® v y(c|b) <Qfclbl/y,
e v, ,(c|b) = voolc|b)=v(c|b)asx — 0andy |0,
o v y(clb)y=0ifand onlyifv(c|b)=0.

Further,
IiTjng(vx,y(- 15) [ Q{-15}) < H(voo(- 15) | QL | b)), (3.27)
¥i0
and
Ary(a.b)= Y m(a,c)vey(c|b)— Aoola.b), foranya.beX. (3.28)

ceX*
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Note thatA, ,(a, b) = 0 if and only if Ago(a, b) = 0, so withAg o weakly irreducible, the same applies4g ,.
The functionf (x, y) = 0(Ax,,) is thus continuous in this range 6f, y), as is also the strictly positive Perron—
Frobenius right eigenvector, , of A, ,, normalized to be a probability vector oti. Our construction is such
thatAy o = Ag,0+x B whereB(a, b) = v(c2 | b)v(c1 | b)(m(a, c2) —m(a, c1)). Thereforef (x, 0) is continuously
differentiable atc = 0 with
%(0 0 — > a.bv0,0(@) B(a, b)ug,o(b)
ox > vo,0(@uo,0(a)

By the implicit function theorem, there existy) — 0 asy | 0 such thatf (x(y),y) = f(0,0) =1 forally > 0
small enough. It follows thab, , (b, c) = vy y(c | b)uy,,(b) defines a shift-invariant probability measurg,
M(X x X*) for x = x(y) and ally > 0 small enough. Moreover,

> 0.

/M(a,C)vx(y),y(b, de) = Ax(y),y(@, D)ux(yy,y(b) — Ao,o(a,b)uo,o(b)=/m(a,C)V(b, de),

for eacha, b € X andy | 0, implying the convergence of(,) , to v in the topology of M (X x X*), and by
(3.27) and shift-invariance, also

iMSUpJ (ve(y).y) =lIMSUPD "ty (BYH (viiy) (- 1 5) | Q- | B})
0 WO pex

<Y uoo®)H (voo(- | b) | Q- b}) =T (v),
beX
which completes the proof of the lemma subject to the constructiop of- | b).
We now turn to this construction. For ahy| < 1/2 we define the probability measure
vy,0(c|b) =v(c|b) +xvic2|b)v(ct|b)(Lie=cs) — Lie=c1))- (3.29)

In particular, vy o(c | b) = 0 exactly wherev(c | b) = 0 and A, o = Apo + xB as stated. Letyy =
Qfc2 | boy minyex, Q{c1 | b} > 0 further reducingyp as needed to ensure thatc | b) < Q{c | b}/yo for any
ce X* andb € &;. For any O< y < yo define the probability measures , (- | b) by

vy y(c|b) = min(vx,o(c | b), Qfc | b}/y) for ¢ # c1,
veyler|b) =veoler|b)+ Y (v(e|b) —Qlc|b}/y),. (3-30)
c#cy

with  indicating the positive part. Our choice gf results inv, (- | ) = v(- | b) wheneve e &; and further
guarantees that

Vx,y(c2 | bo) = vy,0(c2 | bo) < Q{cz2 | bo}/y
and v, y(c1 | b) <1< Qfey | b}/y for all b e &, |x|] <1/2 and O< y < yo. Hence we have as stated that
Ve y(c|b) <Qfc|b}/yforallc e X* andvy y(c|b) =0ifand onlyifv(c | b) = 0. MoreoverA, , = A, o+ Ey,
for

Ey(a,b)= )" (m(a,c1) —m(a,c))(v(c|b) — Qfc|b}/y),.

ceX'*

in particular,E\ (a, b) = 0 for b € X;. Writing n(c) =n if c € X”. Recall that) " .n(c)v(c |b) =), Aoo(a,b) <
oo for all b € X, so by dominated convergence

[Ey(@ )] < ) () +n@)vie ] D)Lpcin-iann 3 O
ceX*

and consequently, as stated, each entryt,0f is continuous in(x, y) € (—=1/2,1/2) x [0, yo). By the same argu-
ment,Z#Cl(v(c | b) — Q{c | b}/y)+ — 0 asy | 0, implying the pointwise convergeneg ,(c | b) — v(c | b) for
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each(b, c) € X x X*. Turning to (3.27), note that it suffices to consider ohlg X,. Recall that for any; > 0
the functionzlog(z/q) increases it € [¢, 1], and if v, , (c | b) # voo(c | b) andc # c1, ¢ # c2, then necessarily
0 < Qfc|b} <y y(c|b) <voplc|b) <1. Consequently,

vey(c | b) vo,0(c | b)
C;u”(cw)log oo \C;v o0(e| b)log .
c#cp cFc2

yielding (3.27) since, ,(c; | b) — voo(c; | b) andQ{c; | b} >0fori=1,2andb e .. O
Using Lemma 3.6 we now establish the lower bound in Theorem 2.2.

Lemma 3.7. For each open se® C M(X x X*),

I|m|nf IogIP’{MX €0 |IT|=n}> |nf J(v).

Proof. Suppose thab is an approximate minimizer on the right-hand side. We can assume without loss of gen-
erality thatJ (v) < oo, hencev is shift-invariant withv < 11 ® Q. By Lemma 3.6 we may and shall assume in
addition thatv is strictly positive and the functiof associated to via (3.23) is bounded from above. Recall from
Lemma 3.5 thap; = 1, and the corresponding Perron—Frobenius eigenvegtsatisfies

v(a,c) =Qfc|ajuz(a), forevery(a,c) e X x X%, (3.31)
and further thaH(v vi ® Q) = [ g(b, c)v(db, dc). It thus suffices to show that
liminf = IogIP’{MX €0 ||T|=n}> /g(b c)v(db, de). (3.32)
n—-oo n
Sinceg is bounded above, fixing> 0 we can choose an open €21C O such thav € O and(g, u) <{(g,v)+e

for all u € O. We use the transformed probability measufesnd the formula (3.10) for their density, to get

~(d
P{Mx € O, |T|=n} >E{—~(T)1{Mxe5}l{T=,,}} {nexp( (X ), C(v)))l{MX€0}1{|T|_n}}

veV

>exp( n(g, v)—na)x]P’{MXEO |T|:n}.
Dividing by IP{|T| =n} and recalling Lemma 3.1 gives

liminf = IogIP’{MX €0|IT|=n}>-n(g, )—ns+||m|nf IogIP’{MX €0 | IT|=n}.

n—o0

The result foIIows once we show that

Ilmsup IogIP{MX ¢0||T|=n}<0. (3.33)
n— oo
We use the upper bound (but now with the [&Bweplaced byP’) to establish (3.33). Indeed, singes bounded
from above, we hav@{e"N |a} < oo foralla e X andn > 0. So, denoting
F) = { Hy||v® (@) if vis s_hift-invariant (3.34)
00 otherwise
the upper bound gives
limsup= Iog}P’{MX¢0||T|_n} |nf J(),

n—oo N
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wherel" c O¢is a compact subset g¥1 (X x X'*). It suffices to show that the infimum is positive. Suppose, for
contradiction, that there exists a sequebgevith J() 4 0. By compactness af and lower semicontinuity of

v J(v), we can extract a limit point € I" with J (%) = 0, and hencé is shift-invariant and? ( || i, ® Q) = 0.
This implies thati(a, ¢) = Q{c | a}v1(a), for every(a,c) € X x X*. Then, using shift-invariance df, for any

be X,

Yo Qelamb,on@= )Y @ cmb,c)=0b)
(a,c0)eX x X* (a,c)eX x X'*

By the uniqueness of the Perron—Frobenius eigenvector we infeftkati; = v1 and this impliesh = v, which
contradicty e I'. O

We complete the proof of Theorem 2.2 by noting that the rate functibms compact level sets, i.e. igaod
rate function. This follows from abstract considerations as stated, e.g., in [4, Theorem 1.2.18].

3.4. Proof of Theorem 2.1

Note thatX is an irreducible, critical multitype Galton—Watson tree with offspring law

Q{c|b}=pmn) 1_[ Qla; | b}, forc=(n,as,...,a,), (3.35)
i=1
such that all exponential moments are finite. We derive Theorem 2.1 from Theorem 2.2 by applying the contraction
principle to the continuous linear mappitig M (X x X*) — RY*X  defined by

F(v)(a.b)= Y m(b,c)v(a.c) forallve M(X x X*)anda.be X. (3.36)
ceX*

Indeed, Theorem 2.2 implies the large deviation principleAoM x) conditioned on{|T| = n} with the good rate
function (1) =inf{J(v): F(v) = u}, see for example [4, Theorem 4.2.1]. Convexity dbllows easily from the
linearity of F and convexity of/. It is easy to see that ofi7| = n} we haveLy = "5 F (Mx). It follows that
conditioned on{|T| = n} the random variableg x are exponentially equivalent t6(My), henceL x satisfy the
same large deviation principle #&My), see [4, Theorem 4.2.13]. Without loss of generality we restrict the space
for the large deviation principle df x to the set of all probability vectors oki x X, see [4, Lemma 4.1.5(b)].

Turning to the proof of (2.3), recall thatis shift-invariant if and only ify ", F(v)(a, b) = v1(b) forall b € X.
Hence, if alsoF (v) = i, then necessarily; = 2 and consequently,

1) =inf{H© [n ®Q): FO) = pt, v1 = pia}. (3.37)

Note thatvi(a) = 0 yields) ", F(v)(a, b) = 0. Hence ifiu1(a) > 0= u2(a) for somea € X then{v: F(v) = p,
v1 = w2} is an empty set, and therefoféu) = co. Assuming hereafter that; < w2, it is not hard to check that

o4 M(aa')
1) = i LQ{-1a}), 3.38
(W) ;M(a) (,uz(a) Q |a}) (3.38)
where forg : X — Ry andg € M(X*),
(¢, q)= inf{H(D lq): T € M(X*), p(b)= Y m(b,c)i(c) forall b e X}. (3.39)
ceX*

Suppose now that(c) = p(n) [, ¢ (a;) for all c = (n,ax, ..., a,), whereg(-) is a probability vector ot and
p(-) a probability measure with mean one on the nonnegative integers, whose exponential moments are all finite.
With z =3, ¢ (b) we show next that,

[($.q) =zH(¢/z11§) + I,(2). (3.40)
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Once this is done, we combine (3.40) #¢) = Qf- | a} andz = u1(a)/u2(a) with the representation (3.38) of
I (i), which directly yields the formula (2.3), thus completing the proof of the theorem.

To prove (3.40), suppose first that= 0, i.e.¢(b) = 0 for all b € X. In this casep((0,?)) = 1 is the only
possible measure in (3.39), leadinglt@, ) = —logq((0, #)) = —log p(0), whereas it follows from (2.2) that
I,(0) = —log p(0) establishing (3.40) for suah(-). Assume hereafter that> 0. Now the possible measure¢)
in (3.39) are of the forn¥(¢) = s(n)v, (a1, ...,a,) forc=(n,as, ..., a,), with vg =1, wheres(-) is a probability
measure on the nonnegative integers whose meanasduv, (-), n > 1, are probability measures ot with
marginalsv,_; (-) such that

]

d(b) = Zs(n) Z vni(b) forallbeXx. (3.41)

n=1 i=1
By the assumed structure @f - ) we have for suchi(-) that

[e.e]

H®llq)=Y_sm)H@,11§") + H(s | p), (3.42)

n=1
)

with equality whenevep, = []7_; v,; andv,; are independent of andi (see [4, Lemma 7.3.25] for the first
inequality, with the second inequality following by convexity Hf- || §) and the fact tha} _, s(n)n = z). So, in
view of (3.41),

whereg” denotes the product measure & with equal marginalg. Recall that

o0 oo

Y smH@ G =Y sy Huei 1) > zH(ZlZS(n) > v
n=1 i=1

n=1 n=1 i=1

HWlq)=zH(@/z11q)+ H(s | p), (3.43)

with equality wherw, = (z~1¢)" for all n > 1. Recall that with all exponential moments pf-) finite, I,(z) =
inf{H (s || p): s(-) a probability measure ofd, 1, ...} and}_, s(n)n = z} (see [4, (2.1.27)] for a similar identity).
Combining this with (3.43) leads to (3.40) and completes our proof.

3.5. Proof of Theorem 2.3

To help the reader struggle through the main definitions of space of trees and projections between them, we have
added a table in an appendix at the end of the paper.

In the first step of the proof we extend the result of Theorem 2k2deneration empirical offspring measures,
for eachk > 2, in caseQ is irreducible and the offspring size is bounded by some non-randgr co.

For eachk > 0, let X' (k) be thefinite set of typed trees with height at mdstand maximal degred/p + 1,
equipped with the discrete topology (in particul&i0) = X). Letn; : X — X (k) be the canonical projection ob-
tained by removing all vertices in generations exceediagdrn; ; : X (k) — X (1), k > [, the projections obtained
by removing all vertices in generations exceeding

If X is a finite typed tree and is a vertex in this tree, we denote B§ the subtree rooted in and let the
k-generation empirical offspring measurM§ associated t& be defined as

MY (b) = % > bmxuy(b), forallbe X (k) (3.44)

veV
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(for exampIeM}((b) = Mx(a,c) whereb € X(1) has root of typea with n children of typesas, ..., a, and
c=(n,as,...,ay)). Givena € X(k — 1) andb € X (k) we writemy (a, b) for the number of childrem of the root
in b such thab’ = a. A measureq on X (k) is calledshift-invariantif

pom (@)= Z mp(a,b)ub), forallae Xk —1). (3.45)
beX (k)

We equip the spacé1(X (k)) of probability measures o (k) with the smallest topology which makes the func-
tionalspu — f f du continuous for each boundett X (k) — R (since the maximal degree is boundedtik), it
follows thatsu > [‘my(a, x) di(x) is also continuous for eache X (k — 1)).

Defineu o ”k_,/}fl ®1 Q as the measure afi' (k) obtained by providing children for each vertex of the- 1
generation, independently according to the transition mechaisamd define the function

Je(w) = { H(ullpomgiy® Q) if wis shift-invariant (3.46)
o0 otherwise

on M (X (k)). Note that/;(-) coincides with the good rate functiok(-) of Theorem 2.2.

Lemma 3.8. Suppose thaX is an irreducible, critical multitype Galton—Watson tree with uniformly bounded
offspring sizes, conditioned to have exactlyertices. Then, for — oo, the k-generation empirical offspring
measureM§ satisfies a large deviation principle iV (X (k)) with speed: and convex, good rate functiof (-).

Proof. Forl > 0 letX’{l} c X (/) be the support of; (X) for a multitype Galton—Watson tre¥ corresponding to
the transition mechanisi@ starting at any strictly positive measure (o). Let X, {l} be the partition oft'{/}
according to the height =0, 1, ...,[ of the tree. Let

T1(b) =g p—1(b) € X{k — 1},
Io(b) = (n,b*1, ..., b") € X{k — 1}*,

whereuy, ..., v, are the vertices in the first generationkof X'{k} ordered from left to right.

To prove Lemma 3.8 we intend to apply Theorem 2.2 to a multitype Galton—-WatsoiX tozethe enlarged
finite type spacet' {k — 1}. We mark the objects related to this new tre€’by

The process is constructed by choosm’g(p) using the law ofr;_1(X), and the offspring number and types of
a vertexv asC(v) Z>(b) for the typed treé € X' {k} obtained by providing children for each vertex in generation
k—1of X(v) independently according to the transition mechan{m

With Q irreducible, it is easy to check that aaye X'{k — 1} can be reached by finitely many steps of the
transition mechanisr for X starting at any € X;_1{k — 1}. Further,

No
beXi{k—1}forsomel <k—1 = suppQ{-|b}C | Jin} x X{ - 1",
n=0

T:X{k}— X{k—1} x X{k—1}* given by{

implying that A(a, b) = 0 whenever € X,,{k — 1} for somem > I. Consequently@ is weakly irreducible on
X{k — 1}. Let ug denote the Perron—Frobenius eigenvector of the irreducible métriwrmalized to be a strictly
positive probability vector otk’. Then,u; = ;-1 ®1 Q for I > 1 are strictly positive probability vectors oti{l},
such thafu; o ”1,_11—1 =1 foralll > 1. Moreover, withug the right eigenvector corresponding to the eigenvalue
1 of the matrix A, it follows by induction on/ > 1 that u; are shift-invariant onX' (/). In particular, for any
aeX{k—1},

Y A bwaky= Y. > i, 0Qc| b))
beX{k—1} beX{k—1} ce X {k—1}*

= Y mi(a,b)u-1801Qb) =y 1(a).
beX{k})
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With u_1 a strictly positive right eigenvector for the eigenvalue 1 and the matrixe see tha@ is also critical.
Consequently, we have from Theorem 2.2 thigt satisfy the large deviation principle i (X' {k — 1} x X {k — 1}*)
with the good rate functiod (-) corresponding t@).

For eachv; € M(X{k — 1}) the measure1 o Q is supported on the closed (finite) §&t¥'{k}). Consequently,
My is supported o (X {k}) as is any for which J(v) < 00, allowing us to restrict this large deviation principle
to M(Z(X{k})). Identifying M(Z(X{k})) with M(X{k}) via the mappingt = v o Z, the law of My is exactly
mapped to that oM% . Moreover,

v e M(Z(X({k})) is shift-invariant <= is shift-invariant on¥ (k),

as defined in (3.45), with; = p o7, and(n ® Q) o T = (o T 1) ®1 Q. This leads to the large deviation

principle forMé‘( with the good rate functiody(-), restricted taM (X {k}).
To complete the proof it suffices to check that any shift-invariant measaré 1 (X (k)) with

<L pom r 1 ®Q in M(X(K)

is supported byX{k}. To this end, fix a shift-invariank in M (X (k)) and note that/ N[m]du = 1 for m =
1,..., k. Hence we can associate shifted probability meastifégs) € M (X (k — m)) with u such that

Py =, S"(w) =S(8"tw), form=1,....k

whereS(u) is defined as in (2.14). The shift-invarianceofmplies thatS™ (i) o ”{}m,l is independent oz =
0,....k—1.

Recall that the measu®¢—1(u) of each(a, c) € X (1) is the expectation under of the number of vertices
of generationk — 1 of the tree whose type i € X and which have offspring € X*. Our assumption that
1< oy ® Q thus implies that

suppS*~1(u) c suppuy = X{1}.

ConsequentlyS™ (i) o ”/;lm,l are supported byy'{1} forallm =0, ...,k — 1, which implies thaj is supported
by X{k} as claimed. O

To move from the empiricat-generation offspring measur%)k( to the empirical subtree measufg we use
the Dawson—Gartner theorem, see e.g. [4, Theorem 4.6.1]. Note that the dfi@agemnd the canonical projec-
tionsmy ;, k > 1, form a projective system of Polish spaces and that the projective limit coincides with the Polish
spaceY.

Similarly, the probability measures cti(k) with the projectionsr’; defined by’ (1) = p o nk_,l form a pro-
jective system and the projective limit is the Polish spadéX’) described before Theorem 2.3 and the canonical
projectionsr;f : M(X) - M(X(k)) can be defined by (1) = onk_l. Details follow from an argument similar
to the one given in [4, Lemma 6.5.14]. Recalling th( =Txo n,jl, the Dawson—-Gartner theorem yields the
following corollary of Lemma 3.8 (see for example [4, Corollary 6.5.15] for a similar derivation).

Corollary 3.9. Suppose thaX is an irreducible, critical multitype Galton—Watson tree with uniformly bounded
offspring sizes, conditioned to have exaathertices. Then, fot — oo, the empirical subtree measury satisfies
a large deviation principle inM(X') with speed: and convex, good rate function

K () = supJi(p o ).
k>1

To complete the proof of Theorem 2.3 it just remains to showﬁﬁ(a} = K (-). For this purpose first assume
thatu € M(X) is shift-invariant. Then, for each> 1 anda € X'(k — 1),
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N
(o) om i@ =S or i@ = [ ) Ybyr @ = [duComitamx)
i=1

= Z ;/,oﬂk_l(b)mk(aab)-

beX (k)

In other words, for eaclh > 1, the measure: o 71,:1 is shift-invariant in M (X (k)). Conversely, ifu o 711:1 is
shift-invariant inM (X (k)) for everyk > 1, the same calculation shows that= S(u) on the collection of sets of
the formn,:l(A) foranyk > 1 andA c X (k). As this collection of sets is closed under finite intersections and it
generates the Borel-field on X', we infer thaty itself is shift-invariant.

Recall the definition of the projectiomps, p; for backward trees from Section 2.3. For the proof of Theorem 2.3
it only remains to verify the following lemma.

Lemma 3.10. For every shift-invariant probability measureon X we have

H(u oprtufopyt®@Q) = fugHw o Hinon @1 Q). (3.47)

>

Proof. Define projectionsr,f : X — X(k) as follows: Order the vertices, vo, ... in generatiork — 1 of x € X’
from left to right, withv, the leftmost. The tre&,{ (x) is obtained by removing all vertices in generations exceeding
k and all vertices in generatidgrwhose parentis someg,/ > j.In particularﬂkl(x) = mr_1(x) andn,f (x) = mr (x)
forall j > N[k —1](x). Letuo (n,{)‘l ®; Q denote the measure obtained by sampihgccording tqu and then

independently adding offspring according@oto each of the verticeg for [ > j in generationk — 1 of n,Z(X).
Observe that we define this measuredtirj and that in many cases no vertices in generati@me removed or
added. Assume first that o nk_l <L Mo ”k_—ll ®1 Q. Then, in caseg: o nk_l(x) >0andN[k — 1](x) =n>1we
find that

Monk_l(x) B uo(n,g+l)_1®j+1(@(x)

pom h®QW) i o) 1®; QW)

(3.48)

with all the terms on the right-hand side positive. Recall the definition of the meaguie= u* o pk__ll and the

projectionspo k—1, p1.k—1 0N X[k — 1] from Section 2.3. Also recall thay, v) € X[k — 1] denotes the tregee X
with centrev in generatiork — 1 of y. Hence, for I< j <n,

po /™M@ 1Qw)  m-10pr; 4 (1] (), )
po(mH1®; Q) pk-10pgi_y ® QU] (1), v))

with all terms positive. Note that

(3.49)

Nk=1(x)=0 = pom *()=pomri®1QW),

whereas ify = 7/ (x) with N[k — 1](x) =n > 0 thenN[k — 11(y) =n andu o (x}) "(y) = o py+_4 (v, v;) for
any 1< j < n. Hence, (3.48) and (3.49) imply that '

Nlk—1](x) -1 J

~ . _ Hk—10Pq ;10T (X),v))
H(Monkl”MO”k_ll@lQ): E E “onkl(x)log( T J

xeXk) j=1 Mk-10Pg;_1® Qi (), v))

= H(uk-10P15_1 | ri-10pg5 1 © Q). (3.50)
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Finally, note that
pom'(x)>0 and por Y ® Qx)=0 forsomex € X (k),

if and only if there exists X j < N[k — 1](x) such that
k—1 0 pi%fl(n,{ (x), vj) >0 and pug_10 paLl ® Q(n,‘(j (%), vj) =0.

Consequently. ot < pomly ®1 Qifand only if ;1 0p3 ¢y < pr—10pg;_4 ® Q, with (3.50) holding for
any shift-invarianfu € M(X) andk > 2. By the identitiegy o po = Po.k © px andpg o p1 = p1.x o px this amounts
to

H(pom Hnom y @1 Q@ =H(u oprto oty | (W opgt @@ o pty). (3.51)

The variational characterization of the relative entropy states that, for two probability meaguresn the Polish
spacex,

H(vio pk_l lv2o pk_l) = sup {/(j) o prdvy — |ng efork dvg},
¢eCp(X[k]) ¥ ¥

whereC, (X[k]) is the set of continuous, bounded functionsfk] (see for example [4, Lemma 6.2.13]). Obvi-
ously, this expression is increasingkmand by the same representation it is boundedflyy; || v2), which together
with (3.51) shows that the left-hand side of (3.47) is at least as large as its right-hand side.

Conversely, for any continuous bounded functibn¥ — R ande > O there exists a uniformly continuous
functiony : X — R such that

Iog/ed’dvz—log/ e/ dvp| <& and ‘/¢dv1—/wdv1
X X X X

Moreover, withX being the projective limit oft'[k], we can find & > 1 and a continuous, bounded function
Yk : X[k] — R such thaiy ¥ o pr(x) — ¥ (x)| < e for all x € X. Hence

sup sup {f¢opkdv1—|09f efork dvz} > sup {f¢dv1—log/ e¢dv2},
k>2¢eCp(X[k]) $eCp(X)
X X X X

<é&.

which together with (3.51) shows that the right-hand side of (3.47) is at least as large as its left-hand side. This
completes the proof of the lemman

Appendix. Notation for spaces and projections

For the reader’s convenience we collect here the most important pieces of notation as they occur in the proof of
our process level large deviation principle, Theorem 2.3.
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X space of all finite and infinite rooted, planar trees

X(k) space of finite trees with height at mdast

X — X (k) canonical projection obtained by removing all vertices in generatién
el X (k) — X(I) canonical projection obtained by removing all vertices in generation
X[k] space of trees of height at led&stvith distinguished centre in generatién

pu - X[kl — X[l]  projection obtained by removing all vertices whose last common ancestor with the centre
lived before generatioh — [

pox: X[k] > X[k] projections removing all vertices in generation- 2 and all those in generatigmn- 1, who
are offspring of the centre and its right siblings

p1i: X[k]— X[k] projections removing all vertices in generation- 2 and all those in generatidn- 1, who
are offspring of right siblings of the centre

X space of backward trees, projective limit spaceYfk]; pri; k > 1)

pi - X — X[k] canonical projection satisfyingy; o px = p; fork > 1

po,p1: X > X projective limits ofpg «, p1.x defined bypi o po = po.x o px andpy o p1 =p1.k © pk
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