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Abstract

We define a stochastic integral with respect to fractional Brownian ma@fémwith Hurst parameteH e (0, %) that extends
the divergence integral from Malliavin calculus. For this extended divergence integral we prove a Fubini theorem and establish
versions of the formulas of Itd and Tanaka that hold forralé (O, %). Then we use the extended divergence integral to show

that for everyH € (%, %) and allg C3(R), the Russo-Vallois symmetric integrﬁUf g(BtH)dOBtH exists and is equal to
G(Bf") — G(BM), whereG’ = g, while for H < (0, %], fab(BtH)zdoB,H does not exist.
0 2004 Elsevier SAS. All rights reserved.
Résumeé

Nous définissons une intégrale stochastique par rapport au mouvement brownien fractiBfinairec paramétre de Hurst
H € (0, %) qui généralise l'intégrale du type divergence du calcul de Malliavin. Pour cette intégrale de divergence généralisée
nous montrons un théoreme de Fubini et nous établissons des versions des formules d'Itd et Tanakafpmmlo%ll. Ensuite
nous utilisons l'intégrale de divergence généralisée pour démontrer quélpolq%, %) etg € C3(R), l'intégrale symétrique
de Russo—VaIIois[abg(BtH)dOB,H existe et vauG (Bf?) — G(BX), ou G’ = g, alors que pout € (0, %], fab(BlH)ZdoB,H
n’existe pas.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

A fractional Brownian motion (fBm)BY = {BtH,t € R} with Hurst parameteH < (0,1) is a continuous
Gaussian process with zero mean and covariance function

1
ELB/ BJ] = S (1t + || — |t — 5|2, (1.1)

If H= % then B is a two-sided Brownian motion, but fa¥ % {BtH, t > 0} is not a semimartingale (for a
proof in the caseéd e (%, 1) see Example 4.9.2 in Liptser and Shiryaev [18], for a general proof see Maheswaran
and Sims [19] or Rogers [31]).

It can easily be seen from (1.1) that

E[|Bf — BI1?] = |t — 5?1,

Hence, it follows from Kolmogorov’s continuity criterion (see e.g. Theorem 1.2.1 in Revuz and Yor [27]) that on
any finite interval, almost all paths @ are g-Holder continuous for alp < H. Therefore, ifu is a stochastic
process with Holder continuous trajectories of order 1 — H, then, by Young’s theorem on Stieltjes integrability
(see [33)), the path-wise Riemann-Stieltjes integ"gaht(a)) dBH (w) exists for allT > 0. In particular, ifH > %

the path-wise integrajor f/(BFydB[ exists for all f € C?(R), and

T
f(BE) — f(0)= / fBfHdsH
0

(more about path-wise integration with respect to fBm can be found in Lin [17], Mikosch and Norvaisa [21], Z&hle
[34] or Coutin and Qian [8]).

If H< % the path-wise Riemann-Stieltjes integfél f'(B'ydBH does not exist. FOH = % the stochastic
integral introduced by It6 [16] has proven to be a very fruitful approach and has led to the development of classical
stochastic calculus. Gaveau and Trauber [11] and Nualart and Pardoux [23] proved that the Ité stochastic integral
coincides with the divergence operator on the Wiener space. Later, several authors have used the divergence oy
erator to define stochastic integrals with respect to fBm with arbitfary (0, 1). See for instance, Decreusefond
and Ustiinel [9], Carmona, Coutin and Montseny [6], Alos, Mazet and Nualart [2,3], Coutin, Nualart and Tudor
[7]. In[3] itis shown that ifH € (711, 1), then for all functionsf € C2(R) such thatf” does not grow too fast, the
divergence of the proces$g’ (B/?), t € [0, T]} exists and

T T
fBE) - (0= / f'BHsBI + H / f(BH?H L. (1.2)
0 0

In [7] it is proved that for allH € (%, 1), the processgsign(B¥), ¢ € [0, T1} is in the domain of the divergence
operator, and a fractional version of the Tanaka formula is derived. Privault [26] defined an extended Skorohod
integral for a class of processes that satisfy a certain smoothness condition and showed that for this integral,
formula (1.2) holds for every € (0, 1) and all f € C2(R) such thatf, /" and f” are bounded. However, when

using the approach of [26], the integral with respect to fBm wftte (O, %) cannot be defined directly but must

be constructed by approximating fBm with more regular processes. Similarly to [3], Hu [14] defined a stochastic
integral with respect to fBm by transforming integrands and integrating them with respect to a standard Brownian
motion. Provided they both exist, the integral with respect to fBm defined in [14] coincides with the one in [3].
Duncan, Hu and Pasik-Duncan [10] introduced a stochastic integral for meHvktr(%, 1) as the limit of finite

sums involving the Wick product. It is shown in Section 7 of [3] that again, this integral is the same as the divergence
integral if both exist. Leaving the framework of random variables and working in the space of Hida distributions, Hu
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and Pksendal [15] as well as Bender [4] developed the integral of [10] further. In [4], fAr al(0, 1), a fractional

Tanaka formula is proved, and an extended version of the formula (1.2) is shown to hold under the assumption that
f is a tempered distribution that can also depend and satisfies some mild regularity conditions. Gradinaru,
Russo and Vallois [12] proved a change of variables formula for fBm With [%1, 1) that holds for the symmetric
integral introduced in Russo and Vallois [28]. If both exist, the Russo—Vallois symmetric integral differs from the
divergence integral by a trace term. For more details, see [1] or the introduction of [12].

In this paper we first explore how generally a stochastic integral for fBm can be defined by using the divergence
operator from Malliavin calculus, and in particular, whether for the divergence operator, there exist versions of
It6’s and Tanaka’s formula for fBm with ankl € (0, %). Then, we study Russo—Vallois symmetric integrals of the
form [* ¢(B/") d®BH, for deterministic functiong : R — R.

It turns out that the standard divergence integral of fBm with respect to itself does not eist (D, %], the
reason being that in this case, the paths of fBm are too irregular. However, in the right setup, the standard divergence
operator can be extended by a simple change of the order of integration in the duality relationship that defines the
divergence operator as the adjoint of the Malliavin derivative. The definition of this extended divergence operator
is simpler than the definitions of the stochastic integrals in [26,14,15] and [4]. Moreover, it can be shown that for
the extended divergence operator, a Fubini theorem holds as well as versions of the formulas of It6 and Tanaka for
fBm with any H € (0, %). By localization, the extended divergence operator can be generalized further, and one
can prove that for everff < (0, %), formula (1.2) holds for allf € C2(R). A similar formula is valid for arbitrary
convex functions. Hence, the change of variables formulas that we show for the extended divergence integral in this
paper are valid for more general functiofighan the change of variable formulas in [26]. On the other hand, our
change of variables formulas for the extended divergence integral are neither more nor less general than the ones
in [4]. Whereas in [4]f does not need to be a twice continuously differentiable or convex function, it cannot grow
to fast at infinity. Another important difference between the divergence integral in this paper and the stochastic
integral of [15] and [4] is that the stochastic integral of divergence type in this paper is always a random variable
whereas in [15] and [4], the stochastic integral is defined as a Hida distribution. In the last section we use properties
of the extended divergence integral to show that for all real numbanslb such that-co < a < b < oo and every
H e (%, 3), the symmetric integral

b
/ g(BH Bl (1.3)

a

in the Russo—Vallois sense exists forak C3(R) and is equal tGG(Blf’) — G(BH), whereG’ = g, while on the
other hand, for € (O, (—15], the symmetric integra[a"(B}’l’)2 dOB,H does not exist.

ThatH = %3 is a barrier for the existence of integrals of the form (1.3) was simultaneously and independently
discovered in the paper [13] by Gradinaru, Nourdin, Russo and Vallois. Their method of proof is different from
ours and to show that the integral (1.3) exists forrlk %, they need thag € C°(R). On the other hand, their
result holds for more general symmetric stochastic integrals than the one considered in this paper.

The structure of the paper is as follows. In Section 2, we collect some facts from the theory of fractional calculus
and discuss the first chaos of fBm with Hurst paraméter (0, %). In Section 3, we show that i < (0, %], then
for —oo <a < b < o0, the procesthHl(a,b] (t) is not in the domain of the standard divergence operator. We then
introduce an extended divergence operator and prove a Fubini theorem. Section 4 contains versions of the formulas
of It and Tanaka for fBm with Hurst parametére (O, %). In Section 5, we show that feroo <a < b < 00, the

Russo—Vallois symmetric integr# g(B)d®BH exists for allg € C3(R) if and only if H > %, in which case it
is equal toG (Bf') — G(BH), whereG' = g.
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2. The first chaos of fBm with H € (0, 3)

Let{B/, t € R} be a fBm with Hurst parameté{ < (0, %) on a probability spacé2, F, P) such that
F=0o{B", teR}.

By £y we denote the linear space of step functions

n
{Zajl(t_,ntjul: nzl —oco<ti<tr<- <t41 <00, aj GR},
j=1

equipped with the inner product

n m
<Z ajli; 141 Zbkl<sk,sk+11>
j:l k=1

Obviously, the linear map

n m
. H H H H
= E|:§ :aj(Bth - sz ) § :bk(BsHl — By, ):|'
Eu j=1 k=1

n n
H H
Zajl(fj,fjﬂ] = Zaj(szH - sz ) (2.1)
j=1 j=1

is an isometry between the inner product spagesnd
spariB, t e R} C L%(%2),

where span denotes the linear span.

There exists a Hilbert space of functions which contdipsas a dense subspace. To describe this Hilbert space,
we need the following notions of fractional calculus. We refer the reader to Samko, Kilbas and Marichev [32] for
a complete presentation of this theory.

Leta = % — H. The fractional integral$§ ¢ andI%¢ of a functiony on the whole real axis are given by

o 1 \ a—1
I{(t) := m / (t—95)"p(s)ds, teR,
and
o 1 i a—1
Ip(t) .= m /(s — )% p(s)ds, treR,
t

respectively (see page 94 of [32]). The Marchaud fractional derivalifgsandD“ ¢ of a functiong on the whole
real line are defined by

To@) = !@ODf‘t,gw(t), teR,
where

oo
p L« (1) —p(tFs)
Leo(t) = o) / Tt ds, reR
&

(compare page 111 of [32]). It follows from Theorem 5.3 of [32] thfaand /¢ are bounded linear operators from
L2(R) to LYH (R). Theorem 6.1 of [32] implies that for al € L2(R),

Dilfp=¢ and D*I%¢p=9¢. (2.2)
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In Corollary 1 to Theorem 11.4 of [32] it is shown that
I“(LAR)) = I$(LAR)) = I* (L*(R)).

Let
1 r 1
—r(H+= 1 H-1/2 _  H-1/212
CH ( +2)(/[( +5) s IPds+ 55

0

-1/2

It follows from (2.2) that the spac” (L2(R)) equipped with the inner product

(@ W) Ay 1= ¢4 (D%, DY) 2,
is a Hilbert space. We denote it by . It is shown in Pipiras and Taqqu [24] that for ally € £x,

((p’ I//>/\1-1 = (§0’ 1»//><€1r-1

and thaty is dense in . Therefore, the isometry (2.1) can be extended to an isometry betgeand the first
chaos of(BH, t e R},

spart“D(BH | 1 e R}.
We will denote this isometry by

o B (g).

Remark 2.1.Let —oc0 < a < b < o0, and set

A(ab] {peAu: p=9plun0)}.

Letpe Ay \ A(H”’b]. Sincel® is a bounded linear operator frohf(R) to LY/ (R), there exists a constant> 0
such that for ally € 4!,

H
1/H
clle=vllay 2 le —¥lpyng = < / lo()] / dt) > 0.
(—00,a]U(b,0)

(a,b]

This shows thatA}, """ is a closed subspace dfy. On the other hand, let

e i={p el 9= 0lun®),

7 (a.b] (a,b] ; (a,b]

inAg.lfgpe 5(“ 1 there exists a sequengg; }>° ; of functions in&,
(a, b]

and denote by, the closure o,

such thatp, — ¢ in Ay and therefore also ihY/# (£2). It follows thaty € A(" P! This shows thaf(” 1 - AY
The right-sided fractional integrdf’_¢ of a functiong on the intervala, b ]is given by

¢ () = 1 b( N Yp(s)ds, re(ab
p—P .—m/s— o(s)ds, € (a, b]
t

(see Definition 2.1 of [32]). The right-sided Riemann-Liouville fractional derivafe ¢ of a functiony on the
interval (a, b] is given by

Dy _ot):=— /(s — )7 %(s)ds, te€(a,b]

( F(l—a)d
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(see Definition 2.2 in [32]). Itis shown in Theorem 2.6 of [32] it is a bounded linear operator frobt(a, b]
to L(a, b]. It follows from Theorem 2.4 and formula (2.19) of [32] that for @le L(a, b],

Dy Iy ¢=¢.
Clearly, the linear maps
M™:L%(a, bl — LYa,bl, f@)r (t—a)™®f(t)
and
M*:LYa, bl — LYa,b), f@)— (t —a)* (1)
are bounded and injective. It follows that the map
Ji=M%c I oM™ “:L%a,b]— LY(a,b)
is bounded and injective. Therefovég‘b] = J(L?(a, b)) with the inner product

7(2H —1)H

_ 1 1
WV = To omysinmH =172y 7 VIt

is a Hilbert space. In [25], Pipiras and Taqqu have shownéfﬁ’alf] is dense img’b]. Let {¢,},> , be a Cauchy-

sequence iﬁg"b]. Then, there exist functions e Eg”b] andy € kg’b] such that
¢n — ¢ in Ay and therefore also ibY/? (a, b]

and
¢n — ¥ in 11" and therefore also ib(a, b].

It follows thaty = . This shows that

(a,b] (a,b] (a,b]
el = glePl  pAleb, (2.3)

3. Extension of the divergence operator

In this section we define an extended divergence operator with resgé{ tar € R} for H < (0, %). We briefly
recall the basic notions of the stochastic calculus of variations, also called Malliavin calculus. For more details we
refer to the books by Nualart [22] and Malliavin [20]. The set of smooth and cylindrical random vartabtesists
of all random variables of the form

F=f(B"(pp)..... B (pn)), (3.1)

wheren > 1, f € C°(R") (f and all its partial derivatives have polynomial growth), apde Apy. Since

F= o{Bt”, t € R}, S is dense inL?($2) for all p > 1. The derivative of a smooth and cylindrical random vari-
able F of the form (3.1) is defined as they -valued random variable

B n i o Y |
DF—;axj(B @D.... B () 0.

Forallp > 1, F — DF is aclosable unbounded linear operator frbA($2) to L? (§2, Ay). We denote the closed
operator byD and its domain ir.? (£2) by D17,
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The divergence operatdéris defined as the adjoint of the derivative operator. por 1, let p = ﬁ > 1. By

8, we denote the adjoint ab viewed as operator from?(£2) to LP($2, Ap), that is, the domain aof,, Doms,,
is the space of processes L”($2, Ay) such that

F> E(u, DF) sy
is a bounded linear functional s, || - || ), and foru € Domé,, §,,(u) is the unique element ih”(£2) such that
E(u, DF) 2, =E[8,(w)F], (3.2)

for all F € S. Obviously, ifu € Doms, N Domé,, for different p, g > 1, thens,(u) = §,(x). Hence, one can
define

Domé := U Doms,,,

p>1
and foru € Doms$,
S(u) :=38p(u), (3.3)

for somep > 1 such that: € Dom§,.

Remark 3.1.Let —oco < a < b < oo and consider the procesB”, a <t < b} on (2, F 1 P), where
Fabl—o(BH a<t<by=0c{BH, a<t<b).

Let §(+-4] be the corresponding divergence operator defined analogously to the divergence dpieré3da). By
(2.3), a process € Up>l LP($2, A(f‘;’b]) can be viewed as a processw},>l LP($2, Ay). It can easily be checked

that ifu € ,.4 L7 (£2, A(H”’bj) N Doms, thenu € Domés@?1 as well, ands () = §@21(u).

Proposition 3.2.Let—oo < a < b < 00, and set
u =Bl 1,5 (1), teR.
Then
11
P Agl=1 forH -, =
[ueApl=1, € <4, 2>,
and

1
Plue Ag]=0, forH e <0, Z}’

Proof. First, letH € (;11, %). It follows from Kolmogorov’s continuity criterion (compare e.g. Theorem 1.2.1 in
Revuz and Yor [27]) that there exists a measurableset 22 with P[{2] = 1 such that for alb € £2, there exists
a constant (w) such that

sup | B/ (w)] < C(w)

te(a,b)
and
sup |Bf (w) — BF ()] <)
t,s€(a,b]; ts#s |t _S|l/4 h

We fix anw € 2 and set
o) = u; (@) = BE (@) Lap (1), 1eR,
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and
C( ), Wwhere _1 H
F(l— ) R R
Lete > 0. Fort € (—o0, a],
D% (1) =0.
Fort € (a, b],
o — ot —9) i
o Q) —@—ys 1
|Di,g¢(f)|<m<1{t—a>s}/‘T ds +[p ()| / s adS)
£ (t—a)ve
t—a o0 1 1
<C 1{t_a>5}/s_3/4_“ds+/s_l_°‘ds <C t—a)V* 4+ 2 —a)|.
1/4 — « o
& t—a
Fort € (b, 00),
ot -9 N 1
] r—s -~ —1— N _ _
|D+€<p(t)|\r(1 a) e dsgc/s “ds_Ca[(t—b) C—(t—a)?]
—b t—b

Hence, for alle > 0, for allz € R, D% ¢ (t)| < ¥ (1), where

0, if t € (—00,al,
Y(t) =1 Cl(t —a)V4* +(t —a)™], ifte(a,bl,
Clt—b)y ™™ — (t —a)™“], if 1 € (b, 00)

c=C ! v1
T \1d—a a)

It can easily be checked théte L2(R). It follows thaty satisfies condition (1) of Theorem 6.2 of [32]. Condition
(2) is trivially satisfied. Therefore, Theorem 6.2 of [32] implies that Ay, which proves the first part of the
proposition.

Now, let us assume th& € (0, %1]. The process

and

B/l .=Bf,- B, 1eR,
is also a fBm with Hurst parametéf. Since it isH -selfsimilar, for allz € (0, b — a), the random variable
b—a—t

2 / (B, — B 2ds

has the same distribution as

b—a—t (b—a)/t—1
/ (Bs/tJrl s/t) ds =1 / (BY,— B)?dx
0
b—a/t—1
1
:(b—a—t)m / (B)H—l Bf)zdx (34)
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The process;E)Zrl - Ef)x>o is stationary and mixing. Therefore, it follows from the ergodic theorem that (3.4)
converges to

(b —@E[(B{)?] >0, inL'ast — 0.
Hence,

b—a—t
~ ~ 1 ~
121 f (BH, — BF)2ds Lo a)E[(Bf)?], ast— 0,
0

as well. It follows that there exists a measurgble_@et £ with P[2] = 1 and a sequence of positive numbers
{tx}72 1 that converges to 0 such that for alke 2 andk > 1,

bty b—a—i
/ (151, (@) — s (@) *ds > / (B, (@) - B (@)*ds = f (BH, @) — B (@) ds
R a 0
> b%“E[(Ef )l [ (3.5)
Now, assume that there existsar 2 such that:(w) € Ay. By (6.40) of [32], the functiom (w) has the property
/(us+,(a)) — us(a)))zds =o0(t%) ast— 0. (3.6)
R

But u(w) can only satisfy (3.5) and (3.6) at the same timH it- o = % — H, which contradictdd < %. Therefore,
u(w) ¢ Ay for all w € 2, and the proposition is proved.o
Since Don®s C Up>1LP(.Q, Ap), Proposition 3.2 implies that processes of the form
B 1408,

cannot be in Do if H < %1. Note that it follows from (2.3) that forH < %, almost surely, no path of
{BH, a <t <b}isin Ag’b] either, and thereforgB/’, a <t < b} ¢ Doms@?1. In the following definition we
extend the divergenceto an operator whose domain also contains processes with paths that aretpot in

We set
AZ =1%&p).

Since&y is dense inL2(R), A%, is dense i g . Furthermore, it can easily be checked thatfoo < a < b < oo,

la—a = =) =T (H + 1210 @), 1€R.
It follows from (2.2) that
H-1/2 H-1/2
Dil(a,b](f):m[(l—a)+ —(l—b)+ ], IGR,
which shows that
D% D% (A%) =D () C LP(R), (3.7

for all

1 1
, , inparticular, forp = 2.
pe<3/2—H 1/2—H> P P
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Corollary 2 to Theorem 6.2 of [32] implies that for alle Ay andy € £y, the following integration by parts
formula holds:

f (x)DL Y (x) dx = / D% p(x)¥ (x) dx. (3:8)
R R
By H, we denote the-th over-normalized Hermite polynomial, that is,

=" d’
Ho():=1. and Hy() = 2 229 o2y 5
n! dx”
Furthermore, we seii_1(x) := 0. It can be shown as in Theorem 1.1.1 of Nualart [22] that fopaHl 1,
spar{ H,(B" (9)): n €N, g € A}, llolla, =1}
is dense inL?(£2).

Definition 3.3. Letu = {u;, t € R} be a measurable process. We say thatbom* § if and only if there exists a
d(u) € Up>1L1’(.Q) such that for alk € N andg € A%, with ||| 4, = 1, the following conditions are satisfied:

(i) foralmostallt € R: u, H,_1(B" (9)) € L1(£2),
(i) Elu. H,—1(B"(¢))IDLD%¢() € L(R), and
(iit) 2 [ Elus Hy—1(B¥ (9))1D%D% (1) dr = [ (u) H (BH (9))].

Note that ifu € Dom*$§, thend («) is uniquely defined, and the mappifigDom*§ — Up>1LP(.Q) is linear.
Remark 3.4.

1. Letn e Nandg € A3,. By (3.7), the process

H,—1(B" (¢))D{ D ¢ (1)
isin LP(£2, L1(R)) for all

€[l,o0) and ge = =
pels o0 1\32-H 12-H)

By twice applying Holder’s inequality, it follows that if
ueLP(2,LY(R))

for some
€(l,o0] and g e # o0
Peis T \12+uw &/
then
uHo—1(BY (9))DED% (1) € LY(2, L*(R)) = L} (2 x R), (3.9)

which implies that: satisfies conditions (i) and (ii) of Definition 3.3.
2. The extended divergence operatads closed in the following sense:

Let

1
1 T — .
pe(l,o0] and qe(1/2+H,oo]
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Let {u"},‘f;l be a sequence in DA N LP(£2, LY(R)) andu € LP($2, L4(R)) such that

lim u*=u inLP(2,LI(R)).

k— 00

It follows that for alln € N andg € A%,
lim uf H, 1 (B (¢))D5 D () = ur Hy—1(B" (¢))DE D (1)
in L1(£2 x R). If there exists & € (1, oo] and anX € L?(£2) such that
lim sw*)=X inL?(£),
k—o00
thenu € Dom* 8, ands (u) = X.

Proposition 3.5.
Dom*§ N U LP(2, Ay)=Doms,
p>1
and the extended divergence operateestricted toDoms coincides with the standard divergence operator defined
by (3.3).

Proof. Letu € Domé = Up>lDom8p. Then, there exists a > 1 such thait € Domsg,, ands, (1) € L”(£2). In

particular,u € L?(£2, Ay). Hence, it follows from Theorem 5.3 of [32] thate L?(s2, LYH (R)). Therefore, by
Remark 3.4.1y satisfies conditions (i) and (ii) of Definition 3.3.
Now, letn € N andg € A%, with |||l 4, = 1. The duality relation (3.2), the expression

DH,(B"(¢)) = H,—1(B" (9)) o

and the fractional integration by parts formula (3.8), yield

E[8, () Hy (B" (9))] = E{u. DHy(B"(¢))),, = E[Hu-1(B" (©)) (1. ¥) 24]
= 4 E[H,-1(B" (¢))(D*u, D% ¢) 123 ]

=C%E|:Hn_1(BH(<p))/u,D‘iD”j(/)(I)dt]. (3.10)
R

Since (3.9) is valid, Fubini’s theorem implies that (3.10) is equal to

& [ Blut, (8" )] D% w0 a1
R
which shows that also fulfills condition (iii) of Definition 3.3. Hence,
Doms c Dom*s N | J L7(2. An).
p>1

and the operataf from Definition 3.3 is an extension of the one defined by (3.3).
If u e Dom*§nN Up>1L”(Q, Apg), then there exists @ > 1 such that € LP (2, Ay) andé(u) € LP(£2).

Letn € N andg € A%,. Theorem 5.3 of [32] implies that € L? (2, LY# (R)), and it follows that (3.9) holds.
Therefore, Fubini’'s theorem applies, and we get
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Efu, DH,(B" (9))) ,,, = E[cz / D% u, Hy—1(B" (9)) D% p(1) dti|

= IE|:C§_I f MtDiD(i(P(Z) dtHn—l(BH(¢)):|
R

CIZL,fE[u,Hn_l(BHQp))]DiDoifp(l) dr
R
=E[sw)H,(B" (9))].

It can be deduced from this by an approximation argument that

E(u, DF) s, =E[s(u)F]
for all F € S, which shows thai € Domé§, and therefore,

Dom*sn | JLP(2, Ap) cDoms. O

p>1

Proposition 3.6.Letu € Dom* § such thaff[u ] € L3(R). ThenE[u ] € Ap.

Proof. By Definition 3.3,5(u) € L?($2) for somep > 1. Lety € A}, with |¢|| 4, = 1. Forn = 1, condition (iii)
of Definition 3.3 yields

L13(.Q)’

& f Elu, 1D D% p(1) dr| = [E[s@)B" (9)]| < [8G) ] 1 ) | B (@)
R

wherep = p%l. Since there exists a constantsuch that for alp € Ay,

|8% @)
the mapping

iy = Vil BY @] 20y = villoll ans

¢ C%{/E[Mz]DiD"iw(t) dr
R

is a continuous linear functional of}, = 1*(£y) C Ap, which can be extended to a continuous linear functional
on Ag. Therefore, there existsya € Ay such that for allp € A%, ,

cﬁ,/E[ut]Diqu)mdt — (. 0)a, =c§,/D‘1¢(z)Dfi<p(r)dt. (3.11)
R R
It follows from the integration by parts formula (3.8) that (3.11) is equal to

% / ¥ (1)DGDY o(t) dr.
R

Hence,

< ||E[l/t] || L2(R) ” D?:.Doi(p ”LZ(R)

/w(t)D‘j‘rD"iw(t)dt
R
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for all ¢ € A3, In the proof of Lemma 5.9 in Pipiras and Taqqu [24] it is shown Dfat&x) is dense inL2(R).
Analogously, it can be shown thBE. D% (A%,) = D% (£y) is dense inL?(R). This implies thaty € L?(R), and it
follows thatE[u ] =v. O

Theorem 3.7(Fubini theorem)Let (Y, ), 1) be a measure space angl(w) € L% x R x Y) such that

(i) foralmostally € Y: u” € Dom*s;
(i) for almost all(w, ) € 2 x R: u;(w) € LY(Y) and [, [u”|du(y) € L3(£2 x R);
(iii) foralmostallw € £2: §(u)(w) € L1(¥) and [, |8(u”)| du(y) € L3(£2).

Then

/uy du(y) e Dom*s and 8[/ uyd/L(y)i| :/S(My)d,u(y).
Y Y Y

Proof. It follows from assumption (ii) thagfy u d(y) € L2(£2 x R). By Remark 3.4.1JY u? du(y) satisfies
conditions (i) and (i) of Definition 3.3. Assumption (iii) implies thAt § (u”) du(y) € L?(£2). Now, letn e N and
¢ € A}, suchthatjg|l 4, = 1. Then

C%/EU uj du(y)Hn1(BH(¢))]DiD”¢(t)dt=c§1//E[u?’Hn1(BH(¢))]D‘3LD°‘¢(t) dr due(y)
R Y Y R

=fIE[6(uy)Hn(BH(<P))]dM(Y)

Y

=E[/S(uy)dM(Y)Hn(BH(SD))}
Y

where the first and the third equality follow from the standard version of Fubini’'s theorem. It can be applied because

IDEDZ ol 2y < 0o,

] 1| Ha—1(B¥ (¢))||D% D% ()| dPdr due(y) < / 0 du(y)
g L2(2xR)

2xRxY

and

< Q.
L2(£2)

[ |8”)||Ha (B (@) | dPd(y) < H / |8u)] du(y)
Y

2xY

Hence, [, u” du(y) also satisfies condition (iii) of Definition 3.3, and the proposition is proved.

4. 1t6 and Tanaka formula

In this section we establish versions of the formulas of 1t6 and Tanaka for any value of the Hurst parameter
H € (O, %). The basic ingredient is the next lemma, which contains Ité’s formula for smooth fungtisnsh that
f and all its derivatives do not grow too fast. In the whole sectioandb are two are two real numbers such that
—0<a<b<oo.
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Definition 4.1.We say that a functiorf : R — R satisfies the growth condition (GC) if there exist positive constants
¢ anda such that

H

k<%[(|alV|b|)]‘2 and |f(x)|<ce” forallxeR.

Remark 4.2.

1. If f satisfies the growth condition (GC) for positive constangdA, then there exists a positive constgnt
such that

)\zi[(|g|\/|b|+§)]_2H and |f(0)|<ce™® forallxeR. (4.1)

Hence,f(B}) e L?(2) forallt € (a — &,b +£).

2. If f e C"(R) for somen > 1 and f™ satisfies (GC) for some positive constantand, then it is easy to
see that there exists a positive constdmsuch that for allj =0, ..., n, f) satisfies (GC) for the constants
andx.

Lemma 4.3 (Itd formula). Let f € C*°(R) such that for alln > 0, f® satisfies the growth conditiofGC) of
Definition4.1 Then

F (B 1a.p)(t) € Domi* s,

and
1 b
[/ BHLan®]=rBH - f(B - > / By djr|?H.

Proof. It follows from the growth condition (GC) that
F(BH)Lap) (1) € L322 x R) (4.2)

and
1 b
P =~ fBI = 5 [ 7B e 25,
By Remark 3.4.1, (4.2) implies that the conditions (i) and (ii) of Definition 3.3 are satisfied. It remains to verify

condition (iii) of Definition 3.3, which reads as follows:
b

& f E[f'(B)H,—1(B" (¢))]|(DLD% o) (1) dt

b
1
= EHf(BbH> —fBH -3 f 78/ )d|r|2H}Hn(BH<¢))}, (4.3)

foralln e Nandg € A}, with [l¢|l 4, = 1. Let us first assume that= 0 < b < occ. Then, (4.3) simplifies to

b
Cﬁr/]E[f/(B,H)Hn—l(BH(w))](D"iDOﬁ(ﬂ)(I)dt
0
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b
= EHf(B,f’ )— O —H f f" (B )tZH—ldt}Hn (BH(w)}. (4.4)
0
Denote
._ ~1/2 1y2
p(o,y):=Q2ro) exp<—§;>, >0, yeR, (4.5)

and notice tha% = %‘;j—é’ Hence, for alk € N andr € (0, b],

d d d
EE[f("’(B,” =g / p@?H ) FM () dy = / Epa”’, Y2H2H7LF ™ () dy
R R

82
= {21 / Wp(rz’f, VW) dy = Hr2H1 / p(e®,y) £ (y)dy
R R
= HPE[ T2 (B1)]. (4.6)

Forn =0, the left-hand side of (4.4) is zero. On the other hand, it follows from (4.6) that
b
E[f(Bf] - f(0) - H/E[f”(B,H)]tZH_ldtzo,
0

which shows that (4.4) is fulfilled far = 0.
Now, letn > 1. It follows from the integration by parts formula (3.8) that forzad (O, b],

t

Lo 9y =5 [ OID* )6
0
This and (4.6) imply that for al € (0, b],

d
5 EL B Lon, 904,
_ HIZH—lE[f(n—G-Z)(BtH)](1(0’”’(p)’AH +c§nE[f(n)(BtH)]<1(o,zl’ <P)'/’rHl(DiD‘f<p)(t).

Hence,

b
E[f B)|{Low )4, = H / E[f "2 (B (Lon. )4, 12" de
0

b
+ cn / E[f™(B](Lo.. ¢)y, (DID @) (t) dk. 4.7)
0
It follows from Theorem 1.1.2 and Proposition 1.3.1 in Nualart [22] that fat &l1 andy € Ay with [|¢]l 4, = 1,
Hi—1(B" (¢))¢(1) € Doms
and

8[Hr-1(B" (9))o(1)] = kHi(B" (¢)).
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Hence, by iteratively applying the duality relation (3.2), we obtain

E[F™(BH] (Lo ¢4, =n'E[f (B ) Ha(B" ()],

E[f™(B)](Lo.. 0y, t = — DIE[f' (B ) Hiu-1) (B (9))] and

E[ £ 2 (BN (Lo.. ), =n'E[f" (B H, (B ())]-
This together with (4.7) implies (4.4) far > 1. Analogously, it can be shown that (4.3) is true in the case <
a < b=0. Now, it follows by additivity that (4.3) also holds in the generalcase <a <b <oco. O

It can be derived from Theorem 8.1 in Berman [5] that the pro¢B§s a < ¢ < b} has a continuous local time,

that is, there exists a two-parameter process

{K{a’t], a<t<b, yeR}

which is continuous im andy such that for every continuous functignR — R,

t

f g(B/)ds = / gL, qdy. a<t<b.
a R
We define the weighted local time

{L{a,t]’ a<t<b, yeR}

as follows:
t
Ly, = ZH/Sign(s)|s|2H*lEfa’.](ds).
a

It is also continuous im andy, and for all continuous functions: R — R,

t

f g(BMdis|? = / gLy, dv. (4.8)

a R
Theorem 4.4(Tanaka formula)Lety € R. Then
Ly.00)(Bf)1 (4.1 () € Dom* 8,

and

1
81000/ (B) Lan (0] = (By' =) = (B = 0" = 5L, -
Proof. We set for allk > 1,

fk(x)::/ /p(%,z—y)dzdv,xeR,

—00 —00

where the functiorp is given by (4.5). Then, for alt € R,

. , [ /1 1
fe) > (x—»* and fk(X)=/p Loyt 21 + ), ask— .

—00
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The functionsf; satisfy the conditions of Lemma 4.3. Therefore, forkalt 1, f,g(B,H)l(a,b] () e Dom* §, and

b
1
S[A(BNLan®] = fi(B) — fi(B) - > / fBHEY |2

By Remark 3.4.2, the theorem follows from the following three facts:

(A) f]é(BtH)l(a,b] () — 1(y,oo)(BlH)l(a,b] (®)in LZ(_Q x R),
©) [P (B dePH — LY,,in LA($2) .

(A) and (B) are obvious. For the special case 0 < b < oo, (C) is part of the statement of Proposition 2 in Coultin,
Nualart and Tudor [7]. By using the fact that time-reversed fBm is again a fBm it can easily be checked that (C) is
also true if—oo < a < b =0. Now, it follows by additivity that (C) is true for generaloo <a <b <oco. 0O

Remark 4.5.1t immediately follows from Theorem 4.4 that for alle R, the processes(_‘lm,y](BIH)l(a,b] () and
sign(B! — y)1(,.p(t) belong to Don § and

_ _ 1,
8[ =Lt 1(B/ ) Lan (D] = (By' =)™ = (B = )7 = SLiy
and

3[sign(B/" — 1) lwn(D] =B —yI = [BI =yl = L7, -

If f is a convex function, we denote bf its left-derivative and byf” the measure given by”([y,z)) =
L@ = fl(y),—oco<y<z<oo.

Theorem 4.6(I1td—Tanaka formula)Let f be a convex function such that

() FBH), f(Bf) e LA(2),
(i) £ (BF)1,p(t) € L?(£2 x R), and

(iil) fg ILI, 5 /" (dy) € L2(£2),

where
t

LI, = 2H/|s|2H71£{u“](ds).
Then

FL(BH)Lp) (1) € DOM* S (4.9)
and

! 1 4
S[FLBNLam®] = f (B = fF(B) = 5 / Liy p f" (@) (4.10)

R
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Proof. f/ can be written ag’ (x) = f/ (0) + g + h, where

() = / Ly.00 () £(d)

[0,00)
and
h(x) = - f 1o () £(@y).
(—00,0)
Note that
fx)=Fx)+Gx)+ H(x),
where

F(x)= f(0)+ f~(O)x,

Gx) = L0 () / ¢(2)dz = / (x— )" £ (dy).
0 [0,00)
and

0
H(x)= —1(_00,0)(X)/h(z) dz = / (x =y~ f(dy).
x (=00,0)
It is enough to prove (4.9) and (4.10) for the cases
(A) f(x)=F),

(B) f(x)=Gx),
(C) f(x)=H(x)

separately. In case (A), (4.9) and (4.10) follow from (2.1). To prove (4.9) and (4.10) in the cases (B) and (C), let
us first assume that = 0 < b < co. Then, it can easily be checked that the conditions (i)—(iii) still hold i
replaced byG or H. Therefore, in the cases (B) and (C), (4.9) and (4.10) follow from Theorems 4.4 and 3.7. If
—00 < b < 0=aq, the cases (B) and (C) can be dealt with analogously. For the generalcasea < b < oo the
result follows by additivity. O
Remark 4.7.

1. Ifin Theorem 4.6, & a, then condition (i) reduces td, L—(Va’b]f”(dy) e L2(2).

2. Ifin Theorem 4.6,f € C2(R), then by (4.8), formula (4.10) can be written as
L b
8L (BDYam®] = f (B = f(B =5 / £ B

Corollary 4.8. Let f € C?(R) such thatf” satisfies the growth conditidi®C). Then
f'(B)1(ap(t) € Dom*s (4.11)
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and
1 b

SLF B L 0] = FBH = 82 = 5 [ 18 i, (@.12)
Proof.

f)=Fx)+Gx)+ H(x),
where

F(x)= f(0)+ f'(O)x,

t y
G(x) = /g(y) dy, g0y = / (2 dz,
0 0

and

t

y
H(X)=/h(y)dy, h(y)=/fl’(z)dz.
0 0

Clearly, (4.11) and (4.12) hold fdr. To see that (4.11) and (4.12) hold Gt note thatf!’ satisfies the growth con-
dition (GC). It follows that alsg and G fulfill (GC). ThereforeG satisfies conditions (i) and (ii) of Theorem 4.6.
The fact that

b
/ LI, f L) = 2H / LB 2H 1 ds,
R a

shows that condition (iii) of Theorem 4.6 is also satisfied. Hence, Theorem 4.6 and Remark 13.2 imply that (4.11)
and (4.12) hold forG. Analogously, it can be shown that (4.11) and (4.12) hold #grand the corollary is
proved. O

Corollary 4.9. Let f : R — R be a function that satisfies one of the following two conditions

(i) feC?R) and f” satisfies the growth conditigiGC).
(i) f is convex and satisfies the assumptions of Thedrém

Moreover, letA € F such thath(BtH)(w) = 0 P x dr-almost everywhere on the product spate (a, b]. Then
a[fL(BtH)l(a,b] ()] = 0 almost everywhere oA.
Proof. There exists a measurable suh€et £2 with P[§2] = 1 such that for allo € £2, the function
BH (v), tel(a,bl,
is continuous and has no interval of constancy.&ar 2, we set

m(w) = r<nti2bB,H(w) and M(w)= max B (w).

axlx a\t\
It follows from the assumptions and Corollary 4.8 or Theorem 4.6, respectively, that for almest alln 2:
L. =0 ontheinterva(m(w), M(w)]
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and

1
8L (B Lam®]@) = 1 (B) (@) = f (BJ (@) - 5 / Lig.p(@)f"(dy) =0.
R
This proves the corollary. O

Let f € C2(R). Then we can define[f/(B,H)l(a,b] ()] by localization in the following way:
Forallk > 1, we set

(k) if x < —k,

fley =1 o) i —k<x <k, (4.13)
[ k) if x>k,

F0) = £'0) + / flo)dy, xeR. (4.14)
0
and
Felo) = £(O) + / flndy, xeR. (4.15)
0

The sequence of sets

.Qk:{ sup |Bﬁ|<k], k>1,

a<t<b

is increasing, and

o0
=2, (4.16)
k=1
almost surely. It can easily be seen that
all f; satisfy the conditions of Corollary 4.8 (4.17)
and for allk > 1,
FBIHLan @) = f(BF)1p () on2; xR, (4.18)
If we define
[ (BN L@ ]:= [ fi(B)1ap1 ()] 0On 2% (4.19)

for all k > 1, we get from Corollary 4.8 that

b
1
S[f' (B Lan®] = F(BI — f(BY) - > / F(BHydjr?H. (4.20)

It follows from Corollary 4.9 that we obtain the same formula (4.20) if in (4.19) we replace the pair of sequences
{2,172, and{ fi 172 4 by another paif$2, )2 4, { fi}72, that satisfies (4.16), (4.17) and (4.18).
For a convex functiory : R — R, we can modify (4.13), (4.14) and (4.15) to
f{(E):=f"(l-k.k)NE), E aBorelset

, [ fLO+ f(10,x) if x>0,
Tk = L0 — f/'(x,0) ifx<O
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and
fe(x) = f(0) + / flindy, xeR.
0

Then the functiong} satisfy the conditions of Theorem 4.6, and the same localization procedure as above yields

/ 1 4 1
SL B 0] = £ B = B = 5 [ 1,8 (4.21)
R
As above, it follows from Corollary 4.9 that a different localization yields the same formula (4.21).

5. Symmetric integration with respect to fractional Brownian motion

In this section we show that the Russo—Vallois symmetric integral of a general smooth func#dh with
respect taBf exists if and only ifH > %. Throughout the sectiom, andb are two real numbers such thato <
a <b < o00,andg:R — R is a continuous function.

Definition 5.1. If the limit in probability

b
BH _ pH
P—li BHy_te 1=¢ g 5.1
tm [ g/ S (5.1)

a
exists, we call it symmetric integral and denote it by

b
/g(B,H)dOB,”.

a

Remark 5.2. The symmetric integral was introduced by Russo and Vallois [28]. According to their definition, the
symmetric integral of a stochastic proc&€Xs),c[,.5] With respect to another stochastic proc@53;¢4,51 is given

by
b

. Y, — Y
p_ Ilmet (te)ny = Yi—eyva o
e\,0 2e

a

Our Definition 5.1 looks slightly different. However, singés continuous, we have fare (0, ’%),

b b
B, — BH Bl — Bl
fg(BtH) ire ~ Bie dl—/g(B,H) (+e)nb ~ Bu-eva o
2¢ 2¢
a a
1 b 1 a+e
=2 f gBHYBHE, - Blyd - > / g(BI(B, — By drt
b—e a
(eN\0)

—> 0 almost surely.
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Hence, the limit (5.1) exists if and only if
b

B{l 1o — Bi_s)
P — lim iy _Uton [Zeva gy 5.2
lim / ¢(BH) - (5.2)

a

exists, and if they exist, the limits (5.1) and (5.2) are the same.

Note that ifz : R — R is a continuous function, then

b b b—e
lim /h(t)h(t+8)_h([_8) dr = lim i(fh(t)h(r+s)dt— f h(t+£)h(t)dt>
e\0 2¢ £\0 2¢
1 b a
:Iim—( /h(t)h(t+s)dt—/h(t)h(t+s)dt)
e\.0 2¢
b—e¢ a—e

_Llo, 1o
= Sh2(b) - Sh*(@).

It follows that for all H € (0, 1),
b
BH _ pH 0l 1
/B,H t+52 i—e g (Q)E(Bf)Z—E(BaH)Z almost surely
£

a
which implies that
/ 1 1
fB,H d°BH = Z(B)?2 — Z(BH)?
2 2
a

forall H € (0, 1). Since forH € [%, 1), BH has finite quadratic variation, it follows from Theorem 2.1 of Russo
and Vallois [29] that for allFf € [3, 1) andg € C1(R),

b
/g(BtH)dOB,H =GBl - GBH), (5.3)

wheregG is given by

X

G(x) :=/g(y)dy, x eR.
0

In Theorem 4.1 of Russo and Vallois [30] it is proved that fbe= % formula (5.3) even holds g Lﬁ,C(R).

For H € (0, %) the paths ofB are rougher than the paths of Brownian motion (recall #&t has infinite
guadratic variation ifH € (0, %)). However, it follows from what is shown in Section 4 of Alds, Ledn and Nualart
[1]thatif H € (%1, %), then (5.3) is still true for alf € CX(R). In Theorem 4.1 of Gradinaru, Russo and Vallois [12],
formula (5.3) is proved foH = 711 andg € C3(R).

In this section we show that for genegak C3(R), H = % is the critical value for the existence of the symmetric
integral in (5.3). The main result of this section is the following
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Theorem 5.3.

(a) Letg € C3(R). Then for every e (2. 3),
b
/g(BH)dOBH GBI — G(BM),
a

whereG is given byG (x) := [ g(y)dy, x € R.
(b) If H € (0, §1, then

b

H\2 OpH

/ (B)?d°B]
does not exist.

For the proof of Theorem 5.3 we need the following three lemmas and the subsequent proposition.

Lemmab5.4.LetH € (0, %) andg € C2(R) such thatg” satisfies the growth conditiqGC) of Definition4.1 Then
there exists & > 0 such that for allr, s, € (a — &, b + &),

s P 1 9 2H
E[g(BtH)(g(BSH)—g(BrH))]Z/{ [¢'(B)g' (BH)] RH(t v)+ = ]E[g(BH)g//(BH)] v |v _}dv.

r

Proof. By Remarks 4.2, there exist positive constants, & such thatg, g’ andg” satisfy (4.1) forc, A andé.
Hence, it follows from Corollary 4.8 that forall s € (a — &, b + &),

v |2H

1 5
$BI — (B =8[8 (B 1] + 5 / ey g,

where 1, 1(v) := —1( - (v) if s <r. By (iii) of Definition 3.3, this means that for all ¢ N and¢ € A}, with
llolla, =1, the following equation holds:

% f Elg' (B H,_1(B" (¢))|DED* ¢ (v) dv

3|U|2H

=E[((B") — 2(B/)) Ha(B" (#))] - ; / E[g" (B, Ha(B" (#))] dv. (5.4)

r

An inspection of the arguments that lead to Corollary 4.8 shows that (5.4) still holdssifreplaced by the
function Lo . Then, it follows by approximation that the following version of (5.4) is also true:

s
i f E[s'(B;"g'(B{)]D{ D 10,11 (v) dv

r
s

1
=E[(g<B!’)—g<Bf’>)g<B,”>]—5 / [¢"(BIg(BIH)]——

r

3|v|2H o
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It remains to be shown that

1/2—H~1/2—H a
DYDY 6 ) = SoR(, ).

v
But this follows immediately from

v
12-H 12-H 1/2-H 1/2—H
Ry (1,9) = (10,1, L)) ay = 5 (DY* 10,7, DY o) 2w =C§1/(D+/ DY " 10, (x) dx,
0

which is a consequence of the fractional integration by parts formula (see Corollary 2 to Theorem 6.2 inif82]).
Lemma 5.5.For everyH € (0, %) there exists a constanty > 0 such that for allh > 0andx € R\ {0},

1
o AP = = ] S g P (5.5)

Proof. Fix h > 0. For allx € [k, 00),

G+m2H ——n2H 1 A4+ — Q-
2h x2H-1 2y ’

wherey := 2 € (0, 1]. The function

(L4 y)2H — (21— y)?H
2y
is continuous on0, 1], and
1 2H _ _ \\2H

im d+y A= _
y\0 2y

Therefore,

2H.

1 2H _ 1— 2H
g = Sup a+y 1-y) o

ye(0,1] 2y ’
which shows that
h 2H _ —h 2H
(x+h) - (x—h) <oyl (5.6)
forall » > 0 andx € [k, 00). Forh > 0 andx € (0, i), we have
1 1 _ _
E“x +h)PH —x — | < E(Zh)ZH <apgh®t<ayx?l-1, (5.7)

Since both sides of (5.5) are evendnthe lemma follows from (5.6) and (5.7).0

Lemma 5.6.For all H > 0 there exists a constay > 0 such that for every) € (0, 1) and all¢, s € R such that
t#s,
s+n

1 2H 2H-1 BH. iTH >3,

1 ) ., do< - i 5.8

2 / v = sl =l US| Bule — L it H e (.4, Y
§—=n
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Proof. Since both sides of (5.8) are evenrin- s, it is enough to prove the lemma for the case r > 0. It can
easily be checked that there exists a constant- 0 such that for alt > 0,

Z
1 4H-1 1
_/|YI2HIy+1|2H_1dy< Pu™ WH>2
2z B, if He(0,z].
—Z
It follows that for everyn € (0, 1) and allz, s € R such that — ¢z > 0,
1 s+n 1 n
Sl / |v—s|2H|v—t|2H_1dv=—/|x|2H|x+s—t|2H_1dx
2n 2n
s—n

-1

n/(s—t)
s —t _
— (-t [y 1Pty
—n/(s—t)
(s =¥ 1By (LML, i H > g,
< (s —)*-1p if He (0,1
H, S ( ) 4]
_ | Bu. if H> 1,
(s —)*~1gy, if He (03]

which proves the lemma. O

Proposition 5.7.Let H € (3, 3) andg € C3(R) such thatg”” satisfies the growth conditi®C) of Definition4.1
Then

b

—lim [ g8 == di =GBl ~ G B,

a

whereG is given byG (x) := [y g(»)dy, x€R.

Proof. By Remarks 4.2, there exist positive constants, & such thafg, g/, ¢” andg” satisfy (GC) forc, 1, §. It
follows from Lemma 1.2.2 of Nualart [22] that for alke (a, ] ande > O,

sBIYBR, — Bl ,) =8[g(B/ ) L—esse1] + & (BI) L0 Lu—errtel) an-
Hence,
b

BH _ pH 1
/g(B,”>7’+8 =8 dt = (A + Be),
2¢ 2¢

a

where

b
Ag ::/S[g(B;H)l(z—e,l+e]] dr
a

and
b

B, :Z/g/(B[H)CL(O,z], 1(t7£,t+£]>AH dr.

a
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It can easily be checked that

b
1 1
—p, 9 —/g’(BtH)d|t|2H in L2(2).
2¢ 2

a

It remains to prove that

b
1 1
L?—1lim —A, = G(B") — G(BY ——/ "(BHy )21 5.9
am g Ae (B,") (a)zg(,)ll (5.9)
a
Assume that
1
lim —E[A A, ] exists. 5.10
5,1,\04”; [A:A,] exi (5.10)

This implies thal(z—lgAg)Do is Cauchy ag \, 0, and therefore converges Irf(£2). It follows from Theorem 3.7
that

b (v+e)Ab

A =3 [ / 8B L—e 161 () dt] = 5[1<a_g,b+g]<v) g(B/) dt},
a (v—e)Va
and it can easily be checked that
(v+e)Ab
Z—tl(afg,bm(v) f g d Y (B 1mw) i L2(2 x R).
(v—e)Va

Hence, it follows from Remark 3.4.2 that
1
L% —lim —A, =8[g(BM)1, 1, 1)]. 5.11
5@028 e =08[8(B;) Lia,p ()] (5.11)

Since by Corollary 4.8,
b

1
8[e(B1wpm(®)] =GB — GB) - > / g (B dir|?H,

a

(5.112) implies (5.9).
To complete the proof we have to show (5.10). Clearly, for all(a, b] ande € (0, §),

8B Ly—s1+6)(v) € L2
(check Definition 1.3.2 in Nualart [22]). Hence, it follows by property (3) on page 39 of Nualart [22] that for all
t,s € (a,b]ande, n € (0, &),
E[5[g(BtH)1(t—s,t+s]]8[g(BsH)l(s—n,s-%n]]]
=E[¢(B)g(BI](Li—e.r+ers Ls—nstm) an
+E[¢'Bg' (BI)](L 0.1 Ls—ns+m) an (Li—erter Los1) Ay
=E[g(B/)g(BI)|[Ru(t +e.5s+n) —Ruy(t +&.5s—n) — Rt —e.s+n) + Ru(t —e.s — )]
+E[¢'Bg' (B)][Ru(t.s +1) — Ru(t,s =) ][Ru(t +&,5) — Ru(t —&,9)].
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Therefore,
iIE[AgA ]=i(C + D, )
4en T fen e
where
b b
Cen = [ [ EleB e8]
a a
X [Ru(t+es+n) —Ry(t+e,s—n—Ru(t—e,s+n)+ Ryt —e,s—n]dsds
and

b b
Dg = // E[g'(B/)g' (B)][R(t,s +n) — R(t,s —)][R(t +&,5) — R(t — e, 5)] ds dr.

a a
Furthermore,
1 2 2
Cen=C;, +C7,+CZ,,
where

and
b

b a
Cj,,::f(f - /)E[g(B}")g(Bﬁn)[RH(He,s)—RH(t—a,s)]]dsdz.
b—n a—-n

a

It can easily be checked that

b
. 1 ORy ORy
lim —(C?, + 3 =/ E[g(BMYg(BY]—=(t,b) — E[g(BH)g(B"Y]—= (¢, a) ) dr.
s,n\o4sn( en T Cop) [g(B/Hg(B))] o (t.b) —E[g(B/)g(Bi)] ” (t,a)
It follows from Lemma 5.4 that
_Cg:n:Ea,n‘f‘Fs,na
where
b bs+n 9R
Eep:i= /f[E[g’(B,H)g/(Bf)]a—H(z,v)dv[RH(r+e,s)—RH(t—e,s)]dsdt
v
a as—n
and
b b s+n
1 H~N 1, pH a|U|2H
Fey =3 E[g(B/")g"(B)] o dv[Ry(t +e,5) — Ry(t —e,s)]ds dr.

a a s—

=
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Obviously,

1 ” 2H— l Ry
glmo@nF”_H/_/ (B )g" (B, )]S|gn(s)|s| Y —— (¢, ) ds dr.

Therefore, it is enough to prove that

1
lim —(E;, — D exists.
an\048 ( &,n 67])
We have
E.. —Dg,7
b s+n

/// [¢'(B)(g (Bf)—g/(BSH))]%(z,v)dv[RH(erg,s)—RH(z—s,s)]dsdt. (5.12)

a as—n
By Lemma 5.4 and the estimate
oR
‘—H(t ‘ H (w1 4w —1]2H7Y), (5.13)
we obtain

5l 3(6/ ) — s BID)])

ng|v—s|2H, (5.14)
where
1
— max " BH " BH = max El¢ BH " BH .
Vi tela,b), wela— éb+§]| [g ( ! )g ( w)]"I' 2 tela,bl, we[afé,bJrE]’ [g( ! )g ( w)]’
It follows from Lemma 5.5 that
1
“[Ru(t+e.s)— Ryt —e,9)] <ap (1t + 1 — 52771, (5.15)
&
By plugging (5.14), (5.13) and (5.15) into (5.12) we obtain
H b s+n
—IEE,, De | < ’/H el ff/w sPPH(10)PH =2 o — P (102271 1 ) — 512271 do ds di.
a as—n

Obviously, for allz, s € R, such that # 0 andr # s,

s+n

1
s—n

asn \, 0. On the other hand, it follows from Lemma 5.6 that forra#t (0, & A 1),
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s+n
1 _ _ _ _
s—=1n

g {ZﬂH(|r|2H—1+|t—s|2H—l), if H e (3.3,
S Bu s g — MY (2 — s 2PHTY, i He (5, 5]
Hence, it follows from Lebesgue’s dominated convergence theorem that
lim i(Eg n— Dey) =0,
£,n\0 4en ’ ’
and the proposition is proved.O

Proof of Theorem 5.3(a). Let H € (3, 3) andg € C3(R). For allk > 1, we set

g"(=k), ifx <—k,
g/ x):=1{¢g"x), if—k<x<k,
g"(k), if x>k,
X
gl () = "(0) + / /(Ndy, xeR,
0

gr(x) = g/(0)+/g;’£(y)dy, x R,

0
X

gk(x) = (0) + / g()dy. xeR,
0
and

X
Gr(x) ZZ/gk(y) dy, xeR.
0
The sequence of sets
2 :={ max | B! | <k}, k> 1,
a<i<b

is increasing, and

o0
U 2, =2 almost surely
k=1

On eachs2; we have
b

b

BH _— BH BH — BH

/g(BtH)%dt:/gk(BtH)%dt, foralle > 0,
& £

a a

and
GBI - GBM) =Gr(Bf) — Gr(BE).

1077

(5.16)

(5.17)

(5.18)



1078 P. Cheridito, D. Nualart / Ann. I. H. Poincaré — PR 41 (2005) 1049-1081

Since for allk > 1, g, satisfies the assumptions of Proposition 5.7, it follows that

b H H

B, — B/~
— lim [gk(B )= di = Gi(By') — Gr(B;).
a

This together with (5.16), (5.17) and (5.18) proves part (a) of Theorem 3.

Proof of Theorem 5.3(b). It follows from what we have shown in the proof of Proposition 5.7 that

b
BH _BH

L% — l@O/(BtH)Z% dr (5.19)

a

exists if and only if
G

lim —=1 (5.20)
en\0 €&n

exists, where
b bs+n

Gey ::/f[E[BtH(Bf—B‘{{)]aéeH.([,v)dv[RH(t+8,s)—RH(t_g,S)]dsdt
v
a as—n
b b s+n
:///[RH(t v) = R (@, S)] (t V) dv[Rp (1 +¢,5) — Ry (t —e,s)] dsdr
a a s—i
b

1
5//[R,q(t,ern)—RH(z,s—n)][RH(z,s+n)+R(t,s—n)—ZR(t,s)]

a a

X [Ru(t+e,s)— Ru(t —e,5)]dsdr.

Note that
Gey=Gr,+G2,+G2, +G?,,
where

1
GLy=g [ [ls4 0P ~1s =P |[Rute.s 40+ Rt = ) = 2R(t,9)]

X [RH(t +e,5)— Ryt — s,s)] ds dt,

G, = 8// [ —s+nlP" =1t —s =0l ][Ru(t,s +m) + Rt s —n) = 2R(1,9)]
x[It +e?" — |t — |?H]ds dr,
G2, = mff [ s+ 0P —10 = 0P |[ls 4 02 +1s — 2 — 215

x [It —s— el —|t —s +*]dsdr
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and
L b b
Gg’n:E//[U—s—i—nlm—ll—s—anH][|t—s+n|2H+It—s—nIZH—2|t—s|2H]
a a

x [It —s+el® =t —s—e?]dsdr. (5.21)
It can easily be checked that for &l > 0,
o1 1 o1
im —Gi, = lim —GZ = lim =G
en\oOen 7 en\oOen 7 en\0 &N

Hence, if we can show that fd < (O, %], 8—1,7G§,,7 does not converge asn \ 0, then the limit (5.20) cannot exist.

By transforming the double integral in (5.21) a couple of times we obtain

3 _
3,=0.

b—a t

8 1
—Gﬁ,n=—//[It—s+n|2H—It—s—UIZH][It—ernIzH+|t—s—n|2”—2|t—SI2H]
&N EN 5 b

X [|t—S+8|2H—|l‘—S—£|2H]det

b—a v

1
=a//[|w+nI2H—Iw—HIZH][IernIZHJrIw—nIzH—2Iw|2H]
0O 0

X [|w+8|2H — |w —8|2H] dw dv
1 b—a
=5 [ G-a-wlw+ 0P — fw — 2 [lw + 2+ Jw — 0P = 2w|?7]
0
X [|w+s|2H — |w —8|2H] dw.
It can easily be checked that for &l > 0,
b—a

1
- / wlw + 02" — fw — g2 [lw + 02 + Jw — g2 — 21w (]
0

X [|w+8|2H —|w —£|2H]dw—> 0, ase, n\ 0.

To show that
b—a

1
af[|w+n|2H—|w—;7|2H][|w+n|2“'+|w—n|2H—2|w|2H][|w+g|2H—|w—g|2f’]dw (5.22)
0

does not converge asn N\, 0, we sett := b — a and lete = dn for somed > 0. Then (5.22) becomes

c

[lw + 02 —jw — 0P ][lw + 0?7 + |w — 5127 — 20w P |[|w + dn?? — |w — dy|?" ] dw

dn?
0
en_1 M
n
=— f[|x+1|2H — v = 12 [1x + 1P 4 x — 112H — 21x 2]
0

x [lx +d?H — |x —d|*"]dx. (5.23)



1080 P. Cheridito, D. Nualart / Ann. I. H. Poincaré — PR 41 (2005) 1049-1081

For H € (0, %), the constan# can be chosen such that
o0
/WA4PH—u—uwﬂu+u”ﬁﬂx—um—aﬂwﬂu+dﬁﬂ4x—m”ﬂmeR\wL
0

Then, (5.23) explodes for\, 0. ForH = %, the expression

e ¢]

1
0

obviously is not constant id. Hence, we have shown that féf € (0, %], the limit (5.20) does not exist, which
implies that the limit (5.19) does not exist either. Since in any finite Wiener chaos convergdifcisiequivalent
to convergence in probability, it follows that

b
. BH_ — B

P — lim /(B,H)ZM dt
e\0 2¢

a

does not exist. O
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