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Abstract

We consider a random walk iR? which takes steps uniformly distributed on the unit circle centered around the walker’s
current position but avoids the convex hull of its past positions. This model has been introduced and studied by Angel, Benjamini
and Virag. We show a large deviation estimate for the distance of the walker from the origin, which implies that the walker has
positive lim inf speed.

0 2005 Elsevier SAS. All rights reserved.

Résumé

On considére une marche aléatoire Bravec des pas distribués uniformément sur le cercle unité centré sur la position
courante de la marche mais n’entrant pas dans I'adhérence convexe de ses positions précédentes. Ce modéle a été introduit
étudié par Angel, Benjamini et Virag. On démontre une estimée de grandes déviations pour la norme de la marche, qui implique

gue le limite inférieure de la vitesse de la marche est positive.
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Angel, Benjamini and Virag introduced and studied in [1] the following model of a random@&alk, >0 in R?,
which they called theancher. The walker starts at the origiXip = 0. Suppose it has already takesteps ¢ > 0)
and is currently a¥,,. Then its next positiorX,, .1 is uniformly distributed on the unit circle centered aroufgd
but conditioned so that the straight line segm&pt X,,..1 from X,, to X,,;1 does not intersect the convex hil),
of the past position§Xo, X1, ..., X, }, see Fig. 1.
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Fig. 1. Three steps of the walk3 is uniformly distributed on the bold arc of the circle with radius 1, centerexbin

Note that(X,),>0 is not Markovian since in general one needs to know the whole history of the process in
order to determine the transition probabilities for the next step. This makes this model more difficult to analyze
than a Markovian random walk, a property it shares with many other self-interacting processes, see [1] and also
[2] for references. We do not claim that this model is of particular importance or that its definition is very natural.
However, in the class of all self-interacting processes it seems to be among the few models which are at least
partially analyzable and still have some striking properties.

Several such properties have been conjectured by Angel, Benjamini and Virag in [1]. Based on simulations and
heuristics, the authors of [1] believe e.g. that the direction of the walk converges, i %, thi&, || convergesP-a.s.
to a random direction, see [1, Conjecture 1]. Moreover, if we denote,tgs a measure for transversal fluctuations
the maximal distance of a point iKi,, from the line X, X,,, then Angel, Benjamini and Virag conjecture that
grows liken®4, see [1, Conjecture 2].

As far as results are concerned, the only major rigorous result which has been proved so far for this model to
the best of our knowledge is that the walk has positive lim sup speed, i.e. there is a consfantich thatP-a.s.
limsup| X,||/n > c asn — oo, see [1, Theorem 1]. Her@2, F, P) is the underlying probability space.

The purpose of the present paper is to improve this result by showing the following.

Theorem 1. There is a constant; > 0 such that

1
lim sup-- log P[||X,ll < c1n] <O (1)

n—oo

and consequently,

. X
iminf 1Xn |

n— 00 n

>c1 P-as. 2)

In particular, (2) proves [1, Conjecture 4]. We expect but were not able to prove that the spg&d |lim exists
and isP-a.s. constant, as conjectured in [1, Conjecture 5].

Let us now describe how the present article is organized. The next section introduces general notation and gives
a short overview of the proof. In Section 3 we introduce some sub- and supermartingales, which enable us in
Section 4 to bound exponential moments of the time it takes the diameter of the conv&y, halincrease. From
this we deduce in Section 5 estimates for the diametéf,ofimilar to the ones claimed in Theorem 1 X, ||
and show how this implies Theorem 1.
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Fig. 2. General notation.

2. Notation and outline of proof

We denote byi, the diameter ofK,,. Since(K,), is an increasing sequence of sets,),, is non-decreasing.
The ladder times; at which the procesgl, ), >¢ strictly increases are defined recursively by

19:=0 and t41:=infln>1:d,>d;} (i >0).

It follows from [1] that P-a.s.t; < oo for all i > 0. In Section 4 we will reprove this fact by showing that the
differences

Aj=1p1—1 (i20),

between two successive finite ladder times have some finite exponential moments. Netetlasincedy = 0

andd; = 1 and observe that the’s are stopping times with respect to the canonical filtrati&p),, >0 generated

by (X»)n>0. Since the diameter of a bounded convex set is the distance between two of its extremal points there is
for all i > 1 with 7; < oo a (P-a.s. unique) &K k(i) < t; such thaid;, = | X, — Xk ll, see Fig. 2. Fok R2 and

r > 0 we denote byB(x, r) the closed disk with centerand radius-. If 7; < oo then

Ui-i-l = Inf{n 2 0 | Xn ¢ B(Xf[ﬂ d‘[,') N B(Xk(l)vd‘[,)}

is the exit time of the walk from the large lens shaped region shown in Fig. 2, which we shall refer tdexssthe
created at timer;. Observe thaK, is contained in the lens created at timeMoreover,

Tit1 < 0it1 (3

since ifo; 11 < 00, X,,,, has a distance from eithéf;; or X, ;) greater thaml, .
We have now introduced enough notation to be able to outline the idea of the proof of Theorem 1.

Outline of Proof. To show that(|| X,|), is growing at a positive rate we shall first show that),, is doing so. To
this end we shall bound exponential moments ofahis. This is the heart of the proof and done as follows.

Suppose that, is already quite large and that we have just reached a new laddet;tiatavhich the diameter
has increased. Due to (3) the diameter can stay constant only as long as the walk is hiding in the lens created at
time ;. However, there are two mechanisms, corresponding to Lemmas 4 and 5, which ensure that the walk cannot
hide in the lens for too long.

The first one, described in Lemma 4, works while the walk is still inside a small ball adsyndee Fig. 2. The
radius of this ball is chosen to be proportionalitp This situation is depicted in an idealized form in Fig. 3. In this
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boundary
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Fig. 3. Idealized picture, assumialy, = co. Whenever the walker crosses a wedge for the first time, which occurs at a positive rate, it has in
the next step a positive drift towards the boundary of the lens.

regime the following happens: Whenever the walk crosses for the first time any of the wedge-shaped lines shown
in Fig. 3, it has a drift away fronX;; towards the boundary of the lens. To see this consider the two boundary
lines of the convex hull which are emanating frafg ,, in Fig. 3. Suppose we are to draw in Fig. 3 the line going

from X, tothe left. In the picture this line has slope 0, i.e. it is paralleXto X, ;), but of course it could have

a different slope. However, this slope cannot be much smaller than 0 bekgusés close toX, but far away

from X, ;. On the other hand, the line emanating fraiy, , to the right must have in Fig. 3 a slope of at least 1.
Together, these two lines create a drift downwards and more importantly to the right towards the boundary of the
lens. (If the left line has a positive slope then the drift to the right is even stronger.)

So every time the walker crosses for the first time such a helpful wedge-shaped line it will be pushed towards the
next wedge-shaped line. If the little ball aroukig was infinitely large this would result in crossings of the wedge-
shaped lines at a positive rate, which would propel the walk out of the lens very fast, i.e. this mechanism alone
would give a finite exponential moment af, see Lemma 4. However, since the ball’s size is finite and proportional
to d,,, the walk can escape from this little ball before leaving the lense with a probability exponentially seall in
(This will happen a finite number of times.)

Whenever this occurs, we rely on the second mechanism, see Lemma 5. Tig, litg;y, which is part of
the convex hull, creates a positive drift out of the lens. Since the diameter of the lens is oflgrilevill take
the walker a time of orded;, to reach the boundary of the lens. In fact we shall show, see Lemma 5, that it is
exponentially costly for the walk to stay in the lens for a time longer than the ordgy.dfhis is enough to make
sure that the walk is not slowed down too much by occasionally resisting the first mechanism and getting lost in
thelens. O

To make this idea precise we need to introduce more notation. The point
X+ Xk

1 2
will serve as the “center” oK, and the “radius”

(i=21

Rin :=Xg4n —Yil (21n=0)

is the distance ok, +,, from this center. The orthogonal projectionXf, ;,, onto the straight line passing through
X, and Xy will be calledZ; ,, (i > 1,n > 0). The distance ok, ;, from this line is denoted by

Di,n = ||Xrl-+n - Zi,n” i=21n=>0.

For the following definitions we assumign > 1 andt; + n < 1;41. In particular, due to (3), we assume that at
time t; + n the walk has not yet left the lens created at timeThis implies thatZ; , € X+,, X and thatX, and
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Xti) Xei)

Fig. 4. General notation.

Xy are still boundary points ok, ,, as shown in Figs. 2 and 4. Hence if we starXip,, and follow the two
boundary line segments emanating fram.., we will eventually reactX,, and Xy ;. The boundary line segment
whose continuation leads first #6;, and then taXy ;) is calledsy ; ,, while the other line segment startingX, ;.,,

is denoted by, ; ,, see Fig. 4. The angle betweeyy , and X, 1,, Y; is calledy; ; , € [0, 7] (j =1, 2), see the
left part of Fig. 4. Similarly, the angle betweep; , and X, ,,, Z; , is denoted bw; ; , € [0, 7] (j =1, 2), see
the right part of Fig. 4. Occasionally, we will dropped the subsctigisdn from ¢ andy. SinceK, ., is convex,

1+ @2=vY1+ Y2 <. 4)

Furthermore|g; — 1| is one of the angles in a right angled triangle, namely the triangle with veXiges, ¥;
andZ; ,. Hence,

lp1 — Y1l = g2 — Yol < /2. (%)

3. Some sub- and supermartingales
The following result shows that for eveiy= 1, both(R; ,,), and(D; ), (L < n < 141 — ;) are submartingales.

Lemma2 Foralli,n>1, P-a.s.on{t; +n < 111},

Sin(pl,i,n + Sin§02,i,n S Sinﬁol,i,n

E[Ri,n+l —Rin | fr,-+n] Z > >0, (6)
2 2
Sinyr;.n + Sinyra;, sinyry ;,
E[Djn41— Din | Friqnl 2 - 2> >0 @)
2 2
and
E[Di,n+l - Di,n + Ri,n+l — Rin | Ft,-Jrn] Zc2 (8)

for some constant, > 0.

Fig. 5 shows examples in which the expected increment® gfand D; ,, are close to 0, thus explaining, why
we are not able to bound in (6) and (7) these expected increments individually away from 0. Note however, that in
both situation depicted in Fig. 5, if the expected incremerR,gf or of D; ,, is small then the expected increment
of the other quantity is large. This confirms that the expected incrememts,oéind D; , cannot both be small at
the same time, see (8).
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Fig. 5. The expected increment &f ,, is small in the left figure and large in the right figure. Hay, it is the other way round.

Proof of Lemma 2. We fixi,n > 1 and drop them as subscriptsgf; , andy/; ; , (j =1, 2). Then the following
statements hold on the eveft + n < 1;41}. Consider the angle betweéf, X+, ;, and X, ,, X, +1+1 Which
includessz; ,. This angle is chosen uniformly at random from the intefyagl, 2r — ¢1]. Hence we get by a
change of basis argument usikig X+, 1, for the first basis vector,

1 2m—¢1
E[Rini1| Fronl = 5———— |(Ri.n. 0) — (cosp, sing)|| de
(2 — 1) — @2
@2
2 —¢1
1
e T — [Ri.n — cosp|dp
T —@Q1— @2
@2
2n—¢1
1
>Rin+ ——— / — cosp dy
2r — @1 — @2
»2
sing; + sin singy + sin
— Rin 1 $2 > Rin+ 1 <P2’
2T — @1 — 2 2
which shows (6). Similarly, (7) follows from
1 21—y
E[D; Franl=——""— D; , — cosyr| dr.
[ i,n+1 | 1:,+n] (27_[ — Wl) — ¢2 l/ | in I»/f| w
2

For the proof of (8) we assume without loss of generafity< =/2. Indeed, otherwise, < n/2 because of

1+ @2 < 7, see (4), and in the following proof one only has to replace the subscript 1 by the subscript 2 and swap

Xr,- anka(i). By (6) and (7),

sing1 + siny
2 '

We will show that the right side of (9) is always greater than= (472)~1. Assume that it is less than. Then

E[Di,n+1 - Di,n + Ri,n+1 - Ri,n | f‘f,-+n] P> (9)

sing1, siny, < (2r) 7t (10)

and hencep1 < (;r/2) sing1 < 1/4 by concavity of sin o0, 7z /2]. Similarly, (10) implies that eithey; < 1/4 or
7 — 1 < 1/4. Due to|pr — v1| < /2, see (5), the latter case is impossible. Therefore,

o1 — 1| < max{[gal. [v1]} < 1/4. (11)
The anglex € [0, /2] betweenZ; ,,, X, +» and X+, +,, X, is less than or equal tg1. Consequently,
1 Xz — Zinll S 1 Xz — Yill = 1Y: — Zi ull
”Xri - Xri+n|| - dr '

i

sinyy > sina =

(12)
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However, sincd’;, X, 1n € Ky, 44,

Ripn =IYi — Xl < dgj4n = dy,. (13)
Therefore,
sinyr (122) du/2 _ _IYi = Zial _1 — sinjp1 — Y1 (121) T }
dy, 1Yi = Xeqnll 2 2 4 4

which contradicts (10). O

We fix the constants

1 1
=14+47+/8>30 and y:=— < —. 14
B +47/8 > y 25 <56 (14)
Wheneverr; < co we denote the first exit time after from B(X-;, yd;,) by
Vitl = inf{n > 1 | Xp — Xy || > yd,l.} (L 00),

see Fig. 2. I > 1 andn > 0 then we shall calk good fori if n =0 or if

1
Ti+n<ti1AYi+1r and E[R;n41— Ri | Fr4nl 2 —= P-as. (15)

/8

This meansy > 1 is good fori if at time t; + n the walker has not yet left the intersection of the small ball around
X, and the lens shown in Fig. 2 and, roughly speaking, feels a substantial centrifugal force pushing it away from
the centert;. Good times help the walker to leave the lens shortly aftend closely to the poink,.

Next we introduce an Azuma type inequality for a certain family of supermartingales, which will help make this
idea more precise.

Lemma 3. There are constantss > 0, c4 > 0 and1 < ¢5 < oo such thatP-a.s. foralli > 1,n > 0,
E[M; | Fr;]1 < cseXp(—can),
where

n
M; =1t +n <7141} exp<cg Z Wl-,m> and

m=1

Wim :=Dim-1— Dim+ B(Rim—1— Ri.m) +41{m — 1is good fori}.
Proof. Fixi > 1. Firstly, we shall prove that for suitabig > 0,

E[Mini1| Frion] <€XN(—ca)M;, P-as.foralln > 1, (16)
thus showing thatM; ,),>1 is an exponentially fast decreasing submartingale. SWigg is F,,-measurable
(m > 1), we have

E [Mi,n+1 | fr,~+n] = Mi,nE[quC3Wi,n+l)» Ti+n+l<tiin] ft;—i—n]

<M nE[exp(caWins1) | Frign]-

Therefore is suffices to show for the proof of (16) that on the efrgnt n < 7,41}, E[expcaWi nt1) | Fr4nl <1
for some suitablez > 0. However, since théV; ,,'s (m > 1) are uniformly bounded by a constant this follows
from the fact that on the evefit; +n < t;11},
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E[Wins1| Frqnl=E[Diy — Dint1+ Rijn — Riny1 | Frinl
+ 4(mvVBE[R;» — Rin+1| Fr+nl + {n is good fori})
<—c2<0
P-a.s. by virtue of definition (15) and Lemma 2 (6), (8). Using (16) for induction avee obtain by the tower
property,
E[M;, | Frl <exp(—ca(n — 1D)E[M;1 | Fr;] P-as.
for all n > 1. SinceM; 1 is bounded by a constant this finishes the proof.

4. Exponential momentsof ;41 — 7;

The next two lemmas provide tools needed to bound in Proposition 6 the imdaring which the diameter
does not increase. The first lemma shows that the walk cannot spend too much time inside the lens and the small
ball aroundX,, shown in Fig. 2.
Lemma4. Foralli >1,n >0, P-a.s.
Plti +n <tit1 Avit1 | Fr ] < cs€xp(—can),
wherecs andcs are as in Lemma.

The second lemma gives a first crude upper boundfor

Lemmab. There is a finite constant such that foralli > 1,» > 0, P-a.s.
P[A; > n | Fy) < csexp(ca(cedy, — n)),
wherecs andcs are as in Lemma.

In the proof of both lemmas we will use the fact that the sum in the definitidef;gf is in part telescopic, i.e.

n n
> Wim=—Din+B([Rio—Rin)+4Y_ 1m—1is good fori} (17)
m=1 m=1
sinceD; o =0.

Proof of Lemma4. Forn = 0 the statement is true sineg> 1. Fixn > 1. The statement follows from Lemma 3
and (17) once we have shown that on the e¥ert+ n < 7,41 A yi+1}, the right-hand side of (17) is nonnegative.
First we will show that or{t; +n < 711 A Yit1},

Din+ B(Rin — Ri,0) <2(Din — 1 X<, — Zinl). (18)

This is done by brute force. For abbreviation we éet d;, y := D;, andx := | X, — Z; || and note that on
{ti +n < tiy1 A yi+1} we havex, y € [0, yd]. Observe that andy play the role of Cartesian coordinatesXf .,

see Fig. 6. UsingR; o =d/2 andR; , = v/(d/2 — x)%2 + y2 we see that (18) is equivalent to

By (d/2—x)2+y2<y—2x+pd/2.

Both sides of this inequality are nonnegative sincis less thanyd, which is tiny compared t@d. Taking the
square and rearranging shows that (18) is equivalent to

x(dx — 4y — 2Bd — B2x + p2d) + y(y + Bd — B2y) > 0. (19)
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Fig. 6. More realistic and detailed than Fig. 3. The darkly shaded convexkhulit timet; has been enlarged after three steps by the lightly
shaded partj = 3 is good fori since it satisfies the sufficient criteriaf ; 3 < /4, see (22), which corresponds to the fact that the dashed
line, which intersects the horizontal axis at an anglerp#, does not intersedt? T3 j =1is also good foi for the same reason, while

Jj =2 might be good foi but fails to satisfy the sufficient condition (22), since 'the corresponding dashed line starkng,inwould have
intersectedk?

Sincex, y € [0, yd] and 8y = 1/2, see (14), the term8?d in the first bracket an@d in the second bracket are
the dominant terms, respectively, which shows that (19) and thus (18) holds. For the proof that the right-hand side
of (17) is indeed nonnegative dm; + n < 7,41 A y;+1} it therefore suffices to show that,

n—1
Din— Xy, — Zinl <2 1{j is good fori}. (20)
j=0
Both D; ; and—| X, — Z; ;| can increase by at most 1 jfincreases by 1. Therefore, the left-hand side of (20) is
less than or equal to(2J; ,,) where
Jin:={0<j<n|VO<m < j: Dim—I1Xe, = Zipml < Dij — 1 Xe; = Zi 1}

Hence it suffices to show that the elementggf are good fori. Note thatj =0 € J; ,, is good fori by definition
of being good. So fix X j € J; ,. By Lemma 2 (6) it is enough to show that giy; ; > 2V/2, that is

@1i,j €l /4, 3 /4]. (21)
On the one handy; — v1 is close tar /2, as can be seen in Fig. 6. More precisely,
1Yi —Zi ;| S 1Yi — X ll = 1 Xe, — Zi I
1Y = Xej I~ 1Y = Xl + 1 X, — X
> dn/z_ydn’ — 1_27/ > i =Sinz.
dr,-/2+ Vdr,- 1+27/ \/_ 4
Since 0< 1 < g1 this impliesg; > 7/4, thus proving the first part of (21). On the other hapd;— v1 < /2,
see (5). Hence all that remains to be shown for the completion of the proof of (21) is that
Vi <m/4. (22)

Consider the half line (dashed in Fig. 6) startingXat, ; which includes an angle of/4 with X, ;, Z; ; that
containssy ;, ;. We claim that this line does not interselég+ .. This would imply (22). To prove this claim observe
that for anyc > 0 the set of possible values f&, ., with D; ,, — || X+, — Z; || = c is aline parallel to the half line
just described. Sincg € J; ,, the walker did not cross between timeand timer; + j — 1 the dashed line passing
throughX+, 1 ;. Consequently, it suffices to show that the dashed line does not intéfSettit did intersectk 7

sin(p1 — Y1) =
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then this would force the walker on its way frok, to X, ; to cross the dashed line strictly before timet- j,
which is impossible as we just saw

Proof of Lemma 5. Again, the statement is true far= 0 sincecs > 1. Forn > 1, by the Pythagorean theorem
and (13),D; , < R;,, <dy, onthe even{r; +n < 7;41}. Thus on this event the right-hand side of (17) is greater
than or equal te-d,; + (0 — dy,) + 0. Hence due to Lemma 3 and (1Pya.s. for alln > 1,

exp(—ca(1+ B)dy, ) Plti +n < tip1 | Fr,] < csexp(—can),

which is equivalent to the claim of the lemma with:= c3(1+ B)/c4. O
The following result is stronger than Lemma 5.

Proposition 6. 7; < oo P-a.s. for alli > 0. Moreover, there are positive constants cg and finite constantsg
andcig > 1 such that for all; > 0andn >0, P-a.s.,

P[A; 2 n | F] < coexp(—cyn) and (23)
E[exp(csAi) | Fr ] < cao. (24)

Proof. (24) is an immediate consequence of (23). For the proof of (23) choose

c7:= Y% and cg:=c5€* (25)
ety
with ¢4, s andcg according to Lemma 5. We only need to show that (23) holds far:all with t; < co. Indeed,
the case = 0 is trivial sincerg =0, 71 =1 and hence\g = 1. Moreover, since (23) implie4; < co P-a.s., we
then haver; = Ag+---+ A;_1 < oo as well.
Fix i > 1 andn > 0. We distinguish three cases:

{n<ydy}, {ydy; <n<(ce+y)dy} and {(ce+y)dy <n}.
Note that these events are elementggfand partitions2. By definition ofy; 1,

Yi+1 2 Ti + [ydy] (26)
since the walker takes steps of length one. Thereforgpenyd., },

PlAi >n|F] B Plu+n <1 Ayien] Fol

Lemma 4 (25
< csexp(—can) < cgexp(—crn).

On {ydti < n< (C6 + y)dl'l‘ }!

(26)
PlA;>n|Fyl < Plu+lvdy]l <tialFy) < Plu+[ydgl —1<tip1Avipa| Fo

Lemma 4 (25
< csexp(—ca(yld;1—1) < coexp(—crn).

Finally, on{(cs + y)ds; < n},

Lemma 5 (25
P[Ai>n|Fy;] < csexp(ca(cedr, —n)) < coexp(—crn),

where the last inequality can easily be checked.
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5. Linear growth of the diameter and proof of Theorem 1
The following result (withn = 0) implies that(d,), has a positive lim inf speed.

Lemma 7. There are constants;; > 0 andc12 < oo such that for all0 <m < n,
E[exp(dm — d,,)] <cp(n+1) exp(c11(m - n)).
For the proof of this lemma and of Theorem 1 we need the following definition: Given O let
i, :=supi > 0] ; < n}. Note that

dr,

n

=d, and i, <7, <n<T1,,,. (27)

Proof of Lemma 7. The case: = m is trivial. So let 0< m < n and set

n—m>0 and g(m,n)::M>
2Inc1o

f(m,n):= (28)

wherecg andcig are according to Proposition 6. A simple union bound yields

E[€ 1<+l +1I1, where

| :=P[ti,+1—m > f(m,n)n],

Il:= P[tim+1 —m< f(m,n)n, i, <iy+ |'g(m,n)n'|] and

Il = E[expld — dp), in > im + [g(m, m)n]],
see also Fig. 7. Here term | corresponds to the situation in which aftemtitihe diameter does not increase for
an untypical long while. Term Il handles the case in which the diameter does increase shortly afier émit
should, but not often enough in the remaining time untirhe third term 11l considers the original random variable
on the typical event that the number of times at which the diameter increases is at least proporiionihta
constant of proportionality not too small.

It suffices to show that each of these three terms decaysasc in the way claimed in Lemma 7 with constants
c11 andci2 independent of andm. As for the first term,

m
< PLay, = [fonmn]] €Y Pli =i, &> [, mm]]
i=0
23 B o
< co(m + 1) e 7l fmmnl < oy 4 1) g7m=—m/2

which is an upper bound like the one requested in Lemma 7. The second term is estimated as follows.

27
1= Plti, 11 <m+ fm,n)n, n <7, 4+1< Tip+1gommn ]
(28
< P[Tim+|'g(m,n)rﬂ —Ti,+1 zn—m— f(m,n)n= f(m, n)n]

< E[exples(Ti,+gommn] — Tiy+1 = f(m,m)n))]
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X3y X
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Fig. 8. The eventd; occurs if the first trial point sampled lies on the bold arc.

= eﬁCSf(m’n)n Z E[quCB(Tk—F[g(m,n)n]—l - Tk))’ lm +1= k]

k>1
[g(m,n)n]1—2
= e~caftmmny " E|: [ exncstisi).im+1= k:|. (29)
k>1 i=0

Note that{i,, + 1 =k} is the event that; is the first time after time: at which the diameter increases. Therefore,
{im+1=k}e Fy,. (30)

Moreover, the increment&,,; are measurable with respect’, ,,.,. Consequently, by conditioning in (29) on
Fris remmm—2 @nd applying Proposition 6 (24) with=k + [g(m, n)n] — 2 we conclude

1< efcgf(m,n)ncloz E

|: [g(m,n)n1—3
k>1

1_[ exp(c8(Ak+,-)), im+1= k:|

i=0
Continuing in this way we obtain by induction afteg(m, n)n] — 1 steps,

I < e_cgf(m’n)ncj(.%(m,n)n'l—l < e—cgf(m,n)ncic(]ms")" (2:8) e(C8/4)(m—”)’

which is again of the form required in Lemma 7.

In order to demonstrate that also the third term Ill behaves properly we will show that the incremgntsd;, ,
i > 1, have a uniformly positive chance of being larger than a fixed constant,/2aijntlependently of the past. To
this end, we may assume that the prodeéss,, is generated in the following way: There are i.i.d. random variables
Uk, n 20,k >0, uniformly distributed on the unit circle centered in O such thiat1 = X,, + Uy x, Wherek is
the smallest integer such th&},, X, 4+ U, , does not intersed’,,. Then for anyi > 1, by definition ofz;,

Xo — X 1
{dri+1 2 drl- + 1/2} 2 {dr,-+l > dr,- + 1/2} 2 {Url-,O ° T'd—k(l) 2 E} = A,’. (31)
T

i

The reason for the second inclusion in (31) is illustrated in Fig. &;lfoccurs thenk,, and X, + U o are
separated by a slab of widtlyZ In particular, the line connecting,, and X, + Uy, o does not interseck, .
Hencer;;1 =1 + 1 andX,,,, = Xy, 41 = X, + Uy, 0. Therefore,
dr1 2 1 Xg41 — Xeo | 2 1 X — Xk |l +1/2=dy, +1/2.
It follows from (31) that for all 1< j; < Jjo,
1 Jj2—1 1 J2—1
dejy =dgy > 5 3 Udg g >dry +1/2 > 5 ) 1A, (32)

i=j1 i=j1
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This estimate will be useful since the random variables
1{A;} (>1) arei.id. withP[A;]>0. (33)

Indeed, let, (n > 0) be theo-field generated by, x, 0< m < n, 0< k. Because ofF, C F, we haved ; € F,
forall 1< j <i. Moreover, since the uniform distribution on the unit circle is invariant under rotations,

A; is independent fo"f,. izl (34)
and P[A; | .77‘,,.] = P[A;] is just the length of the bold circle segment shown in Fig. 8 divided sy This im-
plies (33). Now we estimate Il by
2 E[expds, —dg, ), in >im+ [g(m, n)n]]
< E[expdy, . —dy, ), in = (im + 1)+ [gm,m)n| — 1]
< Y E[expdy — dy.rypnis)- im +1=k]

k>1

32) 1 k+[g(m,n)n1—2

< E|expl —= A D, in+1=k|. 35
];[p(zi; {AiD). im } (35)

As seenin (30){i, + 1=k} € F, C ]?tk. Therefore, after conditioning in (35) aR;,, we see with the help of
(34) fori > k and (33) that the right-hand side of (35) equals

1 [g(m,n)n]—1
o 1]

which decays as required in Lemma 7, see (28).

Lemma 7 directly implies a weaker version of Theorem 1 in wlji&h || is replaced by/, . For the full statement
we need the following additional argument.

Proof of Theorem 1. (2) follows from (1) by the Borel-Cantelli lemma. For the proof of (1) pigk andci2
according to Lemma 7 and choasg > 0 andc1 > 0 small enough such that
2c13—c11<0 and 271 —-c11(c13—c1) <O0. (36)

We denote by, := max{|| X, || | m < n} the walker's maximal distance from the origin by timeNote thatM,,
andd,, are related via

M, <d,<2M, foralln>0 (37)
because oKg = 0. By a union bound for any > 0,

P[I1X,ll < c1n] < P[A;, > can] + P[M, < cin] + P[B,], where (38)

B,:={A

It suffices to show that each one of the three terms on the right-hand side of (38) decays exponentially fest in
for the first term,

<cin, My > cian, | X, || < can}.

in

" 23
P[A;, = cin] @ Z Plin =i, A; > [ein]] < co(n+1)e 71",
i=0
which decays exponentially fastinindeed. So does the second term in (38) since by Chebyshev’s inequality,

37 d Lemma 7 2
P[M, < cian] < Pld, <2c13n] €W E[e ] < cpp(n + 1) eZ3men,
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which decays exponentially fast due to the choicesafin (36). Finally, we are going to bound the third term in
(38), P[B,]. Define the ladder time@. ;) ; of the proces$M,,),.>o recursively by

po:=0 and wj1:=inf{n>pw; | My, > M, }
In analogy to(i,), for (z;); we define for(x;); the increasing sequencg;), by j, :=sugd;j > 0| u; <n} and
note thatyu ;, <n < pj,+1 andM, = Xy, I. Hence on the ever,,,

1Xw;, = Xnll Z 1 X, | = 1Xnll = My — | Xyl 2 (c13 — c1)n.

Since the walker takes steps of length one, this impliesy ;, > (c13 — c¢1)n and therefore, on the evest,

wj, < L[(1—c13+cn). (39)
On the other hand, o8,,,
27
dp ="dy, =1 X7, — Xkl < NXnll +11Xn — X, | + 1 Xk || < can + Aj, + My, (40)

where we used again the fact that the steps have length one to estimate the second A¢im ang < » to bound
the third term. Therefore the right-most term in (40) can be estimate), drom above by
(37 (39
an+cn+ My, < 2c1n + dﬂj" < 2c1n 4+ d|(1—ciztepn] -
Consequently, by Chebyshev’s inequality and Lemma 7,
P[B,] < Pldy — dj(1—c1gtepn) < 20111 < c1a(n + 1) @1 cnlcas=aln,

which decays exponentially in due to the choice afi3 andcy in (36). O
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