Available online at www.sciencedirect.com

SGIENCE@DIHEGT’

ELSEVIER Ann. 1. H. Poincaré — PR 41 (2005) 307—333

ANNALES
DE L'INSTITUT
HENRI
POINCARE

PROBABILITES
ET STATISTIQUES

www.elsevier.com/locate/anihpb

Stochastic flows associated to coalescent processes |l:
Stochastic differential equations

Jean Bertoifi, Jean-Francois Le Galt

2 | aboratoire de probabilités et modéles aléatoires and institut universitaire de France, université Pierre et Marie Curie,
175, rue du Chevaleret, 75013 Paris, France

b DMA, Ecole normale supérieure, 45, rue d’UIm, 75005 Paris, France
Received 3 February 2004; accepted 15 July 2004
Available online 29 March 2005

Dedicated to the memory of Paul-André Meyer

Abstract

We obtain precise information about the stochastic flows of bridges that are associated with the s¢-caliézbcents. When
the measuret gives no mass to 0, we prove that the flow of bridges is generated by a stochastic differential equation driven
by a Poisson point process. On the other hand, the daseSg of the Kingman coalescent gives rise to a flow of coalescing
diffusions on the intervdl0, 1]. We also discuss a remarkable Brownian flow on the circle which has close connections with the
Kingman coalescent.
0 2005 Elsevier SAS. All rights reserved.

Résumé

Nous étudions les flots de ponts associés aux processus de coagulation Appedésscents. Quand la mesutene charge
pas 0, nous montrons que le flot de ponts est engendré par une équation différentielle stochastique conduite par un processu
de Poisson ponctuel. Au contraire, le cas= g du coalescent de Kingman fait apparaitre un flot de diffusions coalescentes
sur l'intervalle [0, 1]. Nous étudions aussi un flot brownien remarquable sur le cercle, qui est étroitement lié au coalescent de
Kingman.
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In a previous work [1], we obtained a surprising connection between the class of exchangeable coalescents and
certain remarkable stochastic flows on the intef@al]. The main purpose of the present paper is to derive more
explicit information about these flows, and in particular to represent them as solutions of stochastic differential
equations.

Exchangeable coalescents, also called coalescents with simultaneous multiple collisions by Schweinsberg [14],
are processes taking values in theBatf all partitions ofN, which appear as asymptotic models for phenomena
of coagulation that occur when studying the genealogy of large populations. They have been studied recently by
Méohle, Sagitov, Pitman and Schweinsberg [11-14]. Roughly speaking, an exchangeable coalescent is a Markov
procesdl] = (I1;, t > 0) in P, which satisfies the following two conditions. Firstly, for every ¢, the partition
I, is finer than/I, (blocks coagulate as time increases). Secondly, the semigrduizafisfies a natural exchange-
ability property saying that in the coagulation phenomenon all blocks play the same role. See [1] for a more precise
definition.

The main result of [1] gives a one-to-one correspondence between exchangeable coalescents and flows of
bridges on[0, 1]. By definition, abridge is a real-valued random proce&B(r), r € [0, 1]) with B(0) =0 and
B(1) =1, which has right-continuous nondecreasing sample paths and exchangeable increffi@mtsf Bridges
is then a collection{B; ;, —oco < s <t < 00) of bridges, satisfying the flow proper#; , = Bs; o B, for every
s <t < u, and the usual stationarity and independence of “increments” property (see Section 2.1 below for the
precise definition). These flows, or more precisely the dual fIﬁ,«y,s: B_; _g, fit in the general framework of
Le Jan and Raimond [9].

Let us briefly describe the basic connection between exchangeable coalescents and flows of bridges [1], which
may be viewed as an infinite-dimensional version of Kingman’s famous theorem on the structure of exchangeable
partitions of N. Start with a flow of bridgegB;;, —co < s <t < oo) and consider an independent sequence
(V) jen of i.i.d. uniform [0, 1] variables. WriteR (B, ) for the closed range oB; ;. For everyr > 0 define a
random partition’I, of N by declaring that two distinct integer&nd j belong to the same block &1, if and only
if V; andV; belong to the same connected componeriOot] \ R(Bo,). Then,(I1;, t > 0) is an exchangeable
coalescent and conversely any exchangeable coalescent can be obtained in this way from a (unique in law) flow of
bridges.

In the present paper, we focus on the flows associated with an important subclass of exchangeable coalescents
namely theA-coalescents. Roughly speaking;coalescents are those exchangeable coalescents where only one
subcollection of blocks can coagulate at a time. The law of such a process is characterized by a finite measure
on [0, 1] (see Section 2.2 for more details). Important special cases are the Kingman coaldseei) @nd the
Bolthausen—Sznitman coalescertt i6 Lebesgue measure ¢@, 1]). The class ofA-coalescents was introduced
and studied by Pitman [12], under the name of coalescents with multiple collisions.

Let us now outline the main contributions of the present work. WeBlet (B ;) —oo<s<i<c0 b€ the flow of
bridges associated with 4-coalescent in the sense of [1]. Sections 3 and 4 below are devoted to the study of the
Markov process

Fi = (B—r,0(x), x €[0,1]),

and particularly of thep-point motion(F;(r1), ..., Fi(rp)), wherery < --- < r, are p fixed points in[0, 1]. As-
suming thatA ({0}) = O we prove in Section 3 that

¢
(Fi0r0). ... Forp)), 50 2 (X2 .. XD)iz0.
where(X1, ..., X?) is the (unique in law) solution of the stochastic differential equation
Xf:r,-+ / M(ds,du,dx)x(l{ugxii}—Xi_), i=1,...,p,
[0,#]1x]0,1[x]0,1]
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which is driven by a Poisson point measuteon R x]0, 1[x]0, 1] with intensity d du x~2A(dx). The integral
with respect toM should be understood as a stochastic integral with respect to a compensated Poisson measure.
A key intermediate step towards this representation is to obtain a martingale problem characterizing the law of the
p-point motion(F; (ry), ..., F;(rp)).

In Section 4 we consider the case of the celebrated Kingman coalescent [8] (i.eAvighére Dirac point mass
at 0). Then thep-point motion(F;(ry), ..., F(r,)) is a diffusion process in

Dpzz{x:(xl,...,xp): 0<x1<x2<--~<xp<1}

with generator

2
Ag(x) = mej(l xlv,)8 8 @,

ljl

forge CZ(D,,). Note that the components of this diffusion process coalesce when they meet, and are also absorbed
atOand 1.
The results of Sections 3 and 4 give insight in the behavior of the briBgesvhens decreases (recall that
F; = B_;0). What can be said abod#; ; whenr increases? To answer this question it is convenient to introduce
the flow of inverses

I (r)= inf{u € [0, 1]: By (u) > r}, r €[0, 1],

and I ;(1) = Iy ;(1-). Section 5 studies the corresponding (Markovigrpoint motions(7;(r1), ..., I3 (rp)),
where I'; = I'p,. For a general measuté such thatA({0}) = O, we show that the law of thg-point motion
satisfies a martingale problem analogous to the one obtained in SectiorF3 farthe Kingman case, we prove

that(I;(ry), ..., F,(r,,)) is a diffusion process i, with generator
A(x)_—Zx A—xjvj))—— ()+Z ——x Bg
8 2 inj ivj 9x a i Bx,

Again components of this diffusion process coalesce when they meet, but in contrast to the diffusion with genera-
tor A they never reach O or 1.

Together with Section 4, this gives a fairly complete picture of the flow associated with the Kingman coalescent.
For everys < t, By is a step function, that is a nondecreasing function taking only finitely many values. When
increases, the vector of jump times evolves like a diffusion process with gengtaburt the sizes of the jumps
remain constant until the first moment when two jump times coalesce (yielding a “coagulation” of the correspond-
ing jumps). Conversely, whendecreases, the vector of values takerBpy evolves like a diffusion process with
generator4, but the vector of jump times remains constant, until the moment when two among the values taken
by B, ; coalesce (or one of them hits 0 or 1) thus provoking the disappearance of one jump.

Finally, Section 6 discusses closely related flows on the cifcteR/Z rather than ori0, 1]. In the easy case
Wherefx*ZA(dx) < 00, corresponding to the simple flows in [1], we briefly explain how the Poissonian con-
struction of [1] can be adapted to give flows @nwhich are associated with-coalescents. A suitable limiting
procedure then leads to a flaw = (®,, r > 0) which is associated with the Kingman coalescent. Preciéklg,

a Brownian flow (in the sense of Harris [4]) @h with covariance function

1
b(y, y)—l—z—éd(y (A —dy,y)),

whered is the distance offf. The connection with the Kingman coalescent can then be stated as follows. For every

t > 0, the range5; of O, is finite. For everyy € S; we can define the mass ofat timer as the Lebesgue measure

of {x e T: ®,(x) = y}. Then, as a process in the variabl¢he vector of masses of elementsSfis distributed as

the frequencies of blocks in the Kingman coalescent. Alternative formulations and more precise results about the
flow ® can be found in Section 6.



310 J. Bertoin, J.-F. Le Gall / Ann. |. H. Poincaré — PR 41 (2005) 307-333

2. Preliminaries
2.1. Flows of bridges and exchangeable coalescents

To start with, we recall the basic correspondence between bridgés brand exchangeable random partitions
of N:={1, 2,...}, which is a slight variation of a fundamental theorem of Kingman.
A mass-partition is a sequenge= (', i € N) with

o0
BL=p?>-->0 and » p<L
i=1

Following Kallenberg [6], given a random mass partitiprand an independent sequen@€, i € N) of i.i.d.
variables with uniform distribution ovd, 1], we may define a stochastic proce®s= (B(r), r € [0, 1]) with
exchangeable increments by

B(r):(l—Zﬁi>r+Z,3il{Ui<r}, r e[0,1]. 1)
i=1 i=1

Observe thaB has right-continuous increasing paths witt0) = 0 andB(1—) = 1, and that the ranked sequence
of the jump sizes oB is given by the mass partitigf.

In the sequel, we shall cdliridge any process which can be expressed in the form (1). This is equivalent to
the definition given in [1] or in the introduction above. It is easy to check that the composition of two independent
bridges is again a bridge (this is essentially Bochner’s subordination), which motivates the following definition.
A flow of bridgess a collection(B, ;, —oco < s <t < 00) of bridges such that:

(i) Foreverys <t <u, By = Bs;0B;, as.
(if) The law of By, only depends on—s. Furthermore, if1 < s2 < - -+ < sp,, the bridgesBy, s, Bsy.s3+ - - - » Bs,_ 1.0
are independent.
(iii) Bo,o=1d andBg; — Id in probability as | 0, in the sense of Skorokhod'’s topology.

Recall thatP denotes the set of all partitions Bf. We also denote b, the (finite) set of all partitions of
{1,...,n}. The setP is equipped with the smallest topology for which the restriction maps fFoomto P, are
continuous, wherP, is equipped with the discrete topology. A random partitionpfs a random variable with
values inP. It is saidexchangeablé its distribution is invariant under the natural action of the permutation$ of
on’pP.

There is a simple procedure to construct a random exchangeable partition from a®yidbech is a variant
of Kingman'’s paintbox process. L& = {B(r), r € [0, 11} be the closed range df, sOR®=[0,1]\ R is a
random open set which has a canonical decomposition into disjoint open intervals, called the interval components
of RC. Introduce a sequence of i.i.d. uniform variableg@r], (V;, i € N), which is independent of the briddz
We define a random partitiom(B) of N by declaring that the indicase N such thatV; € R are the singletons
of m(B), and two indices # j belong to the same block af(B) if and only if V; and V; belong to the same
interval component oRRC. By the strong law of large numbers, the siz#sof the jumps ofB correspond to the
asymptotic frequencies of the blocksofB). Obviouslyx (B) is exchangeable, and conversely, any exchangeable
random partitiont is distributed asr (B) for a certain bridgeB.

The basic result in [1] stems from the observation that, informally, the sequence of jump sizes of a compound
bridge B = B1 o B> can be expressed as a certain coagulation of the jump siz8s, afhere the coagulation
mechanism is encoded §». This entails that when one applies the above paintbox construction to a flow of
bridges, one obtains a Markov process with value®jnwhich starts from the partition df into singletons,
and is such that blocks of partitions coagulate as time passes. To be specii,)eto<s<i <00 be a flow of
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bridges, and suppose that the sequditei € N) introduced above is independent of the flow. Then, the process

(7 (Bo,:), t > 0)is aP-valued Markov process belonging to the classxathangeable coalescelfsge Definition 1

in [1] for a precise definition). Conversely, any exchangeable coalescent can be obtained by this procedure (see
Theorem 1 in [1]).

2.2. A-coalescents and generalized Fleming—Viot processes

Pitman [12] and Sagitov [13] have pointed at an important class of exchangeable coalescents whose laws can
be characterized by an arbitrary finite measuaren [0, 1]. Specifically, aA-coalescent is a Markov procefs=
(I1;, t > 0) on P started from the partition into singletons, whose evolution can be described as follows (see
Theorem 1 in [12]).

First, one introduces the rates

B = / Ao 21— v, @

for every integers X k < p. Next, for every integer. and every time > 0, denote byl1]* the restriction of
the partition/7; to {1, ..., n}. Then each procegg1”, ¢ > 0) is a continuous time Markov chain with values in
the (finite) setP,. The law of this Markov chain is characterized by its transition rates: Starting from a partition
in P, with p nonempty blocks, for each=2, ..., p, every possible merging d@fblocks (the othep — k blocks
remaining unchanged) occurs at ratg,, and no other transition is possible. This description of the restricted
processesl” determines the law of tha-coalescent].

In this work, we shall be interested in the flow of bridgeBs;, —oco < s <t < oo0) corresponding to
a A-coalescent in the sense explained above. In Sections 3 and 4 below, we will study the process

Ft = B_[,O, t 2 0, (3)

which takes values in the set of all right-continuous nondecreasing functiong®drinto [0, 1]. This process
will be called theA-processFrom properties (i) and (ii) of a flow, it is immediate to see that for every intpgeil
and every(xy, ..., x,) € [0, 117, the p-point motion(F;(x1), ..., F;(x;,)) is Markovian with a Feller semigroup
(see also the discussion in Section 5.1 of [1]).

For each > 0, the functionf; : [0, 1] — [0, 1] can be viewed as the distribution function of a random probability
measurep; on [0, 1]:

Fl‘(x)zpl([ovx])’ xe[oa l]

Note thatpg = A is Lebesgue measure B 1]. The measure-valued procdgs, ¢ > 0), which can be interpreted

as a generalized Fleming—Viot process (see e.g. Chapter 1 of Etheridge [2] for an introduction to Fleming—Viot
measure-valued processes), is studied in Section 5 of [1]. In the next subsection, we recall some basic properties o
this process that play a crucial role in the present work.

2.3. Martingales for the generalized Fleming—Viot process

We first present a characterization of the law of the measure-valued prggess> 0) as the solution to a
martingale problem which is expressed in terms of the rates (2). In this direction, we first need to introduce some
notation.

For every probability measuge on [0, 1] and every bounded measurable functiarO, 1] — R, we write

n(g) == / pu(dx)g(x).
[0,1]
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Let p > 1 be aninteger. Forevery=1, ..., p, leth; : [0, 1] — R be a bounded measurable function. We consider
the functionz : [0, 1]” — R defined by

p
h() =] JhiG). x=G1 ... xp). (4)

i=1
Next, for every subset of indicasC {1, ..., p} with |I| > 2, we writeh; : [0, 1]” — R for the function defined by
h) =] [hieo) x [Thijp),  x=(xn,...,xp),
iel jél

where¢ = min . Finally we set

p
G(u) := / hdu® =T Tpih): )

i=1
observe that
G, (u) = u(]‘[ h,~> [Tuap.
iel jel
Recall that is a finite measure o0, 1] and that the numbers, ; defined in (2) are the transition rates of the
A-coalescent. We introduce an operatoacting on functions of the typé€:

LGiw = > Bpun(Gn () — Ga(w)). (6)

1€{l.....p}, 11|22

The following statement essentially rephrases Theorem 3(i) in [1]. The functions considered in [1] are supposed to
be continuous rather than bounded and measurable. However the general case follows from a standard argumer
(see e.g. Proposition 4.2, page 111 of [3]).

Theorem 1.The law of the proces&o;, t > 0) is characterized by the following martingale problem. We have
po = A and, for every integep > 1 and every bounded measurable functi@gns[0,1] - R, i =1,..., p, the
process

t
Gh(pt)_‘/‘dSLGh(ps)
0

is a martingale, wheré is defined by4), G;, by (5), and LG}, by (6).

Uniqueness for the martingale problem of Theorem 1 follows from a duality argument. To be specific, the
process(p;, t > 0) can be interpreted as a measure-valued dual tottizealescent//”, ¢ > 0) in Pp, and we
have the explicit formula

E[Gh(pn)] =E[ I1 A(]—[hiﬂ @)

A block of 17 “i€A

(see formula (18) in [1]). Specializing to the cdge= 1jg ], we see that
E[F,(x)?] = E[x*], ®)

where #1/ denotes the number of blocks i’ .
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3. A Poissonian SDE forA-processes

In this section, we assume thatis a finite measure of®, 1] which has no atom at 0, i.et({0}) = 0. Our goal
is to get a representation of theprocessF as the solution to a stochastic differential equation driven by a Poisson
point process.

As a first step, we shall see that in the easy case when the measulféds the condition

/ x 2 A(dx) < o0, (9)
[0,1]

the A-process solves a simple Poissonian SDE which derives directly from an explicit construcfiogizén

in [1]. In the general case, this Poissonian SDE still makes sense thanks to the notion of stochastic integral with
respect to a compensated point measure (see e.g. Jacod [5]). We prove thgtribeess is a weak solution of

the Poissonian SDE, and that weak uniqueness holds for this SDE. As a key tool, we establish that the law of the
p-point motion is characterized by a martingale problem.

3.1. The simple case

We start by recalling the Poissonian construction of aprocess in the special case when (9) holds (see [1],
Section 4). We denote by (du, dx) the measure oiD, 1[ x 10, 1] defined bym (du, dx) = du ® x~2A(dx). Con-
sider a Poisson random measureionx 10, 1] x 10, 1],

00
M = Za(li,unxi)’
i=1

with intensity d ® m(du, dx). Here the atomsr1, u1, x1), (2, u2, x2), ... of M are listed in the increasing order
of their first coordinate, which is possible since the measuris finite by our assumption (9). Next, for every
u €10, 1[ andx €]0, 1], we introduce the elementary function

bux(r)=A—-x)r +xlugy, rel0,1]

The A-procesg F;, t > 0) can then be obtained by composing to the left the elementary funétippsas atoms
(t;, ui, x;) are found in the Poisson measulfe Specifically, we sef; = Idjg 17 whenr € [0, #1[, and then for every
integerk > 1 andr € [#, tyy1[

Fy=by, s, 0 0by x- (20)
It is straightforward to check from (10) that for eveyye [0, 1], the process$F;(y), ¢ > 0) can also be described
as the unique solution to the following Poissonian stochastic differential equation

Fo=yt [ M dndon . ). 1)

[0,]x10,1[x]0,1]

where for every: €10, 1[ andr € [0, 1],

Yu,r) =1y — (12)
3.2. A martingale problem for the-point motion

From now on, we come back to the general case wheisea finite measure ofd, 1] which does not charge 0.

Our purpose here is to characterize the law of phpoint motion of theA-process as the unigue solution to a
martingale problem. In this direction, we first introduce some notation.
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Fix an integerp > 1. For everyy = (y1, ..., yp) € [0, 1]¥ and every functiorg : [0, 1]” — R of classC?, we

write, foru €10, 1] andx €10, 1],

y —I—xlI/(u, )’) = (y1+xl‘ll(uv }’l), U] yp +xw(uv )’p)),
and then

Auxg(y) =gy +x¥u,y)—g(y) —x¥(u,y) - Vg(y),
where

p
W y) Vey) = W y)dig(y. ... p)-
i=1

Next, observing thatta,, , g(y)| < Cx? for some constant > 0 depending only og, we set

1
Lg(y) = / A(dx)x_Z/duAu,xg(y).
10,1] 0

Recall that
D,,::{x:(xl,...,x,,):nglgng---gxpgl}. (13)

By construction, ify = (y1, ..., yp) € D), the p-point motion(F;(y1), ..., F;(y,)) lives inD,. We already noticed
that it has a Feller semigroup, so that we can assume that it has cadlag sample paths.

We will now characterize the distribution of tlyepoint motion by a martingale problem, which is clearly related
to Theorem 1 above.

Lemma l.Letp >1and(y1,...,y,) € D,. The law of the proces§F; (y1), ..., F;(yp)), t > 0) is character-
ized by the following martingale problem. We hawg(y1), ..., Fo(yp)) = (b1, ..., yp) and, for every function
¢:D, — R of classC?, the process

t
g(Ft(yl),---,Fz(yp))—/dsﬁg(Fs(yl),-.-,Fs(yp)), 1 >0,
0

is a martingale.
Proof. We start by proving that the-point motion does solve the martingale problem of the lemmaki.et ., k,

be nonnegative integers and et k1 +--- +k,. Setj(i) = 1lifand only if 1<i <ky and, forj € {2, ..., p}, set
j@ =jifandonlyifk; +---+kj_1 <i <ki+---+k;.If Aisanonempty subset ¢t, ...k}, we also set

J'(A)=I!Q£j(i)-

Define a functiorg onD,, by
P
8(z1,...,2p) = H(Zj)kf. (14)
j=1

We start by calculating g. Noting thatfol du (u, y) = 0 for everyy € [0, 1], we have
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1

p p
Lg(za, ... zp) = / A(dx)x_2<f du(l_[((l_X)Zj +x1{u<z,-})kj - H(Zj)k./)>
0 j=1 j=1

10,1]

P , P
= Z ﬂk,l((l_[(Zj)kj_kf>Zj(1)—H(Zj)kj), (15)
j=1 j=1

Ic{l,...k}, 1122

wherek; =|{i € I: j(i) = j}| for every nonempty subsétof {1, ..., k} and everyj € {1, ..., p}. The last equality
is obtained by expanding the first product in the preceding line, in a way very similar to [1], p. 281.
Now define a functiort on [0, 1]* by

k
h(X]_, e Xk) = l_[ 1[0,yj(,-)](xi)-
i=1

In the notation of Section 2.3 we have, for every O,

p
Gi(ps) =[] 2:(10. 7)) = g(F 3. ... Fs (). (16)
j=1

We can also computeG, (i) from formula (6):

LGiw = Y. Bn(Gu(w) — Gu(w) (17)

Icfl,....k}, 1122

and
h[(-x17 cec xk) = (1_[ 1[O,yj(,-)](xi)) X 1[O,yj(1)](x€) (18)
i¢l
with £ =min|.
By comparing (17) and (18) with (15), we get for every 0
LGu(ps) = Lg(Fs(y1), ..., Fs(yp)). (19)

From (16), (19) and Theorem 1 we obtain the martingale problem of the lemma in the special case ish#dre
the type (14). The general case follows by a standard density argument.
It remains to prove uniqueness. To this end we use a duality argument analogous to the one presented in Sec:
tion 5.2 of [1]. Recall thaP;, denotes the space of all partitions{df .. ., k} and(IT¥, ¢ > 0) is the A-coalescent
in Py For every partitionr € Py, and every(zy, ..., zp) € D, we set

P((z1,....2p), ) = 1_[ Zj(A)-
A block of =

If £* denotes the generator dﬂ[‘), viewing P((z1, ..., zp), ) as a function ofr, we have

LoP((1. ... 2p). ) = > ﬂk,|1|< [T zw- I Zj(A))»

I1c{1,...#rx}, |I|>2 A block of ¢ () A block of &

where if A1, Ap, ... are the blocks ofr, ¢;(;r) is the new partition obtained by coagulating the blocks
for i € I. On the other hand, viewin@®((z1,...,2,), ) as a function of(zs,...,z,) we can also evaluate
LP((z1,...,zp), ) from formula (15), and we easily obtain

LP((z1,...,2p), ) =LP((z1, .., 2p), ). (20)
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Now suppose tha(tZ}, L Zhyis aD,-valued cadlag process that solves the martingale problem of the lemma
with initial value (y1, ..., y,), and letrg be the partition of1, ..., k} in singletons. By standard arguments (see
Section 4.4 in [3]) we deduce from (20) that

p .
E[]‘[(z;’)’v} =E[P((Z}..... 2]). m0) | =E[P((y1. ... yp). 1T})]. (21)
j=1

This is enough to show that the law G2, . .., Z/) is uniquely determined. O
Remark. In the case whereZtl, LI =(F(1),.... F (yp)), the identity (21) is of course a special case of (7).
3.3. Weak existence and uniqueness for a Poissonian SDE

The identity (11) in the simple case treated in Subsection 3.1 incites us to construct on a suitable filtered proba-
bility space($2, F, (F;), P):

e an(F;)-Poisson point procesd onR, x 10, 1[ x 10, 1] with intensity d @ m (du, dx) := dr @ du @ x 2 A(dx),
e acollection(X;(r), r > 0), r € [0, 1] of adapted cadlag processes with valuegiri], in such a way that for
everyr € [0, 1], a.s.

X(r)y=r+ / M (ds, du, dx)xlI/(u, Xs_(r)). (22)
[0,]1x]0,1[x]0,1]

The Poissonian stochastic integral in the right-hand side should be understood with respect to the compensatec
Poisson measur® (see e.g. Chapter 3 of [5]). This makes sensgids< 1 and [ x2m(du, dx) < co. Recall also

thatfol du¥ (u,r) =0 for all r € [0, 1], so that roughly speaking, the compensation plays no role.
A pair (M, (X.(r), r €0, 1])) satisfying the above conditions will be calledvaak solutiorof (22). The main
result of this section is the following.

Theorem 2. There exists a weak solution ¢22), which satisfies the additional property th&t(r1) < X;(r2)
for everyr > 0, a.s. wheneved < r1 < r2 < 1. Moreover, for every such solutidiM, X), every integelp > 1 and
everyp-tuple(ry, ..., r,) € D)y, the process$(X,(r1), ..., X;(rp)), t > 0) has the same distribution as tipepoint
motion of theA-process started &by, ..., 7p).

Proof. The second part of the theorem (weak unigueness) is an easy consequence of Lemma 1. Recall the notatior
m(du, dx) = du @ x 2A(dx). Suppose that(z!, ..., zl), t > 0)is aD,-valued adapted process which satisfies
the SDE
Z;:ri-‘r f M(ds,du,dx)xW(u,Zi_), i=1...,p.
[0,¢]1x10,1[x]0,1]

Recall the notatiom\ Z! = Zi — Zi _ for the jumps ofz’. From the very definition of the stochastic integial,is
a purely discontinuous martingale and the compensator of its jump measure

D Swazp
AZi+£0

is the image of 8 ® m(du, dx) under the mappinds, u, x) — x¥ (u, Zé,). By applying Ité’s formula in the
discontinuous case (see e.g. Meyer [10]), we see(thht. .., Z”) solves the martingale problem of Lemma 1,
and hence is distributed as thepoint motion of theA-process.
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It remains to establish the existence of a weak solution. We fix a sequanesg . ..) of real numbers which is
everywhere dense ii©, 1]. In the first part of the proof, we also fix an integep 1.
Set

Y, =2 ...,Y)) wherey! .= F,(r;)fori=1,...,p,

and recall Lemma 1. By comparison with 1té’s formula, we see that for every fungtifh 1]? — R of classC?,
the predictable projection (in the filtration generated by Ahprocess) of the finite variation process

D (8(¥y) — g(¥yo) — AY, - Vg(¥,))

s<t, AY#0

t

/ds/m(du,dx)(g(Ys_+xlI/(u,Ys_)) —g(Yyo) —xW(u, Y,—) - Vg(¥s)).
0

(In order to apply Lemma 1, we first need to reordgr. . ., r,,; still the preceding assertion holds without reorder-
ing.) By standard arguments, this entails that the dual predictable projection of the measure

D Swary

s20, AY;#0
is v(w, ds, dy) defined as the image ok @® m (du, dx) under the mapping
(s,u,x)— (s,xlll(u, YS_)).

Finally, we see that is a vector-valued semimartingale with characteristi;9, v).

We may now apply Theorem 14.80 of [5] (with(w, s, z) = x¥ (4, w(s—)) for z = (u, x) € D :=]0, 1[ x ]0, 1]
andw € ([0, o[, R?)) to see that we can define on a filtered probability sgaeer, (F;), P) an (F;)-Poisson
point processV (dt, du, dx) with intensity d ® m(du, dx) and a cadlag adapted procegs= (X7, ..., X7) such

that(XL, ..., xP) £ !, ..., v?) and

Xi=r + / M (ds, du, dx)x W (u, X! ) (23)
[0,£]1x]0,1[%x]0,1]

foreveryi € {1,..., p}.

Now write Q, for the distribution of (M, X1 ...,XP,0,0,...) on the product spaceM, (R, x D) x
D(R,, [0, 1N (here M, (Ry x D) is the space of Radon measuresRn x D equipped with the usual weak
topology). Notice that this product space is Polish, and that the seqy@npges tight (the one-dimensional mar-
ginals of Q, do not depend onp wheneverp is large enough). Hence we can find a subsequé@gg) that
converges weakly tQ«.

We abuse the notation by writinf, X1, X2, ... for the coordinate process v, (R x D) x D(R, [0, 1Y,
and let(G;),>o0 be the canonical filtration on this space. Plainly, uni@gr, M is a(G;)-Poisson random measure
with intensity d m(du, dx). Moreover a careful passage to the limit shows that Eq. (23) still hQldsa.s. for
everyi=12,....

Recall that for everyp > 1, (X,l, ...,X{’)t>o has the same distribution und€@r,, as the p-point motion
(Fy(ry), ..., Fi(rp))i>o. If r €10, 1] is fixed, we can therefore set

Xi(r) = lim | X;,
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and the procesgX,(r), t > 0) has the same distribution &%;(r), ¢ > 0) so that in particular it has a cadlag
modification. A second moment calculation shows that
t

t
IIT // M(ds,du,dx)xlll(u,Xé_)=//M(ds,du,dx)x'll(u,Xs_(r))
' 0D

0D

in L?(Qy). From (23) we now infer that (22) holds for every [0, 1]. This completes the proof.o

4. The Kingman flow

Throughout this section we suppode= §p. Then theA-coalescent is Kingman'’s coalescent [8]. Indeed, the
rates (2) are simply

1 ifk=2
ﬁ”’k_[o if k > 2.

Proposition 1.For everyx € [0, 1], the processF; (x), ¢t > 0) has a continuous version which is distributed as the
unique strong solution to the SDE

t
X,:x—l—/\/Xs(l—Xs)dWs, (24)
0

where(W;, s > 0) is a standard one-dimensional Brownian motion.

Proof. By applying Theorem 1 with; = 19 y for everyi, we obtain that

t
F(y)? — p(pT_l) / ds(F(»)?~ = F;(»)?) is a martingale (25)
0
for every integerp > 1. Hence (or as a consequence of (8)), we have
-1
B[R ?] =y + 22D (01 yryep o), (26)

2
where the remainder(p) is uniform iny asr — 0. Next, writing

(Fi(y) — ) = F(50)* — 4y F, ()3 + 6y2F: ()2 — 4y3Fi(y) + »*,

and applying again (25), we get

t
E[(F(») —y)'] = / ds E[6(F; ()3 — Fs (1)) — 12y (Fy(0)? — Fs(30)3) + 6y2(Fs (v) — Fs(0)?)].
0

Invoking (26), we deduce that there is some finite constgmnthich does not depend gf such that

E[|Fi(y) — y[*] < er?.

By the Markov property of the one-point motidn(x), we see that Kolmogorov’s criterion is fulfilled, which
ensures the existence of a continuous version. That the latter can be expressed as a solution to (24) is now a standa
consequence of (25) fgr = 1, 2, see for instance Proposition 4.6 in Chapter 5 of [7].
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The dispersion coefficient — +/x — x2 is Holder continuous with exponenf2 on the interval0, 1], so that
we can apply the well-known Yamada—Watanabe criterion which gives pathwise uniqueness for (24). We note
that 0 and 1 are absorbing points f6r O

We now turn our attention to the-point motion of the flow. Recall the notation (13) and fo& (x1, ..., xp)
€ D, introduce the dispersion matrix(x) = (o; ;(x): 1 <i < p, 1< j < p+1) defined by
A—x)/xj—x—1 ifi>],

—Xi\/Xj—Xj_1 if i <j,
wherexo =0, x,11 = 1 by convention. It is easily checked that for every- (x1, ..., x,) € D,, the coefficients
(ai,j (x))1<i,j< p Of the matrixo (x)o*(x) are given forx € D, by

ai,j(x) = { (27)

ai j(x) = xinj (1= xiv;). (28)

We also introduce the operator

1 []
Ag(x) = > Z Xinj (1= xivj)

i,j=1

0°g
—_— 29
8xi3x]' (x)’ ( )

for g € C2(D,).

Theorem 3.For every integep > 1 andx = (x1, ..., xp,) € D), the p-point motion

1
(Fi(x1)..... Fi(xp)), =0,

has a continuous version which solves the martingale probfemeveryg CZ(D,,),

t
g(Fi(x1), ..., Fi(xp)) —/.Ag(FS(xl),...,Fs(xp))ds
0

is a martingale. Furthermore the proceés; (x1), ..., F;(xp)) is distributed as the unique strong solution to the
SDE

t
X,:x+/a(Xs)dWs, (30)
0

where(Ws, s > 0) is a standard(p + 1)-dimensional Brownian motion and is defined by27).

Proof. The existence of a continuous version of thgoint motion follows from Proposition 1. Next, fix two
integers 1< k < € < p and sethy = 1o, y,3, h2 = 10,5, SO thatp, (h1) = F;(xx) andp, (h2) = F;(x¢). Note also
thathiho = k1. Just as in the proof of Proposition 1, we deduce from Theorem 1 that

t
Fy(xr) Fy (xe) — / Fy(xx)(1— Fy(xe))ds, >0,
0

is a martingale. We conclude using Proposition 4.6 in Chapter 5 of [7] that (the continuous version of) the process
(F;(x1), ..., F;(xp)) can be expressed as a solution to (30), and the martingale problem of the theorem follows
readily.
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It remains to prove pathwise uniqueness for (30). Xet (X;, t > 0) be a solution to (30). It is convenient to
introduce thep-dimensional simplex

p+1
A, = {y:(yl,...,y,,+1): 0<y; glfori=1,...,p+1andZyi=1}
i=1
and the increments
Y= ¥/ whereyi =xi — X7 i=1... . p+1,

with the conventionk? =0 andx/"* = 1. Then is a continuous process which lives4t), and solves the SDE

t

Yz=y+/T(Ys)dWs, (32)
0
wherey = (x1, x2 — x1,...,Xp — xp—1, 1 — x,) and the dispersion matrix(y) = (z; j(y): 1<i,j<p+1is
defined fory € A, by
N if i # j,
'L’i’j(y)Z{ i T I
A—-y)Syi ifi=.
We shall establish by induction gnthat (31) has a unique solution, where by a solution we meap-salued
continuous adapted process such that (31) holdspEod, this is easy, so we assume from now on fhat 2 and
that uniqueness of the solution of (31) has been established atprddr. The following argument is related to

the proof of Lemma 3.2 in [4].
Suppose first that the starting pont= (y1, ..., yp+1) lies on the boundary of the simplex

3A,={ye A, y;=0forsome € {1,..., p+1}}.

So there is some indéxsuch that the martingalxé," starts from 0, and since it takes value$inl], we haveYj =0
for all r > 0. Consider the process (respectivelyW) obtained fromY (respectively,W) by suppressing theth
coordinate, viz.

Vo=h .y hyitt Lyt W= v WL wiEL L wth,

Itis immediate that
t
Fi=5+ [ 2T ai.
0
where the dispersion matrikis obtained front by removing the-th column and-th row. SinceW is a standard
p-dimensional Brownian motion, this SDE is that corresponding to (31) forthe 1)-point motion and we
conclude that uniqueness holds in that case.
We now suppose that the starting pojnibelongs to the interion, \ 34, of the simplex. Since the dispersion
matrix t is smooth inA, \ 94, the solution exists and is clearly unique up to the first hitting timéaf by Y.
By the strong Markov property o at this first hitting time, we are reduced to the case when the starting point
lies on the boundar§ A, for which we already know that uniqueness holds.
We have thus shown the existence of a unique solution for (31), and pathwise uniqueness for (30) readily follows.
This completes the proof.O

Corollary 1. The family of rescaled processes
tY2(F(x) —x), xel0,1],
converges in the sense of finite-dimensional distributions to a Brownian bridgerwhedy-.



J. Bertoin, J.-F. Le Gall / Ann. |. H. Poincaré — PR 41 (2005) 307-333 321

Proof. One easily deduces from Theorem 3 that for every integerl andx = (x1, ..., x,) € D), the p-tuple

1
—(F(x1) —x1,..., F;(xp) — x
«/;( r(x1) 1 t( p) p)
converges in distribution to a centered Gaussian varigb(e1), ..., G(x,)) with covariance matrix (x)o*(x).
From (28), we recognize the-marginal of a standard Brownian bridger

Remark. In the terminology of Harris [4], Section 11, we may say that the Brownian bridge is the generating field
of the flow (F}).

5. The flow of inverses

In this section, we consider a finite measuteon [0, 1] and the flow of bridges$B; ;) —oo<s<r<co aSsoCiated
with the A-coalescent. The dual flow ﬁ, = B_; _,. Recall that theA-coalescen(/I;, r > 0) in P may be
constructed by the formulH; = 7 (Bg,) (cf. Section 2).

For everys < r, we set

Fyi(w)=inf{r >0: By, (r) >u}, ifuel01]

and Iy ,(1) = I;,(1-). The functionu — I ,(u) is then nondecreasing and right-continuous frgdni]
into [0, 1]. Note that in contrast to bridges we may halig(0) > 0 or I's (1) < 1. If r <5 < ¢, the identity
B, = By o By implies

Ii=TIs 0l as. (32)

To simplify notation, we sef; = Ip;.

Theorem 4.Let p > 1. For every(xy, ..., x,) € D,, the processl; (x1), ..., I';(xp)) is a Markov process taking
values inD? with a Feller semigroup.

Proof. If follows from (32) that for every &< s < ¢ we havel; = Ii_s oIy, wherel,_; is independent of ; and
distributed ad;_. This entails that the process; (x1), ..., I7(xp)) is Markov with semigroup); characterized
as follows: For(yy,...,yp) € Dp, Q:((y1,...,¥p), ) is the distribution of(I;(y1), ..., I:(yp)). We know that
Bo s converges in probability to the identity mapping Id as> 0, in the sense of the Skorokhod topology. It
follows that the same property holds fét ass — 0. ThereforeQ;((y1,...,yp),-) converges weakly to the
Dirac measuréyy,....y,) ast — 0. To complete the proof of the Feller property, we need to verify that the mapping
1, ..., ¥p) = Q:((y1,--.,¥p), ) is continuous for the weak topology. To this end, itis enough to provetiaj
tends tol;(x) a.s. asy — x, or equivalently that’; (x—) = I;(x) a.s., for every fixed €]0, 1[ (whenx =1 we
just use the definition of7 (1)).

We argue by contradiction, supposing that there exist® andx €10, 1[ such thatP[I}(x—) < I};(x)] > 0.
Equivalently, with positive probability there is a nonempty open intelwab[ C 10, 1[ such thatBo,(r) = x for
everyx €la, b[. Obviously this is possible only if the bridgBy; has zero drift (equivalently the partitiofT,
has no singletons) and finitely many jumps (equivaleftjyhas finitely many blocks). By known facts about the
A-coalescent (see Sections 3.6 and 3.7 of [12]), the previous two properties then hold 8. &ord I1,, for
everyr > 0.

From the connection between bridges and coalescents, we see that on thgen) < I;(x)}, there is a
subcollection of blocks of7; whose union has asymptotic frequencyUsing the Markov property at time we
get that with positive probability the partitiafi, ;.1 consists of two blocks with respective frequenciesnd 1— x.
Replacings by r + 1 andx by 1— x (if necessary) we obtain that
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P[|IT;] = (x,1—x,0,0,...)] > 0, (33)

where|x | denotes the ranked sequence of frequencies of the pattition
To get a contradiction, let > 0 and recall that

d
Mive © ey (1), (34)

Whereﬁ, is a copy oflI, which is independent off7,, r > 0) andCﬁt (1) denotes the coagulation &f, by ﬁ,
(see [1], Section 2.2). We will verify that

]P’[|Cﬁt(1'[€)| =(x,1—x,0,0,...)]—>0. (35)

e—0
Together with (34) this clearly gives a contradiction with (33). Writefér the number of blocks of the partition
Since #1, converges tao in probability ass — 0, it is immediate to see that

P[#(cg, (ITs)) = 2 and #T, # 2] —0.

Therefgre we can concentrate on the cafe # 2 and wegenote bi* the conditional probability[- | #IT, = 2).
Sincell, is an exchangeable partition, the distribution/§f underP* must be of the following type: There is a
random variable with values in]0, 1[ such that, under the probability measiie

AQMi>1 xi =10 >1: X; =0}),
where conditionally givery the variablesX; are independent Bernoulli variables with parametéand we may
also assume that the;’s are independent aff7,, r > 0)). Write |11, | = (aj, a5, ...,a;, ,0,0,...) for the ranked

» “ng

sequence of frequencies Of.. Then the ranked frequenciesaﬁ, (IT,) are distributed undéf* as the decreasing
rearrangement afY,, 1 — Y, 0,0, ...), where

ne
Y. = Zanl-.
i=1

Note thatzg";lagg =1 and that sug., a; converges a.s. to 0 as— 0. Also denote by

ne 1/2
Ve = (q(l—q)Z(af)z)

i=1
the square root of the conditional varianceYpfknowing ¢ and (/1,, r > 0). By well-known limit theorems for
triangular arrays, the conditional distribution give@nd(/1,, r > 0) of
Ye—q
Ve
converges as — 0 to the standard normal distribution on the line. It follows that

Ze =

]P*HCﬁt(Hs)’ =(x,1-x,0, 0,...)] =P[Y,=xo0rY,=1—x]

N P ek P k.|
Ve Ve
X — 1—x-—
Z]E*I:P*[Zsz V. d orZ, ZTq ‘Qa(nr)r20i|:|
£ &

which tends to 0 as — 0. This completes the proof of (35) and gives the desired contradictian.

In a way analogous to Lemma 1, we will now discuss the martingale problem satisfied by the process
(I1(x1), ..., I (xp)).
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Theorem 5.Suppose than (0) = 0. For every functionF e CZ(D,,) and every(ys, ..., yp) € Dp, set

1
ZF(yl,..-,yp)=fA(dz)z_2</dv(F(1ﬁz,u(y1),-..,wz,u(yp)) —F(yl,.-.,yp))),
0

where

V() = L=y ((ﬁ) A v) + gy ((i : ;) \Y v)

if 0 <z <1, andyry,(y) =v. Then, for everyus, ..., u,) € Dp,

t
F(F,(ul),...,n(u,,))—fZF(n(ul),...,n(up))ds
0

is a martingale.

Remark. By using the Taylor expansion fdt in the neighborhood ofy, ..., y,), itis not hard to verify that the
integral with respect tol(dz) in the definition ofCF is absolutely convergent, and moreover the funciidnis
bounded ovef0, 1]7.

Proof. First observe that for every> 0 andu, x € [0, 1],

{I}(u)<x}={Bo,S(x)>u}, a.s. (36)

The inclusion{I (1) < x} C {Bos(x) > u} is obvious by definition. Conversely, sindg ; is continuous at, a.s.,
the conditionBg  (x) > u also implies thafs (1) < x a.s.
Let g be a polynomial function of0, 117 and letf € C*°([0, 1]7). Also set

1 7] Ip

G(tl,...,tp)=/dulfduz-n/dupg(ul,...,ul,),

0 0 0

1 1 1
F(t]_,...,tp)=/dX1/dXZ"~/dxpf(xl,...,xp).

11 12 tp

From (36), we get that for evemy, ..., up,, x1,...,x, € [0, 1],
P[I}(ul) <x1,...,I5(up) < xp] =P[Bo’s(x1) >up, ..., Bos(xp) > up]
= IP’[Bo,s(xl) >up, ..., Bos(xp) > up].

Integrating with respect to the measyr@a, ..., u,) f(x1,...,xp) dug---du,dxg - - - dx,,, we arrive at

/ duy---dup g(ua, ...,up)E[F(FS(ul), ...,I'}(up)) - F(ul,...,up)]
[0,1[P

= f dr1---dxp £(x1, ..., xp)E[G(Bos(x1), ..., Bos(xp)) — G(x1, ..., xp)]. (37)
[0.1(

Denote byAr ¢ the right-hand side of (37). We can evaludtg ¢ from the knowledge of the generatSrfor the
process Fy(x1), ..., Fs(x,)) = (Bos(x1), ..., Bos(xp)) (strictly speaking we should reordey, ..., x,, since the
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procesq Fy(x1), ..., Fy(x,)) and its generator were discussed above in the case when., x,) € D,,; we will
leave this trivial reduction to the reader). Denoting®the semigroup of this process, we have

E[G(Fs(x1). ..., Fs(xp)) — G(x1,...,xp)] = / dt LPG(x1,...,xp).
0

To simplify notation, setr = (x1,...,x,) and¥ (v, x) = (¥ (v, x1), ..., ¥(v,xp)) as in Section 3.2. From the
formula for £ (Section 3.2), the last displayed quantity is equal to

K 1
/dt/A(dz)z_Z/dv(PtG(x+zlP(v,x)) — P,G(x)).
0 0

From the explicit formula folP, G whenG is a polynomial function (see (21)), we see tl®a is again a polyno-
mial function and moreover we can get a uniform bound on the second derivati?gs dflsing Taylor's formula,
and the fact thafo1 dv ¥ (v, x) =0, we get

1

/dv(P,G(x + 29 (0,3)) - PG ()
0

< sz

with a constanC independent of, x, z. This allows us to apply Fubini’s theorem in order to get

1

ArG= / dxf(X)/dt/A(dZ)Z_Z/dU(PtG(X+Z‘1’(v’x))_PtG(x))
0 0

[0,1(»

K 1
=/dt/A(dz)Z72 / dxf(x)/dv(P,G(x—i—le/(v,x)) - PIG(x)).
0 [ 0

0,1[7
Then, from the definition of and the fact thaﬁo,, @ Bo:,

P,G(x +le/(v,x)) — P,G(x)
=E[G(Bo,(x1+ 2% (v,x1)), .., Bo,(xp + 2% (v, %)) — G(Bo,(x1), - .., Bo:(xp))]

P P
= E[ f Cug---dupguy, ... up) (]_[ Ly <Bos itz i) — | | 1{uf<30,r(xz')}):|'

[0.1[7 i=1 i=1

At this point we use (36) witly replaced by; andx replaced by;, or by x; + z¥ (v, x;). We also observe that
the conditionx; + z¥ (v, x;) > I (u;) holds if and only ifx; > ¥, , (I (u;)), or possiblyx; = v in the case when
¥,.»(I3(u;)) = v. Since the case; = v obviously gives no contribution when we integrate with respecttogt
get

1

1 p p
/dU(PrG(xJFZ'I’(”’x))—PrG(x))=/dU / dug(”)]E[H 1{x,->x//7.u(n(u,->>}—Hl{xpn(ui)}}
0

0 (01 i=1 i=1

By substituting this in the preceding formula far- ¢, we arrive at
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s 1
A= / di / Adz)z2 / du / A gE[F (Ve (T3 1)) ) — F(F ). ...)]
0 0 [

0,1[»
1

_ / dug<u)/dt/A(dz)z—Zfdvu«:[F(wz,v(n(ul)),...) _ (R, )],
0 0

[0,1(»

where the last application of Fubini's theorem is easily justified by observing that there exists a consteuht
that for everyz €10, 1] andyz, ..., y, € [0, 1],

< sz.

1
/dv(F(wz,v(yl), V() = FOL, -0 vp)
0

From the Feller property of the proce@s (11), ..., I7(u,)) and the previous bound, we get that the mapping

1

U ) — /dt/A(dz)z—ZfdvE[F(I/,z,v(n(ul)),...) _ F(Lw...)]
0 0
is continuous. By comparing with (37), we conclude that
E[F(Iy(u), ..., [x(up)) — F(ul,...,up)]=/th[ZF(F,(u1),...,n(up))].
0

This gives the martingale problem stated in the theorem, at least for funétiohthe type considered above. The
general case follows from an easy inductionotogether with a density argument to go fraii? functions toC?
functions. O

A natural question is uniqueness for the martingale problem stated in Theorem 5 (compare with Lemma 1). This
does not seem to follow directly from our approach. Instead we will turn to the case of the Kingman coalescent,
where the law of the flow of inverses can be made more explicit. Recall that the d@paias been defined
in (13).

Theorem 6. Suppose thatt = 8. Let (u1,...,u,) € D,. Then the procesel;(uy), ..., I;(up)) is a diffusion
process irD,, with generator

N 32g P /1 dg
Ag(x)—é Z xiAj(l—xivj)m(x)‘FZ é—xi E(x),
ij=1 e i=1 !

for g € C2(D,).

Proof. This can be deduced from the martingale problem for the pro@gss,), ..., F;(x,)) in a way similar
to the proof of Theorem 5. We will treat the cage= 1 and leave details of the general case to the reader. Let
f €C?([0, 1)) and letg be a polynomial function ofD, 1]. As in the proof of Theorem 5, we set

X

1
F(x)= / Foydy, G = / ¢(u) du.

0
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As in (37), we have

/du SWE[F(Iyw) — F(w)] =/dxf(x)E[G(§0,s(x)) - GW)], (38)
0 0

and
E[G(go,s(x)) -GW)]= / dr AP, G(x). (39)

Fix r > 0 and set: = P,G. Recall from (29) thaidh(x) = %x(l —x)h" (x). Note that2(0) = 0 andh(1) = G(1) =
folg(u) du. Also setp (x) = 3x(1—x) f'(x) + (3 — x) f (x). Using two integrations by parts, we get

1 1
/de(X)Ah(X)=—/dX¢(X)h/(X)=—¢(1)h(1)+/dX¢/(X)h(X)
0 0 0

Bo, (%)

1
=—¢(1)h(1)+/dX¢’(X)E[ / dut g(u)]

0
——¢(1)h(1)+/du g(u)/dX¢> OP[I;(w) < x] /dug(u)E[¢(E(u))]
By combining this with (38) and (39) we arrive at
E[F(Iyw) — Fw)]= /dﬂE (Isw)].

The casep = 1 of the theorem easily follows. O

Remark. By arguments similar to the proof of Theorem 3, it is easy to verify that uniqgueness holds for the mar-
tingale problem associated with the generafoMoreover the procesd (x1), ..., I's(xp)) can be obtained as

the unique strong solution of a stochastic differential equation analogous to (30). In the €akén particular,
(I;(x), t > 0) has the same law as the procéXs, ¢ > 0) solving the equation

t t
1
X,=x+/\/Xs(1—Xs)dWs+/(§—Xs)ds,
0 0

whereW is a standard linear Brownian motion.xdf¢ {0, 1}, then X, never hits O or 1. This property, which is in
contrast with the diffusion process of Theorem 3, can be seen as follofgsZfinf{r > 0: X, = 0}, an application
of 1t6’s formula shows that, for € [0, Tyl

t
1-X; t
IogX,:Iogx+// X, dWs'_E
0

Hence% + log X; is a local martingale on the stochastic interM@lTp[, and cannot converge teco ast — Tp.
This proves thafpy = co a.s., and a similar argument applies to the hitting time of 1.
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5.1. More about the Kingman flow

Let us summarize the various results we have obtained for the flow associated with the Kingman coalescent. Fix
s,t € Rwith s < r. Then, we know that the numbaf; , of jumps of the bridgeB; ; is distributed as the number of
blocks in the Kingman coalescent at time s. Furthermore, conditionally ofV, ; = p}, we may write

p—1
Bor) =3 ¥iidizy, i) +1iz0, 0. (40)
— L, :
where the random vectortg?,. ..., Z! ) and(¥},, ..., YX”’,_l) are independentz!,. ..., z!,) is distributed as
the ordered statistics gfindependent uniform variables ¢@ 1] and(Ysl,,, e, Ys’f,_l) is distributed as the ordered

statistics ofp — 1 independent uniform variables @, 1] (this last property is needed only jf > 1). The first
two properties follow from general facts about bridges. The last one follows from the known distribution of block
frequencies in the Kingman coalescent (see [8]).

Next what happens in the representation (40) if we vamgnd :? First, if s is fixed, andr increases, the
vector(Y&,, el Yffl) will remain constant as long as; ; = p. Meanwhile, Theorem 6 shows that the vector
(Zsl,,, ..., Z!)) evolves as a diffusion process with generatbrEventually, two successive coordinates of this
process will meet and coalesce, thus corresponding to a coalescence in the Kingman coalescent. At the same
time N, , jumps fromp to p — 1, and so on.

1

On the contrary, if we fix and decrease, the vecton(Z;,, .. ., Zﬁt) will remain constant as long a¢; ; = p.

Meanwhile, Theorem 3 shows th@fj,, cees Ys’ft_l) evolves as a diffusion process with generatorEventually

two successive coordinates of this process will coalesce, or the firsthnwill be absorbed at 0, or the last

one Yfl_l will be absorbed at 1 (in the genealogical interpretation of [1], each of these events corresponds to the
extinction of a subpopulation consisting of descendants of one individual at the initial generation). At that moment,
N; ; jumps fromp to p — 1, and so on.

6. Flows on the circle
6.1. A Poissonian construction

Our goal in this section is to investigate certain flows on the circle which are associated-sithlescents in a
similar way to the flows ofi0, 1] considered in the previous sections. We will start with a Poissonian construction
which is analogous to the one in Section 4 of [1]. For this reason we will skip some details of the proofs.

We consider the one-dimensional toflis= R/Z. We denote byi(x, y) the distance off and byo Lebesgue
measure off'. If x, y € T, we will denote byjx, y] the counterclockwise arc going framto y: If p is the canonical
projection fromR ontoT, and ifx1, resp.y1, is the representative af resp.y, in [0, 1[, then[x, y] = p([x1, y1])
if x1 <y1and[x,y] = p([x1, y1+ 1)) if x1 > y1. We also set/*(x, y) = o ([x, y]). Finally, for everyx € T, we
setx =x + % and ify € T andy # x, we denote byx, y] the shortest arc betwearandy (that is the range of the
unigue geodesic from to y).

Letz € T anda €10, 1]. We denote byf, . the unique continuous mapping fréininto T such that

fa () =z itd(y,2) S%

andifd(y,z) > 5, fa.: () is the unique element @ such that

_ 1
d(Z fa. () = 7-d @)
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and

Ja: () €ly, z]

(the latter condition makes sense only i z, which is the case where it is needed).

Note that the image of the restriction®fto {y: d(y, z) > a/2} under the mapping, ; is (1 —a)o. This is the
key property needed for the subsequent developments.

Let v be a finite measure o0, 1], and let A/ (dr dz da) be a Poisson point measure Bnx Tx ]0, 1] with
intensity d o (dz)v(da). Then, for every, t € R with s <z, define

qjs,t - fak,zk o fak—LZk—l 0:---0 fal,zlv (41)

where(t1, z1, a1), . .., (t, zk, ax) are the atoms of/ in ]s, t] x Tx 10, 1], ordered in such away that< - - - < #.
If k =0, that s if there are no such atoms, wedgt; be the identity mapping Jf. By construction,

Dy =Dry0Psits if s <t <u.

Finally, let V1, V>, ... be a sequence of i.i.d. random variables which are uniformly distributed. ohiso
assume that this sequence is independent of the Poisson maAskioe everys < ¢, define a random equivalence
relationI7, ; onN by declaring that andj are in the same block df ; if and only if @, ;(V;) = &, (V).

Proposition 2. The process$iTp;, t > 0) is a A-coalescent, wit (dx) = x2v(dx).

This is very similar to Lemma 4 in [1], so that we will skip the proof. The crucial observation is the following.
Leta €10, 1] and letZ be a random variable uniformly distributed ovrindependent of the sequendg;). For
n>1,setk, =|{i <n: d(Z,V;) <5}|. Then, conditionally ork,, = k, the distinct values taken by, z(V;),

i < n, are distributed a8 — k + 1 independent uniform variables @h(compare with Lemma 2 of [1]).

Note that our presentation is a bit different from the one in [1], because we consider the “flow of inverses” rather
than the direct flow as in Section 4 of [1]. This explains the apparent difference between (41) and formula (13)
of [1].

At this point it would be tempting to continue in the spirit of Theorem 2 of [1] and to consider a sequghce
such that the measure$v, (dx) converge weakly to a given finite measuteon [0, 1]. Denoting by®” the flow
associated withy, by the above construction, one expects that the sequé@ficeonverges in a suitable sense
to a limiting flow associated with tha-coalescent. This convergence is indeed easy to obtain for the one-point
motions, and because of rotational invariance of our construction, we see that the limiting one-point motions are
Lévy processes ofi. However, proving the convergence of several points motions is harder because it does not
seem easy to obtain a simple characterization of the limiting law. We will not address this general problem here,
but in the next subsection we will concentrate on the case of the Kingman coalegcerdf, which leads to a
Brownian flow onT.

6.2. A remarkable Brownian flow

For everye €10, 1], let v, = £ 25, and let®® = (D5 ) —co<s<r<o0o D€ the Poissonian flow constructed in the
preceding subsection with= v,.

Proposition 3. Letzy, ..., z, € T. Then the processes

(96,(z0)s -+ D5, (2p), 50
converge in distribution as |, 0, in the sense of weak convergence in the Skorokhod dp@e, T?), towards a
diffusion process with generator

1 92
Bt yp) =5 3 (i ¥) oo (1. ) g € CH(TP),
25,,‘:1 dyidy;
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where the functio is defined oriT? by

1
b, Y) =15 - 2d(y V)L —d(y.y)). (42)
As the proof will show, uniqueness holds for the martingale problem associated with the geBersddhat
the limit in the proposition is well defined.
In the terminology of Harris [4], we can identify the limiting flow as the (coalescing) Brownian flow on
with covariance functiorb (note thatb is translation invariant). In particular the one-point motions are (scaled)
Brownian motions ofT.

Proof. First consider the case = 1, z1 = z. In that case, we observe th&f ,(z) is a continuous-time random
walk onT, with jump rates? and symmetric jump distribution® given by

e/2 1-¢/2 1/
/ns(dy)w(y)= / da g(a) + / daw(%)
T —&/2 g/2

Notice thatr® is supported ofi—¢ /2, /2] and that we slightly abuse notation by identifying elements-gf, 5]
with their equivalent classes i. Whene — 0, the second moment af behaves as

1

1\2 &2

2
— =) da=—.
’ / <" 2) ‘T
0
From well-known invariance principles, this is enough to conclude that the prod%§$z)),>o converges in
distribution, in the sense of weak convergence in the Skorokhod gp@ce, T), towards a Brownian motion dfi

started at; (with generato dx2 instead of the usua} 2)

Let us come back to the general cgse: 1. From the case = 1, we already know that the family of the
distributions of the processeéal(zl), ey ‘1)5,;(217))90 is tight ase — 0. To prove the desired convergence we
need to characterize the sequential limits of this family. By construction, the prcmgeezl), ey dig’t(z,,)) is a
continuous-time Markov chain with generator

Bg(y1, ..., yp) = e_Z/G(dZ)(g(fs,z(yl), o Jez(0p) — 8L - Yp)).

Assume thag € C2(T?). Then Taylor’s expansion shows thatsa$ 0,
_2 14

Bg(y1.....yp) = —- Z

8yl 3y/ (VLs -5 ¥p) /(fe,z(yi) — i) (fe.o(y)) — yj)o (dz) + 0(D),

where we again abuse notation by writirfg . (v;) — y; for the representative of this element Bfin the real
interval[—e¢, ¢]. Elementary calculations show that for every’ € T,

elig\ofz / (fez ) = ¥)(fe: ) = ¥')o (dz) = b(y, ¥,

where the functiom(y, y’) is as in the statement of the theorem.
By a standard argument we obtain that any weak sequential (IFF'HI. .., I}?) of the family (¢5,;(Zl)v A

<I>§J(z,,)) ase | 0 solves the following martingale problem: For evgrg C2(T?),

g(r,l,...,Ftp)—/Bg(rsl,...,n”)ds
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is a martingale. It remains to verify that this martingale problem is well-posed. To this eﬂ@i;&e{d’,l, ...
be any continuous process that solves the preceding martingale problem with initia(aalue, z,). Fix i, j €
{1,...,n}and let

T, =inf{r >0: I} =TI/},
We first prove that

rj=r/ forevery:>T;;, as. (43)
Without loss of generality we may take=1 andj = 2. Letzg € T\ {z1, z2} and

To=inf{r > 0: I} = zp or I} = z0}.
For everyr > 0, set

X, =d*(z0, [}Y) — d*(z0, [}?)

(recall thatd*(x, y) is the length of the counterclockwise arc franto y). From the martingale problem far, we
easily deduce that for evegye C2(R) the process

1
8(Xy) — §|Xt|(1_ |Xt|)g//(Xt)

is a local martingale on the stochastic intefMalITy[ (the restriction tq0, Tp[ is needed since the functign, y) —
d*(zo, x) —d*(z0, y) is C2 only onT\ {zo}). Now notice that the diffusion process with genera}pﬂ(l —|x |)d‘1—22
(in the real interva[—1, 1)) is absorbed at the origin. We conclude tlir?;ﬁz 1}2 for everyr € [T1,2, To[, &.S. On
{T1,2 < To}. Our claim (43) follows by applying a similar argument to the shifted procEss; ), o for anys > 0.
Since the covariance functidnis smooth outside the diagonal, the desired uniqueness property easily follows
from (43). See Lemma 3.2 in [4] for a similar argumenta

We now turn to a more detailed discussion of properties of the limiting flow. Note that the notion of a right-
continuous function off makes sense with an obvious meaning. A functiofl — T is said to be monotone if
the conditiony € [x, z] impliesg(y) € [¢(x), ¢(2)].

By adapting arguments of Harris [4] (Section 4), we may construct a colle@®ofx));>o indexed byx € T,
of continuous processes with valueslinin such a way that the following holds:

(i) Foreveryzy,...,zp, the process®;(z1), ..., ©;(z,)) is distributed as the solution of the martingale problem
associated witl8 started afzy, ..., z).
(iiy Foreveryr > 0, the functionr — ©,(x) is right-continuous and monotone.
(iii) The mappingt — (©;(x), x € T) is continuous with respect to the uniform norm on Borel functions fibm
intoT.
(iv) If x,y e T and Sy, =inf{r > 0: ®;(x) = ©;(y)} then S, , < co and we haved;(x) = O;(y) for every
> Sy y.

From now on we deal with a collectiai®; (x)) satisfying the above properties (i)—(iv).

Theorem 7.Let (V1, Vo, ...) be a sequence of independent uniform variable§ pwhich is also independent of
the collection(®, (x)). For everyt > 0, let I, be the random partition d¥ constructed by saying thatand j are
in the same block af; if and only if®;(V;) = ©,(V;). Then(IT;),>0 is a Kingman coalescent.

Proof. Recall the Poissonian flow? of the beginning of this subsection, and fix> 1. As a consequence of
Proposition 3, we know that

(@5, (VD). ..., ‘PSJ(Vp)),)o — (6(V), ..., @,(vp))t20 (44)
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in the sense of weak convergence in the Skorokhod space. By using the Skorokhod representation theorem, we
may and will assume that this convergence holds a.s. along a given subseguen®e From now on we restrict
our attention to values af belonging to this subsequence. Foy € {1, ..., p} with i # j, set

TS, =inf{t > 0: &g, (Vi) = &g, (V) }.
Lemma 2. We have
g"Lno T{; =Sy, v, in probability
and the variableSy, v, is exponentially distributed with medn

We postpone the proof of the lemma. For evey 0, let /1 ; be the random partition dff associated witt®*
as explained before Proposition 2. By Proposition 2, we know that the pr(ﬂg§$,>o is a A-coalescent with

= §., and thus converges in distribution to the Kingman coalescenta® (see Theorem 1 in [12]).

On the other hand, it immediately follows from Lemma 2 and our definitions that the restrictioi oto
{1,..., p} converges in probability to the restriction of. Hence we conclude that the restrlctlon(dﬂ',),>o to
{1,..., p}is distributed as the Kingman coalescent. Since this holds fopahg proof is complete. O

Proof of Lemma 2. Itis clear from the a.s. convergence (44) that we have

Sv,.v; < I|m|nf Tf], a.s.
To get the first part of the lemma, it is then enough to provemms 1 converges t&[Sy, v;] ase — 0. From
Proposition 2 and the known properties of thecoalescent (see e.g. f12] Example 19), or by a direct argument, it
is easily checked thdr,’/ has the same distribution &5 + - - - + Uy, , WwhereUy, ... are independent exponential

variables with meag?, and N, is independent of the sequentg, ... and such thaP[N, = k] = e2(1 — ¢2)k—1
for everyk € N. It immediately follows thaE[TS]] = 1. Therefore the proof of the first assertlon will be complete
if we verify the second assertion, thatds, v; IS exponential with mean 1.
The following argument is related to Lemma 3.4 in Harris [4]. By using the martingale problem and arguments
similar to the proof of Proposition 3, it is easy to check that the proGeS®, (V;), ©,(V;)), 0< 1 < Sy, v,) is

distributed as the diffusion with general%vf(l - x)d‘i—z2 with initial value uniform over{0, 1], up to its first hitting
time of {0, 1} (notice that this is the same diffusion as in Corollary 1). Consequentlyjsfa random variable with
uniform distribution ovef0, 1], andW is a standard linear Brownian motion, th&y v, has the same distribution
asT =inf{r > 0: Y, =0 or 1}, whereY is the unique (strong) solution of the stochastic equation

t
Y, =U +/,/YS(1— Y,) dW,.
0

k+1

Note thatY is absorbed at 0 and 1 and tH&ity,] = 2 for everyt > 0. From Ité’s formula, we get that for every
integerk > 2,
t
1 k(k—1
E[Y/]= — + ( )/(E[Ys’“l] — E[Y¥]) ds.
0

From this formula and an easy induction argument we get
1 k-1 _,
e

k—__i
E[Y’]_z 2(k +1)
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The distribution ofY; readily follows: By lettingk go tooo and using symmetry, we have fifgtY, = 0] = P[Y; =
1] = %(1 — e ") and we also see that, conditionally ¢Y ¢ {0, 1}}, Y; is uniform on]0, 1[. This is more than
enough for our needs.o

We observed in the preceding proof that the pro¢g$s0;(V;), ©;(V;)), 0<t < Sv;.v;) is distributed as the
diffusion process in Corollary 1. This is generalized in the following proposition, which provides a connection
between the flow®;);>0 and the Kingman flow on the intervgd, 1], thus shedding light on Theorem 7.

Recall our notatior{F;), ¢ for the A-process and taka = §g. For everyx € [0, 1], we can view(F; (x));>0 as
aT-valued process: This simply means that we identify the values 0 and 1.

Proposition 4.Let0 < x1 <x2 < --- < x), < 1. Then thel”-valued processes
(d*(©:(0), ©,(x1)), d*(6:(0), O (x2)). ..., d*(6,(0), O (xp))), .

and
(Ft(xl), Fi(x2), ..., Ft(x,,))t>0

have the same distribution.

Proof. The generatosA of the Markov processF; (x1), Fi(x2), ..., Fi(x,)) is known from Theorem 3. From the
knowledge of the generatds for the procesg©;(0), ©;(x1), ..., O:(x,)) we can also identify the law of the
process

(d*(©:(0), ©,(x1)), d*(6:(0), O (x2)). ..., d*(6,(0), O (xp))), 5,

(compare with Section 5 of Harris [4]). Precisely, we verify that the latter process solves the martingale problem
associated withd, at least up to the stopping tinfg ., and we then use an induction argument. Details are left to
the reader. O

As a consequence of Theorem 7 (or of the preceding proposition), we know that forrevérghe rangeS;
of ©; is finite, and more preciselyy; = |S;| is distributed as the number of blocks in the Kingman coalescent at
timer. Set

St:{U:{""’U}t\’}’

t

whereU} is drawn uniformly at random frors;, and then the points}, Uj, .. U’ are listed in counterclockwise
order. The next corollary is a simple consequence of Proposition 4 and the dlscussmn at the end of Section 5.

Corollary 2. Fixt > 0. Let
M, = (o (0, 1(UD), o (6, 1Y), ....0 (0, U})))
be the vector of masses attached to the point$ jrand let
D, = (d*(U1, Up), d* Uy, Uy), ..., d*(Uy,, Up))

be the vector of lengths of the adjacent intervals to the poings.ifhen conditionally oAN; = k}, the vectorsV,
and D, are independent and both uniformly distributed on the simfilex ..., x;) € [0, 11¥: x1 4 - -- 4+ x; = 1}.

Remark. (i) There is in a sense more symmetry in the flg®) than in the Kingman flow on the intervg, 1],

for which the end points 0 and 1 play a special role. The fact that the random vafit@ensd D, have the same
distribution is clearly related to Theorem 10.5 and Corollary 10.6 in Harris [4], who deals with Brownian flows on
the real line.
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(ii) As a final observation, let us comment on the constén’n formula (42) for the covariance functiadn Let

a > 0 and letg? be a Brownian motion off' started at 0 with generat(%'d‘i—zz. Assume thap? is independent of
(®1):>0 and for every > 0 set

Of(y)=0:()+p, yeT.

Then(©/);>0 is a Brownian flow inT with covariancé“(y, y') = b(y, ') + a. Obviously, Theorem 7, Proposi-
tion 4 and Corollary 2 remain valid #® is replaced by»?.
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