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Abstract

Given an integem, a probability measure on [0, 1], a process( and a real functiory, we define then-orderv-integral
having as integratoX and as integrang(X). In the case of the fractional Brownian moti@{?, for any locally bounded
function g, the corresponding integral vanishes for all odd indiees % and any symmetrie. One consequence is an Ito—
Stratonovich type expansion for the fractional Brownian motion with arbitrary Hurst idtleX0, 1[. On the other hand we
show that the classical [t6—Stratonovich formula holds if and only if %.

0 2004 Elsevier SAS. All rights reserved.

Résumé

Un entierm, une mesure de probabilitésur [0, 1], un processu¥ et une fonction réellg étant donnés, on définit une
v-intégrale d’ordren ayantX comme intégrateur (X ) comme intégrand. Dans le cas du mouvement brownien fractionnaire
BH  on prouve, pour toute fonction localement borgéejue l'intégrale correspondante s’annule pour tous les indices
% et pour toutes les mesures symétrique€omme conséquence, on obtient une formule de type Itd—Stratonovich pour le
mouvement brownien fractionnaire d’indice de Hurst quelconque #ari$. D’autre part, on montre que la formule d’'lt6—
Stratonovich est valide si et seulementsi> %.
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1. Introduction

The present paper is devotedieorderv-integrals and an It6’s formula for non-semimartingales. Classical Ité’s
formula and classical covariations are fundamental tools of stochastic calculus with respect to semimartingales.
Calculus involving integrator& which are not semimartingales has been developed essentially in three directions
in the last twenty years:

e The case whel is a Dirichlet process.
e The case whelX is a Gaussian process.
e The case wheX has paths wittp-variation greater than 2.

The implemented techniques for this purpose have been of different natures: the Dirichlet forms approach, the
Malliavin (or white noise) calculus approach through the theory of Skorohod integral, the Lyons rough path ap-
proach and the discretization-regularization approach.

It is impossible to list here all the contributors in previous topics; nevertheless we try to sketch some related
short history; a survey with a more complete literature could be found in [15].

1. A Dirichlet process may be seen as a natural generalization of a semimartingale: it is constituted by the sum
of a local martingale and a zero quadratic variation (instead of a finite variation) process. Such a process is in
particular a finite quadratic variation process. Calculus with respect to Dirichlet processes has been developed
within two axes. One uses the Dirichlet forms approach, from which the term Dirichlet process was inspired: a
fairly complete monography on the subject can be found in [13]. In this framework one can quote for instance
[18,17,26]. The second approach uses the discretization of the integrals (see e.g. [11,12,7,10]). A counterpart
of this approach is the regularization approach (see e.g. [22-24,8,14,27,29]). In particular those authors make
use of the forward integral, which is a natural generalization of 1td integral, and the symmetric integral, which
is a natural extension of Stratonovich integral. For those definitions, we refer to Section 2.

2. The Skorohod integral, and more generally the Malliavin calculus (see e.g. [20]), has been revealed to be a
good tool for considering Gaussian integrators, and in particular fractional Brownian motion. For illustration
we quote [6,1] and [21] for the case Bfbeing itself a Skorohod integral.

3. The rough path approach has been performed by T. Lyons [16], and continued by several authors; among
them, [5] has adapted this technique to the study of SDEs driven by fractional Brownian motion.

The regularization approach has been recently continued by [9,15] to analyze calculus with respect to inte-
grands whose-variation is greater than 2, developing the notiom-afovariation. In particular, [9] introduces
the notion of 3-variation (or cubic variation) of a process, denotedXhy, X].

We come back now to the main application of this paper, that is fractional Brownian motion. This process, which
in general is not a semimartingale, has been studied intensively in stochastic analysis and it is considered in many
applications, e.g. in hydrology, telecommunications, fluidodynamics, economics and finance.

Recall that a mean zero Gaussian procéss B is a fractional Brownian motion with Hurst inde% <10, 1[
if its covariance function is given by

1
Kia(s,0) =5 (s + 127 —1s —e2), - (5,0) € R% (1.1)
An easy consequence of that property is that
E(B — B/)? =t —5?H. 1.2)

WhenH = % BH is the classical Brownian motion. It is well-known that’ is a semimartingale if and only if
H= % On the other hand, iff > % B! is a zero quadratic variation process, therefore (trivially) also a Dirichlet
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process. As we said, iff > % B is a finite quadratic variation process, therefore an Itd’s formula involving
symmetric integrals holds, and it can be deduced from [23,1}].i$fof class &, we have

t
7=+ [ £shas!. (1.3)
0
If H> % [B¥, BH] vanishes and the symmetric integiifl f'(B#)d° B} coincides with the forward integral

fo f/(BFyd~BH.
Setting f (x) = x2, (1.3) says that
t
(B/")? = (BH)2+2/BSH a°Bl. (1.4)
0

If H < % the forward integrayg B1 a=BH does not exist, but (1.4) is still valid. In fact, using the identity

2 a2, Bie+ B!
(BH )2 = (BH) +2

integrating from zero to both members of the equality, dividing byand using the definition of symmetric integral,
we can immediately see that (1.4) holds for any & < 1. The natural question which arises is the following: is
(1.3) valid for any O< H < 1? The answer is no. In reality, takintx) = x3, similarly to (1.5), we can expand as
follows

(BH—s - BH)’ (15)

N

(BE )2+ (BI)?
2
Proceeding as beforeB,H)3 could be expanded as

(BH-E BsH)s

(BE )*=(BI)3*+3 5

(B, — B -

[BHs BHvBH]I_

t
(B = (B{)® + 3/(BSH)2d°BSH - 5 : (1.6)

moreover previous symmetric integral will exist if and only &7, B | BH] exists.

In reality, that object exists if and only i > %: in that case the mentioned cubic variation even vanishes. This
point comes out as a consequence of Theorem 4.1 2. wher8. This shows that the Itd—Stratonovich formula
(2.3) cannot be extended to the cage< %. On the other hand this observation asks the following important

question: is (1.3) correct for all > %?

In [15], one defined the forward (resp. backward, symmetric) integrals of erde8, denoted b}[é Yod~ M X,
(resp. [y Yo dT™X,, [5 ¥, d°™X,). Given a locally bounded functiog, there, it was proved that the forward
integral of third order typely g(BM)d ¥ B! exists forH > 1. More precisely, it > 3, [q g(BI")d=® BH
vanishes; it = £, /5 g (BYHa—® Y4
is of class &, we have

t t
1 3 1
/g(B yd~® B2} = Z/g’(BS"')ds. (1.7)

0 0

is non-zero and it is related to the local time®¥*; if, furthermore,g

In particular, one deduced that the 3-order symmetric intefjrat B//) d°® B¥ exists and vanishes faf >

However, it is possible to see that féf < %1, previous forward 3-order integral does not exist in general, see
Theorem 4.1 1.
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In this paper, we can show that the previous symmetric 3-order integral still exists (and vanishiés) fér
This allows us to extend It6’s formula (1.3) to the cdge- % and to show thatd = % is a barrier for validity of
formula (1.3). We also investigate the existence of symmetrarder integrals forn > 3. We have to distinguish
two cases, according to the evenness:of

e if2nH > 1 then integralfy g(B/) d°®’ B} exists and vanishes;
o if (21— 1 H > § then integralfy g(B}) d°?~V B! exists and vanishes;

see Theorem 4.1 for a precise statement. We prove that we can not go furth&r €2 or (2n — 1)H < % since
the integrals above do not exist. We also investigate the cagés21 and(2n — 1)H = %
Next natural question is the following. Is it possible to extend somehow (1 8)<f %? For this purpose, we
prove Theorem 3.6 which gives a general Ité’s expansion of pathwise type and we establish the important Theorem
4.4.2 for the fractional Brownian motion with Hurst index0H < 1.
One relevant feature of this paper, is the definition of a new class of integralX. beta continuous process.
Given a positive integer: and a probability measuteon [0, 1], we introduce the following:-orderv-integral of
g(X) with respect taX, g being a locally bounded Borel fonction:

t t 1
1
/‘g(xu)dv’mxu = L"J(]] prObg[dM (Xute — XLl)m/g(XLl +a(Xyye — Xu)) v(da). (1.8)
0 0 0

If X isacontinuous semimartingale anis a probability measure d@, 1], these integrals were introduced in [28]
for the casen = 1.

A m-order forward (resp. backward and symmetric) integraj @) with respect taX can be expressed in the
framework ofm-orderv-integral, withv = &g, the Dirac measure at 0 (resh, @).

Whenv is symmetric the corresponding integral is a natural extension of symmetric integrals of Stratonovich
type. Proposition 3.3 characterizes that integral in terms of a sum of integrals invgliing) as integrand and
v = 481/2 and Theorem 3.6 establishes a general Itd’s expansion. The probability measayealso be absolutely
continuous, but it will be less interesting:ifis Lebesgue measure, the integral becomes trivial.

Section 4 is devoted to applications with respect to fractional Brownian motion. There we distinguish two main
levels of results.

e The It6—Stratonovich formula (1.3) can be extended/to- % (Theorem 4.4 1 and Remark 4.5 1) and cannot
be improved.

o If H< %, it is still possible to expang (B/?) through a pathwise type 1t formula. It is the aim of Theorem
4.4.2 which considers an integral obasymmetric integral being in fact a renormalized Stratonovich integral.

We conclude this introduction insisting on the novelties introduced by this paper with respect to some recent
contributions.

1. Concerning Ité formula foB with respectto any & H < 1, there are contributions when the driving integral
is an extend Skorohod integral, see for instance [2,4] and [3] which has empha%miaacritical value in
their framework.

2. At our knowledge, this is the first paper which treats an Ité formula with respect to a symmetric-Stratonovich
integral, which is closer to the spirit of Riemann sums limits. We define for that purpose a class of high order
integrals, which, from our point of view, have an interest by themselves.

3. We are able to treat an 1td formula with respeddmehow angymmetric integral, introducing a large class of
symmetric integrals via regularization, i,%’.g(BLf’) d"*le. Moreover we are able to treat all the pathologies
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related to such It6 formula. For instance, an Ité6 formula with respect to the classical symmetric integral only
holds for anyH > .

4. WhenH < %, our procedure is inspired by numerical analysis and provides the exact renormalizations we need
to allow convergence of our regularization scheme; a similar analysis could be adapted using a discretization
approach.

5. Fractional Brownian motion is not the only process for which our Ité formula is valid; there are easy extensions
to amore general class of processes. We believe however that fractional Brownian motion is a peculiar example
for formulating necessary and sufficient conditions, through the Hurst parameter which guides the regularity
of paths.

2. Notations and recalls of preliminary results

We start recalling some definitions and results established in some previous papers, see [22—24]. In the following
X (resp.Y) will be a continuous (resp. locally bounded) process. The space of continuous processes will be a
metrizable Fréchet spack if it is endowed with the topology of theniform convergence in probability on each
compact intervalucp). The space of random variables is also a metrizable Fréchet space, denote® pphd
it is equipped with the topology of the convergence in probability.

Theforward integraland thecovariationare respectively defined by

t

t
/Y,, d~ X, = |€I?’c1] uc:p;—L / Y, (Xy1e — Xu)du (2.1)
0 0
and
t
(XY= limuep [ (e = X Oie = Yo du (2.2)
0
ThesymmetriqStratonovichintegralis defined as
t t
/Yu d°X, = |€Ii‘r(1) ucp% [ %(XMH —X,)du. (2.3)
0 0

The following fundamental equality is valid
t t 1
/Yu d°X, :/Yu d~ X, + SIX Y, (2.4)
0 0

provided that two quantities among three exist. However, as we will see in the next section, the left member may
exist even if the covariatiohX, Y] does not exist.

If X is such thaf X, X] exists, X is calledfinite quadratic variation processf [X, X] = 0, thenX will be
calledzero quadratic variation proces# particular aDirichlet processs a finite quadratic variation process. If
X is finite quadratic variation process andfie C?(R), then the following 1té’s formula holds:

t
1
FXD) = f(Xo)+ / FO0d X+ 5700, X, (2.5)
0
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We recall that finite quadratic variation processes are stable throligta@sformations. In particular, if, g €
C! and vector(X, Y) is such that all mutual covariation&, X1, [X, Y] and[Y, Y] exist, then[ f(X), g(¥)]; =
fé f(X5)g' (¥Yy)d[X, Y],. Hence, formulae (2.4) and (2.5) give:

t
f(Xt):f(X0)+/f/(Xu)doXu~ (2.6)

Remark 2.1.

1. If X is a continuous semimartingale akids a suitable previsible process, th&w, d~ X, is classical Itd’s
integral.

2. If X andY are (continuous) semimartingales thgy¥, d°X, is the Fisk—Stratonovich integral afa, Y] is
the ordinary square bracket.

3. If X =BH then its paths are a.s. Holder continuous with parameter strictly lesgth@herefore it is easy
to see that, it > 3 1, thenB* is a zero quadratic variation process. WHén: , B= Bl/2 is the classical

Brownian motion and spBY/2, B1/2), = . In particular Ité’s formula (2.6) holds foH

Since the quadratic variation is not defined B¥ whenH < % we need to find a substitution tool. A concept
of a-variation was already introduced in [24]. Here it will be callttdong «-variation and it is the following
increasing continuous process:

o

X1 —I|m ucp/udu. 2.7)

A real attempt to adapt previous approach to integratonghich are not of finite quadratic variation has been done
in [9]. For a positive integer, in [9] one defines tha-covariation[X?1, ..., X"] of a vector(X?, ..., X") of real
continuous processes, in the following way:

— X0 (Xu+s - X

(X% ..., X" _I|m ucp/( wre du. (2.8)

Clearly, ifn = 2, the 2-covariatiofiX !, X2] is the covariation previously defined. In particular, if all the processes
X' are equal taX than the definition gives:

[X..... X]() :=1im ucp/M u, (2.9)
\‘,_

ntimes

which is called the:-variation of processX.

Remark 2.2.Clearly, for even integer2
[X]® =[X,...,X].
——’
2ntimes

For this reason, in the sequel, if we formulate the assumption thaRthevariation of X exists, that will mean
that the strong2n)-variation of X exists.

The following properties have been established in [9].



M. Gradinaru et al. / Ann. |. H. Poincaré — PR 41 (2005) 781-806 787

Remark 2.3.

1. If the strongz-variation of X exists, then for alln > n, [X]" and[X, ..., X] exist and vanish.
N —

mtimes
2. If[X,..., X] and[X]™ exist then, forg € C(R),
| —
ntimes
t X X n t

|i?3)uu:pfg(xu)M du:fg(Xu)d[X, X, X (2.10)
& &

0 0

Furthermore, iff1, ..., f, € CX(R), then

t
[, ..., O] = | fiXw) ... fi(XDd[X, ..., X]w).
ntimes 0 _ntimes

3. Let us come back to the proce¥s= B#. If H > 3, its strong 3-variatioiB” | exists and its 3-variation
[BH, BH  BH] exists and vanishes. In [15], it is proved that

t
. BH _ BH 3
lim prob/Mdu
el0 &
0

exists and vanishes, even fiir> .

Remark 2.4.1n [24, Proposition 3.14, p. 22], it is proved that the strt%]g/ariation of B exists and equal&%t,
whereu, = E[|G|?], with G a standard Gaussian random variable. For instance,

t, ifH=2,
(BH @0 = P2t 2 2.11)

Proposition 2.5.Let n be a positive integer. IB is a fractional Brownian motion with Hurst indei €10, 1[
then

’

fog' (BMyds, if H=
0, if H>

B M

[g(B"), B, ..., B, = ug, {
2n

Proof. Itis a consequence of Remark 2.3 2. and Remark 2(4.

Remark 2.6.From now on we relax the definitionsiofcovariation andz-variation in the sense that the limit2.8)

and (2.9) are assumed to hold in probability and the limitih§(s2)-valued functions have continuous versions.
Nevertheless, for even integers,2he existence of th€2n)-variation of the procesX (in this weaker sense)
implies the strong existence (that is as an ucp limit). This follows by the Dini type result constituted by Lemma 3.1
in [24]: this says that if a sequence of increasing continuous processes converges in probability at each time toward
a continous process, then the convergence actually holds uniformly in probability on each compact interval of time
(ucp). In the sequel this remark will be used without further comment.

A natural extension of (2.1) and (2.3) is the following.
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Definition 2.7. Let X (resp.Y) be a continuous (resp. locally bounded) processesnletl.

We denote
t t
. 1 Y, Y,
/Yu d°mx, = LI?(]J probg / %(Xﬁg — X)"du; (2.12)
0 0

this quantity is called (definite) symmetric integralmforder type ofY with respect taX.
Similarly we can define the:-order integral of forward (resp. backward) type.

We set
t 1 t
/Yu d-mx, = Ii?g prob= f Yy (Xuge — X)) dus; (2.13)
& &€
0 0

this quantity is called (definite) forward integral mforder type ofY with respect toX. The backwardr-order
(definite) integral will be defined as follows

t t
. 1
/Yu dTmx, = n?g prob= / Yire(Xuye — X)" du. (2.14)
& &
0 0

Remark 2.8.(a) We have

t t t t

/Yu aDx, =/Yu d°X,, /Yu daDx, =/YL,d’Xu.

0 0 0 0

(b) If X is a finite quadratic variation process, thgnw, d°@ X, = [y Y, d[X1..

@ If X=B" H=>1 geCm),thenf;g(BI)d°*®Bl =o0.

(a) and (b) are straightforward, see [22]. The proof of (c) was performed in [15], showing separately the existence
of the 3-forward integral, which in some cases is nonzero, see also (1.7).

Remark 2.9.Letn, m > 1, be two integers. Provided that two quantities among three exist, the third exists and the
following equalities hold:

! t
@ Y, X,...,)S]t:/yud+(2n—1)xu —/Yud‘(z”‘DXM,
2n 0 0

t t t
1
(b) / Y, d°™X, = E[ / Y, dt"mx, + f Yud_(’")Xu:|.
0

0 0

In general forward and backward integrgfsy, d*™ X,, do not exist, while the symmetric integrﬁ? Y, d°™Xx,
may exist.

3. m-order v-integrals and 1t6’s formula
We start here defining the conceptoforderv-integrals; when the integrator is a semimartingale and in the case

m =1, this concept has been defined by [28, p. 521]. As previoXsWill be a continuous process. Henceforth,
will denote a probability measure ¢@, 1]. We shall denote
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1
my :=/o¢k v(da)
0
the kth moment ofv.

Definition 3.1. Let m be a positive integer. For a locally bounded functiorR — R, the m-orderv-integral of
g(X) with respect taX is given by
t 1 t 1
/g(Xu)dU’mXu :E%prObE/du (Xute _Xu)m/g(XL¢+a(Xu+e _Xu)) v(da). (31)
0 0 0

Remark 3.2.This integral with respect t& is only defined for integrands of the tygéX). Nevertheless, in some
cases, see for instance (b), (c), (d) below, we can take an arbitrary intdgrand

For example, we have the following.

(a) If g =1 then, for any probability measuoefé d""™ X, is them-variation of X, see (2.9).

(b) If v=26p andm e N*, thenfé g(X,)d""™X, is the forward integral ofz-order type, see Definition 2.7.

(c) If v=241 andm € N*, thenfé g(X,)d>" X, is the backward integral ofi-order type, see Definition 2.7.

d) Ifv= @ andm € N*, thenfé g(X,)d""X, is the symmetric integral ofi-order type, see Definition 2.7.

In the following, we continue to use notations

t t t

/ gX)d= "X, (resp- f g(Xu)d* "X, f g(Xu)d°(m)Xu>

0 0 0
instead of
t t t
8o,m 81,m Mm
g(X,)d"X, resp. | g(X,)d*"X,, | e(X,)d 27 "Xy, |.
0 0 0

The probability measure will be calledsymmetridf v is invariant with respect to the map-> 1—¢. For example,
the probability measure /2, 5042“51 and Lebesgue measure @) 1] are symmetric.
The symmetric probability measusg,» plays a central role, as we can see by the following.

Proposition 3.3.Let (k,m,n) € N x N* x N* be such thak + m > 2n. Assume tha¥ has a(2n)-variation
[X,X,...,X]=[X]® andg € CK(R). If v is a symmetric probability measure then, provided that all the integrals
excepted one exist, the remaining one exists and we have

! [k;Zl} o |
/ gXd""Xy= ) % / g (X)) dE" X, + R, (32)
0 i=0 0
with m? = Jo & — @)/ v(da) and

{0 if k+m > 2n,
Rt=

ok 3.3
EI0 [1e®(X,)dIX, X, ..., X1u, ifk+m=2n. 3:3)
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Remark 3.4.

1. If k =0the sumin (3.2) is taken to be 0. In this case

t

ome [0, if m > 2n,
/g(x”)d X“_{fég(xu>d[x,x,...,X]u, if m =2n.

2. Note thalm? equals zero for odd integejsthanks to symmetry of.

Proof of Proposition 3.3. (a) First, we prove (3.2) for the case wheén=0, m > 2n + 1 andg is bounded.
Precisely, we prove that integrqfég(xu) d>™ X, exist and vanish. We have almost surely:
t 1 t
1 m cst m
g du (Xy+e — Xu) g(Xu +a(Xyte _Xu)) v(da)| < 7 [ Xute — Xul™ du — 0O,
0 0 0

ase | 0, by Remark 2.3 part 1. The convergence in probability follows.

(b) Second, we prove that integraj@g(xu)d”’mxu exist and vanish whem > 2n + 1 butg is only locally
bounded. In this case, we perform the following localization argument, which will be used several timgs- Det
we will show that

>4) =0

LetM >0, 2, = {w: | X,(0)| < M;Vu €[0, 7+ 1]}. On$2,,, we have

1
_/du (Xu+s_Xu)m/g(Xu +a(Xu+8_Xu))V(da)

t
. 1
lim P(

el0

&
0 0

t 1

1
" / du(Xy4e — Xu)™ f g(Xu +a(Xuge — Xu)) v(da)
0 0
t 1

1
Zg/du(Xqus_Xu)m/gM(Xu +a(Xu+s_Xu))V(d05)
0 0

WheregM = gl[_M,M].
We can write
t 1

_/du (Xu+e _Xu)m/g(xu +a(Xyte _Xu)) v(da) >,8>

1
P(
&
0 0
t 1
1 m
<P g/du (Xu+e — Xu) /gM(Xu +a(Xute — Xu)) v(da)
0 0
Take$ > 0; we chooseM large enough, so thak(£27) < % By convergence in probability, for the bounded

function gy, there exists; > 0 such that for each < n the first term in previous inequality is less thénWe
obtain the existence and the cancellatiorfé)g(xu) arm"x,.

>ﬁ>+mﬂp.
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(c) For the general case, using a Taylor expansion, we can write:

Xyte + Xu 1
g(Xu +a(Xyye — Xu)) = g(L - (“ - Ol) (Xute — Xu))

2 2
k—l . 1 .
D' —a) o Xuyre+ X .
=) — g“( - “)(Xm - X))’
i=0 :
(G-
+ (—1)"2Tg(k) (Oa) Xuge — X

with 6, betweenX, andX,, .. Sincemgi+l =0 for integers, we deduce,

t 1
%/(/g(xu +C¥(Xu+e - Xu)) U(dot)) (Xu+€ _ Xu)m du
0 0
]

0 t
ms5. 1 Y. ¢ + X .
=2 s / g(z”<%>(xu+g—xu>m+zldu
i=0 ’ 0

v k _ k+m
et /( [ s (% -a) V(da)>Mdu,
k! 2 e
0 ‘0

We can assume that® is bounded, by localization argument, as previously. Therefore last term on the right-hand
side tends taR ucp using Remark 2.3. The proof of the proposition is now established.

We can state now a straightforward (even though not very useful) Ité’s formula, with very few assumptions.

Proposition 3.5.Assume that is the Lebesgue measuref@n1]. If f € CL(R) and if X is any continuous process,
then the integrayé f'(X.,)d"1X, exists and we have

t
FXD) = f(Xo) + / F1(X0) d*Xa. (3.4)
0

Proof. Since f belongs to &(R), by classical Taylor formula:

1
S Xuye) = f(Xu) + Xyye — Xu)/ f/(Xu +a(Xyte — Xu)) do.
0

Integrating inu on [0, ¢] and dividing bye, we obtain:
t+¢

3 t 1
% / f(Xy)du — %/f(Xu)du = %/du (Xute — Xu)/f/(Xu +o(Xyte — Xu)) da.
t 0

The left-hand side converges, ag 0, to f(X;) — f(Xo). Therefore, the right-hand side is also forced to have a
limit in probability and equalgy f'(X,)d"1X,. O

We are now able to state the main result of this section.
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Theorem 3.6(It6’s formula). Letrn and¢ two positive integers. Assume thais a symmetric probability measure
on|0, 1] such that

1
. 1
. 2 .
mzj:/otfv(da)zm, forj=1,...,¢—1 (3.5)
0

If £ eC?(R) and if X is a continuous process having(an)-variation, provided that all the integrals excepted
one exist, the remaining exists and the following It6 formula holds

t

! n—1
PO = FX0)+ [ £ XD+ ok [ FE () ae i, (36)
0 j=t 0

where the sum is taken to be 0 for n — 1. Herek;j are suitable constants.

Remark 3.7. A significant application comes out when= @ We obtain in that case

t

! n—1
f(X) = f(Xo) + / FX)d°Xu+ Y kY / FASARIC AV L ke o 3.7)
0

Jj=1 0

Proof of Theorem 3.6. Let us remark that (3.5) implies
1

mjzm, j=1...,2¢ -1 (3.8)
Indeed, we have
1 1 2j+1
majia= [ ode) = [(A- 0 ode) = Y (~1FChy .
0 0 k=0
and, by induction,
N | 1
2maj+1 = ;(—1) 1= T4

It suffices to prove that, for any, b € R,

1
f)=f@+®-a) / f(a+a®—a)v(da) (3.9)
0
n—1 a+b
+Zkz,,»f(zf”’(7>(b — )"+ (b—a)”'Cla.b),
j=t

whereC e C(R?) verifiesC(a, a) = 0. Indeed, setting = X, andb = X .., integrating inu on [0, r] and dividing
by ¢ we get:

t

1 1 t 1 /
g/(f(xu+s) - f(Xu)) du = Ef(xu+s = Xu) /f (Xu +o(Xyte — Xu))v(da) du
0 0

0
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n—1 !
1 ; X+ X ;
+ sze iz f f<2”1><”f““)<xu+g — X% du
J= 0

t
1 2n
+g C( Xy, Xyve) Xyte — Xu)" du.
0
By a simple change of variable we can transform the left-hand side as

t+e &

} / f(Xy)du — }/f(xu)du,
& &
t 0

which tends as | 0, towardf (X;) — f(Xo). By the existence of the2r)-variation for X, since sup.q ,; C(Xy,

X.+¢) tends to zero, the last term on the right-hand side of the previous equality tends to zero, too. The convergence
of all the terms excepted one on the right-hand side is insured by the hypothesis. Therefore, the term which remains
on the right-hand side is also forced to have a limit in probability and we obtain (3.6). Hence, we need to prove
formula (3.9). Thanks to Taylor expansions, we can write,

1
f(b) = fla) - (b—a)/f/(a+a(b—a))V(d0t)
0

2n—1 i 1 1
N ofathY, |1+ f( _}) e
_;f ( 2 >(b a)[ i2i -1 ) \*“ "2 v(da) | +Ob —a)?".

0

Moreover, sincev is symmetric, each integr%l(oz - %)Zk"'lv(da) vanishes foik =0, ...,n — 1. On the other
hand, by using (3.8), easy computations allow to obtain that

—1/ 12j(d)i1 i—0,....0—1
—_ = Vv = n y =VyU,..., L — 1.
e ) \* 2 =2+ !

0

Finally, formula (3.9) follows and the proof of the theorem is concluded.

4. The case of the fractional Brownian motion

In this section, we investigate the existencg‘g)g(xu)d”’mxu whenX = B is a fractional Brownian motion
with Hurst indexH €10, 1[. u2, will stand again for the 2-moment of a standard Gaussian random variable.

Theorem 4.1.Letm > 2 be an integer and a probability measure of0, 1].

1. Assume that: = 2n and g is a locally bounded function. Then
(@) if 20H > 1then [y g(Bf)d"?' B! exists and

t t

t H .
Hy v2npH _ H Hq(2n) _ JogBdu, if 2nH =1,
/g(BM )d" "B, /g(Bu )d[B™], W2n { 0. it 2nH > 1. (4.1)

0 0
(b) if 20 H < 1thenfy g(BH)d"? BH does not exist in general.
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2. Assume that: = 2n + 1 andg is locally bounded. Then
(@) if 2n+1)H > 5 then [ g(BH)a*v2>2+1BH exists and vanishes
(b) if 2n+1)H = 3 thenl [((BE, , — BH)2"+1du converges in law to a centered Gaussian random vari-
able, ase | O;
() if 2n+1)H < 3 then [y g(BI)a®v22+1BH does not exist in general.
3. Assume that = 21 + 1, g belongs taC?"*1(R) andv is symmetric. Then
(@) if 2n+DH > 5 thenf; g(BF)d"#+1B[ exists and vanishes
(b) if 21+ D H < } then [; g(B/)d"2*1BH does not exist in general.

The proof of Theorem 4.1 is technical and it is postponed to the last section.

Corollary 4.2. Letn be a positive integelg a continuous function and> 0. Then, if(2n + )H > % for all
integerst > n, integrals [ g(B}!) a®v22+1BH exist and vanish.

For instance,

o if H> %, integralsfy g(BM)d®v2¢BH exists and vanishes for any odd integer 3;

o if 15 < H < 3 integralfég(_Bf)d5l/2*3Bf does not exist in general, while integiglg (B) d®v2* BH exists
and vanishes for any odd integep 5.

Theorem 4.1 entails some results concerning non-symmetric integrals, see also (1.7).

Corollary 4.3. Letn € N* and g € C*~1(R). Assume thaB” has a(2n)-variation (i.e. 2:H > 1). Then the
following (2n — 1)-order forward and backward integrals exist

1 t

0 if 2nH > 1
Hy j—Cn—-1) pH _ _ Hy +@n-1)pH _ | Y )
/g(Bu ) B = /g(B“)d By {——“gn v ¢/ (BHYdu, if 2nH =1, (4.2
0

whereuy, denotes th@z-moment of a standard Gaussian random variable. In particit,— 1)-order forward
and backward integrals are not always equal to zero.

Proof. We chooser = %4 in Theorem 4.1. Sincg € C¥'~(R) (see point 3.) and2z — 1)H > 3, we deduce

Jo 8By d>*@~VBH = 0. (4.2) is now a consequence of Remark 2.9(a), (b) and Proposition 2.5.

We return now to It6’s formula for fractional Brownian motion. Theorem 3.6 says that, in the expansion of
f(B[1), the sum of stochastic integrals exists but each integral may be meaningless individually. What are the con-
sequences in the applications to fractional Brownian motion? If we insist on working with symmetric Stratonovich
integral, see (2.3), we are obliged to suppfse %. However ifH < (13, an Itd’s formula is still valid provided we
proceed through a different regularization of the symmetric integral which involves particular symmetric probabil-
ity measures.

Theorem 4.4.

1.1f H > £ and f € C3(R), then the integralfy f'(B')d"1B}! exists for any symmetric probability measure
v and we have

t
FBH = 10+ / F/(BMya"1BH. 4.3)
0
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2. Letr > 2 be aninteger. l{2r + 1)H >  and f € C¥*+2(R) then integral [y f'(BH)d"1B} exists for any
symmetric probability measureverifying

1

. 1
moj :=/a2/v(doz) = m, forj=1,...,r — 1 (4.4)
0

Moreover, we have

fBh =g+ / f(BEya"1BH. (4.5)

Proof. If H > £, integralsfy f® (B d®v23B! and f; f© (BH)a*v25BH exist and vanish through Corollary
4.2. Theorem 3.6 applied o= 3, E =1 gives (4. 3)

Again by Corollary 4.2, it > 51, mtegralsf fCHD(BHY gh12:2t41 gH exist and vanish fof > r. Theo-
rem 3.6 appliedta=2r+1,¢(=r andu given by (4.6) entails (4.5). O

Remark 4.5.

1. The symmetric probability measuf&}®® satisfiesn,; = 1 for any integerj > 1. Consequently, the second
part of previous theorem does not apply. However, by the first part, we havé, $o% and f € CS(R),

t
f(Bf’)=f(0)+/f/(Bf)d°Bf~
0

This explains whyH = 3 L is a natural barrier for the validity of Itd—Stratonovich formula. Also it is the sharp

extension of the result of [15] obtained fé&f > 4
2. An example of probability measure satisfying (4.4) is given by

2(r—1)

2(r — 1)u —
V= Z vidj/@r-2, Withy; = /]_[ £ au. (4.6)
k#j

Indeed, we can write, thanks to Newton—Cotes formula, see also [25, p. 118]:
1
P(1)=PO) + / P'(x)v(dx), with P e Ro,_1[X].
0
ChoosingP (X) = X%+ for j e {1,...,r — 1}, we obtain 1= (2j + Lymy;.
3. For instance, for = 2, choosingv = 280 + 381/2 + gé1, we obtain Itd's formula (4.5) for/ > 75 and
f e CIOR).

Remark 4.6. As we said, fractional Brownian motion is a peculiar example of validity of 1td formula. In reality,
extensions are possible in several directions.

e First of all, the result would remain valid for any Gaussian process having a similar covariance structure.
Considering the technicality of a more general statement we have preferred to restrict it to fractional Brownian
motion.
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e Another possible extension goes in the direction of perturbing the fractional Brownian nidtiovith a finite
variation process; typically one can imagine a fractional Brownian motion with Bffft+ fg usds, where
(us) is a locally integrable process. As it has been observed in [19], 1td formula can be extended to processes
of the typef (B, V) whereV is a bounded variation process.

5. Proof of Theorem 4.1

Stepl: Proofs of easily deducible statements.
N will denote a standard Gaussian random variable.

e (Proof of 1) In [14] itis proved that, i€ is a continuous process, ag 0,

' t

BH BH 2n
fCu<%> du—),u,z,,/Cudu
0 0

almost surely uniformly on each compact interval. Using this result, whie, we easily obtain
t 1 t

1 _
- /du BH, — Bf)z”/ (B + (B, — BM)) v(da) ~ e 1M2n/g(Bf)du,
0 0 0

almost surely uniformly (i) on each compact interval and the statements in the first part of Theorem 4.1
follow.

e (Proof of 2(b)) Letm be an odd integer such that > 3 and assume that = ﬁ Let also fixt > 0. [14]
implies, where — 0,

1

Bzf'ﬁ — B;" (law)
/(Bu+s BZ’")mdu_\/_/<L> du—./cm HtN,

see also Proposition 2.3 and Remark 2.4 in [15].
e (Proof of 2(c)) Assuming tha% fO(BuH — BHy™ du converges, as — 0, toward a random variablg in
probability, we deduce that

1
law
g2 mH = /(Bu+8 — Bym du(i>0 ase — 0.
0

But this quantity equals— fo( "** B )" du which, by [14], converges in law towargc,, zfN. This con-
stitutes a contrad|ct|on
e (Proof of 3) This point is a direct consequence of Proposition 3.3 and point 2(a).

We proceed now to the proof of point 2(a).
Step2: First reduction

e By alocalization argument, see also the proof of Proposition 3.3, we can assurgetidhall its derivatives
up to ordenn are bounded.
e For simplicity, we fixtr = 1.
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e We can assume thaf < 2 < 3. Indeed, thanks to the following inequality

1 ; B + B
+
0

1
CSt
/ EIBE . — B/ du =cste™ 71,
&
0

E

we can easily show that integrﬁcjL g(Bl)d*v2mBH exists and vanishes, if > 1.
e Therefore, it suffices to prove the following.

Lemma 5.1.Letm > 3 be an odd integer. If : R — R is a bounded function, then integrﬁ;l g(BH) gdy2mH

exist and vanish fog- < H < £ < 1.

e In proving Lemma 5.1 we need to consider

1

1 + B

Je(m)(g) = E/g< u+82 >(Bu+€ Blfl)m du
0

and to prove that
E{J“")(g)z}

BH , +BHN (BE, +BH
22 // { ( u+e+ )g( v+82+ v >(BM+E_BH)m(BU+€—B£I)m}dudv (51)

tendsto zeroas | 0. HereDg:= {0 <u < v < 1}.
e |t suffices to analyze the integral in (5.1) only on

D, ={e""" <u<v<1le™ <v—u<1}, withp>0smallenough

Indeed, using the hypothesis gnthe absolute value of

H H H
J/(s):—— /f { ( “+E+B )g(B”“;B” )(Bm B! )m(BU+8—Bf)’"}dudv

can be bounded by

cst
// [1BE., — BB, — B ™| dudv < cst e ~?meg Do \ D,) < cst 2" 17,
DO\D(p

Choosing O< p < 2mH — 1 we can see thaf’(¢) converges to 0, as| 0. Hence it is sufficient to prove that

e T Bi\ (Bl +B]
J(&): _2 5 // { ( ut )g( + 5 )(Bque—BH)m(BHS—Bf)m}dudv

tends to zero as |, 0.

Step3: Linear regression
For notational convenience, we drop the indéxin B, Let us fixe > 0 and(u, v) € D.. We will operate
Gaussian analysis on the mean zero Gaussian VEGIQIG 2, G3, G4) Where

(G1,G2,G3,Ga) := (Byye + By, Byte + By, Byye — By, Byye — By).
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Its covariance matrix is given using blocks by
Ao (A A%y ’
A1 A2
whereA11 (resp.A2)) is the covariance matrix diG 1, G2) (resp.(Gs, G4)) and

Ao — Cov(G3, G1) CowG3, G2)
217\ Cov(G4,G1) Cov(Ga,Go) )°

Classical linear regression says that

(c1)=2(&) (%)

where(Z3, Z4) is a mean zero Gaussian random vector independentmG,) and

A= AnALf.
We have
o K*(u,u) K°®(u,v)
All_z(Kg(u,v) Ké(,v) )’ (5-2)

with

1
Ké@u,v) = E((u +&)2H 4 (v+e)2H 4Pl 2y —y2H

1 1
—Elv—u—s|2H—§|v—u+8|2H). (5.3)
Note that lim_ o K¢(u, v) = Ky (u, v), the covariance oB, andB,. We have
a(e,u) (e, u)—i—%a(s,v—u)—%a(—s,v—u)
A= 1 1 s
ae,v) + e, v—u) — 50(—¢,v—u) a(e, v)

with

ale,u) = (u+ 8)2H —uPH — 21y <£> (5.4)

u

where¥ :R — R is a bounded function, defined l/(x) = %ﬂ_l SinceA11 is a symmetric positive matrix,
we can expresd1; = MM*, M being the Cholesky matrix ofi11, that is
VKE(u,u) 0
M = \/E K¢ (u,v) \/KS(U ‘U) _ Kg(u,v)z .
VKE(u,u) ’ K*®(u,u)

Then, if we define the mean zero Gaussian ve@ar N2) by

(G)=» (%)

the random variable®’; and N, are independent and we have

(61)=r(%)+(2) =

with R = ApyM*1 = {rij}1<i, j<2- FOr convenience we set

I3 G1 N1 r11N1 + r12N2
<F4> (Gz) (Nz) <r21N1+r22N2> 58
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Step4: Splitting 7 (¢) in three terms.

We compute

T =55 // { (Gl) ((;2>GmG4}dudv

G
=52 f/ {( ><72>(F3+23)m(F4+Z4)m}dudU=j1(£)+j2(8)+j3(8)’

where

1
Ji(e) = 222 // E
Dg
m
Jo(e) = 22 f/ E
Dg

1
J3(e) == 22 // E
Dy

o We remark that/z(e) =

and

G
)g(f)Zé"ZZ’}dudv,

G G
g<—1>g<72>(1“32§’122” + 1—'4Z§1Z2"1)} dudv

(3)(3)nre

j=0k=2

chrizyIrfzp -k w rkzphrizy )

0. Indeed, by the independence(6f;, G2) and(Z3, Z4), we can write

G G
E{g(71>g< 2)(F32’" 1zm +F4Z§”ZZ’_1)}

()

G m G G m
Jofoi i (G

as we obtain by the first part of the following resuilt.

Lemma 5.2.Let (Z3, Z4) be a centered Gaussian random vector and positive integer. Then

E{Z8 'z =0

and

2

E(Z57Z) = Z ¢; E{Z3Z4}" "I Var(Z3)’ Var(Zs)’,

j=0

with c; some universal constants.

The proof of this result is postponed to step 5.
e We shall prove that each term iis(¢) tends to zero. (5.6) entails

E{Z?) = E{G%) — E{TA <

E{G%y=¢, (=34

Let j ;é 0 andk > 2. Sinceg is bounded,

SYETCTCREREs

cst
dudv <

3

Jjm—j ~k —k .
7/fE{|Fsz3 Iy Zy "} dudv;

799

dudv.

(5.7)

(5.8)

(5.9)
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by Cauchy—Schwarz inequality, previous term is bounded by

cst /f [E(rd z3"~ 2f}]%[ E{I} zﬁ’"—z"}]%dudv;

using the independence @f1, G2) and(Z3, Z4), it equals

5 / / (BT ELZS" 2P (BT 122" 2] dudv

again by Cauchy-Schwarz inequality, this is less or equal than

2 1
CSt( // EUFSE(ZS" 2j}d”d”) (/f E{Ff"}E{Zi”"z"}dudv)z.
D,

Using (5.9) and Lemma 5.3 we obtain the following bound:

1 1
. . 2 2
cste(z’"/k)H2< // E{Ff"}dudv) (// E{F42k}dudv) < cstg2nH -1,
D, D,

This converges to zero becaute> % The last inequality is a consequence of the following technical result
which proof is postponed to step 5.

Lemma 5.3.Letk > 2 be a integer. Then

/f E{ | Ydudv < cstett*H | ¢ =3 4.

If j=0,andk >2

2o [ els(3):(3) 3]
CSt // |Z3F4Zm kI du dv_— ff |F4| E{|Z5Zy~ k|}d“dv

<& // E{Z3 }% E{Zim—z"}]%E{|F4|’<}dudv

dudv

< cstg@n-H=-2 ff E|IT*} dudv < cste? 71,

D,

Therefore, lim o J3(¢) =0
¢ We need to prove that ligpo J1(¢) = 0. By independence @iG1, G2) and(Z3, Z4), we can write

G G
Jie) = 5 f/ { ( 1) <22>}E{Z3ZZ’}dudv
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and, since is bounded,
cst
|T1(e)| < —= // |E{Z5 Z}'}| dudv.
D
We state the following result which will be proved in step 5.

Lemma 5.4.For everyj € {0, ..., 51}, we have

f / \E{zgz4}y’"‘2j dudv < cstelt2m—2DH,

Dy

Now, we can show thafi(e) tends to zero as | 0 as follows. We know that V&Z;) < £2#, i = 3, 4; by using
(5.8) and Lemma 5.4, we can write

m—1 v—e
2
CS
|T1(e)| < —ZZ f dv / du |E{Z3Z4)|" % Var(Zs)/ Var(Zs)!
cst m%l i
<5 e -jH/dv/du|E{Z324}’m_2/§CSt82’”H_1
&
j=0 2¢ &

and 71(¢) tends to zero as — 0 sinceH > %
Step5: Proofs of Lemmas.2, 5.3and5.4.

Proof of Lemma 5.2.
(i) (5.7) is obvious because the random vecidfs, Z4) and(—Zs, —Z4) have the same distribution.
(i) We denote) = E{Z3Z4} andor2 =Var(Z;),i = 3, 4. By linear regression, we can write

6 03 04 02
Zo=—Z3+ | 25— N
03 03
with N a standard Gaussian variable independentzoiWe denoteuy; the (2k)-moment of N. We have
]

m m a0\ 2meiy, (9595 —6%\*
E(Z3Zii= ) Cul =) EZ" ) ) na

k=0 3 3
]

k
— 2(k—0) _2(k—t
£=0

r
= 3
i o]
o -

—
3
N
-

]

k
ZCHQm—Z(k—Z)Ug(k—l)af(kfz)
=0

>~
o

—
3
|
N
—

am=2j _2j _2j
c;0 0370, .

I
Nl

<
Il
o
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Proof of Lemma 5.3. We have, by (5.6)

{//|F3|kdudv} cst(// Iral* E{|N1/*} dudv + / P12l E{| Nl }dudv>
_cst(// lr1al* dudv + // |12 dudv)

E{ //|F4|’<dudu}<cst<f/ ro1l* E{IN1|*} dudv + // |r22|kE{|N2|k}dudv>
D, D, D,
=cst<// |r21|kdudv+/ |r22|kdudv>.
D¢ Dg

The proof will be done once we show

/ Irij ¥ du dv < cstel T (5.10)
D
forall i, j € {1, 2}. Recall that

R=A21M*71: (rll r12>

and

rai1 ra22
with
1 _ K% (u,v)
x—1 _ i VK& (u,u) VK& (u,u) A® (u,v)
- [ K¢ (u,u) ’
ﬁ 0 A¥ (u,v)
and

A% (u,v) = K®(u,u)K® (v, v) — K (u, v)%,  with K¢(u, v) given by (5.3)
Moreover, by (5.4),

A1[1, 1] = cu?i 1y

\/

&

)
=)

An[l, 2] = ety

& \2H-1 e on-1,(
)+2(v u) W(v_u>+2(v u) v

+iw— u)ZHllI/< £ ) + S wity (—
2 v—u 2

)

A21[2, 1] = ev2H 1y

Am[2.2] = ev?H 1y <5>
v

At this point we need to establish some useful estimates.

N———"

vV—Uu

N TN N
S|m®» T |m | ™

Lemma 5.5.There exist positive constantsandc, such that, for any > 0 and any(u, v) € D., we have

! <KEu,u) <cou,  KP(u,v) <couvl, (5.11)
A% (u,v) = (v —u)?H. (5.12)
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Thanks to Lemma 5.5 and boundednes® ofve deduce

|r1al < csteu 1, (5.13)
Ir21] < cst e(vzbj:l 40 _:,);H_l>, (5.14)
izl < CStS(?vH__luv)z * (: Z—H;)lﬂ - ”)H_l)’ (5:15)
ol < CSt8<qu()jH__l)H . (:2_11;)1H vl (v ;HM)H_1> 5.16)

(5.10) will be now a consequence of last four inequalities. This ends the proof of Lemma 5.3 excepted for the proof
of Lemma5.5. O

Proof of Lemma 5.5. Since O< 2H < 1, we have, forany, y >0
1
(x + y)2H > 22H=1 (21 21y > E(sz + 2.
We deduce
e 2H , 2H ¢ 3 on
K(uuy=u+e)" +u"” —— > =-u
2 2
and
K®(u,u) < 22" + 1yu?”,
sinceu > ¢1=7 > ¢. By Cauchy—Schwarz inequality, we have
e 1 1 3 1 e 1 H H H
2K (u,v) = E{G1G>2} < Var(Gy)2Var(Gz)2 = 2K (u, u)2 K¢ (v, v)2 <427 + Dull v
It remains to justify the lower bound fat®. We set
A% (u, v) (e v
u?H (v — u)2H AV
with ¢ : [0, 1] x]1, +oco[ defined by

X2 (e —1-8)2H (148212

4p(3. %) = — Goor 2x2H 4 21+ 8)2" +2(x + 6)*H — P
o x4 AL+8)2H(x —1+8)2H 1(x—1+4+8% _§52H(x +5)2H
BT e (x — 1)2H T4 G- T g1
2H 2H 2H $2H
e e e
AP 148 4 M - 192 (2P
(x —1)2H (x —1)2H (x —1)2H (x —1)2H
§2Hx2H (x4 5)2H(x —148)2H (148  (A+8)2H(x —1-68)>2H
(x — 1)2H (x — 1)2H -1 (x — 1)2H
(x —1—8)2H 1x—1-8% _(x+8)%H §2H (x —1+6)°H
B O L e L e
s34 (1+8)2H (x +8)2H x2H (x + 8)4

MY (x —1)2H (x — 120 (x —1)2H°
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We remark that
L \2H 1 \2H 2 \2H
490, x)=2( —) - —x—DH g2y (=) .
x—1 x—1 x—1

Infact, if v > u, (0, LYu?H (v —u)?# = A%u, v) is the determinant of the covariance matrix 8f,, B,). Conse-
quently

Vx>1, ¢@0,x)>0.
It is not difficult to see that

limg(0, x) = lim ¢(0, x) = 4.
xlilgt)(,X) xlToow(,x)

We deduce that the infimum @f(0, -) is reached and it is strictly positive. Precisely, there exists a constan®
such that, for alb > u

(0(0, E) > 2c1.
u

The lower bound (5.12) will be obtained by proving

so(SZ) —<p<0, 2)‘ < (5.17)

Indeed, ife > 0 is small enough and iz, v) € D, then (5.12) holds. In order to show (5.17), we prove
Je,a>0,¥6>0,Vx >1+81°: |<p(8,x) — (p(O,x)| < cs”. (5.18)
Indeed, if (5.18) holds we have, by putting= > andé = 7,

o
Ve > 0,VY(u,v) € D;: ‘(p(E,B)—go(O,B)’gc(f) < cePe,
u u u u

In order to show (5.18), we prove that each term in the definitian(8f x) verifies inequalities of type (5.18). For
instance, the first term @f(§, x) can be handled as follows:

dc,a > 0,Ve > 0,Y(u,v) € D,:

W —1-92H  xPHx -1 x2H 2H 2H
oD T G | Saopmlem1-97 - -]
2H XZH 2H 1 2H
st ———= =csté 1+
(x —1)2H x—1
52H, if x > 2
< cst §2H . 1— < cst 82pH'
sapem, 0P <x—-1<1

In the previous third inequality we used the following fact
y=8>0=|(y£68)2 —y?H| <2H5H.

The proof of the Lemma 5.5 is now concludeda

Proof of Lemma 5.4. Since
D.Cl{e<u<v<le<v—u<l}

it suffices to prove that
v—¢

1
/du/du|E{zgz4}}'"*2j<cstsl+2<m—21'>”.
2¢ &
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Since(G1, G2) and(Zs, Z4) are independent, we have
E(G3Ga) = E{(Is + Z3)(I4 + Za)} = E(I3I%) + E(Z3Za)

and

m—2j

|E(Z3Za)|" % < cst(|E(G3Gal| +E{Rr]" ).

(i) We can write

/ /du|E 1_'3F4 m 2

/dv / du E{r2)"2 E(r2y"7"

3 vE 3
(/dv / du E{I:2)"~ 2/) (/dv [ du E{Ff}m—z-/)
2¢ £
v—e 1,1 v—e 3
<cst(/dv / du E{rsz(m‘zf)}> (/dv / du E{F42(m_2j)}> < cst glt2m=2)H
2¢ 3 2¢e &
where the last inequality is obtained using Lemma 5.3.
(ii) We have

1 1 &
E{GsGah=5(v—u+ &)t 4 S —u— &) 2 _ (v — )2 = 2y — )29 <—u>

v —

. 21 (1 g2l _
where® : R — R is a bounded function given by (x) = 4+ H;ilz D=2 \We deduce that

v—¢ v—¢

/dv/du|E{G3G4}|m 2]<CSt82(’" 2])/dv/du(v u)BH=2)(m=2))

< cst £2m— 2/)/dv/dv/ @H=2)(m=2]) gy

2e 2¢ £

< cst 82(m—2]) / u(2H—2)(m—2]) du < cst [81+2(m—2j)H + 82(m—2j)].

&
SinceH < 3 andm 2j>1,wehave 3 2H(m — 2j) <1+ m —2j < 2(m — 2j). Consequently,

v—¢&

/dv / du |E{G3Ga)|"™ % < cstelt2m=2DH
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