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Abstract

A lip domain is a Lipschitz domain where the Lipschitz constant is strictly less than one. We prove strong existence and
pathwise uniqueness for the soluti&n= {X;, r > 0} to the Skorokhod equation

dX; =dWy +n(Xy)dLy,

in planar lip domains, wher® = {W;, ¢ > 0} is a Brownian motionn is the inward pointing unit normal vector, add=

{L:;, t >0} is a local time on the boundary which satisfies some additional regularity conditions. Counterexamples are given
for some Lipschitz (but not lip) three dimensional domains.

0 2004 Elsevier SAS. All rights reserved.

Résumé

Un domaine lip est un domaine lipschitzien ou la constante lipschitzienne est inférieure & 1. Nous démontrons I'existence
forte et I'unicité trajectorielle pour la solutioki = {X;, ¢ > 0} de I'équation de Skorokhod

dX[ = th + n(X[)dL[

dans les domaines lip du plan, 8= {W;, r > 0} est un mouvement brownien est le vecteur normal ét = {L;, r > 0} est

un temps local sur la frontiére qui satisfait certaines conditions de régularité. Quelques contre-exemples sont donnés pour de
domaines lipschitziens (mais pas lip) en trois dimensions.
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1. Introduction
1.1. Main results

We start with an informal presentation of our main results. The rigorous statement is postponed until the next
section because it requires a number of technical definitions.

Suppose thaD c R?, d > 2, is a Lipschitz domain angy € D. Let n(x) denote the inward-pointing unit
normal vector at those pointse 9 D for which such a vector can be uniquely defined (suébrm a subset of D
of full surface measure), and 18 = {W;, ¢ > 0} be ad-dimensional Brownian motion. Consider the following
equation for reflecting Brownian motion (RBM) iR, known as the (stochastic) Skorokhod equation,

t
X,=x0+W,+/n(XS)dLS fors > 0. (1.1)
0

HereL ={L,, t > 0} is the local time ofX = {X,, t > 0} ond D, that is, a continuous nondecreasing process that
increases only whel is on the boundary D. See Definition 2.1 for a precise statement of what it means to be a
solution to (1.1). Our main results, informally stated, are the following. See Theorems 2.3, 2.4, and 2.5 below for
a precise statement.

Theorem 1.1.(i) If D is a bounded Lipschitz domain, then weak uniqueness hold.for
(ii) If D is a bounded planar Lipschitz domain whose Lipschitz constant is strictly lessltitaen strong
existence and pathwise uniqueness holdfot).

We do not prove that Theorem 1.1(ii) is sharp, but we have the following counterexample indicating that diffi-
culties can arise for Lipschitz domains for which the Lipschitz constant is greater than 1.

Theorem 1.2.There exists a Lipschitz domaid c R® whose Lipschitz constant is strictly greater thhmhere
weak uniqueness fdf.1)fails.

The counterexample of Theorem 1.2 will be based on a slightly different definition of the local time than that in
Theorem 1.1 (see Section 2 for details). Note also that the domain in Theorem 1.2 is unbounded, while Theorem 1.
involves bounded domains. Although we do not carry it out in this paper, Theorem 1.1 can be modified to handle
certain unbounded domains and the example in Theorem 1.2 can be modified to be a bounded domain. Our proof
take an even more complicated route. We first construct a strong solution in any “special” unbounded Lipschitz
domain (i.e., lying above the graph of a Lipschitz function that has Lipschitz constant strictly less than one) and
then we prove the analogous result for bounded lip domains through a localization argument.

1.2. A new method

We develop a new method for proving pathwise uniqueness for stochastic differential equations. Common meth-
ods used to prove pathwise unigqueness include (i) Picard iteration, (ii) solving the corresponding deterministic
Skorokhod equation, or (iii) using 1td’s formula in a clever way. The method we use to prove pathwise uniqueness
for (1.1) is quite different from the usual ones. We believe that our method has other applications, for example, to
reflecting Brownian motion with oblique angle of reflection. Some of its elements have appeared in [7] and [12],
but each of these papers contains an error; see Remark 5.8.

The first step in our method is to prove weak uniqueness for the joint distribution of the driving Brownian
motion W and the solutionX of the stochastic differential equation (1.1). The second step is to prove strong
existence under the assumptions of Theorem 1.1(ii). Given a Brownian miétionR¢, we construct a strong
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solution(X, L) to (1.1) wheren is replaced by an oblique vector field. We then take a sequence of oblique vector
fields converging to and show that the corresponding solutions converge a.s. to a strong solution of (1.1). Weak
unigueness and strong existence together imply pathwise uniqueness; this idea is classical (see [6, Theorem 4.Z
for example), but as far as we know, it has not been successfully implemented in the past. A proof of what we need
for the present context is given in Section 6.

1.3. Lip domains

One reason for the intense interest in Lipschitz domains in analysis and probability is that they are often a critical
case: many theorems can be proved for Lipschitz domains, while their analogues for less smooth domains are nc
true. Consequently the proofs needed are often quite delicate.

Lipschitz domains whose Lipschitz constant is strictly less than one are Gpldmmains the term was coined
in [15]. These domains have appeared in a natural way in several recent articles involving reflecting Brownian
motion [1-3,15,17], and implicitly in two other papers [8,19]. The crucial property of a lip domain, exploited in
each paper listed above, is that one can define a partial order and construct a pair of (“coupled”) reflecting Brownian
motions in the domain with the property that the two reflecting Brownian particles remain in the same order forever.
We point out that a version of this “monotonicity” property proved in Theorem 5.3 below is different from that used
in the papers listed above in that here we consider two reflecting Brownian motions corresponding to two distinct
reflection direction vector fields. The fact that difficulties can arise in 3-dimensional Lipschitz domains when the
Lipschitz constant is greater than 1, as is established in this paper, makes lip domains a natural class to consider i
the present context.

1.4. Correction

We correct an error in the proof of weak uniqueness for the stochastic Skorokhod equation (1.1) in [5]; see
Remark 4.1. To complete the program started in [5], we impose in Section 2 the additional but natural conditions
(2.2) and (2.3) on the local time. These additional assumptions allow us to remove one of the hypotheses in [5];
see Theorem 2.3 for a precise statement. Note that the extra assumptions do not weaken the part of Theorem 1
dealing with strong existence.

1.5. Literature review

The construction of reflecting Brownian motion as a strong Markov process in domains that are Lipschitz or
even less smooth can be found in [30,31], [10] and [20—22]. The question of when the Skorokhod equation holds
(in a variety of contexts) is considered in [20,22,23,11,32,26,44]. For results on weak unigueness, see [41] and [43]
for example, for results on RBM with oblique reflection and [5] for results on RBM with normal reflection. Lions
and Sznitman [36] proved pathwise uniqueness for RBK4mlomains. Dupuis and Ishii [24] considered pathwise
unigueness for RBM with oblique reflection. Their domains could be non-smooth, but the angle of reflection must
be nearlyC?; in the case of RBM with normal reflection, this means the domain must be r@arifhe paper [12]
is concerned with pathwise uniqueness for RBM with normal reflectiaflitf domains, but contains a gap (see
Remark 5.9). It is at present an open problem as to whether pathwise uniqueness holds for the Skorokhod equatio
in c1** domains in dimensions three and higher.

1.6. Organization of the paper

Section 2 introduces some definitions and gives the precise statements of our main results. Section 3 recalls
number of results about RBM. Section 4 proves weak uniqueness for RBM, while Section 5 presents the strong
existence argument. The proof of pathwise uniqueness is given in Section 6, while the counterexamples are givel
in Section 7.
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2. Main results

If x € R4, we will often writex = (%, ), wherex = (x1, ..., x4—1) € R~ andz = x; € R. We will use| - | for
the usual Euclidean norm iR?—1 or R¢. The open ball of radius aboutx will be denotedB(x, r). We will use
the letterc with subscripts to denote finite strictly positive constants whose exact value is unimportant and which
may vary from place to place. The Euclidean boundary and closure of a damiaifR? will be denoted byd D
andD, respectively.
For a procesX and a Borel sett ¢ R?, let

To=T(A) =inflt >0: X, €A}, ta=1(A)=inf{t>0: X, ¢ A},

i.e., T4 andt, are the first hitting time oft and the first exit time fromd, respectively. Unless specified otherwise,
these random times will be defined relative to the reflecting Brownian mation
We say that? : R?~1 — R is a Lipschitz function with Lipschitz constantif

|@ () — ()| <klx — I

for all ¥, 7 € R?~1. A Lipschitz domairis an open connected sBY, either bounded or unbounded, such that for
somex < oo and every poink € d D there exist a neighborhodd* of x and a Lipschitz functio®* whose Lip-

schitz constant is no larger tharsuch thatD N U~ = {(¥, §) € U*: $ > &*(3)} in some orthonormal coordinate
system which may depend on The infimum of the set of for which the above holds is called the Lipschitz
constant of the domai®. (In what follows, the issue of whether the infimum is attained never arises.) Strictly
speaking, in the case of unbounded domains the definition we gave above is for a uniformly Lipschitz domain.
Since the only unbounded domains we will consider are uniformly Lipschitz ones, we will refer to them simply as
Lipschitz domains as well. If a Lipschitz domain has Lipschitz constant strictly less than 1, then we will €all

alip domain See [34] for further information on Lipschitz domains.

Consider a Lipschitz domaib. Let Ay denote the set of points= (X, ) € 3 D such that if®* is the function
in the definition of a Lipschitz domain, theh* (y) is differentiable aty = x. Let the inward pointing unit normal
vector atx € Ny be denoted by(x). Such a set\Vy and the vector fielah(x) are typically only Lebesgue mea-
surable. However, there is then a Borel subseof Ay such that\p \ NV is of zero Lebesgue measure am@)
restricted toV is Borel measurable. Fare d D ande > 0, define

m

Ng(x) = iv: =1 v= Zain(xi) forsomem >1, a; >0, x; e NN B(x,¢) }.

i=1
We letNp(x) = {n(x)} for x € V. Since a Lipschitz function is differentiable almost everywhere (see Exercise 3.37
on p. 103 of [29]), we see thatD \ N has zero surface measure. kog N, we letNo(x) = (),. o Ne(x) unless
this set is empty. In the latter case we Bgtx) = {(0, 0, ..., 0, 1)}. Our definition of the family of “constraint di-
rections”Ng(x) for x ¢ N is consistent with the assumptions commonly used in the literature, see, e.g., Section 2.2
in [25].

We would like to point out that far € A/, we do not necessarily haf@, .y N, (x) = {n(x)} and so one could use
Me=0Ne(x) as an alternative definition dfp(x). An example in Section 7 shows that there need not be pathwise
uniqueness for the Skorokhod equation in some Lipschitz domains if one were to adopt this alternative definition
of No(x).

Throughout this paper, for a Lipschitz domainin R?, we letv denote the surface measurea.

Let (2, F, {F:}i>0, P) be a complete filtered probability space satisfying the usual conditions; that is, the
filtration {F;},>0 is right-continuous andry contains all sets of zerB-measure. We say that&dimensional
processW is a Brownian motion with respect to the filtrati¢s;, t > 0} if (i) ¢ — W, is continuous andVy = 0
a.s.; (i) for everyr > 0, W, is F;-measurable; and (iii) for every> s > 0, W, — W; is independent ofr; and
W; — W, has a normal distribution with mean zero and covariance métrixs)I, wherel is thed x d identity
matrix.
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Let xo € D. In Definition 2.1 we will give a precise meaning to what we mean by existence and uniqueness of
solutions to the following stochastic differential equation:

t
X,:xo—i—Wt—i-/n(XS)dLs and X,eD forallt>0. (2.2)
0

Remark 2.2 following Definition 2.1 discusses some subtle points and should be regarded as a complement to th
definition.

We will always assume that our filtratiofi$; }, >0 are right-continuous and complete with respect to whichever
probability measure is being discussed.

Definition 2.1. Let D be a Lipschitz domain ifR?.

(1) A weak solution to (2.1) is a triplet of continuous proces¢¥sW, L) on a filtered probability space
(822, F,{F:}i>0, P) such that
(a) X is adapted t4.F;};>0,
(b) L is a nondecreasing*;};>o-adapted process that increases only wkiee d D, i.e.,fa>o 1p(X5)dL; =
01
(c) if AcaD andv(A) =0 then

e o]

/1A(Xs)dLs =0, a.s, (2.2)
0

(d) wheneverf is a nonnegative function ih1(3 D, v) then for all O< ¢ < u < oo,

/f(XS)dLS <oo, as, (2.3)
t

(e) W is ad-dimensional Brownian motion with respect to the filtratiof }; >0,
(H (X, W, L) satisfies (2.1) for some Borel measurable map n(x) onadD such that

n(x) € No(x) whenx € 9D, (2.4)
(9) / 15p(Xs)ds =0. (2.5)

0

(2) We say that weak uniqueness holds for (2.1) if whene¥e#W, L) and(X, W, L) are weak solutions to (2.1),
then the procesgX, L) has the same law as the procéXxsL).

(3) Pathwise uniqueness is said to hold for (2.1) if whenever

(.Q, FAF ) iz0. P (X, W, L))
and
(Qv ]:’ {gt}[>Oa P’ (?, W’ Z))

are two weak solutions to (2.1) with a common Brownian motinand probability spacés2?, 7, P) but
possibly different filtrationg7; }; >0 and{G;}; >0, then

P((X:, L) = (X,,L,) forallt > 0)=1
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(4) Consider a Brownian motioW on a probability spacé?, F, P) and let{F¥},>0 be the augmented filtration
generated by underP. A strong solution to (2.1), relative t&2, 7, P) and W, is a pair of continuous
processesX, L) such that

(2, F AF V>0, P, (X, W, L))

is a weak solution to (2.1). In particulaX, and L are both adapted toF," },>0. o
(5) We say that strong uniqueness holds for (2.1) if for every pair of strong solutiarfs) and (X, L) to (2.1),
relative to the same probability spa@e, 7, P) and Brownian motiorW, we have

P((Xs, Ly) = (X;, Ly) forall £ > 0) = 1.

Clearly pathwise uniqueness implies strong unigueness. It is known (cf. Yamada and Watanabe [45]) that path-
wise uniqueness implies weak unigueness.

Remark 2.2.(i) Recall that\ denotes the Borel set of pointsd where the normal vector is well defined in the
classical sense. Sinago D \ N) = 0, condition (2.2) implies that the integrﬁg n(X,)dL; has the same value
for any Borel measurable choice wfx) whenx € 3D \ A; in other words, condition (2.4) is irrelevant as long as
(2.2) is satisfied. Note, however, that this is not the case in Theorem 2.5 below.

(ii) Suppose thatX is a (component of a) weak solution to (2.1). We will argue thah (2.1) is uniquely
determined byX. SinceX is adapted to the filtratioft;}, >0 andn is Borel measurable, them X) is adapted.
Definition 2.1(1) implies thak is a continuou®?-valued semimartingale. Therefakehas a unique Doob—Meyer
decomposition:

where, with probability oneB is a continuousR?-valued local martingale wittBg = 0 and A is a continuous
R4-valued process locally of finite variation witky = 0, both adapted to the augmented filtration generatexl.by
The amount of time the proce&sspends ird D has zero Lebesgue measure, so it follows from (2.1) and Definition
2.1(1)(b) thatw,; = fé 1p(X5)d X, is adapted to the augmented filtration generatedbynd so is the process
t— fé n(X,)dL,. Hence by the uniqueness of the Doob—Meyer decompositioX fef; = fé n(Xy)dL, which
by (2.2), equalsfé N(Xy)1lix,enydLs. Since|n(x)| = 1 andn(x) is uniquely defined for € 9D NN, then by
(2.2) again,

t

L,:/n(Xs)l{XSEN} -dAg forallt >0,
0

and we conclude thdt is uniquely determined byt and X, and hence by alone. This shows that we could have
removedL from the statements of parts (2), (3) and (5) of Definition 2.1 without changing the meaning of weak
uniqueness, pathwise unigueness, and strong uniqueness, respectively.

(iii) Even whenD is a half space, it is possible thgf f(X,) dL; is infinite with probability one for each > 0
if f is only required to be ir.1(3 D). Therefore in a condition such as (2.3) it is essential that the interval over
which we integrate be separated from the point O.

(iv) Our definition of strong solution seems to be weaker than that used by other authors, cf. [33] and [38]. How-
ever these two notions are equivalent under the assumption of weak uniqueness and existence of weak solutior
with random starting distributions; see Corollary 3 in [45] as well as the first part of the proof for Theorem 5.9
below. We will prove all assertions related to strong solutions that are used in this paper, so the difference plays nc
role.

The first of our main theorems, to be proved in Section 4, is the following improved and corrected result from
[5] concerning weak uniqueness.
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Theorem 2.3.Weak uniqueness holds f(®.1) in bounded Lipschitz domair3 c R?, d > 2.
The following is our main new result, to be proved in Section 6.

Theorem 2.4.If D c R? is a bounded lip domain, then for every € D we have a strong solution and pathwise
uniqueness fof2.1).

The following counterexample will be proved in Section 7. Note that in this theorem, conditions (2.2) and (2.3)
are not required to hold.

Theorem 2.5.For everyx > 1 there exists a Lipschitz functiof : RZ2 — R with Lipschitz constant with the
following property.

Let D be the region inR3 above the graph of>. Then there exist a Brownian motid#i, and two pairs of
processes X, LMy and (X@, L@) such that fori = 1, 2, the pair (X©, L®) satisfies all the conditions in
Definition 2.1(1) and 2.1(4) to be a strong solution t¢2.1) relative to W except condition$2.2)—(2.3) but the
processe$Xt(1), t > 0} and {sz),t > 0} have different distributions.

Remark 2.6. The above result also shows that the deterministic version of the Skorokhod equation in a Lipschitz
domain inR3 might not have a unique solution, for otherwise we would have pathwise uniqueness for (2.1).

Remark 2.7.Theorem 2.5 above leaves open the following questions connected with pathwise uniqueness for solu-
tions to (2.1) in Lipschitz domains. Is it the case that only one of (2.2) or (2.3) is necessary? Our counterexample is
for d = 3; is it the case that (2.2) and (2.3) are not needed if the domain lies in the plane? Our example requires thai
the Lipschitz constant ab be larger than one; is it the case that for lip domains (2.2) and (2.3) are unnecessary?

3. Preliminaries

Most of this section will be devoted to a review of known results for a family of solutions to (2.1).

We start with a general remark concerning our notational conventions for probability measures in this and the
next section. The symbd will refer to the distributions of a specific family of solutions to (2.1), namely, the
family constructed in [10]. We will usP to denote the law of an arbitrary weak solution to (2.1), @nwill stand
for a collection ofP’s. The details are given later in this section.

Let D c RY be a Lipschitz domain that is not necessarily bounded. We will denot@bly .5 the laws of
RBM constructed in [10] via Dirichlet form theory. We will make this statement more precise in Properties 3.1
and Remarks 3.2 and 3.3 below, but we point out here that as a consequence of [10] and [11], theré-exist a
dimensional Brownian motioW with respect to the filtration ok and a continuous increasing procésadapted
to the filtration ofX such that (2.1) holds. Remark 2.2(ii) shows that we may restrict our attentiorana consider
PP* to be the law ofX whenxg = x in (2.1). We will refer to(P*, x € D; X, ¢t > 0) asstandardreflecting Brownian
motion in D. Expectation with respect tB* will be denoted byE*. We will sometimes talk about RBM in a
domain; this should be interpreted as RBMIrwhen the domain referred to 3.

In [10] and [11], standard RBM was constructed only on bounded Lipschitz domains, but see Remark 3.2 and
also [22] for the unbounded Lipschitz domain case.

To simplify our presentation of the results from [10], we will limit ourselves to the following special type of
Lipschitz domain. Letp be a bounded Lipschitz function mappifi§ ~1 — R with Lipschitz constank (in this
section and Section 4 we do not assume thatl). Consider unbounded domains of the fdia= {x: x > @ (x)}.
Obviously,dU = {x e R¢: & = & (%)}.

The following hold.
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Properties 3.1.Supposel > 3. Let U be the special Lipschitz domain B mentioned above and letbe the
surface measure ofU .

@

(ii)

(iii)

(iv)

v)

(vi)

(vii)

(viii)

(ix)

The family(P*, X;,x € U) is a strong Markov process associated with the Dirichlet fagmD), where
E(f, f)= %fU |V f(x)|2dx and D is the completion of the class of restrictionstfoof C* functions on

R¢ with compact support under the metdc £, f)Y/2 + || f || 2(); in other words,D is the Sobolev space
W12(U). This property uniquely determines the famiily'} 5.

Standard RBM has a jointly continuous transition density functiamx, y) on (0, co) x U x U the density
p(t, x,y) is symmetric irc andy, and there exist constantg, k2 € (0, oo) depending only or such that

p(t,x,y) <kt~ exp(—kalx — y?/1), x,yeU, 1>0. (3.1)
There exist constants, c2 € (0, oo) such that
Px(sup|Xs—x|>)»)<c1e_cz)‘2/t, A>0 xeU, t>0. (3.2)
s<t

The Green functio (x, y) for X onU is defined agfooo p(t,x,y)dt. RecalldU has zero Lebesgue measure.
Clearly

E{/f@ﬂw]=/G@JV@My
0 U

wheneverr e U and f > 0on U. The Green functiorG; (x, y) of X, is jointly continuous except on the
diagonal and is strictly positive everywherelihx U.
There exist constants, k4 > 0 depending only or such that

kalx =y < Gx,y) <kslx —y>?, x,yel. (3.3)

For an open seD c R¢, we say that a locally bounded functiéris harmonic with respect t& in U N D if
for everyB(x, r) with B(x,r) C D, we havei(y) = B’ [h(X(g(x.r))] fory € UN B(x, r). If f is abounded
function onU N B(x,r) andh(y) = B[ f (X¢(B.ry)] for y € UN B(x, r), thenk is harmonic with respect
to X in U N B(x, r).

The following Harnack inequality holds. There exists a constart (0, co) depending only or, such that
if 1 is nonnegative and harmonic with respectdan U N B(x, r), then

h(y)<c1h(z), y,zeUNB(x,r/2).

If 7 is harmonic with respect t& in U N B(x, r), then there exist; > 0 anda > 0 not depending ow or
r such that

|h(») —h@)|<ci( sup |h(w)|)<|y_Z|), y,zeUNB(x,r/2).
welNB(x,r) r

The local timeL in the Skorokhod decompositi¢®.1) for standard RBMX in U is a positive continuous
additive functional ofX with corresponding Revuz measwr&, that is, for every. > 0 and everyy € U,

o
1
Ey|:/e_’\’dL,i| = 5/G*(y,x)v(dx),
0 U

whereG*(y, x) = f(;’o e M p(t,y,x)dt is ther-resolvent density for standard RBM. Furthermare, L,
increases only wheK isindU.
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Remark 3.2.The estimate in (ii) is [10], Theorem 3.1. The symmetrpdf, x, y) is a consequence of the Dirichlet
form construction. Theorem 3.4 of [10] gives a corresponding lower bound for the transition density, and then the
arguments in Section 4 of [27] show thais continuous inc andy. The estimate in (iii) is [10], Theorem 3.2. The
continuity of the Green function off the diagonal follows easily from the continuity of the transition densities. The
estimate in (v) is [10], Corollaries 3.3 and 3.5. (vi) is a definition, while (vii) and (viii) are [10], Theorems 3.9 and
Corollaries 3.8, respectively.

(i) and (ix) were proved in the case of bounded Lipschitz domains in [10], Section 4 and [11], respectively. To
extend the results to the case of a domain sudli,a@ane can proceed as follows. As a consequence of Proposition
2.3 and Remark 1 of [22], for any Lipschitz domainin R?, one can always construct RBM = (X,,P,,x €
D \ Np) on D via the Dirichlet form approach as a continuous strong Markov process starting from every point
in D except a boundary subs&b of zero capacity and this process is conservative. Since by (fis a jointly
continuous transition density function, the RBX¥Ican be defined to start from every pointin(cf. [31]). This
in particular applies to the special Lipschitz domairhere and so (i) holds. That RBM on U has a Skorokhod
decomposition and that the local tinkeis a positive continuous additive functional ¥fwith Revuz measure/2
is a consequence of Theorem 2.6 and Remark 1 in [22]. So the conclusion of (ix) follows.

Remark 3.3. By the uniqueness of the Laplace transform and standard arguments, we obtain from Properties
3.1(ix), for any non-negative Borel measurable functigrendg, anya < b in (0, c0), and anyy € U,

b

b
1
Ey[/g(S)f(Xs)dLs} = E//g(s)f(x)P(S,y,X)V(dx)ds. (3.4)
a a U

In view of (3.1) and (3.4), iff > 0 and O<t < u < oo, there exists a constant depending only om, u, and
the domainU such that fory € U

u u

Ey[ / f(xadLs} <5 [ [reoreyovands <a [ sevan. (3.5)
t t U aU

Taking f = 14 with v(A) = 0 and using the fact thatandu are arbitrary, we conclude that (2.2) holds. The above

inequality also shows that (2.3) holds. Therefte is a weak solution to (2.1) in the sense of Definition 2.1(1)

with D = U, even though this definition is more restrictive than the typical definition for RBM on smooth domains

because of the extra conditions (2.2) and (2.3). On a smooth danhaiR? (for example, a2 domain), given

ad-dimensional Brownian motioW andxg € D, RBM can be defined as the unique continuous solution.)

to (2.1) that is adapted to the filtration generatediysuch thatl is non-decreasing and increases only wixen

is on the boundary oD (see [36]). The existence and uniqueness for such a solution follows from the fact that the

deterministic Skorokhod problem is uniquely solvabl&thdomains. That conditions (2.2) and (2.3) are satisfied

by such a solution is a consequence of the construction. But for general Lipschitz domains, our Theorem 2.5 show:

that solutions to the deterministic Skorokhod problem are not unique; therefore we need conditions (2.2) and (2.3)

as part of a definition for RBM to insure even weak uniqueness for solutions to (2.1).

SupposeD is not a special Lipschitz domaiti but an arbitrary bounded Lipschitz domain. The analogue
of Properties 3.1(ix) follows from [11]. The argument above leading to (3.4) and (3.5) then shows ti#at the
constructed in [10] is a weak solution to (2.1) in the sense of Definition 2.1(1) as well.

We finish this section by stating two results which can serve as substitutes for the strong Markov property.

Consider the case whef2 is the canonical probability space, thatdsjs the collection of continuous functions
from [0, 0o) to R?. We furnishs2 with theo -field 7 generated by the cylindrical Borel sets. In this c&ssupports
shift operators, that is, mags: £2 — £2 such thatX, (6;w) = X1, (»). Let P(z), z € D, denote the collection of
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all probability measureP on §2 such that the coordinate process> X;(w) = w(t) is a weak solution to (2.1)
with xo = z underP with respect to the augmented natural filtration generated by the coordinate map.

We recall Proposition 2.3 of [5]. If is a finite stopping time with respect {&;};>0, Fs is the usuab -field of
events prior taS; that is,Fs = {A € Foo: AN{S <t} € F; for everyr > 0}.

Proposition 3.4.Fix z € D. Suppos® € P(z), S is a finite stopping time with respect @, };>o, andPs(w, dw’)
is a regular conditional probability for the law of. o 65 underP[ - | Fs]. ThenPg(w, -) € P(Xs(w)) for P-almost
everyw.

For completeness, we sketch a proof.

Proof. If A(w) ={w': Xo(0) = Xs(w)}, then

A(@) 0 s = {0 Xoo00s5(0) = Xs5(w)} = {0 Xs(0) = Xs(w)}.
Therefore

P(A(w) 005 | Fs) = Lixsw)(Xs) =1, as.

The proof thatL is a local time on the boundary satisfying (2.2) and (2.3) for almost evésysimilar.
The law of[X, — Xo — [y N(X,)dLy] o 05 given Fs is the law of[ X, 5 — X5 — _;”’ n(X,)dL,] given Fs. It
is routine to check that the conditions of Lévy’'s theorem (see [4, Corollary 1.5.10]) are satisfied, and hence this is

a Brownian motion with respect to the filtration generated by X,,s. O

Let 2 and F be as above. We note the following analogue of Proposition 3.4, whglie replaced by the
o -field generated by the random varialie. An almost identical proof yields

Proposition 3.5. SupposeP € P(xp), S is a finite stopping time with respect {¢;};>0, and Ps(w, do’) is a
regular conditional probability for the law ok. o 65 underP[- | Xs]. ThenPg(w, -) € P(Xs(w)) for P-almost
everyw.

4. Weak uniqueness
In this section we will prove Theorem 2.3.

Remark 4.1.In [5], an assertion similar to Theorem 2.3 was made. However, there is a gap in the proof of the main
theorem of [5]: the third sentence of the proof of Corollary 4.6 there is incorrect. The proof of Theorem 2.3 given
below will follow the argument in [5] for the most part. The extra assumptions (2.2) and (2.3), absent from [5],

allow us to carry that argument to completion. On the other hand, in [5] an assumption was requifeddhbt

be approximated by certain increasing processes. That assumption is not needed here.

We suppose in most of this section that: 3; we will remove this restriction when we give the proof of
Theorem 2.3. We first consider the following set-up.

Recall we writex = (%, £) for x € R?, wherex € R%~1 andx € R. Let @ :RY~1 — R be a bounded Lipschitz
function with Lipschitz constant € (0, 00), letkg > | @ || + 1, D = {y: ®(¥) <y < ko}, andK = {x: X > ko}.
Consider the subprocess of the standard RBM the special Lipschitz domaiti = {y € R?: § > @ ()} (defined
in Section 3), killed upon hitting< . We call such a subprocess ¥fstandard RBM orD with absorption ork . It
hasD \ K as its state space. It then follows thatif is the Green function for RBM iD with absorption ink
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andG is the Green function for standard RBMih thenG? (x, y) < G(x, y) for all x andy in D \ K. In fact, by
the strong Markov property of, we have

GP(x,y) =G(x,y) —E*[G(X1,,y)] forx,yeD\K withx #y.

SinceX behaves like a Brownian motion &ii andd K is a horizontal hyperplane, we have by Proposition 3.1 that
GP (x, y) is jointly continuous except along the diagonal and is positiv@i K) x (D \ K). MoreoverG? (x, y)

is symmetric inx andy in D \ K and for eachx € D\ K, y — GP(x, y) can be extended continuously@b\ {x}

with GP(x,y) =0fory € K. Letd, D = {x € R?: £ = & (%)} be the reflecting part of the boundarybfin D\ K .

We will useP* andE* to denote the probability and expectation for this standard RBM D with absorption on

K as well as for standard RBM iR without absorption; no confusion should result since we will always specify
the possible values of the time

Lemma 4.2.Supposel > 3. There exist constants, c2 € (0, co) such that
GP(x,y) <crexp(—calx —y|) forx,y e DUJ,. D with|x —y| > 1.

Proof. Fix y € DU 9, D. By the strong Markov property,
GP(x,y) =E[GP (Xe(ar,r» )]

if x € DU, D with |x — y| > r. This shows thaG? (-, y) is harmonic with respect t& in (D U 3, D) \ {y}. Since
the dimensior/ > 3 and by the definition of the domai, there is an integerg > 1, independent of, such that
for everym > mo, (D U 8,D) \ B(y, m) is connected. For positive integefs> mo, let S,, = Tp(y,m). Suppose
xeDwith|x—y|>m+1andf >ko— 3 > | @+ 3. The tubeT (x) = {z € D: |z —F| < 5.2 > £ — 7} lies

in D\ B(y,m), and so by the support theorem for standdrdimensional Brownian motion (see [4], Theorem
1.6.6), there existg3z > 0 not depending on such so thatP*(Tx < S,,;) > c3. Note thatz > P*(Tx < S,;) IS
harmonic with respect t& in the connected s&D U 3, D) \ B(y, m). For generak € D U 9, D with |x — y| >

m + 1, by the Harnack inequality for standard RBM (Properties 3.1(vii)) used repeatedly to a chain of balls in
(DU, D)\ B(y, m) that connects to some point € D with |z — y| >m + 1 andz > kg — % 2 Plloo + % there
existsc4 > 0 such thatP* (Tx < S,,) > c4 wheneverx € D U 9, D with |x — y| > m + 1. The number of times the
Harnack inequality needs to be used depends onky andkg, Soc4 does not depend annor onm.

We now showly < oo, IP*0-a.s. for eachrg € DU, D. Since we are in a Lipschitz domaiinx) > 0 for almost
everyx € 9, D, s0X; > 2o+ W, for everyt. SinceW will eventually exceed & + 2 with probability one, therX
must eventually hiK with probability one.

If x e DUJ, D and|x — y| >m + 1, then becaus€? is 0 on{x : £ = ko}, we have

GP(x,») =E'[G”(Xs,. )] =E*[G” (X5, y)i Sw < Tk]
<( sup GP(z, )P (Sm < Tx)
z€dB(y,m)ND

<@A-c( sup  GPy).
z2€dB(y,m)ND

Therefore

sup GP@y)<A-ca) sup  GPzy).
z€B(y,m+1)°ND z€dB(y,m)ND

Since sup. p(,.1)np G (2, ) is bounded by (3.3), then by induction

sup GP(z,y) <es(1—ca)™,
z€B(y,m)¢ND

and the lemma follows. O
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In order to tie in with the set-up of [5], we define the following. Consider samge 9, D andrg > 0. It is easy
to deduce from known results (see, e.g., [34]) that there exists a positive canstédtoo), depending only o,
such that

Do = {x € D: |X¥ —wo| <rg, |[X—wo| < Cro},

is star-shaped with respect to some pai& Do. That is, there exists a Lipschitz functign d B(0, 1) — (0, co)
such that in spherical coordinatés6) centered atg, Do = {(,0): 0<r < ¢(0)}. Fix somec andzg with the
above properties, choosepa < (0, dist(zg, d Dg)/4) and letKg be the closure 0B (zo, po)-

Let Hp be aC* function whose support is contained iwy and is disjoint fromKg and letEg be a Lipschitz
domain that is star-shaped with respectdpthat contains the support éfy, that containp, and whose closure
is contained inDg. Let d, Do = (3, D) N Dg andAg = dDg \ 9, D. Forx € 3, Dg set

Vs(x) ={y € Do: [§ —X| < |9 —X|/(20), % < <X +6},
and choosé small enough so thdts(x) does not intersedt for anyx € 9, Dg. Then set

N(f)x)= sup |f(y)

yeVs(x)

, X € 0,Do.

The following is Proposition 3.5 of [5]. See Remark 4.4 following Proposition 4.3 for the clarification of some
subtle points.

Proposition 4.3.There exists a nonnegative and bounded Borel measurable fumctiefined onDg such that

() uisC*in Dg\ Ko,

(i) —3Au=Hpin Do\ Ko,
(iif) du/on existsv-a.e. ond Do,

(iv) u=0v-a.e.onAp,

(v) u is continuous oDy andu = 0 on Kp,
(vi) du/on=0v-a.e.ondDg\ Ag, and
i) [ by IN (Vi) (x)|?v(dx) < co.

Remark 4.4.(a) In [5] u is defined only onDg. Since the support oflp is contained inDy, (ii) tells us thatu
is harmonic in a neighborhood 6fDg. Sinceu is bounded, nontangential limits existiaa.e. point ofd Dg; see
[4, Section 111.4]. We define: on 9 Dg to be equal to the nontangential limit when it exists and 0 otherwise. This
allows us to defindu/on at v-a.e. point ofd Dg.
(b) Proposition 4.3(v) was not stated in [5], but is immediate from the proof there.

Corollary 4.5. Letg; =1 —1/i and F;(x) = u(zo + g; (x — zo)), whereu is the function described in Proposi-
tion 4.3 Then

(i) eachF; is C* on Do\ B(zo. po/qi),
(i) the{F;,i > 1} are nonnegative and uniformly bounded bg,
(i) F; > uin Do\ Ko asi — oo,
(iv) —3AF; — Ho uniformly in Do\ B(zo, po/q;) if i > j andi — oo,
(v) F; is continuous orDg and F; = 01in B(zo, po/qi),
(vi) F; —» Ov-a.e. onAg asi — oo,
(vii) 9F;/on — O v-a.e. ond, Dg asi — oo, and
(viil) [, p, SUR IVF; () |2v(dx) < 0.
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Proof. The formula forF; and Proposition 4.3(ii) show that

1 1, 2

—5AFi(0) =—34; Au(z0+ qi(x — z0)) = g{ Ho(zo + qi (x — 20))
if x € Do\ B(zo, p/q;), and then (iv) follows. Sincé\u = —2Hy and the support supflo) of Ho is a positive
distance from bottd Do and Ko, thenu is harmonic forx that are inDg \ (Ko U SUpHp)). If x € Ag, then
Fi(x) = u(zo + gi(x — z0)) — 0 v-a.e. asi — oo by Proposition 4.3(iv) and the Fatou theorem for harmonic
functions in Lipschitz domains (see [4, Section Ill.4]). As each componeRtuo a harmonic function iDg \
(Ko U supf(Hp)), by the (local) Fatou theorem and Proposition 4.3(vi)—(vii), we seeWatx) = ¢; Vu(zo +
gi(x — zg)) convergesv-a.e. toVu(x) asi — oo for x € 3, Dg. Hence (vii) holds. Part (viii) follows from the
bound|VF;| < N(Vu) ond, Dg for largei. O

For questions of weak unigueness we may assume without loss of generali ih#te canonical probability
space (see the paragraphs preceding Proposition 3.4) and therefore supports shift epesatf42, Chapter 6].
For the rest of this sectio®* will denote the law of a weak solution to (2.1) I, killed upon hittingK , with

Xo = xo € D. The corresponding expectation will be denoked.

Lemma 4.6.There exists a positive constant< oo such that for allxg € Do,

E*[Tkouaol <1, E®[Lyy,,] <1

Proof. Recall that we writex = (%, £) for x € R?, whereix € RY~1 andx € R. We will use similar notation for
X, W andn,i.e. X, = (X;, X,), W, = (W;, W,) andn = (1, f).

Note thatxg € Do implies Xg > —ko + 1. Sincef(x) > 0 for all x € 8, Do, we haveX, > xo + W, for all ¢.
Let ¢z > 0 be such thaW; > 2ko + 2 with probability greater thany. If X, > ko + 1, thenTx,ua, < f Since
K NdDgy C Ag, so forx € Dg,

PX(TK()UAQ < 1) Z .

By Proposition 3.4, the law aof. o #; under a regular conditional probability f&r°[ - | 7] is a weak solution to
(2.1) starting aiX ;, so

PXO(TK()UAO > j + 1) < PXO(TK()UAO 00] > 15 TKQUAQ > J)
= E"[cPx(Tkquao 06 > 11 F); Tkouao > j]
< (L= c2)P(Tgyuae > J)-

By induction,P*(Tk,ua, > j) < (1 — c2)/, and the first desired inequality is now immediate.

There existg3 > 0 such thafi(x) > c3 for all x € 3, D. By the support theorem for standard Brownian motion,
the probability of the union of the two ever{t@l > 2ko + 2} and{inf, <1 W, > —1}iscq4 > 0. On this event, as we
observed abovelx,u4, < 1, while

ko+ 1> X1ar > X0+ caLaar + inf W,
KoUAg KogUAg 1< 1A TR A

andxg > —kg + 1 sincexg € Dg, SO

LTKOUAO = Ll/\TI(OUAO < (Zko +2)/c3.
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It follows that with probability at leasts > 0 we haveLTKouA(J < ¢5 for a constants < co. Observing that

PO(L1yyay > €50 + 1) < PO(L1y 0, 00U, > €5, LTy, > €5)

whereU; = inf{r > 0: L; > csj}, we argue similarly to the first paragraph of this proof to conclude that
P"O(LT,(OUA0 > ¢57) < (1—cg)/, and the second desired inequality followsz

Recall thatP*o andE*0 denote the probability and expectation for standard RBNDistarted atcg and killed
upon hittingK .

Theorem 4.7.If Hp is a C*°-function whose support is containedixy and is disjoint fromKjg, then forx € Dy,

TKoUAO TKoUAO

EXO[ / Ho(XS)ds:|=IElx0[ / Ho(XX)ds:|.
0 0

Proof. If xg € Ko, both sides are 0, so we assunmie¢ Ko. Let functionsu and F; be as described in Corol-
lary 4.5 and letf (x) = sup |V F; (x)|?. Corollary 4.5(viii) implies thagfarD0 f)v(dx) < o0, so by (2.3) we have

fg’AT’(OUAO f(X5)dLg < oo, P¥-a.s. for each < oo ande > 0. Sincexg € Dy, it takes a positive amount of time
for X; to reacha D, and L does not increase during that time. So for eackthere existsy depending onv
such tha’cfc‘)90 f(X5)dLy =0. We conclude thaf(;ATKOUAO f(X5)dLy < oo, P0-a.s. for each < oo. The function

T, . . . . .
t— jom 0% ¢(X,)dL, is continuous from the right by dominated convergence and continuous from the left by
monotone convergence. Let

t
Sy = inf{t >0:t+L; +/f(Xx)de > M} A TkquAg- (4.1)
0

By the continuity and finiteness of— féATKOUAO f(X5)dLs and Lemma 4.6, we see that flBfo-almost everyw
there exists\fp depending o such thatSy = Tkaua, if M > Mo.

LetU; =inf{r > 0: |X; — zo| < po(1+ j~H} for j > 1. Applying Itd’s formula withF; for i large enough so
thatg, ! <1+ j~%, we obtain

EXO[Fi (XSMAU.,') - E(xo)]

— SuAUj SuAUj
=E"0 / VFi(XS).dXS}+%E)‘°[ f AF[(XX)dS]
L o 0
N SuAU; Sl
=E" / VF,'(XS)-dW{|+Ex°[ / VF[(XX)'n(Xs)dLS]+%EXO|: / AF,'(XS)ds:|.
L5 0 0

Note that the expectation of the stochastic integral term is 0 becalsgX;) is bounded in absolute value for
s < Sy A Uj andW is a Brownian motion. We therefore have

E[F; (Xsy,nU,): Tkouao = S S Uj| +E[Fi(X5,,a0,): Uj < Su = Tkquao

+E[Fi(Xsy,a0,): Su < Tkouao| — Fi(x0)
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SunUj
=Exo[/ VFi(X.v)-n(Xs)dLs:|+%EX°|:/ AFI-(Xs)ds}- (4-2)
0 0

We will examine what happens to the six terms in (4.2) as oo, starting with the terms on the right hand
side. LetCy1 = {x € 9, Do: (3F;/9n)(x) 4 0}. By Corollary 4.5(vii),v(C1) = 0, and so by (2.2) we conclude that

fOTKoUAo 1c,(X5)dLs =0 a.s. The fact that(C1) = 0 implies also that

SunUj

SunUj
Ex0|: / VF;(Xy) - I”I(Xs)dLs:| = Ex0|: / Ba}r:l (Xs)lci(Xs)dLs]~ (4.3)
0 0
The definition of f gives|(d F; /an)(X,)| < (f(X,))Y2. This and (4.1) imply that
SunU; SunU; Sm 1/2
[ Grgaodres [ (7o) g aodL < ( / \f(Xo!de) (Lo Y2 <M.
0 0 0

By the dominated convergence theorem and Corollary 4.5(vii), the right hand side of (4.3) tendsite>0cas
We have shown that the first term on the right hand side of (4.2) tends tb-8-as. The limit of the second term
on the right hand side is

SMAU.,‘

SunU;

—E*O[ / Ho(Xs)dS],
0

by Corollary 4.5(iv).

Now we examine the terms in the left hand side of (4.2) as co. Let Co = {x € Ag: F;(x) / 0} and recall
from Corollary 4.5(vi) thaiC» has null surface measure.

We claim that

PO (X 7y, € C2) =0. (4.4)

LetC5(e) = {z € C2: dist(z, 9, D) > e} andDg(e) = {z € Do: dist(z, 3, D) < ¢}. If (4.4) does not hold, there exists
¢ > 0 such thanO(XTkoqu € C3(3e)) > 0. Letag =inf{t > 0: X, ¢ Dg(20)}, i =inf{t > ;. X; € D(e)} and
aip1 =inf{t > B;: X; ¢ D§(2¢)} for i =1,2,.... Note that since — X, is continuousg; — oo P*-a.s. as
i — oco. So there must exist > 1 such thatP™ (X7, ., € C3(3¢), i < Tkquao < Bi) > 0. Away from 8D
the processX, behaves just like Brownian motion R, HenceX,,, is a Brownian motion started &, for

t < Bi — «; and therefore

PXei (XTKOUAO/\TDg<g> € C3(3¢)) > 0. (4.5)

But harmonic measure for Brownian motion and surface measure are mutually absolutely continuous in Lipschitz
domains (see [4, Section 111.5]), which contradicts (4.5). Therefore (4.4) holds.
By (4.4) and the bounded convergence theorem,
l'LfT;O E[Fi (X5, n0;): Tkouao = Su < Uj|
= lim EJ‘O[F,»(XTK()UAO)lq(XSM); Tkoquao =S <U;j]=0. (4.6)
1—> 00

The second term on the left hand side of (4.2) converges to
E*[u(Xv,): Uj < Smu = Tkoua )
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asi — oo by Corollary 4.5(ii) and (iii). LetR(M, i, j) denote the third term on the left hand side of (4.2). Note
that

|R(M. i, j)| < (sgquknw)P’(O(sM < TkqoUAg)- (4.7)

Finally the fo~urth term on the left hand side converges-tdxg) asi — oo.
The limit R(M, j) =lim;  R(M, i, j) exists because all the other terms in (4.2) converge. Taking the limit as
i — oo in (4.2) we have

SMAU]'

E*[u(Xy;): Uj < Su = Tkouao) + R(M, j) — u(xg) = —E"°|: / Ho(Xs)ds:|. (4.8)
0

Next we see what happens as we Jet> oco. Note thatu is continuous onDg, u = 0 on Kp, and so
lim;_ o0 M(XUj)l{Uj<SM=TKOUAO} = 0. Hence, by the bounded convergence theorem, the first term on the left hand
side of (4.8) converges to 0. The right hand side of (4.8) clearly converggssaso, so R(M, J) must converge
to some limitR(M) and we obtain

Sy
R(M) — u(xg) = —E* [/ Ho(Xs)ds:|. (4.9)
0
Finally we letM — oo. SinceP*°(Syr < Tkyua,) — O, we conclude using (4.7) that
~ Tkquag -
—u(xg) = —E*© / Ho(X)ds |. (4.10)

L o i
This is true for any weak solution to (2.1). In particular, sifif¢e is the law of a weak solution,
— TKoUAO -
—u(xg) = —E*° f Ho(Xy)ds |. (4.11)
- 0 -

Combining this with (4.10) yields our result.c

The argument from here on is very similar to the argument in [5]. We would like the conclusion of Theorem 4.7
to hold even forxg € 0 Do.

Proposition 4.8.1f xg € Do and H is a bounded Borel measurable function,

TKoUAO TKQUAO
Ex°|: / H(Xs)ds]zwo[ / H(Xs)dsj|.
0 0

Proof. If xg € KoU Ag, both sides are zero, and the result holds in this case. So we sugpeseDy N Dg. Since

X spends zero time ifi- Dg under bothP*o andP*0, it suffices to prove the proposition féf in C°° with support

in Do \ Ko; we make this additional assumption éhuntil the end of the proof. We can then extend the result
first to continuous functions and then bounded functifihby a limit argument. Ifx € Do, the result follows by
Theorem 4.7, so we suppasge 9, Do. Choose,, | 0 so thatP*0 (X, € 3, Do) = 0; this is possible sinc¥ spends
zero time ind, D. Let S1(n) =t, A Tkouag-
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By Proposition 3.4 the law of the proceXso 05, (») under a regular conditional probability f&¥°(- | Fs,x))
is a solution to (2.1) started &ts, (,). This, Theorem 4.7, and the facts that the result holdsder Ko U Ag and
that X, ) ¢ 8- Do with probability one, imply that

TKQUAO

EXO|: / H(Xs)ds o 951(,1) | »7:51(11):| = U(Xsl(n)), (4.12)
0

where
TKQUAO
v(x) = Ex|: / H(Xx)ds:|. (4.13)
0

Taking expectations,

Tkquag

Exo[ |

H(Xx)ds:| =E"°[v(Xgm)]- (4.14)
S1(n)

Lettingz, | 0 and using Lemma 4.6, the left hand side of (4.14) ConvergEéoi[g(OTKOUAo H(X,)ds].
Let / be the support of/ andSz = inf{z: X, € /}. We have assumed thatis C* with supportinDo \ Ko and
x0 € 9, Dg, S0S2 > 0 a.s. IfB(x,r) C Do\ (Ko U Ag U I), then by the strong Markov property of standard RBM

v(x) =E* [v(X

TB(X.r)ﬂBO )] ’

so the functiorv(x) is harmonic with respect to standard RBWin Dg \ (KoU AgU I) and hence is continuous
there (Properties 3.1(vi) and (vii)). We write

Elv(Xsm) ] = E°[v(Xs1000n82) ] + EP°[v(Xs10) — v(Xs100)n82)]-

The first term on the right convergesitxg) asn — oo by the continuity ofv, while the second term on the right
is bounded in absolute value byf¥|P*(S1(n) > S2), which goes to zero as— oo. Lettingn — oo in (4.14),
we then have

TKoUAO

Ex°|: / H(Xs)ds:|=v(xo).
0

Using (4.13) this proves the propositionc

Theorem 4.9.Let H be a bounded Borel measurable function with supporDigiand xo € Do. If 0 < A <
(2 SURJEEO ]Ey[TKoUAo])il, then

TKoUAO TKQUAO

EX0|: / eMH (X)) dz] = E"°|: / e_)"H(Xt)dt:|.
0 0

Proof. The result is obvious ifg € Ko, SO we supposgy € Do \ Ko. We start with an observation similar to the

one in the previous proof, that sindespends zero time on the boundaryl@iinder bothP*® andP*°, it is enough

to considerH that areC* with support inDg \ Kp. Letv be defined by (4.13). By Proposition 3.4, under a regular
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conditional probability foP*o(. | F;) the law of X. o0 §; is a weak solution to (2.1) started¥t. This, together with
Proposition 4.8, implies that

TKoUAO
1{t<TK0uAO}EXO|: /
0
For f a bounded Borel measurable function define

TKQUAO

H(Xs006)ds | ]:t:| = 1{I<TKOUA0}EX’ |: /

H(XA) dS:| = 1{I<TKOUAO} U(Xl)-
0

TKoUAO
Sxf(xo) = EXO[ / e_Mf(Xt)dt}-
0
We then have
~ Tkquag Tkquag Tkouag
Sy v(xg) = E© / e_)‘[U(Xt)dt] = E*’O[ f e M EXO[ f H(Xs41)ds | J-}} dt:|
-0 0 0
— TKoUAO TKQUAO TKoUAO Ky
=E" / e M / H(Xs)dsdt:| = EX°|: / H(Xs)/e_“ dtds:|
- 0 t 0 0
— TKoUAO
. 1—e 1 1
=E" H(X;)——ds | = —v(xo0) — =Sy H (x0), (4.15)
A A A
- 0

or S, H (xg) = v(xg) — AS; v(xp). Define the operataR; on bounded Borel measurable functions by
Tkquag
R (x) = EX[ /

0

Thenv = RgH and so

e M F(X)) dr} . (4.16)

S).H (x0) = RoH (xg) — AS) RoH (x0). (4.17)

By using a standard limit argument, we have (4.17) holding 16 bounded and Borel measurable.
Let

© = sup [SyH(xo) — RyH (xo0)
1H o<1

)

where|| H ||« is the usual supremum norm, and note that

O < sup (|SnH(xo)|+|RyH (x0)|) < 2/A < 0.
I1H 100 <1

We have|| R, H l|oo <A~ H [loo and||RoH lloo < c1ll H || oo, Where

c1= sup Ey[TKoUAo]-
yeDg

Note that by Lemma 4.G; < oo. From the semigroup property 8f (cf. [4, p. 19]),
R; H(x0) = RoH (x0) — AR RoH (x0). (4.18)
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Subtracting (4.18) from (4.17),

| S5, H (x0) — Ry H (x0)| = |A(S1RoH (x0) — Ry RoH (x0))| < AO | RoH |loo < AOc1| H oo
Taking the supremum ove with || H || < 1, if 2 <1/(2¢1),

O <AO0c1 < O)2,

so® = 0 becaus® < oo. In other wordsS;, H (xg) = Ry H (xg) for all bounded and Borel measurable functions
H. This is equivalent to the assertion of the theorem.

Proof of Theorem 2.3. First suppose that > 3 andD has the same form a3y described before Proposition 4.3.
Recall the notation from Theorem 4.9 and its proof and the factthdixg) = R H (xg). SUppOseH is continuous
in D. By the uniqueness of the Laplace transform and the continuify(@f;), we see thaExO[H(XmTKoqu)] =
EXO[H(X,ATK()UAO)]. As pg — 0, thenTg,ua, = Tixglua,- SinceX behaves like a Brownian motion when away
from 8 Do, thenT,,; is infinite with probability one. S(EXO[H(X,ATAO)] = EXO[H(X,ATAO)]. Since the above is
true for every arbitrary but fixeey € D\ Ao, it implies (see [42, Chapter 6]) that the finite dimensional distributions
of X,ATAO underP*0 and undei*° agree (this is where Proposition 3.5 is needed). Theréftre- P*° on Fr, .

Now let D be an arbitrary bounded Lipschitz domain. By standard piecing-together arguments (see [42]), it
suffices to show that for eacky € D, any solutionP*0 agrees withP*o locally. That is, ifxg € D, there exists
r > 0 (depending ong) such thatP*® andP* agree 0”7:Tas<xo,,-)- Inside D, X under bothP* andP*® behaves
like ordinary Brownian motion, so we need only considgk 9 D. Let a coordinate system and a domaig be
chosen so thabg agrees withD in a neighborhood (xg, ) N D of xg and Dg is of the form described preceding
Proposition 4.3. Ifr is small enough7s (., Will be less thanT,,, and we can therefore apply the preceding
paragraph.

Finally we consider the cagke= 2. Suppose that has lawP* and state spad®, whereD is a two-dimensional
Lipschitz domain. LeB be a one-dimensional Brownian motion reflecting-dtand 1 and independent &f Then
the law of(B, X) is a weak solution to (2.1) for the Lipschitz domainl, 1) x D, and so is unique. The unigueness
of the law of X follows easily. O

Corollary 4.10 below is presented with a view toward possible future applications. In the proof of Theorem 4.7
we applied (2.3) once for the function

f =sup|VF;? (4.19)
and (2.2) once for the set
oF; .
Clz{xearDo: a—n(x)74>OaS]—>oo}. (4.20)

Let {H({}?il be a countable collection @f*° functions with support iDg\ Ko whose closure under the supremum
norm contains the collection of all continuous functions with supporDin\ Ko. Let f/ and C{ be defined
analogously to (4.19) and (4.20), but witty in place ofHo.

Corollary 4.10. Suppose thalP* is the law of a procesX which satisfie2.1) for some Brownian motiofV,
such that(2.4)and(2.5) hold, and

t
/f-/(XS)dLS<oo, as.,, foralle>0, t<oo, j=1,2,... (4.22)
£
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and
o0
/1C{ (X5)dLy =0, as., foralj=12.... (4.22)
0

ThenP*0 = P*o,

Proof. By the proof of Theorem 4.7, using (4.21) and (4.22) in place of (2.3) and (2.2), we have

Tkquag Tkquag

Ex°|:/ H({(Xs)ds}zEXO[[ H({(Xs)dsi|
0 0

if xo € Do. By taking limits, we have the conclusion of Theorem 4.7 forijlin C* with support inDg \ Kop.
With this change, we can now follow the argument given by Proposition 4.8, Theorem 4.9, and the proof of Theo-
rem2.3. O

The same piecing-together argument as that in the proof of Theorem 2.3 yields the following result. We leave
the proof to the reader.

Theorem 4.11 Weak uniqueness holds f(.1)in special Lipschitz domain® c R<.

5. Strong solutions in planar lip domains

In this section, we focus on strong solutions to (2.1) on “special” planar lip domains, to be defined below. We
will explain at the end of this section how a strong solution can be constructed for a general lip domain from those
on special lip domains.

We will say thatD is aspecialplanar lip domain ifD = {(#, £) € R% % > & (%)} whered is a Lipschitz
function with Lipschitz constant strictly less than 1.

Fix a special planar lip domaiP and suppose thatis a vector field oro D. We will assume that all vector
fields ona D considered in the rest of the paper are Lebesgue measurable and satisfy<0|v(x)| < ¢2 < oo,
for all x, where the constantg andc, may depend owr. To simplify the notation, we write(x) for v(x, @ (x)).
SupposéV is a given two-dimensional Brownian motion defined on a complete probability $gacg, P). Let
]—‘,0 =o(Wy: s <r) and letF; be the usual augmentationﬁf). It is well known that{ F;} is right continuous (see,

e.g., [37]). We will say thak is reflecting Brownian motion irD with oblique direction of reflectiow, relative
to P and W, starting atx, if X is continuous and adapted {&;}, Xo = xo, X takes values irD, and there exists
a nondecreasing continuous procés& “local time of X on the boundary oD”) which is adapted td.F;} such
thatP-almost surely,

t

X, =x0+ W, +/V(XS)dLS, t>0, (5.1)
0
and
o
/13D(Xx)ds =0. (5.2)

0

Note that the above is a strong solution definition. The present definition of RBM with oblique direction of reflec-
tion is less stringent than that given in Definition 2.1 in the case of the normal reflection: here we do not assume
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conditions (2.2) and (2.3) on the local tinde In this section, we will use only this definition of RBM. We will
say “a strong solution to (2.1)” when we want to emphasize that we mean a strong solution for RBM with normal
reflection in the sense of Definition 2.1.
We will identify points inR?, points inC, and two-dimensional vectors in the obvious way. For any vagtor
let Z(u) be the angle formed by with the positive half-line. We introduce a partial ordeifA by declaring that

x =<y ifandonlyif x=yor/(y—x)e[—ao, aol,

whereag = (;r/4+ arctanc) /2. Note thatr /8 < ag < /4. Let[a1, a2] = [7/2 — ag, /2 + ag]. Throughout this
section, we will consider only those vector fielMdsvhich satisfy/(v(x)) € [«a1, 2] for all x. Fix some base point
xp € D.

Let v denote Lebesgue surface measur@tn If u: D — R is a bounded harmonic function, then, by Fatou’s
theorem for bounded harmonic functionsfiny the non-tangential limit ofi exists and is finite at-a.e.x € 3D.
Forx € D, we defineu(x) as the non-tangential limit of at x whenever the limit exists and is finite.

We will say that a sequence of open sé&ts C C converges to an open s&t C C if for every compact set
M C K and every compact sét C (K)°, there is an integeN > 1 such thatM c K, andL c (K ,)° for every
n>N.

Lemma 5.1.For every vector fields that satisfies/ (v(X)) € [«a1, a2] for all X, one can find a domai®, and a
univalent analytic functioryy : D — Dy such that the following properties hold.

() fv(x0) =0andargf,(x) =m/2— L(v(X)) for v-a.e.x = (¥,%) € dD.

(i) If v, converges to pointwise, therDy, converges tdy.

(iii) LetV. be the family of all continuous vector fielstson 9 D satisfyingZ(v(x)) € [a1, @2], let V., be the
subfamily ofY, consisting of those vector fields that satiafy (X)) = «1 for x outside a compact interval
(depending o), and finally lety c V, be the class of2-smooth vector fields whose elements) corre-
spond to functiong’y, which areC? on D. For everyv € V,, there exists a sequence of vector fialgs V,
converging tov uniformly on bounded intervals. For evevye V. 5, there exists a sequence of vector fields
v, € V, such that/ (v, (x)) converges ta (v(x)) uniformly overR.

(iv) LetN(e) ={(%,x) € D: x < ®(X) + ¢}. Then for every > 0,

limsup sup dist(x,dDy) =0, (5.3)

e=>0 v xef(N(e))

|x|<r
where the first supremum is taken over all vector fiel@®) which are Lebesgue measurable and satisfy
L(V(X)) € [a1, az] for all x.
(v) LetkK, be the closure 0B (0, r) N Dy. Suppose that vector fields converge tos pointwise,/ (V(X)) € [a1, a2]

and/(v, (¥)) € [a1, 2] for all . LetK; be the closure of, 1 (Ky) N, £, 1(K} ). Then forany < r; < oo
there exist®) < ro < oo such thatB(0, r1) N D C K for r > ro.

Proof. We will use the approach of [18, Lemma 2.2].~L6€(tx) =m/2— L(v(X)) for x = (X,X) € 0D. We will
denote the harmonic extension ®fto D by 6 also. Leto(x) be the conjugate harmonic function &fx) with
0 (xp) = 0 and definef, : D — C by setting f,(xg) = 0 and

fux) =expli (0(x) +i0(x))). (5.4)

Let Dy = fy(D). Parts (i) and (ii) of the lemma can be proved using ideas from Lemmas 2.2 and 2.3 of [18] —
we leave the details to the reader. However, we will outline the geometric idea of the construction. The function

represents the desired amount of twisting at the boundafy, dfiat is, it represents ayj. The boundary values

of argf, uniguely determine the values of this function inside the domain, via the harmonic extension. This in
turn determines the harmonic conjugate of Argup to a constant. In this sensg,is uniquely determined by the
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boundary values of arfj, up to a few normalizing constants. Informally speaking, the funcfipis chosen to
mapv onto a vector field pointing up at almost every boundary poirbef

We turn to part (iii). Assume thate V. and let f, be the corresponding analytic function. We defiwng )| for
x € D as a harmonic extension g/ (x)|, x € D} (recall that|v(x)| is assumed to be bounded). ko O, let f7
be the mapping constructed in a similar way to the constructiofy @t relative to the base poing + ie rather
thanxg. Letv, (¥) = [V(X, X +¢&)|i/(f)) (X, @ (X)+¢) and note that, is analytic od D because botjv(x, X + ¢)|
and(ff) (%, ®(X) + ¢) are. Since the definition of, is based only orZ (v), we see thafy, (x) = ¢ (x +ie). This
implies thatv, corresponds to a mapping, which is analytic onD. It is not hard to show that for a given
continuousy, the vector fieldy, converge tos uniformly on bounded intervals.

Suppose that € V, ;. Leta < oo be such that (v(x)) = o1 for |X| > a. It follows from the definition ofv, that
(V¢ (X)) is the value of the harmonic extensibrof Z(v) to D, evaluated atx, x + ¢). It will suffice to show that
for any§ > 0 there existgg > 0 such that for alk = (X, X + ¢) with |¥| > a ande < g we have|i(x) — a1| < 4.
Find g > 0 so small that Brownian motion starting from 0 makes a closed loop arB8ydd) before leaving
B(0, @) with probability greater than % §/«a». Then for anyx € D with X — @ (¥) < &g, the harmonic measure of
B(x,a)° N oD in D, relative tox, is bounded by /a2. Hence, for points € D satisfying|x| > a ande < go, the
value ofi(x) is bounded below by; and bounded above by + (§/a2)az =1 +6.

(iv) By the maximum principled (x) € (—ao, ap) for all x € D. Hence, Rg(x) = e~ cosd(x) > O for all x.
Let ro > 0 be such thaB(xg, rg) C D. Sinceg(xo) =0, we havey/2/2 < N fy(x0) < 1. By the Harnack principle
and the fact that the real part of an analytic function is harmonie,@ < Ref,,(x) < c2 < oo in B(xg, r0/2),
wherec1 andcz do not depend on. These bounds on Rg(x) and the fact thafl (x) € (—ag, ag) easily imply
that for some-; > 0 independent of, we haveB(0, r1) C fv(B(xo,r0/2)).

Suppose that (5.3) fails. Then there exist > 0, a sequence of vector fieldg,} and points{x,} such that
L(Vy (X)) € [a1, 2], |x4| <, x4 € fy,(N(1/n)), and distx,, dDy,) > a for all n. Note that for every vector field
v satisfying Z(v(X)) € [a1, 2], the corresponding domaib,, lies above the graph of a Lipschitz functiah,
whose Lipschitz constant is bounded byHence we can assume, passing to a subsequence, if necessary, that
@, converge uniformly on bounded intervals to a functibp,_, x, — x«, and the functions — fd‘ 0,(X)dx
converge uniformly on bounded intervals to a functior> fg 0o (X) dx. We have distts, dDy, ) > a > 0 and
dist(0, 3 Dy,,) > r1 > 0. There existp > 0 such that the Brownian motion starting frone @y, can make a loop
aroundx, and return taB(0, r1/2) without hitting d Dy, with probability p. This easily implies that for large,
Brownian motion starting from @ Dy, can make a loop aroung and return taB(0, 3r1/4) without hittingd Dy, ,
with probability p/2 or higher. By the conformal invariance of Brownian motion, Brownian motion can start from
xo0 € D, make a loop around”vzl(xn) € N(1/n), and return toB(xo, ro/2) before hittingd D, with probability
equal to or greater thap/2. Since the distance frorfq,;l(xn) to D goes to 0 ag — oo, this uniform bound on
the probability of such a loop cannot holdras> co. We have obtained a contradiction, which completes the proof
of part (iv).

(v) It follows from (5.4) and from the assumption thatv(¥)) € [e1, a2], that argf,(x) € [7/2 — a2, /2 —
a1] = [—ap, o] for all x € D. It is elementary to see that one can find an increasing sequence of datpains
such thatD, c D, |, D» = D, 3D, is the graph of ac2-smooth function®,, all @, are Lipschitz with the
same Lipschitz constartas®, and|®, () — @ (¥)| € (0, 1/n) for all X. The bound on arg,(x), the Lipschitz
character ofp,,, and elementary geometry show thato D,,) is the graph of a Lipschitz function with Lipschitz
constantc; < oo, wherekx1 depends only or. Since fy(D,) increases td,, and the limit of any sequence of
Lipschitz functions with constant; is a Lipschitz function with constamt;, we see thab Dy is the graph of a
Lipschitz function with constan;. Sinced D anda Dy have Lipschitz boundaries, the functiof‘usandf\,‘1 have
continuous extensions @ andD,. Hence,f,(B(0, 71) N D) is bounded and it follows that for every < oo there
existsr, < oo such thatB(0, 1) N D C f;1(K}) for r > rp. Thus, we may ignorg, *(K}) in the rest of the proof.

We will argue by contradiction. Suppose that there exists oo, r;, < 00, x,, € B(0,r1) N D, andv,, such
that r,, — co andux,, ¢ f\,;i (Ky" ). By compactness, we may assume that— x,, € B(0,r1) N D. It is a

Vn m
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straightforward consequence of the fact that— v and (5.4) thatf,, converges tofy uniformly on compact
subsets o). This easily implies that,, ¢ D.

Recall the base poinfy € D such thatf,(xo) = 0 and fix some other pointy € D whose distance frodD U
{xo} is p > 0. By the uniform convergence of,, to f, on compact subsets dp, f,, (yo) converges toy.,
and for somepg € (0, p), p1 > 0 and largen, we have f, (B(yo, p0)) C B(¥s, p1) C Dy,. Planar Brownian
motion starting fromxg hits 9 D before it makes a closed loop arouBdyg, po) with probability p > 0, so, by
conformal invariance, Brownian motion starting from O 8, before making a closed loop arouBdy., p1)
with probability bounded below by. This implies that for any:, the distance frond Dy, to 0 is bounded above
by a constanp, < oo depending only omD. It follows that a vertical half-line inD§ , extending to infinity in the
downward direction, has its endpoint not further tharfrom 0.

Let 91D andd,D be the left and right connected component96f \ B(0, 1) and letpg > 0 be such that
the harmonic measure of each of the sgt® andd. D in D, relative toxg, is greater thamg. We find p3 < 0o
so large that Brownian motion starting from 0 will make a closed loop in the an(0se3) \ B(0, p2) with
probability greater than % po. It follows that £, (3; D) N B(0, p3) # ¥ for j =1, 2. Since all boundarie®Dy, are
represented by Lipschitz functions with the same constgnthis implies that for some4 < co, not depending
onn, fv,(B(0,r1) N D) C B(0, ps).

We can find Jordan argg, C D with endpointsy, andx,, such that Brownian motion starting fromy hits
v, With probability ¢, before hittingd D, andg,, — 0. Sincex, € B(0,r1) N D andx,, ¢ fvzl (KC;”m), one of the
endpoints of the Jordan ayf, (y,) is at the distance less thai from 0 and the other one is at the distance greater
thanr,. This and the facts thaf, — oo, all boundaries$ D,,, are represented by Lipschitz functions with the same
constantc;, and all of them are at the distance not greater {hafrom 0 easily imply that the Brownian motion
starting from O must hitfy, (y,) before hittinga Dy, with a probability greater than songe> 0, not depending
onn. This contradicts the assertion tlgt— 0 and finishes our proof. O

Lemma 5.2.Suppose that the vector fieldbelongs toy. Then, given a Brownian motioW andxg € D, there
exists a(pathwise uniqugreflecting Brownian motiorX in D with reflection fieldv and starting pointXg = xo,
relative toW. Leto) = fé | fu(Xs)|?ds and t¥ = inf{s > 0: o > t}. The procesy’ = F(Xoy) is reflecting
Brownian motion inDy with vertical direction of reflection, relative to some Brownian moti&n

Proof. Forn > 1, letD, = {x € D: |%| <n, % < n} and letv, be a vector field o® D, which is of classC? and
such thatv, =v ondD, NdD, . It is elementary to check that our assumptions that the Lipschitz constant
is less than 1 and(v(¥)) € [«1, a2] imply that the exterior cone condition (3.2) in [24] is satisfied ¥aon 0 D,
and, therefore, fov, ondD, N 3D, >. We chooses, so that the exterior cone condition is satisfied on the whole
boundary ofD,,. Hence, by Corollary 5.2 of [24] (Case 1), we have strong existence and uniqueness for reflecting
Brownian motion inD,, with reflection fieldv,,. If n is so large thakg l_),,/z, we let X" be reflecting Brownian
motion in D,, with reflection fieldv,, relative tow, starting fromxg, and stopped at the hitting timg of D;, /2 Let
L" denote the local time aX” on d D,, and note thaL” does not increase after tinpg. By the strong uniqueness,
X! =X} for allintegerss > m > 1 and allr < p,,, a.s.

We will prove that all the stopped RBMs" are equicontinuous. We will show that the modulus of equiconti-
nuity of any such process is controlled by the modulus of continuity of the driving Brownian motion; see formula
(5.7) below. Letr; = sin(r /4 — o) and note that it € D and/(y — x) € [a1, a2] then

dist(y, D) = c1ly — x|. (5.5)

We will show that for allr > s > 0,

t

/ Vo (X" dL"

N

<2 sup W, — Wyl/cr. (5.6)

u,vels,t]
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We will assume that and: are rational. We will not incur any loss of generality because both sides of (5.6) are
continuous ins andr, a.s. We always have

t

Z(/ Vn(XZ)dLZ> € a1, a2].

N

Suppose that (5.6) is not true for some, and note that this implies th&t, € 9D for someu € (s, ). Letr; be
the supremum of < ¢ such thatX!! € 3D and note that; > s, a.s. We have

11 t
X;’l =XV —i—/Vn(XZ)dLZ + Wy — W) = X7 +/Vn(XZ)dL'; + (Wi, — Wy).
s K

Note thatX} e D and Z(fs’ vV, (X1 dL}) € [a1, a2]. Using (5.5), we see that the distance fr(ml;ndzef X+

JIva(X1)dL! to the boundary o> is bounded below by:| [’ v, (X")dL"|. We have assumed that (5.6) is
false, so the distance from. to 9 D is greater than 2syp,c(,.,; |Wu — Wy| > 2|W;, — W|. It follows that the dis-
tance l‘roth”1 = x. + W, — W, to 8 D is greater thanW,, — W;|. The last quantity is non-zero because- s, and
for all rationals and all reakt > s, we haveW, # W;, a.s. We have shown thXt{‘l ¢ 0D, which is a contradiction.
We conclude that (5.6) holds and so
IX§ — X7 <(A+2/c1) sup W, — Wyl (5.7
u,vels,t]

This estimate holds with probability one simultaneously fo&l| for integern > 1.

Recall the timeg, when theX” are stopped. Clearly, ths, are nondecreasing in Let poo = lim,,_ » 0,,. We
will show thatp, = o0, a.s. Suppose otherwise and let

M=142/c1) sup |W,—W,|.
u,v€[0, peo]

By assumptionM is finite with a positive probability. By (5.7), for all sufficiently large
1Xp — X}, 1 <1Xp— Xp | <M.

It is easy to see that this contradicts the definitiompfind we conclude that lijn, « o, = 0. We defineX; to
be X7 for n andr such that < p,. It is clear thatX is reflecting Brownian motion iD with reflection fieldv,
relative toW, starting fromxg.

Under the assumptions of the lemnfa,is C2 on D. Letu(x) andv(x) be the real and imaginary parts fif(x)
with x = (x1, x2). Thenu andv are harmonic functions i® with u,, + ivy, = vy, — iuy, = f,(x) for x € D. So
[Vu(x)| = |Vox)| =|fy(x)| andVu - Vv =0o0n D. By lto’s formula, forr >0,

t t t
u(X)) — u(Xo) = / Vu(X,)dX; = / Vu(Xs)dW, + / Vu(Xy) - V(Xy)dLs
0 0 0
and

1 t t

v(X;) —u(Xo) =va(XS)dXS =/Vv(Xs)dWs +,/VU(XS) -V(X5)dLs.
0 0 0

Forx € 3D, Vu(x) is the boundary value of the complex conjugateffx), which equals ex@—é(x) —i6(x)),
wheref(x) = /2 — £(v(x)). SO Vu(x) - v(x) = 0. On the other hand, for € 9D, Vv(x) = (—uy,, uy,) COr-
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responds to exp-6(x) + iZ(v(x))) and soVu(x) - v(x) > 0. So after the time chang&) = fv(Xev) has the
decomposition

t
Y=Yy + B + / e(Y,) dL, fort>0, (5.8)
0

whereB is a standard Brownian motion &%, e; = (0, 1) is the unit vertical vector ifR2, andL is a continuous
increasing process that increases only whi#ris on the boundary. S8 is RBM in D, with vertical direction

of reflection. The procesg" is the unique pathwise solution to (5.8) and weak unigueness for (5.8) holds. To
see this, writer = (Y}, Y?) and B, = (B}, B?), and denote the Lipschitz function represening, by ®,. Then
clearlyy}! = Y3 + B! andY? can be viewed as the reflectionkf + BZ on the function®, (¥). By the Skorokhod

lemma established in Lemma 3.13 of [16], such a reflection is pathwise unique. In particular, this Skorokhod lemma
implies thatYV is adapted to the filtration generated By O

Theorem 5.3.Suppose that1, vz € V and £ (v1(X)) < Z(vz(x)) for all x. Let X1 and X2 be reflecting Brownian
motions inD with the same driving Brownian motidi, starting from the same poinp € D, and with reflection
directions given by; andvy, resp. Thenk? < X! forall > 0, a.s.

Proof. Let to = inf{r: X2 £ X}'}. Thatis, if 7 = {t: X? < X}}, thentg = inf{z: ¢+ ¢ 7}. We will assume that
o < oo and show that this leads to a contradiction.

Stepl. We will use the argument of this first step twice in this proof. Note that in this step, we are using only
two facts aboutp; the first fact is that)(tz0 < Xé and the second one is that the inequality fails for some times in
every right neighborhood a§.

First suppose thak}, X2 € D. Then, by the continuity of paths of RBM, there exists- 1o such thatx},
th e D for t € [tg, 11]. Hence, the boundary local times do not increas¢r@n; ] for either of the two processes
and soX} — X2 = X,lO — X2 fort € [10, 11]. SinceX?2 < X,lo, we obtainX? < X} for all ¢ € [to, 1]. This contradicts
the definition oftg.

Next assume that one and only one of the processes is on the boundary at tifihout loss of generality
assume thaK}0 € 9D and tho € D. Find#, > o such thatX? e D for ¢ € [to, t2]. Let VI = [ va(XD)dL! and
note thatr — V;* — V1 is a continuous vector function which satisfiee/! — V.2) € [a1, ao] for ¢ > 1o, by our
assumption ony. Observe that (X} — X2) € [—ao, ao) and X} — X7 = (X} — X2) + (V} — v} forall1 > 1o
which are sufficiently close tg, becauseX? cannot hitd D in some right neighborhood a§. If Z(X}O — X,ZO) €
(—ap, ao) then, by the continuity of the trajectories Bf and X2, for somers € (1o, 12) and allt € (1o, 13),

LX) = XD = L((Xg — X2)+ (V= VD) € (a0, o).

This cannot be true, in view of the definition gf If Z(X,l0 — X,ZO) = —ag then every sufficiently short vecter
with /w € [a1, @2], whose starting point is at,lo must have its endpoint inside the cone with veﬂ;’e%(and edges
inclined at angles-«p andag. Hence, for somes € (1, t2) and allr € (1o, t3),

LXE— XD = L((XE = X2) + (V! = VD) € [—ao, o).

This contradicts the definition a.
If X}, X2 9D andX} # X2 then/(X;, — X2) € (—ao, a0), SO by the continuity of paths, the same is true
for all 7 € (7o, 14), Wheret, is some time strictly greater thag Once again, we have obtained a contradiction to
the definition oftg.

Step2. It remains to consider the case whzé;h = X,Z0 € daD. First we claim that for everys > ro there exist

s, € (o, t5) such thatX! € 9D and X2 € 9D. If neither process visit8 D during (zo, t5) then X} = X? for
t € (1o, 15), which contradicts the definition af. Suppose that for some > g there existsg € (19, 15) such that
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XLt edaDbutX?e D foralls e (to, t5). Then/ (X} — X2) = L(V,E — V1) € [a1, @2]. This implies thatXZ ¢ D,
a contradiction. A similar argument applies when the roles of the processes are reversed. This completes the proc
of our claim that for everys > g there exists, ¢ € (g, t5) such thatXtl € D and Xf edD. If X,l € 4D, then
L(X? — X1 € [—arctanc, = + arctanc], and similarly, ifX? € D then/ (X! — X?) e [ arctanc, = + arctanc].
AssumingX! € D andX? € 8 D, the continuity of the function— /(X2 — X}) implies that there must be a time
u betweery ands with X} = X2, or /(X2 — X}) € [—ao, ao], or (X} — X?) € [~ao, ao]. Therefore for every
15 > to there exists: € (1o, t5) such that¥? < X! or X1 < x2.

We will show that for some € (1, 15), X,l < th Suppose there is no suchConsider the open set of all
t € (g, 15) Where the Condition‘(f < X,1 fails and letr7 be the midpoint of the longest interval in this set. Note
thatzo < 17 < t5. Let rg be the supremum af < 77 such thatX? < X! or X! < X?, and note thatg € (19, 7). If
X} < X2, then we are done. Otherwis&, < X but this inequality fails in every right neighborhoodf The
argument of Step 1 applied witl in place ofzg implies thatX,l8 = thg o) X,l8 < X,28. We have proved that for
everyts > to, there exists e (to, t5) with X < X?2.

Let V2 = [ v2(X?)dL? and recall thav; andv, are C2 and Z(v1(¥)) < £(V2(¥)). By the continuity of the
trajectories of¥! and X2, there existg > 7o andaa, a4 such that

o1 < Z(th — Vtg) <oz <oy < Z(V,2 - Vtﬁ) < ay, (5.9

1 _ x2

for all ¢ € (19, t9). Find 19 € (#g, t9) such thatX,lo 10"

SinceX}0 = X,ZO

(V2 =V — (Vi —vh=X2 — X}

10 110 110’

SO
L((V?

1o

— V2 = (Vi — V) = L(X2, - X} ) € [—ao, aol.

o 110

This condition and (5.9) applied with= 719 cannot hold simultaneously for any triplet of vect()V;‘}o — V%, V,}O —
Vi (Vizy = Vi) = (Vigy = Vi) O

Suppose tha is reflecting Brownian motion i, with vertical direction of reflections = f5 1( £, 1) (Ys)[?ds,
o) =inf{s > 0: 7y > ¢}, andX, = fv‘l(Y(o,V)). Then we will callX aconformally invariantreflecting Brownian
motion (CIRBM) in D with direction of reflectiorv, and the same term will be applied to any process with the
same distribution.

Recall the following. A functiong is called lower semicontinuous oR if for every x € R, ¢(x) <
liminf,_,; ¢(y). A function ¢ is lower semicontinuous if and only if for eache R, {x: ¢(x) > a} is open.
A function v is called upper semicontinuous-fy is lower semicontinuous. Hencedf is an open subset d&,
thenls is lower semicontinuous. It is well known thatis lower semicontinuous if and only if there is a strictly
increasing sequence of continuous functigpshat converge t@ pointwise onR.

Lemma 5.4.(i) Suppose that > 0 and the vector field on 9D is such that/v(x) is lower semicontinuous and
takes values ifiey + 8, a2 — 8]. Then, given a Brownian motioi, there exists a CIRBM in D with reflection
fieldv, adapted to the filtration oW, and such thak; = Xo+ W, + U, for everyr > Owhere/ (U, — U;) € [a1, a2]
forall t > s, andU does not change whexie D, i.e.,U, = U, if X,, € D forall u € [s, t].

(ii) If xo € D, v1 and v, satisfy the assumptions of pdi}, and Z(v1(¥)) < Z(v2(x)) for all %, then one can
construct the corresponding CIRBM¥! and X2 as in(i), relative to the same Brownian motid#, starting from
xo € D, and such thak? < X} forall > 0, a.s.

Proof. (i) It follows from the first part of the proof for Lemma 5.2 (see the paragraph containing (5.5)—(5.7)) that
all RBMs with reflection fields € V satisfy the same condition (5.7). Hence, they are equicontinuous.
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We will prove that there is sequence of vector fialds 1, such that/ (v, (¥)) < Z(v,,(x)) for all n < m andx,
and lim,_ o0 Z(V, (X)) = Z(v(x)) for all x.

Recall thata; € (%, %”) is the angle specified in the fourth paragraph in this section. By the remark given
before the lemma, in view of the assumption th&t) is lower semicontinuous, there exists a strictly increasing
sequence of continuous functioflg converging to/(v) pointwise onR. Let ¥, (X) = max{y, (X), a1 + 8} and
we define forx € R,

Vn (X)), |X| < n,

a1+ 3, |X| >n+1,

min{y,, (X), ¥, (—n)X +n+1) — (@1 +8)(X +n)}, Xxe€(—n—1 —n),

min{vy,, (X), ¥,(m)(n — X + 1) + (@1 + 8) (X — n)}, xen,n+1).

It is easy to see that every functigy is continuous and takes valuesjin + §, a2 — §]. The sequencgp,,, n > 1}
is nondecreasing and convergest®) pointwise onR. For eachn > 1, sinceg, (x) = a1+ 6 for |X| > n + 1, by
Lemma 5.1(iii), there exist, € V such that

5
L(Va (D)) = <¢n(f) - 5)

Itis clear that/ (v, (X)) < Z(v, (X)) for all n < m andx € R, and lim,_ o Z(v, (X)) = Z(v(x)) for all x e R.

Let X" = (X™1, X™2) be RBM in D with reflection direction,,. By Theorem 5.3X7 > X" for everyn <m
and every >0 a.s., sz’,”’l > Xj”’l, and, therefore, lig., X?’l = X,‘x”l exists and is finite for all > 0, a.s., by
(5.7). Next we will show that a.s., lim, » X{”Z exists for allt > 0. Suppose that this is not the case for seme
Let

Pn(X) =

forall x e R.

< on+2

M, = sup{|W, — W,|: 0< s <u <t} + dist(xo, dD);
this quantity is finite for every > 0, a.s. SinceX” is the sum ofW and a process which does not change when
X" is inside the domain, the distance frokj to the boundary ofD does not exceed/, for all 0 < 7 <.
Using compactness and the diagonalization method, we can extract a subsequédepending orw) such
that X}”"Z converges for every rational> 0. Let 55;"”2 be the limit ofo""z. The function)’(\,o"'2 can be ex-
tended in a continuous way to all real> 0 and, moreoveer""’2 — )?f"’z for all realt > 0, because (5.7)
shows that the processé(éf"“2 are equicontinuous. We claim that dﬂ(?o’l, )?fo’z) e D for all t € [11, 1]
where 0< 11 < 2 < oo then (X1, ?}’O’Z) — (X2 X202 — w, — W, for all s, € [t1, £2]. To see this, note
that 8g d=efinf,€[,l’,2] dist((XfO’l, )A(fo'z), aD) > 0. Since theX;* are equicontinuous, they converge uniformly to
(Xfo’l, 5(\;’0’2) on [, 2], and so for larger, inf ey, ) dist(X;*, 3D) > 8o/2. This implies that the local time
term in the Skorokhod decomposition f&"* does not change on the intena, ¢»], for any largen;, and so
X% — Xgk = W, — W, for largen, and alls, ¢ € [t1, £2]. Our claim now follows by taking the limit.

Suppose that for some other subsequengdim_, oo X"*'? = X>*2 for all t > 0, whereX °>2 is not identically
equal to)?f’o'z. Since both functions are continuous, there exist 8 < 14 < oo such that at least one of the
following must hold: (I)(X;’O’l, ??0’2) € D for t =t3, t4 but not for anyr € (t3, t4), and(X?so’l, ?;’:’2) € oD for
somers € (t3, 1), or (I) (X, X>?) € 3D for t = t3, 14 but not for anyr € (t3, 1), and(XfSO’l, 5(\?50,2) € dD for
somets € (13, t4). We will only discuss (I) as (ll) can be treated in an analogous waytgl-etsupt < s: )?,OO’Z =
}?fo’z} and note thatg > r3. The second component of every vectgt) is positive, so the second component of
f; v, (X)) d L7 is non-negative for alk and 0< s < ¢, and we obtair?(NfS’2 - )?;‘6’2 > Wé - sze- Passing to the limit
alongmy,

X2 X222 W2 - W2 =X - X202
But this contradicts the fact théft,?'z < 5(\?5‘”2. This completes the proof that the limit ljm Xf’z exists. Hence,
X; =lim,_, X} exists for allt > 0, a.s.
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Next we will show thatX is a CIRBM with reflection directiorv. Let 0)' = fé |, (XM|?ds, 1" = inf{s >

0: o >r}, and recall from Lemma 5.2 th&t’ = f, (X" (/")) is RBM in Dy, with vertical direction of reflection
(always pointing up).

The domainD, has the representatig(i, x) : X > @, (x)} for some continuous (in fact, Lipschitz) functidr,.
Recall thatfy (xg) = 0. If a two-dimensional Brownian motiafi = (Z2, Z2) is given, we let’! = Z* and we define
Y2 as the reflection ofZ2 on the function®,(Z1), using the deterministic Skorokhod lemma (see Lemma 3.13
of [16]). ThenY = (Y1, ¥?) is the (pathwise unique) RBM i®, with vertical direction of reflection, starting
from 0 and driven byZ. The boundary functiong,, of the domainsD,, converge, by Lemma 5.1(ii). Note that
Yy = fv, (x0) = 0 for alln. Our explicit construction of the RBM with vertical direction of reflection together with
Corollary 3.16 of [16] show that i is a sequence of RBMs imy, with vertical direction of reflection, starting
from 0, and driven by the same Brownian motidn then yn converges a.s. to a RBN in Dy with vertical
direction of reflection, starting from 0, with respect to the uniform topology on bounded intervals. This, of course,
implies thaty™” converges in distribution 1. By Lemma 5.2 eacli” has the same distribution &% . Hence,Y"
converges in distribution t&. We will later show that a subsequence(Bf', n > 1} converges a.s. to a process

Next we will show that the process&sandx spend zero time on the boundary. Recall the constructidh of
using the ideas of [16] given in the previous paragraph. ConditioningZgn: > 0}, and using Corollary 4.7 of
[16], we see that’ spends zero time on the boundary of the domain. The argument for the ppoéeshfferent.
Letag=m/4+ (/4 — ap)/2. We will say thatW has arwsz-cone point at time; > 0 if for somer, > 1 and all
te(tr,t2), LWy — Wy) € (/2 — a3, m/2+ a3). Sinceas > /4, Brownian paths contaims-cone points a.s., by
the results of [14] or [39]. We need the following stronger version of this result. For every, with probability
1, for everyr; € (0, 1), there existss € (12, t1), depending om, such that/ (W, — W;,) € (/2 — a3, m/2+ «3)
for all ¢ € (73, t1). This stronger version follows easily from an interpretation of cone points as the times when an
obliquely reflecting Brownian motion in a wedge hits the vertex (see [35]) and the fact that the vertex is a regular
point for such a process. Fix amy > 0 and find a times € (0, 1) with the property stated above. Define the
processX} by X} = X! for r <13 and X} = X/, + W, — W, for ¢ € (13, 11]. By the definition ofr3, X}/ stays in
the coneC ={x € C: Z(x — Xp) € (m/2— a3, /2 + a3)} for ¢ € (13, 11]. Any open cone with vertex i and
the edges forming angles/2 — a3 andx /2 + a3 with the horizontal is a subset @, by our assumptions on the
boundary ofD. We conclude thak” stays inD for ¢ € (13, 1] S0 it is a solution to (2.1) ofD, #1]. By the pathwise
uniqueness of the solution [24], we see tidt= X" for ¢ € [0, #1] (strictly speaking, the results in [24] are only
proved for bounded domains but a simple stopping time argument can be combined with those results to draw the
needed conclusion; we leave the details to the reader). It follows that for arfix&d € D with probability 1.
By Fubini’s theorem X" spends zero time on the boundary@f We can strengthen this result as follows. Let
p(r1) > 0 be the distance frorﬁ’;’l = X}, to the boundary of the open coge The quantityp(r1) depends only on
the trajectory ofW and by Fubini’s theorenp(¢) > O for almost alls > 0, a.s. Note thab(¢1) is a lower bound for
the distance fronX7, to dD. This property is invariant under limits in the following sense¥ffis any sequence of
processes such that the distance frigfnto o D is bounded below by (¢) for everyr > 0, then the same holds for
Vo =lim,_ o V", if the limit exists. By Fubini's theorenl/ > spends zero time of\D, a.s. The last conclusion
applies, in particular, to all processes appearing in Lemma 5.6 and its proof.

Recall the definition ofV (¢) from Lemma 5.1(iv) and lel¢(¢) be the complement of this set. Lgt: R2 —
[0, 1] be a smooth function that is equal to 1 81ts /2) and equal to 0 oV ¢ (e). We will denote 1- . by x¢. For
t>0,let

t

t t

—n n 2 n — 2 ~n n 2 c n

a; ’8=/|fv;(xs)| Xe(X3)ds, Uf=/|f\§(Xs)| xe(Xs)ds, & ’8=/|f\§n(XS)| xS (X7 ds,
0 0 0

t t t
5 = f X PrE (K ds, of = / XA ds, o = / | X P(X0) ds.
0 0 0
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t, =inf{s > 0: 0, > 1}, Ny(8) ={x € Dy: dist(x, 9Dy) <8},
and note that" = 60,"° + 6, ando, =67 + 6. It follows from (5.4) thatfy — fy uniformly on compact
subsets oD. This and the convergence &f' to X imply that for fixedr, ¢ > 0, we have a.s.,

lim 6 =6¢ <o, (5.10)

n—o00

Let K}, be the closure oB(0, ) N Dy and letK;* be the closure of, *(K) N, f, (K}, ). By Lemma5.1(v),
for anyri < oo there existss < oo such thatB(xg, r1) "D C K forr > ro. Let T (Y, r) be the first exit time from
K, for the process” and letT*(X", r) be the first exit time fronK " for X”. A similar notation will apply to other
processes.

Fix somer > 0 and arbitrarily smalp, n > 0. Findry > 0 so large that for some > 0, B(xg,r2) N D C K}
and

P((14 (2/cn) sup (W, —W,|>r2) <p.

u,vel0,7]
Then, by (5.7), for alh,
P(T*(X",r2) <t) < p. (5.11)
Note that
T(Y",ry)
Grvxn g S 11, (ven Yy ds.
0

The second componetfi® of Y is a Brownian motion plus a non-decreasing process. If the vertical component
72 of the driving Brownian motior¥ has an increment greater than ®ver some intervals, t] then so doe§’?
and then (Y, r1) < . The probability that there are nor € [m, m + 1] with Z2 — Z2 > 3r; is less thany; < 1,
not depending om. Hence, the probability that there are 1o € [0, m] with 22 Z? > 3r1 is less tham{". This
shows thalP(T(Y r1) = m) < q7', So the expectation df (Y, ry) is finite. Note that the same argument applies
to ¥ in place of?, so there is a uniform upper bound for expectations of stopping tiGEE, r1).

SinceY spends zero time on the boundary, we can 8ind0 small such that

T(Y,r1)

P(/ 1NV(5>(?s>ds>n)<p.
0

SinceY” converges td’; a.s.,
(")
P( / v/ (Y] ds > 2n> <2p,
0

for largen. By Lemma 5.1(iv), we may chooge> 0 so small that
7" r1)
P( / 14, ey (Y ds > 277) < 2p,
0

for largen. Since the processe¥ andY” have the same distribution,

T(Y",r1)
P(UT*(Xn rp) > 21 < P( 1p, (Nepy (Y ds > 27}) <2p,

0
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for largen. This and (5.11) imply that for each fixed> 0, P(," > 2n) < 3p, for largen. By (5.10), we obtain
P(o > o, + 3n) < 4p for largen. It follows from P(a;"* > 2n) < 3p that P(liminf, .. &;"* > 2n) < 3p for
everyr > 0. By Fatou’s Iemmd?(&f > 277) < 3p. This holds for arbitrarily smalb > 0 and an appropriate choice
of e =¢(p) > 0. Itis clear that, < oo, sS00; < 0o a.s. Since lim 067 = o;, we can choose > 0 so small that
P(o; — 67 > n) < p. For sufficiently larger, by (5.10),P(c,"* < 0; —25) < p. We see that;* — o; in probaibility.
By passing to a subsequence, if necessary, and using the diagonal selection method, we conellide tha.s.
simultaneously for all rational > 0.

For a fixeds > 0, s > 0 and all largez, the functions — &, are Lipschitz or0, s] with a constant depending
onw, but not o, because the integrands in their definitions are uniformly bounded. On answéprobability
greater than - 3p, the functions — ;"¢ are bounded by;2on the interval0, s], for largen. It is elementary to
show that the limit of the functions— &,¢ + 5, cannot have jumps grater than @n A. We can make and
n arbitrarily small, so the function— o, is continuous a.s.

Sincer — o' andt — o; are strictly increasing functions, the convergence;bto o, holds for all reak > 0
and is uniform on compact time intervals. It is elementary to show that all this implies the convergence of the
inverse functions, i.ez’ — t; a.s. for all reak > 0. The processeX” converge a.s. in the uniform topology on
finite time intervals so for a fixed> 0, X" (r;) — X (1), a.s. By (5.4) fy, converges tgfy, uniformly on compact
subsets ofD. SinceX spends zero time on the boundayy, (X" (z;)) — fv(X(z:)), a.s. We conclude that for a
fixedz, Y' converges a.s. t; = fy(X (t;)). SinceY" also converges in distribution 10, the finite dimensional
distributions ofY are the same as those Pf Both processes are continuous so the distributior &f the same
asY.

It remains to show thak; = fv_l(Y(a,)). This follows immediately from the fact that and o, are inverse
functions of each other, and from the fact thatspends zero time on the boundary. This proves thas the
CIRBM with the reflection direction.

The last claim of part (i) is elementary and left to the reader.

(i) We will prove that if v andv, satisfy the assumptions of (i) andvi(x)) < Z(v2(%)) then one can find
vector fieldsv?, v2 € V such that lim oo Z(VE(F)) = L(V1(X)), iMoo L(V2(F)) = L(V2(X)), L(v}) and £(v2)
are strictly increasing im, andé(v%(i)) < Z(v,zl(i)) for all n andx. The argument will be a modification of the
argument given at the beginning of part (i) of the proof.

Let ¢,} and¢,§ be defined relative te1 andvs, respectively, in the same way as was defined relative to at
the beginning of part (i) of the proof. Each functigf and¢? is continuous and takes values[iny + 8, ap — 8].
The sequence&&,}, n>1) and{qb,?, n > 1} are nondecreasing and converge/to1) and Z(v2) pointwise onR,
respectively. Since (v1(X)) < Z(va(x)) for everyx € R, {max{q&,%, ¢3}, n> 1} is a hondecreasing sequence of
continuous functions taking valueslia; + 8, oo — §] that converges td (v2) pointwise onR. Recall that for each
n>1landi=1,2,¢ (%) =ai+4for || > n+ 1. By Lemma 5.1(iii), there exisxt,lz ey andvﬁ € V such that

- - 1) ) B
Z(vi(x)) — <¢,%(x) — E)‘ < oz for all ¥ € R,
and

forall x € R.

- - - 1)
L(VE(E)) — <max{¢,}(x), HENE 2n+2> < 5rd
It is clear then that lim, o Z(VE(F)) = L(V1(F)), iMoo L(V2(X)) = L(V2(X)), Z(v}) and Z(v2) are strictly
increasing im, and/ (v (%)) < £(v2(¥)) for all n and¥.

Part (ii) of the lemma follows from part (i), Theorem 5.3 and the existence of vector ﬁ#]cb% € V with the
properties listed above.O

Lemma 5.5. For every positive bounded Lebesgue measurable funation R, there is a strictly decreasing
sequence of lower semicontinuous functiepsuch thatu = lim,,_, - u, a.e. onR.
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Proof. Without loss of generality, we may assumé Borel measurable. Sineeis bounded, there is a decreasing
sequence of simple Borel functiong converging ta: pointwise. For each Borel satof finite Lebesgue measure,
there is a decreasing sequence of openlgetich thatly, — 14 a.e. orR. Note thatly, is lower semicontinuous
and (1 + %)1U" is strictly decreasing td4 a.e. onR. It follows that there is a decreasing sequence of simple
functionsu,, that are lower semicontinuous such that lim, s u, a.e. onNR. 0O

Lemma 5.6.Suppose that is a vector field such that for sonde> 0, Z(v(x)) € [x1 + 8, a2 — §] for all x. Then
given a Brownian motiofi, there exists a conformally invariant reflecting Brownian motibim D with direction
of reflectionv, adapted to the filtration oW, and such tha, = Xo + W; + U, where/(U; — Uy) € [a1, 2] for
all t > s, andU does not change whexie D.

Proof. By Lemma 5.5, there is a sequence of vector figldsuch that/ (v, (X)) € [a1 + % o — %] for all » and

X, L(v, (%)) is lower semicontinuous, is strictly decreasing, and convergésvi)) for a.e.x € R. LetV' be the
vector field withZ (V' (X)) = lim,,_, o Z (v, (X)) for everyx € R. The argument from the proof of Lemma 5.4 shows
the existence of a conformally invariant reflecting Brownian moftfonorresponding ta’. The definitions off,
and Dy given in the proof of Lemma 5.1 are based on the harmonic extefisibrn /2 — /(v) to D. Sincev andv’

are equal almost everywhere, the corresponding harmonic extensions are equal everywharelisoD, = D,/ .
This implies that the process is a CIRBM in D with direction of reflectiorv. 0O

Theorem 5.7.Letv(x) = n(x) if n(x) exists in the classical sense and V&f) = (0, 1) otherwise. LetX be the
CIRBM constructed in Lemma6. ThenX has the same distribution as standard RBMIinand X is a strong
solution to(2.1) driven by the given Brownian motidii.

Proof. It is standard to check thatv is Lebesgue measurable. Note thav(x)) € [7/2 — arctanc, /2 +
arctanc] C (a1, a2), SO Lemma 5.6 applies. What remains to be shown is that the CIRBN D with normal
reflectionv is indeed standard RBM with normal reflectionfin

Standard RBM with normal reflection in a Lipschitz domaip can be characterized (see [10] and [31]) as the
continuous strong Markov proce¥son U1 whose Dirichlet form i€, W12(U1)), whereW-2(Uy) consists of
all L2-integrable functions i/; whose first order distributional derivatives dré-integrable and

e0 =3 [ VIw Ve
Uy
Supposep is a conformal map frond/; onto another Lipschitz domaiti,. Then the Dirichlet form for the image
processp(Y) under the symmetrizing measugg (x)|2dx is (£, W12(U»)), where€ is defined as above except
that U, is in place ofU;. Therefores(Y) is a time changed standard reflecting Brownian motio/ pnwith
normal reflection. The last assertion follows from the Dirichlet form characterization of time-changed processes
due to Silverstein and Fitzsimmons (see Theorems 8.2 and 8.5 of [40] — the proofs contained a gap, but a new proc
was given later by [28]).
Recall from the proof of Lemma 5.1(v) thaX, is a Lipschitz domain. Standard results on angular derivatives for

conformal mappings (see, e.g., Section V.5 in [4]) can be used to prove that for almost evéry, the half-line
with the endpoint ak along the direction ofi(x) is mapped byf, onto a smooth curve whose tangent line at its
endpoint o Dy exists, is vertical and is perpendiculara®y. This implies thatDy, is the upper half-plane. Now
we apply the previous paragraph with being the upper half space Rf andU, = D to see that the CIRB\NX
in D obtained through Lemma 5.6 is a standard reflecting Brownian motin iWe have mentioned in Section 3
that standard reflecting Brownian motionfinhas the following Skorokhod decomposition:

t

X; =X0+Bt+/.v(Xs)dLs forr >0, (5.12)
0
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where B is a Brownian motion that is adapted to the filtration generatetgnd L is a positive continuous
additive functional ofX that increases only wheki € 3 D.

The proces« is adapted to the filtration d¥. Since the law of( is that of standard RBM, then its law is equal
to P*0 and is hence a weak solution to (2.1) as defined in Definition 2.1(1). On the other hand, by Lemma 5.6,

whereU is a continuou®2-valued process withip = (0, 0) and/(U; — Uy) € [a1, 2] forall t > s, andU does not
change wherX is in the interior ofD. Since[a1, a2] C (/4, 37 /4), if we write U; = (U,(l), U,(Z)), thent — U,(Z)

is increasing and +— U,(l) is of bounded variation whose total variation process is dominated’fﬁ& Since
W = fé 1p(X5)d X, W is adapted to the filtration generated ¥y Now by the uniqueness of the Doob—Meyer
decomposition for the semimartingale we have from (5.12) and (5.13) th&t = W, andU,; = fé n(X,)dL;.
HenceX is a strong solution to (2.1) driven by the Brownian moti¥nas described in Definition 2.1.0

Theorem 5.8.Let D be a special planar lip domain angy € D. Then(2.1) has a strong solution and the solution
is pathwise unique.

Proof. The existence of strong solution is proved in Theorem 5.7. Suppos# that X’ are two weak solutions
to (2.1) starting from the same poing with the same driving Brownian motioW but possibly adapted to two
different filtrations (we ignoréd. in the spirit of Remark 2.2(ii)). LeX” be the strong solution to (2.1), starting from
x0, With W as the driving Brownian motion that we constructed in Theorem 5.8; in particular this meais'tisat
adapted to the Brownian filtraticn{lf,w}t>o. Let C ([0, 00), R?) be the collection of the continuous functions from
[0, o0) to R2. It follows that there is a Borel measurable magrom C ([0, 00), R?) to itself such tha” = A(W).
SinceX, X’ andX” are weak solutions to (2.1), we have fora}t 0,

t t t
W, =/1D(XS)dXS, W, =/1D(X;)dxg, and W, =/1D(X;’)dxg’. (5.14)
0 0 0

Each of the processeg X’ andX” has the same la®*° by Theorem 2.3. Using (5.14), we conclude that the joint
laws of the pairg X, W), (X', W) and(X”, W) are equal. So we have

P(X # A(W)) =P(X' # AW)) =P(X" # AW)) =0,

But thenX’ = A(W) = X a.s. This proves pathwise uniquenessi

Note that in the above proof we use weak uniqueness for the law of théXpdir), not just weak uniqueness
for the law of X.

Theorem 5.9.Let D be a bounded planar lip domain and |8t be a two-dimensional Brownian motion. There
exists a strong solution #2.1) driven byW;.

Proof. First we will describe how Definition 2.1 can be generalized to allow for a random starting point. When
it comes to weak solutions, Definition 2.1 can be extended in a straightforward way to allow for a random initial
starting distribution rather than a deterministic starting point.

A strong solution to (2.1) with a random starting polfy is defined as follows. Suppose tHéit= {W;, > 0}
is a two-dimensional Brownian motion agds a random variable that takes valuedirand is independent a¥,
both defined on the same probability spacke F, P). Let {F;},>0 be the augmentation of the filtration generated
by the natural filtration oW andg. A strong solution to (2.1) witlkp = &, relative toW, is a pair of continuous
processesX, L) such that(2, F, {F;};>0, P, (X, W, L)) is a weak solution to (2.1) with initial distribution &f.
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By Theorem 4.11 and Theorem 5.8, weak uniqueness and pathwise uniqueness hold for (2.1) for every deterministi
xo € D. Given any probability distributiop. on D, there exists atandardreflecting Brownian motion irD with

initial distribution ; it is a weak solution to (2.1) with initial distribution. Hence by Corollary 3 of [45], there is

a universally measurable function

F:D x C([0, 00),R?) — C([0, 00), D) (5.15)

such that for every > 0, it is universally measurable as a map frémx C ([0, t], R?) — C([0, ¢], D) and every
solution(X, W) of (2.1) with (random) starting poir satisfiesX = F(Xo, W). Moreover, since a weak solution
to (2.1) exists for any initial random distribution, it follows that for any given Brownian motbmwith Wy =0
and random variablé that takes values i® and is independent o¥, X = F(£, W) solves (2.1) withXg = &.
That is, a strong solution to (2.1) exists for any initial random distribution.

Fix any xo € D. For eachx € 3D there existr, and a rotated special planar lip domdiq such thatD N
B(x, 2ry) = Uy N B(x, 2ry). By compactness dfD, we can find a finite subfamily, ..., B, of {B(x,7x)},cs5
with 3D C |J;_1 B« Let Bg be a smooth domain such that

n
D\(UBk) C BoC BoC D.

k=1

DefineUp = Bg and for 1<i < n, if B; = B(x;, ry;), we will write U; = Uy,. For 1<i < n, let F; be the function
defined in (5.15) withU; in place of D. Let W = {W;,r > 0} be a givend-dimensional Brownian motion with
Wo=0.LetSo=Tp=0, X8 = xo, and letNg = inf{;j: xo € B;}. Fori > 0, define inductively

(i) Wi = Wys, — Ws, for t > 0 (a Brownian motion),
(i) (a) if N; =0, letx;™ =X} + W/ fort >0,
(b) if N; > 1, letxi+l= FN (X%, Wh,
(iily Tp1=inf{r>0: X!*1¢ By},
(iv) Nijp1=inf{;: X’Jrl € Bj},
(Vi) Sip1=To+ -+ Tz+1

Let X; = X;ﬂ% for §; <t < Sj11. WhenN; =0, X'*1 is a Brownian motion inBy, and whenn; = 0, each
Xi+1is a strong solution to (2.1) iV, with initial (random) posmonX’Ti. The law of X'+1 is the same as the
standard RBM iUy, with initial starting pointXiTi. Property 3.1(iii) and a standard argument show fhat oo

a.s. as — oo (cf. [6, Theorem VI.3.4]). It is now routine to check thsitis indeed a strong solution to (2.1) It
with W as the driving Brownian motion. O

Remark 5.10.R. Atar pointed out to the first author that there is a gap in the proof of [12]. The proof that the strong
solution constructed in that paper is adapted is faulty. An attempt to correct this error in [7] was unsuccessful.
A further discussion may be found in [9].

It is still an open question as to whether a strong solution to the Skorokhod equation exists*idomains
in dimension three and higher. In [12] weak uniqueness for RBM'1® domains was proved under weaker
assumptions than those in Definition 2.1; the conditions (2.2) and (2.3) are unnecessary. Therefore to show stron
existence in theo+* situation, one needs only to find an adapted solution to (2.1), whésea local time ofx
on the boundary ob.
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6. Pathwise uniqueness for RBM in planar lip domains

In this section we will first prove Theorem 2.4, and then we will show that it also holds for the type of planar
lip domains introduced in Burdzy and Chen [15], which are a variant of the ones considered above. Then we will
apply it to synchronous couplings of RBMs in both types of planar lip domains.

Proof of Theorem 2.4. The proof is the same as that for Theorem 5.8

In [15], Burdzy and Chen studied the behavior of “synchronous couplings” in polygonal and Lipschitz domains.
A synchronous coupling is a pair of reflecting Brownian motidhsand Y in the same domairD, driven by
the same Brownian motioW;. Lacking a strong existence result for RBM in general Lipschitz domains, the
synchronous coupling of RBMs in a Lipschitz domdnis constructed in a weak sense in [15] as a limit of
synchronous couplings of RBMs in a sequence of smooth domains that incréasétar and Burdzy [2] similarly
circumvented the problem of constructing a “mirror coupling” in a lip domain (we call reflecting Brownian motions
X andY in D amirror coupling if the line of symmetry foX andY does not change whenever both processes
stay away fromd D).

Using Theorem 2.4, we can derive the following for planar lip domains.

Theorem 6.1.Given a planar lip domairD and a Brownian motion, there exists a synchronous couplifig, ¥)
of reflecting Brownian motions iP driven byW such thatf{ (X, Y;), ¢t > 0} is a strong Markov process with respect
to the filtration generated bW.

Although Theorem 6.1 does not immediately prove the existence of a “mirror coughthg”) with the strong
Markov property in a lip domain, one could try to apply the method of this paper to answer this open question.
Theorem 6.1 derives its main interest from possible applications in the context of the research presented in
Burdzy and Chen [15], where the definition of a lip domain is slightly different from this paper. For this reason, we
will prove Theorem 6.1 using the following alternative definition of a lip domain that was used in [15]. There a lip
domain was defined to be a Lipschitz domairthat is bounded between two Lipschitz functigfisand f>:

D = {(x1,x2): fi(x1) <x2 < fa(x1), 21 <x1 < 22} (6.1)

such thatfi(z1) = f2(z1), f1(z2) = f2(z2), f1(x1) < f2(x1) for —oco < z1 < x1 < z2 < 00, and the functiong
and f> are Lipschitz with Lipschitz constarte (0, 1): for k =1, 2,

| fi(x1) — fur)| <klxp—yal, forall za <x1, y1 < z2. (6.2)

Note that the assumption thak is a Lipschitz domain puts additional constraints on the functifinis addition

to (6.2). In a neighborhood of the left or right endpoint, the boundar® o the graph of a Lipschitz function in

some coordinate system, but the Lipschitz constant of that function may be larger than 1. This makes it impossible
to construct solutions i® of (6.1) using a piecing-together procedure — our main theorem does not apply near the
left and right endpoints of the domain defined by (6.1).

Proof of Theorem 6.1. It suffices to show that the conclusion of Theorem 2.4 holds for any planar lip domain in the
sense of (6.1). Since standard RBM in a Lipschitz domain does not hit points, our result follows from Theorem 2.4
by a piecing-together procedure unless the starting point is either the left-most or right-most point of the domain.
Suppose thatg is one of the extreme points, say, is the left-most point of the domain. Weak uniqueness follows
from Theorem 2.3. In particular, we may uBen place ofP in the remainder of the proof. We therefore turn to
strong existence. Define

Ry = {(s, t): s =20t < KS}.
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Take a sequence of pointg € D converging toxg so thatx,, — x, € Ry for everyn > m and letX" be the
strong solution for (2.1) starting from),. By step 3 in the proof of Theorem 1.1(ii) in [15] as well as Theorem 2.3
in [15], almost surelyX}" — X} € R, for all t > 0. By step 1 in the proof of Theorem 1.1(ii) in [15], there is an
eigenfunctionp corresponding to the second eigenvalige< 0 of the half Laplacian irD with Neumann boundary
conditions such tha¥¢ (x) € R4 for everyx € D. Thus forn > m, almost surelyp (X}") — ¢(X}') > O for every

t > 0; in other wordsg (X}") is decreasing im. On the other hand, for eaeh> 1, ¢ (X")e *2' is a martingale.
Thus for each fixed > 0

e_uztE[(ﬁ(X,m) - ¢(X;l)] = (xm) — d(xp).

The right hand side goes to zero msn — oo by the continuity of¢. Hence almost surely) (X}') — ¢ (X}")
converges to zero for every> 0 whenn > m both go to infinity. By step 2 in the proof of Theorem 1.1(ii) in [15]
and the fact that the amount of tind" spends on the boundary has zero Lebesgue measure, one concludes that
| X! — X["| goes to zero ag, m — oo. Therefore almost surely, =lim,_, o X} exists for every > 0. Clearly X
has the same distribution as standard RBMDistarting fromxg (cf. Lemma 4.3 of [10]). Note that for eaeh
t
Xi =xn+ W + / n(Xy)dLy foreveryr >0,
0

whereL" is the local time ofX" on the boundary of D corresponding to the measu%e andv denotes surface
measure o D. SinceX,; =lim,_, ., X}, we see that the limi#; =lim,_, » fé n(X?)dL? exists and

X;=x0+ W;+ A, foreveryr>0.

Let p(t, x, y) be the transition density function for standard RBMnWe have forr > 0,

'
1
E[L;‘]:E/fp(s,xn,y)v(dy)ds<c1v(8D)
0 9D

in view of Theorem 3.1 of [10], where; > 0 is a constant that depends only:ott follows that A is a process of
bounded variation. By an argument that is similar to but simpler than that from (5.12) to the end of the proof of The-
orem 5.7, we conclude that, = fé n(X,)dL, fort > 0, whereL is the boundary local time of corresponding

to the measurév. This shows thak is a strong solution to (2.1) driven By. O

7. Counterexamples

We will present two examples in this section. The first one will provide a proof for Theorem 2.5. The second
one will illustrate the importance of the choice of the definitioNgfx).

Proof of Theorem 2.5. Fix some smalki1 > 0 and letC1 C [0, 1] be the classical Cantor set. LggtR — R be a
continuous function which is equal to 0 6 = (—o0, 0] U C1 U [1, o0) and is defined elsewhere as follows. The
setC, is closed so its complement consists of a countable union of disjoint open intervals. For every such interval,
say, (a, b), we let the functionp be linear on(a, (a + b)/2) with slope—«1, and linear on((a + b)/2, b) with
slopexs.

Let D1 = {(x1, x2) € R% xo > ¢p(x1)} andC3 = {(x1, x2) € dD1: x1 € C1}. As ¢ is Lipschitz, it follows that
a subset ofD; is not hit by standard RBM i if and only if it is not hit by standard Brownian motion I&?
(see, for example, Remark 2.2(3) in [13]). &5 has positive log 2log 3-Hausdorff measure, it is hit by standard
Brownian motion inR2. ThereforeCs will be hit by standard RBM inD; with positive probability.
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Fix « > 1 arbitrarily close to 1. LetD3 = {(x1, x2, x3) € R3: x3 > ¢(x1)} and letD4 be obtained fromDs
by a rotationR around thexi-axis by an anglex with the following properties. First, the linf(x1, x2, x3) €
dD4: x1 = 0} should form an angle with théxi, x2)-plane strictly greater than/4. Second,D4 should be a
domain above the graph of a Lipschitz functignwith Lipschitz constank,; = (v + 1)/2 (see Section 2). It
is elementary to see that we can find an angleith the above properties #1 > 0 is sufficiently small. Let
Cs = {(x1, X2, x3) € dD3: x1 € C1}, Ce = R(Cs), andm = R((0, 1, 0)). The component of standard RBM Iy
in the direction ofm is a standard 1-dimensional (non-reflecting) Brownian motion, independent of the other two
components, so the fact th@g is non-polar inD4 implies thatCe is non-polar inD4.

SinceCg is non-polar, it supports a measure which does not charge polar sets and which has positive mass. Suc
a measure will be the Revuz measure of a continuous additive functiéraflstandard RBMX in D4 Assume
without loss of generality thah = (0, m2, m3) with mo, m3 > 0. Suppos& is standard RBM inD4 starting from
(0,0,0), and let

Y,:X,—i—M,m, Z‘ZO. (71)

Find#g € (0, oo) such thatP(M,, > 1) > 3/4. Letkz = (k2 +«)/2,

A=(0,0,1) + {(x1,x2,x3) € R® x3< —k3y/x? +x3, (x1,x2,x3+1)-m<0},

andA, = ¢A. Note that every sed, lies below the graph of a Lipschitz function with Lipschitz constegtLet
{(y{, yé)}];l be a sequence consisting of all points in the plane whose coordinates are both rational and such

that in some neighborhood of = (y1 y2, qﬁ(y1 y2)) the boundary oD, is a piece of a plane. Sineg > «2,
elementary geometry shows that for any fixgdthe domainsD4 \ (y/ + A,) converge toD4 ase — 0. Any
single point is polar forX, so it is not hard to see that every pointis polar forY, i.e., Y does not hltyf with
probability 1. Lets; > 0 be so small that the probability thethits y/ 4 A, ¢; before timer is less than 2/-1 and
v/ + Ay, does not intersedafs U (D4 N Uk<j(y" + Ag)). If the last condition cannot be satisfied for afy> 0,
we takes; = 0. Let Ds = D\ |U,>1(y/ + A;) and letT be the first hitting time ofJ ;-1 (/ + A¢;) by Y. Note
thatP(T < r9) <1/2 and sdP’(MT >1> 1/4

Let Z, = Y, for r < T. We continue the process for r > T as standard RBM iDs, starting fromY7 but
otherwise independent ¢¥;, ¢ € [0, T']}. It follows from (7.1) thatZ, satisfies

t t

zi=wWi+ [nzpdo+ [ miczoamor. 10
0 0

for some Brownian motiorW, whereL is the usual local time on the boundary B§ andn is the unit inward
normal vector field or® Ds. We claim that this is a solution to (2.1) ibs (without the conditions (2.2) and (2.3)).
Clearly, the processdsandM do not increase whea is in the interior ofDs. Recall the definition oNg(x) from
Section 2. For points € Cg, the normal vecton(x) is not well defined so we have to use the alternative definition
of No(x) as the intersection 4N, (x)}.~0 (see Section 2). We hawe € Ng(x) for x € Cg because by construction,
every point ofCg is a cluster point of the seid + Ag;. This completes the proof of the claim thasatisfies (2.1).

Our construction generated a domdg lying above the graph of a Lipschitz function with Lipschitz constant
k3 < k. Since{Z;;t < T} is clearly different from standard RBM in D4 (or equivalently, standard RBM ips)
before hittinng>1(yj + A¢;), we do not have pathwise unigueness in the Lipschitz dombgin O

Our next example will illustrate the importance of the definition of the “set of direction constr&ipts’). On
the technical side, the construction given below is similar to that in the proof of Theorem 2.5, but simpler.
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Example 7.1.Fix an arbitrarily smalk > 0, let D1 = {(x1, x2, x3) € R3: x3> 0}, and letm = (x, 0, 1). Let X be
RBM in D4 with oblique direction of reflectiom, starting from(0, 0, 0). The procesX satisfies the equation

t
XI=W,+/mdLS fort >0,
0

whereW is a Brownian motion and. does not increase whenis in D;. Let

A= {(xl,xz,xg) cR3: x3< —K,/xf+x§},

and Iet{(y{, yé)}j>1 be a sequence consisting of all points in the plane with rational coordinates. For any,fixed
the domainsD1 \ ((y1, y3. €) + A) converge taD; ase — 0. A fixed point is polar forX, so one can find; > 0

so small that the probability thaf hits (y{, yé, £j) + A before time 1 is less thamr2-1. We makes; > 0 even
smaller, if necessary, so th@t{ yé, £j) + A does not intersedd; N Uk<]((y]1‘ y’z‘, er) + A). If the last condition
cannot be satisfied for any > 0, we takes; = 0. Let D, = D1 \ U/>1((y1 y2, ej) + A) and letT be the first

hitting time of U]>1((yl yz,s]) + A) by X;. Note thatP(T < 1) < 1/2 and soP(Ly > c¢1) > 1/4 for some
c1> 0.

Let Z, = X, forr € [0, T']. We continue the procesafor r > T as standard RBM i, starting fromX 7 but
otherwise independent ¢X;, ¢ € [0, T']}. It follows that Z satisfies

tAT t
Z[:Wt+ / mdLA—i- / n(Zt)dLS, t}O, (72)
0 tAT

for some Brownian motioiV, and a process which does not increase whehis insideD». SinceP(Lr > c¢1) >
1/4, the first integral gives a non-trivial contribution with positive probability.

The domainD; is a Lipschitz domain with boundary functioh having Lipschitz constant. The process
satisfying (7.2) is a solution to (2.1) i, if we defmeNo(x) asﬂ€>oN (x) for everyx € dD». This is because
every pointx € 9 D1 N d D3 is a cluster point of the se(s1 y2, ej)+ A and som e (), oNg(x).

We will argue thatZ is not standard RBM inD,. Note that forx € D1 N 3D, the normal vecton(x) is
equal to(0, 0, 1) or it is not well-defined. For standard RBM/L; does not charge sets of measure 0, so\fere
standard RBM, we would have to have

tAT tAT tAT
fmdLsz / nN(Z;)dLs = f(0,0, DdL; fort>=0
0 0 0

a contradiction.
This proves that uniqueness for (2.1) does not hold even in Lipschitz domains with arbitrarily small Lipschitz
constant if we adopt("),. o N¢(x) as the definition oNg(x) for all x € 9 D>.

We note that both examples in this section prove the lack of weak uniqueness, not just strong uniqueness. The
examples indicate that when there is ambiguity about the choice of a hormal reflection direction at a non-polar set
of boundary points for standard RBM, weak uniqueness of solutions of (2.1) might fail unless one specifies some
extra conditions, such as (2.2)—(2.3). Consequently, this shows that the deterministic version of the Skorokhoo
equation in such a Lipschitz domainit? might not have a unique solution, for otherwise we would have pathwise
uniqueness and therefore weak uniqueness for (2.1).
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