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Abstract

A lip domain is a Lipschitz domain where the Lipschitz constant is strictly less than one. We prove strong existe
pathwise uniqueness for the solutionX = {Xt , t � 0} to the Skorokhod equation

dXt = dWt + n(Xt ) dLt ,

in planar lip domains, whereW = {Wt, t � 0} is a Brownian motion,n is the inward pointing unit normal vector, andL =
{Lt , t � 0} is a local time on the boundary which satisfies some additional regularity conditions. Counterexamples a
for some Lipschitz (but not lip) three dimensional domains.
 2004 Elsevier SAS. All rights reserved.

Résumé

Un domaine lip est un domaine lipschitzien où la constante lipschitzienne est inférieure à 1. Nous démontrons l’e
forte et l’unicité trajectorielle pour la solutionX = {Xt , t � 0} de l’équation de Skorokhod

dXt = dWt + n(Xt ) dLt

dans les domaines lip du plan, oùW = {Wt, t � 0} est un mouvement brownien,n est le vecteur normal etL = {Lt , t � 0} est
un temps local sur la frontière qui satisfait certaines conditions de régularité. Quelques contre-exemples sont donné
domaines lipschitziens (mais pas lip) en trois dimensions.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

1.1. Main results

We start with an informal presentation of our main results. The rigorous statement is postponed until t
section because it requires a number of technical definitions.

Suppose thatD ⊂ R
d , d � 2, is a Lipschitz domain andx0 ∈ D. Let n(x) denote the inward-pointing un

normal vector at those pointsx ∈ ∂D for which such a vector can be uniquely defined (suchx form a subset of∂D

of full surface measure), and letW = {Wt, t � 0} be ad-dimensional Brownian motion. Consider the followin
equation for reflecting Brownian motion (RBM) inD, known as the (stochastic) Skorokhod equation,

Xt = x0 + Wt +
t∫

0

n(Xs) dLs for t � 0. (1.1)

HereL = {Lt , t � 0} is the local time ofX = {Xt, t � 0} on ∂D, that is, a continuous nondecreasing process
increases only whenX is on the boundary∂D. See Definition 2.1 for a precise statement of what it means to
solution to (1.1). Our main results, informally stated, are the following. See Theorems 2.3, 2.4, and 2.5 be
a precise statement.

Theorem 1.1.(i) If D is a bounded Lipschitz domain, then weak uniqueness holds for(1.1).
(ii) If D is a bounded planar Lipschitz domain whose Lipschitz constant is strictly less than1, then strong

existence and pathwise uniqueness hold for(1.1).

We do not prove that Theorem 1.1(ii) is sharp, but we have the following counterexample indicating tha
culties can arise for Lipschitz domains for which the Lipschitz constant is greater than 1.

Theorem 1.2.There exists a Lipschitz domainD ⊂ R
3 whose Lipschitz constant is strictly greater than1 where

weak uniqueness for(1.1) fails.

The counterexample of Theorem 1.2 will be based on a slightly different definition of the local time than
Theorem 1.1 (see Section 2 for details). Note also that the domain in Theorem 1.2 is unbounded, while The
involves bounded domains. Although we do not carry it out in this paper, Theorem 1.1 can be modified to
certain unbounded domains and the example in Theorem 1.2 can be modified to be a bounded domain. O
take an even more complicated route. We first construct a strong solution in any “special” unbounded L
domain (i.e., lying above the graph of a Lipschitz function that has Lipschitz constant strictly less than on
then we prove the analogous result for bounded lip domains through a localization argument.

1.2. A new method

We develop a new method for proving pathwise uniqueness for stochastic differential equations. Commo
ods used to prove pathwise uniqueness include (i) Picard iteration, (ii) solving the corresponding deter
Skorokhod equation, or (iii) using Itô’s formula in a clever way. The method we use to prove pathwise uniq
for (1.1) is quite different from the usual ones. We believe that our method has other applications, for exa
reflecting Brownian motion with oblique angle of reflection. Some of its elements have appeared in [7] an
but each of these papers contains an error; see Remark 5.8.

The first step in our method is to prove weak uniqueness for the joint distribution of the driving Bro
motion W and the solutionX of the stochastic differential equation (1.1). The second step is to prove s
existence under the assumptions of Theorem 1.1(ii). Given a Brownian motionW in R

d , we construct a stron
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solution(X,L) to (1.1) wheren is replaced by an oblique vector field. We then take a sequence of oblique
fields converging ton and show that the corresponding solutions converge a.s. to a strong solution of (1.1)
uniqueness and strong existence together imply pathwise uniqueness; this idea is classical (see [6, Theo
for example), but as far as we know, it has not been successfully implemented in the past. A proof of what
for the present context is given in Section 6.

1.3. Lip domains

One reason for the intense interest in Lipschitz domains in analysis and probability is that they are often a
case: many theorems can be proved for Lipschitz domains, while their analogues for less smooth domain
true. Consequently the proofs needed are often quite delicate.

Lipschitz domains whose Lipschitz constant is strictly less than one are calledlip domains; the term was coined
in [15]. These domains have appeared in a natural way in several recent articles involving reflecting Br
motion [1–3,15,17], and implicitly in two other papers [8,19]. The crucial property of a lip domain, exploit
each paper listed above, is that one can define a partial order and construct a pair of (“coupled”) reflecting B
motions in the domain with the property that the two reflecting Brownian particles remain in the same order
We point out that a version of this “monotonicity” property proved in Theorem 5.3 below is different from tha
in the papers listed above in that here we consider two reflecting Brownian motions corresponding to two
reflection direction vector fields. The fact that difficulties can arise in 3-dimensional Lipschitz domains wh
Lipschitz constant is greater than 1, as is established in this paper, makes lip domains a natural class to c
the present context.

1.4. Correction

We correct an error in the proof of weak uniqueness for the stochastic Skorokhod equation (1.1) in
Remark 4.1. To complete the program started in [5], we impose in Section 2 the additional but natural co
(2.2) and (2.3) on the local time. These additional assumptions allow us to remove one of the hypothese
see Theorem 2.3 for a precise statement. Note that the extra assumptions do not weaken the part of Th
dealing with strong existence.

1.5. Literature review

The construction of reflecting Brownian motion as a strong Markov process in domains that are Lipsc
even less smooth can be found in [30,31], [10] and [20–22]. The question of when the Skorokhod equatio
(in a variety of contexts) is considered in [20,22,23,11,32,26,44]. For results on weak uniqueness, see [41]
for example, for results on RBM with oblique reflection and [5] for results on RBM with normal reflection. L
and Sznitman [36] proved pathwise uniqueness for RBM inC2 domains. Dupuis and Ishii [24] considered pathw
uniqueness for RBM with oblique reflection. Their domains could be non-smooth, but the angle of reflectio
be nearlyC2; in the case of RBM with normal reflection, this means the domain must be nearlyC2. The paper [12]
is concerned with pathwise uniqueness for RBM with normal reflection inC1+α domains, but contains a gap (s
Remark 5.9). It is at present an open problem as to whether pathwise uniqueness holds for the Skorokhod
in C1+α domains in dimensions three and higher.

1.6. Organization of the paper

Section 2 introduces some definitions and gives the precise statements of our main results. Section 3
number of results about RBM. Section 4 proves weak uniqueness for RBM, while Section 5 presents th
existence argument. The proof of pathwise uniqueness is given in Section 6, while the counterexamples
in Section 7.
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2. Main results

If x ∈ R
d , we will often writex = (x̃, x̂), wherex̃ = (x1, . . . , xd−1) ∈ R

d−1 andx̂ = xd ∈ R. We will use| · | for
the usual Euclidean norm inRd−1 or R

d . The open ball of radiusr aboutx will be denotedB(x, r). We will use
the letterc with subscripts to denote finite strictly positive constants whose exact value is unimportant and
may vary from place to place. The Euclidean boundary and closure of a domainD in Rd will be denoted by∂D

andD, respectively.
For a processX and a Borel setA ⊂ R

d , let

TA = T (A) = inf{t > 0: Xt ∈ A}, τA = τ(A) = inf{t > 0: Xt /∈ A},
i.e.,TA andτA are the first hitting time ofA and the first exit time fromA, respectively. Unless specified otherwis
these random times will be defined relative to the reflecting Brownian motionX.

We say thatΦ :Rd−1 → R is a Lipschitz function with Lipschitz constantκ if∣∣Φ(x̃) − Φ(ỹ)
∣∣ � κ|x̃ − ỹ|

for all x̃, ỹ ∈ R
d−1. A Lipschitz domainis an open connected setD, either bounded or unbounded, such that

someκ < ∞ and every pointx ∈ ∂D there exist a neighborhoodUx of x and a Lipschitz functionΦx whose Lip-
schitz constant is no larger thanκ such thatD ∩ Ux = {(ỹ, ŷ) ∈ Ux : ŷ > Φx(ỹ)} in some orthonormal coordina
system which may depend onx. The infimum of the set ofκ for which the above holds is called the Lipsch
constant of the domainD. (In what follows, the issue of whether the infimum is attained never arises.) St
speaking, in the case of unbounded domains the definition we gave above is for a uniformly Lipschitz d
Since the only unbounded domains we will consider are uniformly Lipschitz ones, we will refer to them sim
Lipschitz domains as well. If a Lipschitz domainD has Lipschitz constant strictly less than 1, then we will calD

a lip domain. See [34] for further information on Lipschitz domains.
Consider a Lipschitz domainD. LetN0 denote the set of pointsx = (x̃, x̂) ∈ ∂D such that ifΦx is the function

in the definition of a Lipschitz domain, thenΦx(ỹ) is differentiable at̃y = x̃. Let the inward pointing unit norma
vector atx ∈ N0 be denoted byn(x). Such a setN0 and the vector fieldn(x) are typically only Lebesgue mea
surable. However, there is then a Borel subsetN of N0 such thatN0 \ N is of zero Lebesgue measure andn(x)

restricted toN is Borel measurable. Forx ∈ ∂D andε > 0, define

Nε(x) =
{

v: |v| = 1, v =
m∑

i=1

ain(xi) for somem � 1, ai � 0, xi ∈N ∩ B(x, ε)

}
.

We letN0(x) = {n(x)} for x ∈N . Since a Lipschitz function is differentiable almost everywhere (see Exercise
on p. 103 of [29]), we see that∂D \ N has zero surface measure. Forx /∈ N , we letN0(x) = ⋂

ε>0 Nε(x) unless
this set is empty. In the latter case we setN0(x) = {(0,0, . . . ,0,1)}. Our definition of the family of “constraint di
rections”N0(x) for x /∈ N is consistent with the assumptions commonly used in the literature, see, e.g., Sec
in [25].

We would like to point out that forx ∈N , we do not necessarily have
⋂

ε>0 Nε(x) = {n(x)} and so one could us⋂
ε>0 Nε(x) as an alternative definition ofN0(x). An example in Section 7 shows that there need not be path

uniqueness for the Skorokhod equation in some Lipschitz domains if one were to adopt this alternative d
of N0(x).

Throughout this paper, for a Lipschitz domainD in R
d , we letν denote the surface measure on∂D.

Let (Ω,F , {Ft }t�0,P) be a complete filtered probability space satisfying the usual conditions; that i
filtration {Ft }t�0 is right-continuous andF0 contains all sets of zeroP-measure. We say that ad-dimensional
processW is a Brownian motion with respect to the filtration{Ft , t � 0} if (i) t �→ Wt is continuous andW0 = 0
a.s.; (ii) for everyt � 0, Wt is Ft -measurable; and (iii) for everyt > s � 0, Wt − Ws is independent ofFs and
Wt − Ws has a normal distribution with mean zero and covariance matrix(t − s)I , whereI is thed × d identity
matrix.
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Let x0 ∈ D. In Definition 2.1 we will give a precise meaning to what we mean by existence and uniquen
solutions to the following stochastic differential equation:

Xt = x0 + Wt +
t∫

0

n(Xs) dLs and Xt ∈ D for all t � 0. (2.1)

Remark 2.2 following Definition 2.1 discusses some subtle points and should be regarded as a complem
definition.

We will always assume that our filtrations{Ft }t�0 are right-continuous and complete with respect to whiche
probability measure is being discussed.

Definition 2.1.Let D be a Lipschitz domain inRd .

(1) A weak solution to (2.1) is a triplet of continuous processes(X,W,L) on a filtered probability spac
(Ω,F , {Ft }t�0,P) such that
(a) X is adapted to{Ft }t�0,
(b) L is a nondecreasing{Ft }t�0-adapted process that increases only whenXt ∈ ∂D, i.e.,

∫ ∞
0 1D(Xs) dLs =

0,
(c) if A ⊂ ∂D andν(A) = 0 then

∞∫
0

1A(Xs) dLs = 0, a.s., (2.2)

(d) wheneverf is a nonnegative function inL1(∂D,ν) then for all 0< t < u < ∞,

u∫
t

f (Xs) dLs < ∞, a.s., (2.3)

(e) W is ad-dimensional Brownian motion with respect to the filtration{Ft }t�0,
(f) (X,W,L) satisfies (2.1) for some Borel measurable mapx �→ n(x) on ∂D such that

n(x) ∈ N0(x) whenx ∈ ∂D, (2.4)

(g)

∞∫
0

1∂D(Xs) ds = 0. (2.5)

(2) We say that weak uniqueness holds for (2.1) if whenever(X,W,L) and(X̃, W̃ , L̃) are weak solutions to (2.1
then the process(X,L) has the same law as the process(X̃, L̃).

(3) Pathwise uniqueness is said to hold for (2.1) if whenever(
Ω,F , {Ft }t�0,P, (X,W,L)

)
and (

Ω,F , {Gt }t�0,P, (X̃,W, L̃)
)

are two weak solutions to (2.1) with a common Brownian motionW and probability space(Ω,F ,P) but
possibly different filtrations{Ft }t�0 and{Gt }t�0, then

P
(
(Xt ,Lt ) = (X̃t , L̃t ) for all t � 0

) = 1.
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(4) Consider a Brownian motionW on a probability space(Ω,F ,P) and let{FW
t }t�0 be the augmented filtratio

generated byW underP. A strong solution to (2.1), relative to(Ω,F ,P) and W , is a pair of continuous
processes(X,L) such that(

Ω,F , {FW
t }t�0,P, (X,W,L)

)
is a weak solution to (2.1). In particular,X andL are both adapted to{FW

t }t�0.
(5) We say that strong uniqueness holds for (2.1) if for every pair of strong solutions(X,L) and(X̃, L̃) to (2.1),

relative to the same probability space(Ω,F ,P) and Brownian motionW , we have

P
(
(Xt ,Lt ) = (X̃t , L̃t ) for all t � 0

) = 1.

Clearly pathwise uniqueness implies strong uniqueness. It is known (cf. Yamada and Watanabe [45]) th
wise uniqueness implies weak uniqueness.

Remark 2.2.(i) Recall thatN denotes the Borel set of points in∂D where the normal vector is well defined in t
classical sense. Sinceν(∂D \ N ) = 0, condition (2.2) implies that the integral

∫ t

0 n(Xs) dLs has the same valu
for any Borel measurable choice ofn(x) whenx ∈ ∂D \N ; in other words, condition (2.4) is irrelevant as long
(2.2) is satisfied. Note, however, that this is not the case in Theorem 2.5 below.

(ii) Suppose thatX is a (component of a) weak solution to (2.1). We will argue thatL in (2.1) is uniquely
determined byX. SinceX is adapted to the filtration{Ft }t�0 andn is Borel measurable, thenn(X) is adapted.
Definition 2.1(1) implies thatX is a continuousRd -valued semimartingale. ThereforeX has a unique Doob–Meye
decomposition:

Xt = x0 + Bt + At for all t � 0,

where, with probability one,B is a continuousRd -valued local martingale withB0 = 0 andA is a continuous
R

d -valued process locally of finite variation withA0 = 0, both adapted to the augmented filtration generated bX.
The amount of time the processX spends in∂D has zero Lebesgue measure, so it follows from (2.1) and Defin
2.1(1)(b) thatWt = ∫ t

0 1D(Xs) dXs is adapted to the augmented filtration generated byX, and so is the proces
t �→ ∫ t

0 n(Xs) dLs . Hence by the uniqueness of the Doob–Meyer decomposition forX, At = ∫ t

0 n(Xs) dLs , which
by (2.2), equals

∫ t

0 n(Xs)1{Xs∈N } dLs . Since|n(x)| = 1 andn(x) is uniquely defined forx ∈ ∂D ∩ N , then by
(2.2) again,

Lt =
t∫

0

n(Xs)1{Xs∈N } · dAs for all t � 0,

and we conclude thatL is uniquely determined byA andX, and hence byX alone. This shows that we could ha
removedL from the statements of parts (2), (3) and (5) of Definition 2.1 without changing the meaning of
uniqueness, pathwise uniqueness, and strong uniqueness, respectively.

(iii) Even whenD is a half space, it is possible that
∫ u

0 f (Xs) dLs is infinite with probability one for eachu > 0
if f is only required to be inL1(∂D). Therefore in a condition such as (2.3) it is essential that the interval
which we integrate be separated from the point 0.

(iv) Our definition of strong solution seems to be weaker than that used by other authors, cf. [33] and [38
ever these two notions are equivalent under the assumption of weak uniqueness and existence of weak
with random starting distributions; see Corollary 3 in [45] as well as the first part of the proof for Theore
below. We will prove all assertions related to strong solutions that are used in this paper, so the difference
role.

The first of our main theorems, to be proved in Section 4, is the following improved and corrected resu
[5] concerning weak uniqueness.
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Theorem 2.3.Weak uniqueness holds for(2.1) in bounded Lipschitz domainsD ⊂ R
d , d � 2.

The following is our main new result, to be proved in Section 6.

Theorem 2.4.If D ⊂ R
2 is a bounded lip domain, then for everyx0 ∈ D we have a strong solution and pathwi

uniqueness for(2.1).

The following counterexample will be proved in Section 7. Note that in this theorem, conditions (2.2) an
are not required to hold.

Theorem 2.5.For everyκ > 1 there exists a Lipschitz functionΦ :R2 → R with Lipschitz constantκ with the
following property.

Let D be the region inR3 above the graph ofΦ. Then there exist a Brownian motionW , and two pairs of
processes(X(1),L(1)) and (X(2),L(2)) such that fori = 1,2, the pair (X(i),L(i)) satisfies all the conditions i
Definition 2.1(1)and 2.1(4) to be a strong solution to(2.1) relative toW except conditions(2.2)–(2.3), but the
processes{X(1)

t , t � 0} and{X(2)
t , t � 0} have different distributions.

Remark 2.6.The above result also shows that the deterministic version of the Skorokhod equation in a Li
domain inR

3 might not have a unique solution, for otherwise we would have pathwise uniqueness for (2.1)

Remark 2.7.Theorem 2.5 above leaves open the following questions connected with pathwise uniqueness
tions to (2.1) in Lipschitz domains. Is it the case that only one of (2.2) or (2.3) is necessary? Our counterex
for d = 3; is it the case that (2.2) and (2.3) are not needed if the domain lies in the plane? Our example requ
the Lipschitz constant ofD be larger than one; is it the case that for lip domains (2.2) and (2.3) are unneces

3. Preliminaries

Most of this section will be devoted to a review of known results for a family of solutions to (2.1).
We start with a general remark concerning our notational conventions for probability measures in this

next section. The symbolP will refer to the distributions of a specific family of solutions to (2.1), namely,
family constructed in [10]. We will useP to denote the law of an arbitrary weak solution to (2.1), andP will stand
for a collection ofP’s. The details are given later in this section.

Let D ⊂ R
d be a Lipschitz domain that is not necessarily bounded. We will denote by{Px}x∈D the laws of

RBM constructed in [10] via Dirichlet form theory. We will make this statement more precise in Properti
and Remarks 3.2 and 3.3 below, but we point out here that as a consequence of [10] and [11], there ed-
dimensional Brownian motionW with respect to the filtration ofX and a continuous increasing processL adapted
to the filtration ofX such that (2.1) holds. Remark 2.2(ii) shows that we may restrict our attention toX and consider
P

x to be the law ofX whenx0 = x in (2.1). We will refer to(Px, x ∈ D;Xt, t � 0) asstandardreflecting Brownian
motion in D. Expectation with respect toPx will be denoted byEx . We will sometimes talk about RBM in
domain; this should be interpreted as RBM inD when the domain referred to isD.

In [10] and [11], standard RBM was constructed only on bounded Lipschitz domains, but see Remark
also [22] for the unbounded Lipschitz domain case.

To simplify our presentation of the results from [10], we will limit ourselves to the following special typ
Lipschitz domain. LetΦ be a bounded Lipschitz function mappingR

d−1 → R with Lipschitz constantκ (in this
section and Section 4 we do not assume thatκ < 1). Consider unbounded domains of the formU = {x: x̂ > Φ(x̃)}.
Obviously,∂U = {x ∈ Rd : x̂ = Φ(x̃)}.

The following hold.
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Properties 3.1.Supposed � 3. Let U be the special Lipschitz domain inRd mentioned above and letν be the
surface measure on∂U .

(i) The family(Px,Xt , x ∈ U) is a strong Markov process associated with the Dirichlet form(E,D), where
E(f,f ) = 1

2

∫
U

|∇f (x)|2 dx andD is the completion of the class of restrictions toU of C∞ functions on
R

d with compact support under the metricE(f,f )1/2 + ‖f ‖L2(U); in other words,D is the Sobolev spac
W1,2(U). This property uniquely determines the family{Px}x∈U .

(ii) Standard RBM has a jointly continuous transition density functionp(t, x, y) on (0,∞)×U ×U ; the density
p(t, x, y) is symmetric inx andy, and there exist constantsk1, k2 ∈ (0,∞) depending only onκ such that

p(t, x, y) � k1t
−d/2 exp

(−k2|x − y|2/t
)
, x, y ∈ U, t > 0. (3.1)

(iii) There exist constantsc1, c2 ∈ (0,∞) such that

P
x
(
sup
s�t

|Xs − x| � λ
)
� c1e

−c2λ
2/t , λ > 0, x ∈ U, t > 0. (3.2)

(iv) The Green functionG(x,y) for X onU is defined as
∫ ∞

0 p(t, x, y) dt . Recall∂U has zero Lebesgue measu
Clearly

E
x

[ ∞∫
0

f (Xs) ds

]
=

∫
U

G(x, y)f (y) dy

wheneverx ∈ U and f � 0 on U . The Green functionG(x,y) of Xt is jointly continuous except on th
diagonal and is strictly positive everywhere inU × U .

(v) There exist constantsk3, k4 > 0 depending only onκ such that

k3|x − y|2−d � G(x,y) � k4|x − y|2−d , x, y ∈ U. (3.3)

(vi) For an open setD ⊂ Rd , we say that a locally bounded functionh is harmonic with respect toX in U ∩ D if
for everyB(x, r) with B(x, r) ⊂ D, we haveh(y) = Ey[h(Xτ(B(x,r)))] for y ∈ U ∩B(x, r). If f is a bounded
function onU ∩∂B(x, r) andh(y) = E

y[f (Xτ(B(x,r)))] for y ∈ U ∩B(x, r), thenh is harmonic with respec
to X in U ∩ B(x, r).

(vii) The following Harnack inequality holds. There exists a constantc1 ∈ (0,∞) depending only onκ , such that
if h is nonnegative and harmonic with respect toX in U ∩ B(x, r), then

h(y) � c1 h(z), y, z ∈ U ∩ B(x, r/2).

(viii) If h is harmonic with respect toX in U ∩ B(x, r), then there existc1 > 0 andα > 0 not depending onx or
r such that∣∣h(y) − h(z)

∣∣ � c1
(

sup
w∈U∩B(x,r)

∣∣h(w)
∣∣)( |y − z|

r

)α

, y, z ∈ U ∩ B(x, r/2).

(ix) The local timeL in the Skorokhod decomposition(2.1) for standard RBMX in U is a positive continuou
additive functional ofX with corresponding Revuz measureν/2, that is, for everyλ > 0 and everyy ∈ U ,

E
y

[ ∞∫
0

e−λt dLt

]
= 1

2

∫
∂U

Gλ(y, x)ν(dx),

whereGλ(y, x) = ∫ ∞
0 e−λtp(t, y, x) dt is theλ-resolvent density for standard RBM. Furthermore,t �→ Lt

increases only whenX is in ∂U .
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Remark 3.2.The estimate in (ii) is [10], Theorem 3.1. The symmetry ofp(t, x, y) is a consequence of the Dirichl
form construction. Theorem 3.4 of [10] gives a corresponding lower bound for the transition density, and t
arguments in Section 4 of [27] show thatp is continuous inx andy. The estimate in (iii) is [10], Theorem 3.2. Th
continuity of the Green function off the diagonal follows easily from the continuity of the transition densities
estimate in (v) is [10], Corollaries 3.3 and 3.5. (vi) is a definition, while (vii) and (viii) are [10], Theorems 3.
Corollaries 3.8, respectively.

(i) and (ix) were proved in the case of bounded Lipschitz domains in [10], Section 4 and [11], respectiv
extend the results to the case of a domain such asU , one can proceed as follows. As a consequence of Propos
2.3 and Remark 1 of [22], for any Lipschitz domainD in R

d , one can always construct RBMX = (Xt ,Px, x ∈
D \ N0) on D via the Dirichlet form approach as a continuous strong Markov process starting from every
in D except a boundary subsetN0 of zero capacity and this process is conservative. Since by (ii)X has a jointly
continuous transition density function, the RBMX can be defined to start from every point inD (cf. [31]). This
in particular applies to the special Lipschitz domainU here and so (i) holds. That RBMX on U has a Skorokhod
decomposition and that the local timeL is a positive continuous additive functional ofX with Revuz measureν/2
is a consequence of Theorem 2.6 and Remark 1 in [22]. So the conclusion of (ix) follows.

Remark 3.3. By the uniqueness of the Laplace transform and standard arguments, we obtain from Pr
3.1(ix), for any non-negative Borel measurable functionsf andg, anya < b in (0,∞), and anyy ∈ U ,

E
y

[ b∫
a

g(s)f (Xs) dLs

]
= 1

2

b∫
a

∫
∂U

g(s)f (x)p(s, y, x)ν(dx)ds. (3.4)

In view of (3.1) and (3.4), iff � 0 and 0< t < u < ∞, there exists a constantc1 depending only ont, u, and
the domainU such that fory ∈ U

E
y

[ u∫
t

f (Xs) dLs

]
� 1

2

u∫
t

∫
∂U

f (x)p(s, y, x)ν(dx)ds � c1

∫
∂U

f (x)ν(dx). (3.5)

Takingf = 1A with ν(A) = 0 and using the fact thatt andu are arbitrary, we conclude that (2.2) holds. The ab
inequality also shows that (2.3) holds. ThereforeP

x0 is a weak solution to (2.1) in the sense of Definition 2.1
with D = U , even though this definition is more restrictive than the typical definition for RBM on smooth dom
because of the extra conditions (2.2) and (2.3). On a smooth domainD ⊂ R

d (for example, aC2 domain), given
a d-dimensional Brownian motionW andx0 ∈ D, RBM can be defined as the unique continuous solution(X,L)

to (2.1) that is adapted to the filtration generated byW such thatL is non-decreasing and increases only wheX

is on the boundary ofD (see [36]). The existence and uniqueness for such a solution follows from the fact th
deterministic Skorokhod problem is uniquely solvable inC2 domains. That conditions (2.2) and (2.3) are satis
by such a solution is a consequence of the construction. But for general Lipschitz domains, our Theorem 2
that solutions to the deterministic Skorokhod problem are not unique; therefore we need conditions (2.2) a
as part of a definition for RBM to insure even weak uniqueness for solutions to (2.1).

SupposeD is not a special Lipschitz domainU but an arbitrary bounded Lipschitz domain. The analo
of Properties 3.1(ix) follows from [11]. The argument above leading to (3.4) and (3.5) then shows that tP

x0

constructed in [10] is a weak solution to (2.1) in the sense of Definition 2.1(1) as well.
We finish this section by stating two results which can serve as substitutes for the strong Markov prope
Consider the case whereΩ is the canonical probability space, that is,Ω is the collection of continuous function

from [0,∞) to R
d . We furnishΩ with theσ -fieldF generated by the cylindrical Borel sets. In this caseΩ supports

shift operators, that is, mapsθt :Ω → Ω such thatXs(θtω) = Xs+t (ω). Let P(z), z ∈ D, denote the collection o
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all probability measuresP on Ω such that the coordinate processt �→ Xt(ω) = ω(t) is a weak solution to (2.1
with x0 = z underP with respect to the augmented natural filtration generated by the coordinate map.

We recall Proposition 2.3 of [5]. IfS is a finite stopping time with respect to{Ft }t�0, FS is the usualσ -field of
events prior toS; that is,FS = {A ∈F∞: A ∩ {S � t} ∈Ft for everyt � 0}.

Proposition 3.4.Fix z ∈ D. SupposeP∈ P(z), S is a finite stopping time with respect to{Ft }t�0, andPS(ω,dω′)
is a regular conditional probability for the law ofX· ◦ θS underP[ · | FS]. ThenPS(ω, ·) ∈P(XS(ω)) for P-almost
everyω.

For completeness, we sketch a proof.

Proof. If A(ω) = {ω′: X0(ω
′) = XS(ω)}, then

A(ω) ◦ θS = {
ω′: X0 ◦ θS(ω′) = XS(ω)

} = {
ω′: XS(ω′) = XS(ω)

}
.

Therefore

P
(
A(ω) ◦ θS | FS

) = 1{XS(ω)}(XS) = 1, a.s.

The proof thatL is a local time on the boundary satisfying (2.2) and (2.3) for almost everyω is similar.
The law of[Xt − X0 − ∫ t

0 n(Xs) dLs] ◦ θS givenFS is the law of[Xt+S − XS − ∫ S+t

S
n(Xs) dLs] givenFS . It

is routine to check that the conditions of Lévy’s theorem (see [4, Corollary I.5.10]) are satisfied, and henc
a Brownian motion with respect to the filtration generated byt �→ Xt+S . �

Let Ω andF be as above. We note the following analogue of Proposition 3.4, whereFS is replaced by the
σ -field generated by the random variableXS . An almost identical proof yields

Proposition 3.5. SupposeP ∈ P(x0), S is a finite stopping time with respect to{Ft }t�0, and PS(ω,dω′) is a
regular conditional probability for the law ofX· ◦ θS underP[ · | XS]. ThenPS(ω, ·) ∈ P(XS(ω)) for P-almost
everyω.

4. Weak uniqueness

In this section we will prove Theorem 2.3.

Remark 4.1.In [5], an assertion similar to Theorem 2.3 was made. However, there is a gap in the proof of th
theorem of [5]: the third sentence of the proof of Corollary 4.6 there is incorrect. The proof of Theorem 2.3
below will follow the argument in [5] for the most part. The extra assumptions (2.2) and (2.3), absent fro
allow us to carry that argument to completion. On the other hand, in [5] an assumption was required thatL could
be approximated by certain increasing processes. That assumption is not needed here.

We suppose in most of this section thatd � 3; we will remove this restriction when we give the proof
Theorem 2.3. We first consider the following set-up.

Recall we writex = (x̃, x̂) for x ∈ R
d , wherex̃ ∈ R

d−1 andx̂ ∈ R. Let Φ :Rd−1 → R be a bounded Lipschit
function with Lipschitz constantκ ∈ (0,∞), let k0 > ‖Φ‖∞ + 1, D = {y: Φ(ỹ) < ŷ < k0}, andK = {x: x̂ � k0}.
Consider the subprocess of the standard RBMX in the special Lipschitz domainU = {y ∈ R

d : ŷ > Φ(ỹ)} (defined
in Section 3), killed upon hittingK . We call such a subprocess ofX standard RBM onD with absorption onK . It
hasD \ K as its state space. It then follows that ifGD is the Green function for RBM inD with absorption inK
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andG is the Green function for standard RBM inU , thenGD(x,y) � G(x,y) for all x andy in D \ K . In fact, by
the strong Markov property ofX, we have

GD(x,y) = G(x,y) − E
x
[
G(XTK

, y)
]

for x, y ∈ D \ K with x �= y.

SinceX behaves like a Brownian motion inU and∂K is a horizontal hyperplane, we have by Proposition 3.1
GD(x,y) is jointly continuous except along the diagonal and is positive in(D \K)× (D \K). MoreoverGD(x,y)

is symmetric inx andy in D \ K and for eachx ∈ D \ K , y �→ GD(x,y) can be extended continuously toU \ {x}
with GD(x,y) = 0 for y ∈ K . Let ∂rD = {x ∈ Rd : x̂ = Φ(x̃)} be the reflecting part of the boundary ofD in D \K .
We will useP

x andE
x to denote the probability and expectation for this standard RBMX in D with absorption on

K as well as for standard RBM inD without absorption; no confusion should result since we will always spe
the possible values of the timet .

Lemma 4.2.Supposed � 3. There exist constantsc1, c2 ∈ (0,∞) such that

GD(x,y) � c1 exp
(−c2|x − y|) for x, y ∈ D ∪ ∂rD with |x − y| � 1.

Proof. Fix y ∈ D ∪ ∂rD. By the strong Markov property,

GD(x,y) = E
x
[
GD(Xτ(B(x,r)), y)

]
if x ∈ D ∪ ∂rD with |x − y| > r . This shows thatGD(·, y) is harmonic with respect toX in (D ∪ ∂rD) \ {y}. Since
the dimensiond � 3 and by the definition of the domainD, there is an integerm0 � 1, independent ofy, such that
for everym � m0, (D ∪ ∂rD) \ B(y,m) is connected. For positive integersm � m0, let Sm = TB(y,m). Suppose
x ∈ D with |x − y| � m + 1 andx̂ � k0 − 1

2 � ‖Φ‖∞ + 1
2. The tubeT (x) = {z ∈ D: |z̃ − x̃| < 1

4, ẑ > x̂ − 1
4} lies

in D \ B(y,m), and so by the support theorem for standardd-dimensional Brownian motion (see [4], Theore
I.6.6), there existsc3 > 0 not depending on suchx so thatPx(TK < Sm) � c3. Note thatz �→ P

z(TK < Sm) is
harmonic with respect toX in the connected set(D ∪ ∂rD) \ B(y,m). For generalx ∈ D ∪ ∂rD with |x − y| �
m + 1, by the Harnack inequality for standard RBM (Properties 3.1(vii)) used repeatedly to a chain of b
(D ∪ ∂rD) \B(y,m) that connectsx to some pointz ∈ D with |z− y| � m+ 1 andẑ � k0 − 1

2 � ‖Φ‖∞ + 1
2, there

existsc4 > 0 such thatPx(TK < Sm) � c4 wheneverx ∈ D ∪ ∂rD with |x − y| � m + 1. The number of times th
Harnack inequality needs to be used depends only onκ andk0, soc4 does not depend onx nor onm.

We now showTK < ∞, P
x0-a.s. for eachx0 ∈ D∪∂rD. Since we are in a Lipschitz domain,n̂(x) � 0 for almost

everyx ∈ ∂rD, soX̂t � x̂0 + Ŵt for everyt . SinceŴ will eventually exceed 2k0 + 2 with probability one, thenX
must eventually hitK with probability one.

If x ∈ D ∪ ∂rD and|x − y| � m + 1, then becauseGD is 0 on{x : x̂ = k0}, we have

GD(x,y) = E
x
[
GD(XSm, y)

] = E
x
[
GD(XSm, y); Sm < TK

]
�

(
sup

z∈∂B(y,m)∩D

GD(z, y)
)
P

x(Sm < TK)

� (1− c4)
(

sup
z∈∂B(y,m)∩D

GD(z, y)
)
.

Therefore

sup
z∈B(y,m+1)c∩D

GD(z, y) � (1− c4) sup
z∈∂B(y,m)∩D

GD(z, y).

Since supz∈∂B(y,1)∩D GD(z, y) is bounded by (3.3), then by induction

sup
z∈B(y,m)c∩D

GD(z, y) � c5(1− c4)
m,

and the lemma follows. �
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In order to tie in with the set-up of [5], we define the following. Consider somew0 ∈ ∂rD andr0 > 0. It is easy
to deduce from known results (see, e.g., [34]) that there exists a positive constantc ∈ (0,∞), depending only onκ ,
such that

D0 = {
x ∈ D: |x̃ − w̃0| < r0, |x̂ − ŵ0| < c r0

}
,

is star-shaped with respect to some pointz0 ∈ D0. That is, there exists a Lipschitz functionφ : ∂B(0,1) → (0,∞)

such that in spherical coordinates(r, θ) centered atz0, D0 = {(r, θ): 0 � r < φ(θ)}. Fix somec andz0 with the
above properties, choose aρ0 ∈ (0,dist(z0, ∂D0)/4) and letK0 be the closure ofB(z0, ρ0).

Let H0 be aC∞ function whose support is contained inD0 and is disjoint fromK0 and letE0 be a Lipschitz
domain that is star-shaped with respect toz0, that contains the support ofH0, that containsK0, and whose closur
is contained inD0. Let ∂rD0 = (∂rD) ∩ D0 andA0 = ∂D0 \ ∂rD. Forx ∈ ∂rD0 set

Vδ(x) = {
y ∈ D0: |ỹ − x̃| < |ŷ − x̂|/(2κ), x̂ < ŷ < x̂ + δ

}
,

and chooseδ small enough so thatVδ(x) does not intersectE0 for anyx ∈ ∂rD0. Then set

N(f )(x) = sup
y∈Vδ(x)

∣∣f (y)
∣∣, x ∈ ∂rD0.

The following is Proposition 3.5 of [5]. See Remark 4.4 following Proposition 4.3 for the clarification of
subtle points.

Proposition 4.3.There exists a nonnegative and bounded Borel measurable functionu defined onD0 such that

(i) u is C∞ in D0 \ K0,
(ii) −1

2�u = H0 in D0 \ K0,
(iii) ∂u/∂n existsν-a.e. on∂D0,
(iv) u = 0 ν-a.e. onA0,
(v) u is continuous onD0 andu = 0 onK0,

(vi) ∂u/∂n = 0 ν-a.e. on∂D0 \ A0, and
(vii)

∫
∂rD0

|N(∇u)(x)|2ν(dx) < ∞.

Remark 4.4. (a) In [5] u is defined only onD0. Since the support ofH0 is contained inD0, (ii) tells us thatu
is harmonic in a neighborhood of∂D0. Sinceu is bounded, nontangential limits exist atν-a.e. point of∂D0; see
[4, Section III.4]. We defineu on ∂D0 to be equal to the nontangential limit when it exists and 0 otherwise.
allows us to define∂u/∂n at ν-a.e. point of∂D0.

(b) Proposition 4.3(v) was not stated in [5], but is immediate from the proof there.

Corollary 4.5. Let qi = 1 − 1/i and Fi(x) = u(z0 + qi(x − z0)), whereu is the function described in Propos
tion 4.3. Then

(i) eachFi is C∞ onD0 \ B(z0, ρ0/qi),
(ii) the{Fi, i � 1} are nonnegative and uniformly bounded onD0,

(iii) Fi → u in D0 \ K0 as i → ∞,
(iv) −1

2�Fi → H0 uniformly inD0 \ B(z0, ρ0/qj ) if i � j andi → ∞,
(v) Fi is continuous onD0 andFi = 0 in B(z0, ρ0/qi),

(vi) Fi → 0 ν-a.e. onA0 asi → ∞,
(vii) ∂Fi/∂n → 0 ν-a.e. on∂rD0 as i → ∞, and

(viii)
∫
∂rD0

supi |∇Fi(x)|2ν(dx) < ∞.
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Proof. The formula forFi and Proposition 4.3(ii) show that

−1

2
�Fi(x) = −1

2
q2
i �u

(
z0 + qi(x − z0)

) = q2
i H0

(
z0 + qi(x − z0)

)
if x ∈ D0 \ B(z0, ρ/qj ), and then (iv) follows. Since�u = −2H0 and the support supp(H0) of H0 is a positive
distance from both∂D0 and K0, thenu is harmonic forx that are inD0 \ (K0 ∪ supp(H0)). If x ∈ A0, then
Fi(x) = u(z0 + qi(x − z0)) → 0 ν-a.e. asi → ∞ by Proposition 4.3(iv) and the Fatou theorem for harmo
functions in Lipschitz domains (see [4, Section III.4]). As each component of∇u is a harmonic function inD0 \
(K0 ∪ supp(H0)), by the (local) Fatou theorem and Proposition 4.3(vi)–(vii), we see that∇Fi(x) = qi∇u(z0 +
qi(x − z0)) convergesν-a.e. to∇u(x) as i → ∞ for x ∈ ∂rD0. Hence (vii) holds. Part (viii) follows from the
bound|∇Fi | � N(∇u) on ∂rD0 for largei. �

For questions of weak uniqueness we may assume without loss of generality thatΩ is the canonical probability
space (see the paragraphs preceding Proposition 3.4) and therefore supports shift operatorsθt ; see [42, Chapter 6]

For the rest of this section,Px0 will denote the law of a weak solution to (2.1) inD, killed upon hittingK , with
X0 = x0 ∈ D. The corresponding expectation will be denotedEx0.

Lemma 4.6.There exists a positive constantc1 < ∞ such that for allx0 ∈ D0,

Ex0[TK0∪A0] � c1, Ex0[LTK0∪A0
] � c1.

Proof. Recall that we writex = (x̃, x̂) for x ∈ R
d , wherex̃ ∈ R

d−1 and x̂ ∈ R. We will use similar notation for
X,W andn, i.e.,Xt = (X̃t , X̂t ), Wt = (W̃t , Ŵt ) andn = (ñ, n̂).

Note thatx0 ∈ D0 implies x̂0 � −k0 + 1. Sincen̂(x) � 0 for all x ∈ ∂rD0, we haveX̂t � x0 + Ŵt for all t .
Let c2 > 0 be such that̂W1 � 2k0 + 2 with probability greater thanc2. If X̂t � k0 + 1, thenTK0∪A0 � t since
K ∩ ∂D0 ⊂ A0, so forx ∈ D0,

Px(TK0∪A0 � 1) � c2.

By Proposition 3.4, the law ofX· ◦ θj under a regular conditional probability forEx0[ · | Fj ] is a weak solution to
(2.1) starting atXj , so

Px0(TK0∪A0 > j + 1) � Px0(TK0∪A0 ◦ θj > 1, TK0∪A0 > j)

= Ex0
[
cPx(TK0∪A0 ◦ θj > 1 | Fj );TK0∪A0 > j

]
� (1− c2)Px0(TK0∪A0 > j).

By induction,Px0(TK0∪A0 > j) � (1− c2)
j , and the first desired inequality is now immediate.

There existsc3 > 0 such that̂n(x) � c3 for all x ∈ ∂rD. By the support theorem for standard Brownian moti
the probability of the union of the two events{Ŵ1 � 2k0 + 2} and{inft�1 Ŵt � −1} is c4 > 0. On this event, as w
observed above,TK0∪A0 � 1, while

k0 + 1� X̂1∧TK0∪A0
� x̂0 + c3L1∧TK0∪A0

+ inf
t�1∧TK0∪A0

Ŵt

andx̂0 > −k0 + 1 sincex0 ∈ D0, so

LTK ∪A
= L1∧TK ∪A

� (2k0 + 2)/c3.
0 0 0 0
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It follows that with probability at leastc4 > 0 we haveLTK0∪A0
� c5 for a constantc5 < ∞. Observing that

Px0
(
LTK0∪A0

> c5(j + 1)
)
� Px0

(
LTK0∪A0

◦ θUj
> c5, LTK0∪A0

> c5j
)

where Uj = inf{t � 0: Lt � c5j}, we argue similarly to the first paragraph of this proof to conclude
Px0(LTK0∪A0

> c5j) � (1− c4)
j , and the second desired inequality follows.�

Recall thatPx0 andE
x0 denote the probability and expectation for standard RBM inD started atx0 and killed

upon hittingK .

Theorem 4.7.If H0 is aC∞-function whose support is contained inD0 and is disjoint fromK0, then forx ∈ D0,

Ex0

[ TK0∪A0∫
0

H0(Xs) ds

]
= E

x0

[ TK0∪A0∫
0

H0(Xs) ds

]
.

Proof. If x0 ∈ K0, both sides are 0, so we assumex0 /∈ K0. Let functionsu andFi be as described in Coro
lary 4.5 and letf (x) = supi |∇Fi(x)|2. Corollary 4.5(viii) implies that

∫
∂rD0

f (x)ν(dx) < ∞, so by (2.3) we have∫ t∧TK0∪A0
ε

f (Xs) dLs < ∞, Px0-a.s. for eacht < ∞ andε > 0. Sincex0 ∈ D0, it takes a positive amount of tim
for Xt to reach∂D, andL does not increase during that time. So for eachω there existsε0 depending onω

such that
∫ ε0

0 f (Xs) dLs = 0. We conclude that
∫ t∧TK0∪A0

0 f (Xs) dLs < ∞, Px0-a.s. for eacht < ∞. The function

t → ∫ t∧TK0∪A0
0 f (Xs) dLs is continuous from the right by dominated convergence and continuous from the l

monotone convergence. Let

SM = inf

{
t � 0: t + Lt +

t∫
0

f (Xs) dLs � M

}
∧ TK0∪A0. (4.1)

By the continuity and finiteness oft → ∫ t∧TK0∪A0
0 f (Xs) dLs and Lemma 4.6, we see that forPx0-almost everyω

there existsM0 depending onω such thatSM = TK0∪A0 if M � M0.
Let Uj = inf{t > 0: |Xt − z0| < ρ0(1+ j−1)} for j � 1. Applying Itô’s formula withFi for i large enough so

thatq−1
i < 1+ j−1, we obtain

Ex0
[
Fi(XSM∧Uj

) − Fi(x0)
]

= Ex0

[ SM∧Uj∫
0

∇Fi(Xs) · dXs

]
+ 1

2
Ex0

[ SM∧Uj∫
0

�Fi(Xs) ds

]

= Ex0

[ SM∧Uj∫
0

∇Fi(Xs) · dWs

]
+ Ex0

[ SM∧Uj∫
0

∇Fi(Xs) · n(Xs) dLs

]
+ 1

2
Ex0

[ SM∧Uj∫
0

�Fi(Xs) ds

]
.

Note that the expectation of the stochastic integral term is 0 because∇Fi(Xs) is bounded in absolute value fo
s � SM ∧ Uj andW is a Brownian motion. We therefore have

Ex0
[
Fi(XSM∧Uj

);TK0∪A0 = SM � Uj

] + Ex0
[
Fi(XSM∧Uj

);Uj < SM = TK0∪A0

]
+ Ex0

[
Fi(XSM∧Uj

);SM < TK0∪A0

] − Fi(x0)
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= Ex0

[ SM∧Uj∫
0

∇Fi(Xs) · n(Xs) dLs

]
+ 1

2
Ex0

[ SM∧Uj∫
0

�Fi(Xs) ds

]
. (4.2)

We will examine what happens to the six terms in (4.2) asi → ∞, starting with the terms on the right han
side. LetC1 = {x ∈ ∂rD0: (∂Fi/∂n)(x) �→ 0}. By Corollary 4.5(vii),ν(C1) = 0, and so by (2.2) we conclude th∫ TK0∪A0

0 1C1(Xs) dLs = 0 a.s. The fact thatν(C1) = 0 implies also that

Ex0

[ SM∧Uj∫
0

∇Fi(Xs) · n(Xs) dLs

]
= Ex0

[ SM∧Uj∫
0

∂Fi

∂n
(Xs)1Cc

1
(Xs) dLs

]
. (4.3)

The definition off gives|(∂Fi/∂n)(Xs)| � (f (Xs))
1/2. This and (4.1) imply that

SM∧Uj∫
0

∂Fi

∂n
(Xs)1Cc

1
(Xs) dLs �

SM∧Uj∫
0

(
f (Xs)

)1/21Cc
1
(Xs) dLs �

( SM∫
0

∣∣f (Xs)
∣∣dLs

)1/2

(LSM
)1/2 � M.

By the dominated convergence theorem and Corollary 4.5(vii), the right hand side of (4.3) tends to 0 asi → ∞.
We have shown that the first term on the right hand side of (4.2) tends to 0 asi → ∞. The limit of the second term
on the right hand side is

−Ex0

[ SM∧Uj∫
0

H0(Xs) ds

]
,

by Corollary 4.5(iv).
Now we examine the terms in the left hand side of (4.2) asi → ∞. Let C2 = {x ∈ A0: Fi(x) �→ 0} and recall

from Corollary 4.5(vi) thatC2 has null surface measure.
We claim that

Px0(XTK0∪A0
∈ C2) = 0. (4.4)

Let C∗
2(ε) = {z ∈ C2: dist(z, ∂rD) > ε} andD∗

0(ε) = {z ∈ D0: dist(z, ∂rD) � ε}. If (4.4) does not hold, there exis
ε > 0 such thatPx0(XTK0∪A0

∈ C∗
2(3ε)) > 0. Let α1 = inf{t � 0: Xt /∈ D∗

0(2ε)}, βi = inf{t � αi : Xt ∈ D∗
0(ε)} and

αi+1 = inf{t � βi : Xt /∈ D∗
0(2ε)} for i = 1,2, . . . . Note that sincet �→ Xt is continuous,αi → ∞ Px0-a.s. as

i → ∞. So there must existi � 1 such thatPx0(XTK0∪A0
∈ C∗

2(3ε),αi < TK0∪A0 � βi) > 0. Away from ∂rD

the processXt behaves just like Brownian motion inRd . HenceXt+αi
is a Brownian motion started atXαi

for
t � βi − αi and therefore

P
Xαi

(
XTK0∪A0∧TD∗

0(ε)
∈ C∗

2(3ε)
)
> 0. (4.5)

But harmonic measure for Brownian motion and surface measure are mutually absolutely continuous in L
domains (see [4, Section III.5]), which contradicts (4.5). Therefore (4.4) holds.

By (4.4) and the bounded convergence theorem,

lim
i→∞ Ex0

[
Fi(XSM∧Uj

);TK0∪A0 = SM � Uj

]
= lim

i→∞ Ex0
[
Fi(XTK0∪A0

)1Cc
2
(XSM

); TK0∪A0 = SM � Uj

] = 0. (4.6)

The second term on the left hand side of (4.2) converges to

Ex0
[
u(XUj

);Uj < SM = TK0∪A0

]
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asi → ∞ by Corollary 4.5(ii) and (iii). LetR(M, i, j) denote the third term on the left hand side of (4.2). N
that ∣∣R(M, i, j)

∣∣ �
(
sup
k

‖Fk‖∞
)
Px0(SM < TK0∪A0). (4.7)

Finally the fourth term on the left hand side converges to−u(x0) asi → ∞.
The limit R̃(M, j) = limi→∞ R(M, i, j) exists because all the other terms in (4.2) converge. Taking the lim

i → ∞ in (4.2) we have

Ex0
[
u(XUj

);Uj < SM = TK0∪A0

] + R̃(M, j) − u(x0) = −Ex0

[ SM∧Uj∫
0

H0(Xs) ds

]
. (4.8)

Next we see what happens as we letj → ∞. Note thatu is continuous onD0, u = 0 on K0, and so
limj→∞ u(XUj

)1{Uj <SM=TK0∪A0} = 0. Hence, by the bounded convergence theorem, the first term on the lef

side of (4.8) converges to 0. The right hand side of (4.8) clearly converges asj → ∞, soR̃(M, j) must converge
to some limitR̂(M) and we obtain

R̂(M) − u(x0) = −Ex0

[ SM∫
0

H0(Xs) ds

]
. (4.9)

Finally we letM → ∞. SincePx0(SM < TK0∪A0) → 0, we conclude using (4.7) that

−u(x0) = −Ex0

[ TK0∪A0∫
0

H0(Xs) ds

]
. (4.10)

This is true for any weak solution to (2.1). In particular, sinceP
x0 is the law of a weak solution,

−u(x0) = −E
x0

[ TK0∪A0∫
0

H0(Xs) ds

]
. (4.11)

Combining this with (4.10) yields our result.�
The argument from here on is very similar to the argument in [5]. We would like the conclusion of Theore

to hold even forx0 ∈ ∂D0.

Proposition 4.8.If x0 ∈ D0 andH is a bounded Borel measurable function,

Ex0

[ TK0∪A0∫
0

H(Xs)ds

]
= E

x0

[ TK0∪A0∫
0

H(Xs)ds

]
.

Proof. If x0 ∈ K0 ∪A0, both sides are zero, and the result holds in this case. So we supposex0 ∈ ∂rD0 ∩D0. Since
X spends zero time in∂rD0 under bothPx0 andPx0, it suffices to prove the proposition forH in C∞ with support
in D0 \ K0; we make this additional assumption onH until the end of the proof. We can then extend the re
first to continuous functions and then bounded functionsH by a limit argument. Ifx ∈ D0, the result follows by
Theorem 4.7, so we supposex0 ∈ ∂rD0. Choosetn ↓ 0 so thatPx0(Xtn ∈ ∂rD0) = 0; this is possible sinceX spends
zero time in∂rD. Let S1(n) = tn ∧ TK0∪A0.
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By Proposition 3.4 the law of the processX· ◦ θS1(n) under a regular conditional probability forPx0(· | FS1(n))

is a solution to (2.1) started atXS1(n). This, Theorem 4.7, and the facts that the result holds forx0 ∈ K0 ∪ A0 and
thatXS1(n) /∈ ∂rD0 with probability one, imply that

Ex0

[ TK0∪A0∫
0

H(Xs)ds ◦ θS1(n) |FS1(n)

]
= v(XS1(n)), (4.12)

where

v(x) = E
x

[ TK0∪A0∫
0

H(Xs)ds

]
. (4.13)

Taking expectations,

Ex0

[ TK0∪A0∫
S1(n)

H(Xs) ds

]
= Ex0

[
v(XS1(n))

]
. (4.14)

Letting tn ↓ 0 and using Lemma 4.6, the left hand side of (4.14) converges toEx0[∫ TK0∪A0
0 H(Xs)ds].

Let I be the support ofH andS2 = inf{t : Xt ∈ I }. We have assumed thatH is C∞ with support inD0 \K0 and
x0 ∈ ∂rD0, soS2 > 0 a.s. IfB(x, r) ⊂ D0 \ (K0 ∪ A0 ∪ I ), then by the strong Markov property of standard RB

v(x) = E
x
[
v(XτB(x,r)∩D0

)
]
,

so the functionv(x) is harmonic with respect to standard RBMX in D0 \ (K0 ∪A0 ∪ I ) and hencev is continuous
there (Properties 3.1(vi) and (vii)). We write

Ex0
[
v(XS1(n))

] = Ex0
[
v(XS1(n)∧S2)

] + Ex0
[
v(XS1(n)) − v(XS1(n)∧S2)

]
.

The first term on the right converges tov(x0) asn → ∞ by the continuity ofv, while the second term on the rig
is bounded in absolute value by 2‖v‖∞Px0(S1(n) > S2), which goes to zero asn → ∞. Lettingn → ∞ in (4.14),
we then have

Ex0

[ TK0∪A0∫
0

H(Xs)ds

]
= v(x0).

Using (4.13) this proves the proposition.�
Theorem 4.9.Let H be a bounded Borel measurable function with support inD0 and x0 ∈ D0. If 0 < λ <

(2 supy∈D0
E

y[TK0∪A0])−1, then

Ex0

[ TK0∪A0∫
0

e−λtH(Xt ) dt

]
= E

x0

[ TK0∪A0∫
0

e−λtH(Xt ) dt

]
.

Proof. The result is obvious ifx0 ∈ K0, so we supposex0 ∈ D0 \ K0. We start with an observation similar to th
one in the previous proof, that sinceX spends zero time on the boundary ofD under bothPx0 andPx0, it is enough
to considerH that areC∞ with support inD0 \K0. Let v be defined by (4.13). By Proposition 3.4, under a reg
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conditional probability forPx0(· |Ft ) the law ofX· ◦ θt is a weak solution to (2.1) started atXt . This, together with
Proposition 4.8, implies that

1{t<TK0∪A0}Ex0

[ TK0∪A0∫
0

H(Xs ◦ θt ) ds | Ft

]
= 1{t<TK0∪A0}EXt

[ TK0∪A0∫
0

H(Xs)ds

]
= 1{t<TK0∪A0} v(Xt ).

Forf a bounded Borel measurable function define

Sλf (x0) = Ex0

[ TK0∪A0∫
0

e−λtf (Xt ) dt

]
.

We then have

Sλv(x0) = Ex0

[ TK0∪A0∫
0

e−λtv(Xt ) dt

]
= Ex0

[ TK0∪A0∫
0

e−λt Ex0

[ TK0∪A0∫
0

H(Xs+t ) ds |Ft

]
dt

]

= Ex0

[ TK0∪A0∫
0

e−λt

TK0∪A0∫
t

H(Xs) ds dt

]
= Ex0

[ TK0∪A0∫
0

H(Xs)

s∫
0

e−λt dt ds

]

= Ex0

[ TK0∪A0∫
0

H(Xs)
1− e−λs

λ
ds

]
= 1

λ
v(x0) − 1

λ
SλH(x0), (4.15)

or SλH(x0) = v(x0) − λSλv(x0). Define the operatorRλ on bounded Borel measurable functions by

Rλf (x) = E
x

[ TK0∪A0∫
0

e−λtf (Xt ) dt

]
. (4.16)

Thenv = R0H and so

SλH(x0) = R0H(x0) − λSλR0H(x0). (4.17)

By using a standard limit argument, we have (4.17) holding ifH is bounded and Borel measurable.
Let

Θ = sup
‖H‖∞�1

∣∣SλH(x0) − RλH(x0)
∣∣,

where‖H‖∞ is the usual supremum norm, and note that

Θ � sup
‖H‖∞�1

(∣∣SλH(x0)
∣∣ + ∣∣RλH(x0)

∣∣) � 2/λ < ∞.

We have‖RλH‖∞ � λ−1‖H‖∞ and‖R0H‖∞ � c1‖H‖∞, where

c1 = sup
y∈D0

E
y[TK0∪A0].

Note that by Lemma 4.6,c1 < ∞. From the semigroup property ofP
x (cf. [4, p. 19]),

RλH(x0) = R0H(x0) − λRλR0H(x0). (4.18)
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Subtracting (4.18) from (4.17),∣∣SλH(x0) − RλH(x0)
∣∣ = ∣∣λ(

SλR0H(x0) − RλR0H(x0)
)∣∣ � λΘ‖R0H‖∞ � λΘc1‖H‖∞.

Taking the supremum overH with ‖H‖∞ � 1, if λ � 1/(2c1),

Θ � λΘc1 � Θ/2,

soΘ = 0 becauseΘ < ∞. In other wordsSλH(x0) = RλH(x0) for all bounded and Borel measurable functio
H . This is equivalent to the assertion of the theorem.�
Proof of Theorem 2.3. First suppose thatd � 3 andD has the same form asD0 described before Proposition 4.
Recall the notation from Theorem 4.9 and its proof and the fact thatSλH(x0) = RλH(x0). SupposeH is continuous
in D. By the uniqueness of the Laplace transform and the continuity ofH(Xt), we see thatEx0

[
H(Xt∧TK0∪A0

)
] =

E
x0

[
H(Xt∧TK0∪A0

)
]
. As ρ0 → 0, thenTK0∪A0 → T{x0}∪A0. SinceX behaves like a Brownian motion when aw

from ∂D0, thenT{x0} is infinite with probability one. SoEx0
[
H(Xt∧TA0

)
] = E

x0
[
H(Xt∧TA0

)
]
. Since the above i

true for every arbitrary but fixedx0 ∈ D\A0, it implies (see [42, Chapter 6]) that the finite dimensional distributi
of Xt∧TA0

underPx0 and underPx0 agree (this is where Proposition 3.5 is needed). ThereforePx0 = P
x0 onFTA0

.
Now let D be an arbitrary bounded Lipschitz domain. By standard piecing-together arguments (see

suffices to show that for eachx0 ∈ D, any solutionPx0 agrees withPx0 locally. That is, ifx0 ∈ D, there exists
r > 0 (depending onx0) such thatPx0 andPx0 agree onFT∂B(x0,r)

. InsideD, X under bothPx0 andPx0 behaves
like ordinary Brownian motion, so we need only considerx0 ∈ ∂D. Let a coordinate system and a domainD0 be
chosen so thatD0 agrees withD in a neighborhoodB(x0, r) ∩ D of x0 andD0 is of the form described precedin
Proposition 4.3. Ifr is small enough,T∂B(x0,r) will be less thanTA0, and we can therefore apply the preced
paragraph.

Finally we consider the cased = 2. Suppose thatX has lawPx0 and state spaceD, whereD is a two-dimensiona
Lipschitz domain. LetB be a one-dimensional Brownian motion reflecting at−1 and 1 and independent ofX. Then
the law of(B,X) is a weak solution to (2.1) for the Lipschitz domain(−1,1)×D, and so is unique. The uniquene
of the law ofX follows easily. �

Corollary 4.10 below is presented with a view toward possible future applications. In the proof of Theor
we applied (2.3) once for the function

f = sup
i

|∇Fi |2 (4.19)

and (2.2) once for the set

C1 =
{
x ∈ ∂rD0:

∂Fi

∂n
(x) �→ 0 asj → ∞

}
. (4.20)

Let {Hj

0 }∞j=1 be a countable collection ofC∞ functions with support inD0\K0 whose closure under the supremu

norm contains the collection of all continuous functions with support inD0 \ K0. Let f j and C
j

1 be defined

analogously to (4.19) and (4.20), but withH
j

0 in place ofH0.

Corollary 4.10. Suppose thatPx0 is the law of a processX which satisfies(2.1) for some Brownian motionW ,
such that(2.4)and(2.5)hold, and

t∫
f j (Xs) dLs < ∞, a.s., for allε > 0, t < ∞, j = 1,2, . . . (4.21)
ε
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0
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j
1
(Xs) dLs = 0, a.s., for allj = 1,2, . . . . (4.22)

ThenPx0 = P
x0.

Proof. By the proof of Theorem 4.7, using (4.21) and (4.22) in place of (2.3) and (2.2), we have

Ex0

[ TK0∪A0∫
0

H
j

0 (Xs) ds

]
= E

x0

[ TK0∪A0∫
0

H
j

0 (Xs) ds

]

if x0 ∈ D0. By taking limits, we have the conclusion of Theorem 4.7 for allH0 in C∞ with support inD0 \ K0.
With this change, we can now follow the argument given by Proposition 4.8, Theorem 4.9, and the proof o
rem 2.3. �

The same piecing-together argument as that in the proof of Theorem 2.3 yields the following result. W
the proof to the reader.

Theorem 4.11.Weak uniqueness holds for(2.1) in special Lipschitz domainsD ⊂ R
d .

5. Strong solutions in planar lip domains

In this section, we focus on strong solutions to (2.1) on “special” planar lip domains, to be defined belo
will explain at the end of this section how a strong solution can be constructed for a general lip domain from
on special lip domains.

We will say thatD is a specialplanar lip domain ifD = {(x̃, x̂) ∈ R
2: x̂ > Φ(x̃)} whereΦ is a Lipschitz

function with Lipschitz constantκ strictly less than 1.
Fix a special planar lip domainD and suppose thatv is a vector field on∂D. We will assume that all vecto

fields on∂D considered in the rest of the paper are Lebesgue measurable and satisfy 0< c1 < |v(x)| < c2 < ∞,
for all x, where the constantsc1 andc2 may depend onv. To simplify the notation, we writev(x̃) for v(x̃,Φ(x̃)).
SupposeW is a given two-dimensional Brownian motion defined on a complete probability space(Ω,F ,P). Let
F0

t = σ(Ws : s � t) and letFt be the usual augmentation ofF0
t . It is well known that{Ft } is right continuous (see

e.g., [37]). We will say thatX is reflecting Brownian motion inD with oblique direction of reflectionv, relative
to P andW , starting atx0, if X is continuous and adapted to{Ft }, X0 = x0, X takes values inD, and there exists
a nondecreasing continuous processL (a “local time ofX on the boundary ofD”) which is adapted to{Ft } such
thatP-almost surely,

Xt = x0 + Wt +
t∫

0

v(Xs) dLs, t � 0, (5.1)

and
∞∫

0

1∂D(Xs) ds = 0. (5.2)

Note that the above is a strong solution definition. The present definition of RBM with oblique direction of
tion is less stringent than that given in Definition 2.1 in the case of the normal reflection: here we do not
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conditions (2.2) and (2.3) on the local timeL. In this section, we will use only this definition of RBM. We w
say “a strong solution to (2.1)” when we want to emphasize that we mean a strong solution for RBM with
reflection in the sense of Definition 2.1.

We will identify points inR
2, points inC, and two-dimensional vectors in the obvious way. For any vectou,

let � (u) be the angle formed byu with the positive half-line. We introduce a partial order inR
2 by declaring that

x ≺ y if and only if x = y or � (y − x) ∈ [−α0, α0],
whereα0 = (π/4+ arctanκ)/2. Note thatπ/8< α0 < π/4. Let [α1, α2] = [π/2− α0,π/2+ α0]. Throughout this
section, we will consider only those vector fieldsv which satisfy� (v(x̃)) ∈ [α1, α2] for all x̃. Fix some base poin
x0 ∈ D.

Let ν denote Lebesgue surface measure on∂D. If u :D → R is a bounded harmonic function, then, by Fato
theorem for bounded harmonic functions inD, the non-tangential limit ofu exists and is finite atν-a.e.x ∈ ∂D.
Forx ∈ ∂D, we defineu(x) as the non-tangential limit ofu atx whenever the limit exists and is finite.

We will say that a sequence of open setsKn ⊂ C converges to an open setK ⊂ C if for every compact se
M ⊂ K and every compact setL ⊂ (K)c, there is an integerN � 1 such thatM ⊂ Kn andL ⊂ (Kn)

c for every
n � N .

Lemma 5.1.For every vector fieldv that satisfies� (v(x̃)) ∈ [α1, α2] for all x̃, one can find a domainDv and a
univalent analytic functionfv :D → Dv such that the following properties hold.

(i) fv(x0) = 0 andargf ′
v(x) = π/2− � (v(x̃)) for ν-a.e.x = (x̃, x̂) ∈ ∂D.

(ii) If vn converges tov pointwise, thenDvn converges toDv.
(iii) Let Vc be the family of all continuous vector fieldsv on ∂D satisfying � (v(x̃)) ∈ [α1, α2], let Vc,b be the

subfamily ofVc consisting of those vector fields that satisfy� (v(x̃)) = α1 for x̃ outside a compact interva
(depending onv), and finally letV ⊂ Vc be the class ofC2-smooth vector fields whose elementsv ∈ V corre-
spond to functionsfv which areC2 on D. For everyv ∈ Vc, there exists a sequence of vector fieldsvn ∈ V ,
converging tov uniformly on bounded intervals. For everyv ∈ Vc,b, there exists a sequence of vector fie
vn ∈ V , such that� (vn(x̃)) converges to� (v(x̃)) uniformly overR.

(iv) LetN(ε) = {(x̃, x̂) ∈ D: x̂ < Φ(x̃) + ε}. Then for everyr > 0,

lim
ε→0

sup
v

sup
x∈fv(N(ε))

|x|<r

dist(x, ∂Dv) = 0, (5.3)

where the first supremum is taken over all vector fieldsv(x̃) which are Lebesgue measurable and sat
� (v(x̃)) ∈ [α1, α2] for all x̃.

(v) LetKr
v be the closure ofB(0, r)∩Dv. Suppose that vector fieldsvn converge tov pointwise,� (v(x̃)) ∈ [α1, α2]

and � (vn(̃x)) ∈ [α1, α2] for all x̃. LetK∗
r be the closure off −1

v (Kr
v)∩⋂

n f −1
vn

(Kr
vn

). Then for any0< r1 < ∞
there exists0< r2 < ∞ such thatB(0, r1) ∩ D ⊂ K∗

r for r � r2.

Proof. We will use the approach of [18, Lemma 2.2]. Letθ(x) = π/2 − � (v(x̃)) for x = (x̃, x̂) ∈ ∂D. We will
denote the harmonic extension ofθ to D by θ also. Letθ̃ (x) be the conjugate harmonic function ofθ(x) with
θ̃ (x0) = 0 and definefv :D → C by settingfv(x0) = 0 and

f ′
v(x) = exp

(
i
(
θ(x) + iθ̃ (x)

))
. (5.4)

Let Dv = fv(D). Parts (i) and (ii) of the lemma can be proved using ideas from Lemmas 2.2 and 2.3 of
we leave the details to the reader. However, we will outline the geometric idea of the construction. The funθ

represents the desired amount of twisting at the boundary ofD, that is, it represents argf ′
v. The boundary value

of argf ′
v uniquely determine the values of this function inside the domain, via the harmonic extension. T

turn determines the harmonic conjugate of argf ′
v, up to a constant. In this sense,fv is uniquely determined by th
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boundary values of argf ′
v, up to a few normalizing constants. Informally speaking, the functionfv is chosen to

mapv onto a vector field pointing up at almost every boundary point ofDv.
We turn to part (iii). Assume thatv ∈ Vc and letfv be the corresponding analytic function. We define|v(x)| for

x ∈ D as a harmonic extension of{|v(x)|, x ∈ ∂D} (recall that|v(x)| is assumed to be bounded). Forε > 0, letf ε
v

be the mapping constructed in a similar way to the construction offv but relative to the base pointx0 + iε rather
thanx0. Letvε(x̃) = |v(x̃, x̂ +ε)|i/(f ε

v )′(x̃,Φ(x̃)+ε) and note thatvε is analytic on∂D because both|v(x̃, x̂ +ε)|
and(f ε

v )′(x̃,Φ(x̃)+ ε) are. Since the definition offv is based only on� (v), we see thatfvε (x) = f ε
v (x + iε). This

implies thatvε corresponds to a mappingfvε which is analytic onD. It is not hard to show that for a give
continuousv, the vector fieldsvε converge tov uniformly on bounded intervals.

Suppose thatv ∈ Vc,b. Let a < ∞ be such that� (v(x̃)) = α1 for |x̃| � a. It follows from the definition ofvε that
� (vε(x̃)) is the value of the harmonic extensionh of � (v) to D, evaluated at(x̃, x̂ + ε). It will suffice to show that
for anyδ > 0 there existsε0 > 0 such that for allx = (x̃, x̂ + ε) with |x̃| � a andε � ε0 we have|h(x) − α1| � δ.
Find ε0 > 0 so small that Brownian motion starting from 0 makes a closed loop aroundB(0, ε0) before leaving
B(0, a) with probability greater than 1− δ/α2. Then for anyx ∈ D with x̂ − Φ(x̃) � ε0, the harmonic measure o
B(x, a)c ∩ ∂D in D, relative tox, is bounded byδ/α2. Hence, for pointsx ∈ D satisfying|x̃| � a andε � ε0, the
value ofh(x) is bounded below byα1 and bounded above byα1 + (δ/α2)α2 = α1 + δ.

(iv) By the maximum principle,θ(x) ∈ (−α0, α0) for all x ∈ D. Hence, Ref ′
v(x) = e−θ̃ (x) cosθ(x) > 0 for all x.

Let r0 > 0 be such thatB(x0, r0) ⊂ D. Sinceθ̃ (x0) = 0, we have
√

2/2 � �f ′
v(x0) � 1. By the Harnack principle

and the fact that the real part of an analytic function is harmonic, 0< c1 < Ref ′
v(x) < c2 < ∞ in B(x0, r0/2),

wherec1 andc2 do not depend onv. These bounds on Ref ′
v(x) and the fact thatθ(x) ∈ (−α0, α0) easily imply

that for somer1 > 0 independent ofv, we haveB(0, r1) ⊂ fv(B(x0, r0/2)).
Suppose that (5.3) fails. Then there exista, r > 0, a sequence of vector fields{vn} and points{xn} such that

� (vn(x̃)) ∈ [α1, α2], |xn| < r , xn ∈ fvn(N(1/n)), and dist(xn, ∂Dvn) > a for all n. Note that for every vector field
v satisfying � (v(x̃)) ∈ [α1, α2], the corresponding domainDv lies above the graph of a Lipschitz functionΦv
whose Lipschitz constant is bounded byκ . Hence we can assume, passing to a subsequence, if necessa
Φvn converge uniformly on bounded intervals to a functionΦv∞ , xn → x∞, and the functionss → ∫ s

0 θn(x̃) dx̃

converge uniformly on bounded intervals to a functions → ∫ s

0 θ∞(x̃) dx̃. We have dist(x∞, ∂Dv∞) � a > 0 and
dist(0, ∂Dv∞) � r1 > 0. There existsp > 0 such that the Brownian motion starting from 0∈ Dv∞ can make a loop
aroundx∞ and return toB(0, r1/2) without hitting∂Dv∞ , with probabilityp. This easily implies that for largen,
Brownian motion starting from 0∈ Dvn can make a loop aroundxn and return toB(0,3r1/4) without hitting∂Dvn ,
with probabilityp/2 or higher. By the conformal invariance of Brownian motion, Brownian motion can start
x0 ∈ D, make a loop aroundf −1

vn
(xn) ∈ N(1/n), and return toB(x0, r0/2) before hitting∂D, with probability

equal to or greater thanp/2. Since the distance fromf −1
vn

(xn) to ∂D goes to 0 asn → ∞, this uniform bound on
the probability of such a loop cannot hold asn → ∞. We have obtained a contradiction, which completes the p
of part (iv).

(v) It follows from (5.4) and from the assumption that� (v(x̃)) ∈ [α1, α2], that argf ′
v(x) ∈ [π/2 − α2,π/2 −

α1] = [−α0, α0] for all x ∈ D. It is elementary to see that one can find an increasing sequence of domaDn

such thatDn ⊂ D,
⋃

n Dn = D, ∂Dn is the graph of aC2-smooth functionΦn, all Φn are Lipschitz with the
same Lipschitz constantκ asΦ, and|Φn(x̃) − Φ(x̃)| ∈ (0,1/n) for all x̃. The bound on argf ′

v(x), the Lipschitz
character ofΦn, and elementary geometry show thatfv(∂Dn) is the graph of a Lipschitz function with Lipschi
constantκ1 < ∞, whereκ1 depends only onκ . Sincefv(Dn) increases toDv, and the limit of any sequence o
Lipschitz functions with constantκ1 is a Lipschitz function with constantκ1, we see that∂Dv is the graph of a
Lipschitz function with constantκ1. Since∂D and∂Dv have Lipschitz boundaries, the functionsfv andf −1

v have
continuous extensions toD andDv. Hence,fv(B(0, r1) ∩ D) is bounded and it follows that for everyr1 < ∞ there
existsr2 < ∞ such thatB(0, r1)∩D ⊂ f −1

v (Kr
v) for r � r2. Thus, we may ignoref −1

v (Kr
v) in the rest of the proof

We will argue by contradiction. Suppose that there existsr1 < ∞, rm < ∞, xm ∈ B(0, r1) ∩ D, andvnm such
that rm → ∞ and xm /∈ f −1

v (K
rm
vn

). By compactness, we may assume thatxm → x∞ ∈ B(0, r1) ∩ D. It is a

nm m
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straightforward consequence of the fact thatvn → v and (5.4) thatfvn converges tofv uniformly on compact
subsets ofD. This easily implies thatx∞ /∈ D.

Recall the base pointx0 ∈ D such thatfv(x0) = 0 and fix some other pointy0 ∈ D whose distance from∂D ∪
{x0} is ρ > 0. By the uniform convergence offvn to fv on compact subsets ofD, fvn(y0) converges toy∞,
and for someρ0 ∈ (0, ρ), ρ1 > 0 and largen, we havefvn(B(y0, ρ0)) ⊂ B(y∞, ρ1) ⊂ Dvn . Planar Brownian
motion starting fromx0 hits ∂D before it makes a closed loop aroundB(y0, ρ0) with probability p > 0, so, by
conformal invariance, Brownian motion starting from 0 hits∂Dvn before making a closed loop aroundB(y∞, ρ1)

with probability bounded below byp. This implies that for anyn, the distance from∂Dvn to 0 is bounded abov
by a constantρ2 < ∞ depending only onD. It follows that a vertical half-line inDc

vn
, extending to infinity in the

downward direction, has its endpoint not further thanρ2 from 0.
Let ∂1D and∂2D be the left and right connected components of∂D \ B(0, r1) and letp0 > 0 be such tha

the harmonic measure of each of the sets∂1D and∂2D in D, relative tox0, is greater thanp0. We findρ3 < ∞
so large that Brownian motion starting from 0 will make a closed loop in the annulusB(0, ρ3) \ B(0, ρ2) with
probability greater than 1−p0. It follows thatfvn(∂jD)∩B(0, ρ3) �= ∅ for j = 1,2. Since all boundaries∂Dvn are
represented by Lipschitz functions with the same constantκ1, this implies that for someρ4 < ∞, not depending
onn, fvn(B(0, r1) ∩ D) ⊂ B(0, ρ4).

We can find Jordan arcsγn ⊂ D with endpointsxn andx∞ such that Brownian motion starting fromx0 hits
γn with probabilityqn before hitting∂D, andqn → 0. Sincex∞ ∈ B(0, r1) ∩ D andxm /∈ f −1

vnm
(K

rm
vnm

), one of the
endpoints of the Jordan arcfvn(γn) is at the distance less thanρ4 from 0 and the other one is at the distance gre
thanrn. This and the facts thatrn → ∞, all boundaries∂Dvn are represented by Lipschitz functions with the sa
constantκ1, and all of them are at the distance not greater thanρ2 from 0 easily imply that the Brownian motio
starting from 0 must hitfvn(γn) before hitting∂Dvn with a probability greater than somêq > 0, not depending
onn. This contradicts the assertion thatqn → 0 and finishes our proof.�
Lemma 5.2.Suppose that the vector fieldv belongs toV . Then, given a Brownian motionW andx0 ∈ D, there
exists a(pathwise unique) reflecting Brownian motionX in D with reflection fieldv and starting pointX0 = x0,
relative to W . Let σ v

t = ∫ t

0 |f ′
v(Xs)|2 ds and τ v

t = inf{s > 0: σ v
s > t}. The processY v

t = fv(Xτ v
t
) is reflecting

Brownian motion inDv with vertical direction of reflection, relative to some Brownian motionB.

Proof. For n � 1, letDn = {x ∈ D: |x̃| < n, x̂ < n} and letvn be a vector field on∂Dn which is of classC2 and
such thatvn = v on ∂Dn ∩ ∂Dn/2. It is elementary to check that our assumptions that the Lipschitz constκ

is less than 1 and� (v(x̃)) ∈ [α1, α2] imply that the exterior cone condition (3.2) in [24] is satisfied forv on ∂D,
and, therefore, forvn on ∂Dn ∩ ∂Dn/2. We choosevn so that the exterior cone condition is satisfied on the wh
boundary ofDn. Hence, by Corollary 5.2 of [24] (Case 1), we have strong existence and uniqueness for re
Brownian motion inDn with reflection fieldvn. If n is so large thatx0 ∈ Dn/2, we letXn be reflecting Brownian
motion inDn with reflection fieldvn, relative toW , starting fromx0, and stopped at the hitting timeτn of Dc

n/2. Let
Ln denote the local time ofXn on∂Dn and note thatLn does not increase after timeρn. By the strong uniquenes
Xn

t = Xm
t for all integersn � m � 1 and allt � ρm, a.s.

We will prove that all the stopped RBMsXn are equicontinuous. We will show that the modulus of equico
nuity of any such process is controlled by the modulus of continuity of the driving Brownian motion; see fo
(5.7) below. Letc1 = sin(π/4− α0) and note that ifx ∈ D and � (y − x) ∈ [α1, α2] then

dist(y,Dc) � c1|y − x|. (5.5)

We will show that for allt > s > 0,∣∣∣∣∣
t∫
vn(X

n
u) dLn

u

∣∣∣∣∣ � 2 sup
u,v∈[s,t]

|Wu − Wv|/c1. (5.6)
s
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We will assume thats andt are rational. We will not incur any loss of generality because both sides of (5.6
continuous ins andt , a.s. We always have

�
( t∫

s

vn(X
n
u) dLn

u

)
∈ [α1, α2].

Suppose that (5.6) is not true for somes, t , and note that this implies thatXn
u ∈ ∂D for someu ∈ (s, t). Let t1 be

the supremum ofu < t such thatXn
u ∈ ∂D and note thatt1 > s, a.s. We have

Xn
t1

= Xn
s +

t1∫
s

vn(X
n
u) dLn

u + (Wt1 − Ws) = Xn
s +

t∫
s

vn(X
n
u) dLn

u + (Wt1 − Ws).

Note thatXn
s ∈ D and � (

∫ t

s
vn(X

n
u) dLn

u) ∈ [α1, α2]. Using (5.5), we see that the distance fromx∗
def= Xn

s +∫ t

s
vn(X

n
u) dLn

u to the boundary ofD is bounded below byc1|
∫ t

s
vn(X

n
u) dLn

u|. We have assumed that (5.6)
false, so the distance fromx∗ to ∂D is greater than 2 supu,v∈[s,t] |Wu − Wv| � 2|Wt1 − Ws |. It follows that the dis-
tance fromXn

t1
= x∗ +Wt1 −Ws to ∂D is greater than|Wt1 −Ws |. The last quantity is non-zero becauset1 > s, and

for all rationals and all realu > s, we haveWu �= Ws , a.s. We have shown thatXn
t1

/∈ ∂D, which is a contradiction
We conclude that (5.6) holds and so

|Xn
s − Xn

t | � (1+ 2/c1) sup
u,v∈[s,t]

|Wu − Wv|. (5.7)

This estimate holds with probability one simultaneously for allXn, for integern � 1.
Recall the timesρn when theXn are stopped. Clearly, theρn are nondecreasing inn. Let ρ∞ = limn→∞ ρn. We

will show thatρ∞ = ∞, a.s. Suppose otherwise and let

M = (1+ 2/c1) sup
u,v∈[0,ρ∞]

|Wu − Wv|.

By assumption,M is finite with a positive probability. By (5.7), for all sufficiently largen,

|Xn
0 − Xn

ρn
| � |Xn

0 − Xn
ρ∞| � M.

It is easy to see that this contradicts the definition ofρn and we conclude that limn→∞ ρn = ∞. We defineXt to
beXn

t for n and t such thatt � ρn. It is clear thatX is reflecting Brownian motion inD with reflection fieldv,
relative toW , starting fromx0.

Under the assumptions of the lemma,fv is C2 onD. Letu(x) andv(x) be the real and imaginary parts offv(x)

with x = (x1, x2). Thenu andv are harmonic functions inD with ux1 + ivx1 = vx2 − iux2 = f ′
v(x) for x ∈ D. So

|∇u(x)| = |∇v(x)| = |f ′
v(x)| and∇u · ∇v = 0 onD. By Ito’s formula, fort � 0,

u(Xt ) − u(X0) =
t∫

0

∇u(Xs) dXs =
t∫

0

∇u(Xs) dWs +
t∫

0

∇u(Xs) · v(Xs) dLs

and

v(Xt ) − u(X0) =
t∫

0

∇v(Xs) dXs =
t∫

0

∇v(Xs) dWs +
t∫

0

∇v(Xs) · v(Xs) dLs.

For x ∈ ∂D, ∇u(x) is the boundary value of the complex conjugate off ′
v(x), which equals exp(−θ̃ (x) − iθ(x)),

whereθ(x) = π/2 − � (v(x)). So ∇u(x) · v(x) = 0. On the other hand, forx ∈ ∂D, ∇v(x) = (−ux2, ux1) cor-
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responds to exp(−θ̃ (x) + i � (v(x))) and so∇v(x) · v(x) > 0. So after the time change,Y v
t = fv(Xτ v

t
) has the

decomposition

Y v
t = Y v

0 + Bt +
t∫

0

e2(Y
v
s ) dL̃s for t � 0, (5.8)

whereB is a standard Brownian motion onR2, e2 = (0,1) is the unit vertical vector inR2, andL̃ is a continuous
increasing process that increases only whenY v is on the boundary. SoY v is RBM in Dv with vertical direction
of reflection. The processY v is the unique pathwise solution to (5.8) and weak uniqueness for (5.8) hold
see this, writeY v

t = (Y 1
t , Y 2

t ) andBt = (B1
t ,B2

t ), and denote the Lipschitz function representing∂Dv by Φv. Then
clearlyY 1

t = Y 1
0 +B1

t andY 2 can be viewed as the reflection ofY 2
0 +B2

t on the functionΦv(Y
1
t ). By the Skorokhod

lemma established in Lemma 3.13 of [16], such a reflection is pathwise unique. In particular, this Skorokhod
implies thatY v is adapted to the filtration generated byB. �
Theorem 5.3.Suppose thatv1,v2 ∈ V and � (v1(x̃)) < � (v2(x̃)) for all x̃. LetX1 andX2 be reflecting Brownian
motions inD with the same driving Brownian motionW , starting from the same pointx0 ∈ D, and with reflection
directions given byv1 andv2, resp. ThenX2

t ≺ X1
t for all t � 0, a.s.

Proof. Let t0 = inf{t : X2
t �≺ X1

t }. That is, if T = {t : X2
t ≺ X1

t }, then t0 = inf{t : t /∈ T }. We will assume tha
t0 < ∞ and show that this leads to a contradiction.

Step1. We will use the argument of this first step twice in this proof. Note that in this step, we are usin
two facts aboutt0; the first fact is thatX2

t0
≺ X1

t0
and the second one is that the inequality fails for some time

every right neighborhood oft0.
First suppose thatX1

t0
,X2

t0
∈ D. Then, by the continuity of paths of RBM, there existst1 > t0 such thatX1

t ,

X2
t ∈ D for t ∈ [t0, t1]. Hence, the boundary local times do not increase on[t0, t1] for either of the two processe

and soX1
t −X2

t = X1
t0

−X2
t0

for t ∈ [t0, t1]. SinceX2
t0

≺ X1
t0

, we obtainX2
t ≺ X1

t for all t ∈ [t0, t1]. This contradicts
the definition oft0.

Next assume that one and only one of the processes is on the boundary at timet0. Without loss of generality
assume thatX1

t0
∈ ∂D andX2

t0
∈ D. Find t2 > t0 such thatX2

t ∈ D for t ∈ [t0, t2]. Let V 1
t = ∫ t

0 v1(X
1
s ) dL1

s and
note thatt → V 1

t − V 1
t0

is a continuous vector function which satisfies� (V 1
t − V 1

t0
) ∈ [α1, α2] for t � t0, by our

assumption onv1. Observe that� (X1
t0

− X2
t0
) ∈ [−α0, α0) andX1

t − X2
t = (X1

t0
− X2

t0
) + (V 1

t − V 1
t0
) for all t > t0

which are sufficiently close tot0, becauseX2 cannot hit∂D in some right neighborhood oft0. If � (X1
t0

− X2
t0
) ∈

(−α0, α0) then, by the continuity of the trajectories ofX1 andX2, for somet3 ∈ (t0, t2) and allt ∈ (t0, t3),

� (X1
t − X2

t ) = � (
(X1

t0
− X2

t0
) + (V 1

t − V 1
t0
)
) ∈ (−α0, α0).

This cannot be true, in view of the definition oft0. If � (X1
t0

− X2
t0
) = −α0 then every sufficiently short vectorw

with � w ∈ [α1, α2], whose starting point is atX1
t0

must have its endpoint inside the cone with vertexX2
t0

and edges
inclined at angles−α0 andα0. Hence, for somet3 ∈ (t0, t2) and allt ∈ (t0, t3),

� (X1
t − X2

t ) = � (
(X1

t0
− X2

t0
) + (V 1

t − V 1
t0
)
) ∈ [−α0, α0].

This contradicts the definition oft0.
If X1

t0
,X2

t0
∈ ∂D andX1

t0
�= X2

t0
then � (X1

t0
− X2

t0
) ∈ (−α0, α0), so by the continuity of paths, the same is tr

for all t ∈ (t0, t4), wheret4 is some time strictly greater thant0. Once again, we have obtained a contradiction
the definition oft0.

Step2. It remains to consider the case whenX1
t0

= X2
t0

∈ ∂D. First we claim that for everyt5 > t0 there exist
s, t ∈ (t0, t5) such thatX1

t ∈ ∂D and X2
s ∈ ∂D. If neither process visits∂D during (t0, t5) then X1

t = X2
t for

t ∈ (t0, t5), which contradicts the definition oft0. Suppose that for somet5 > t0 there existst6 ∈ (t0, t5) such that
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)) that
X1
t6

∈ ∂D but X2
s ∈ D for all s ∈ (t0, t5). Then � (X1

t6
− X2

t6
) = � (V 1

t6
− V 1

t0
) ∈ [α1, α2]. This implies thatX2

t6
/∈ D,

a contradiction. A similar argument applies when the roles of the processes are reversed. This completes
of our claim that for everyt5 > t0 there exists, t ∈ (t0, t5) such thatX1

t ∈ ∂D andX2
s ∈ ∂D. If X1

t ∈ ∂D, then
� (X2

t − X1
t ) ∈ [−arctanκ,π + arctanκ], and similarly, ifX2

s ∈ ∂D then � (X1
s − X2

s ) ∈ [−arctanκ,π + arctanκ].
AssumingX1

t ∈ ∂D andX2
s ∈ ∂D, the continuity of the functiont → � (X2

t −X1
t ) implies that there must be a tim

u betweent ands with X1
u = X2

u, or � (X2
u − X1

u) ∈ [−α0, α0], or � (X1
u − X2

u) ∈ [−α0, α0]. Therefore for every
t5 > t0 there existsu ∈ (t0, t5) such thatX2

u ≺ X1
u or X1

u ≺ X2
u.

We will show that for somet ∈ (t0, t5), X1
t ≺ X2

t . Suppose there is no sucht . Consider the open set of a
t ∈ (t0, t5) where the conditionX2

t ≺ X1
t fails and lett7 be the midpoint of the longest interval in this set. No

that t0 < t7 < t5. Let t8 be the supremum oft ≺ t7 such thatX2
t ≺ X1

t or X1
t ≺ X2

t , and note thatt8 ∈ (t0, t7). If
X1

t8
≺ X2

t8
, then we are done. OtherwiseX2

t8
≺ X1

t8
but this inequality fails in every right neighborhood oft8. The

argument of Step 1 applied witht8 in place oft0 implies thatX1
t8

= X2
t8

, soX1
t8

≺ X2
t8

. We have proved that fo
everyt5 > t0, there existst ∈ (t0, t5) with X1

t ≺ X2
t .

Let V 2
t = ∫ t

0 v2(X
2
s ) dL2

s and recall thatv1 andv2 areC2 and � (v1(x̃)) < � (v2(x̃)). By the continuity of the
trajectories ofX1 andX2, there existt9 > t0 andα3, α4 such that

α1 < � (V 1
t − V 1

t0
) < α3 < α4 < � (V 2

t − V 2
t0
) < α2, (5.9)

for all t ∈ (t0, t9). Find t10 ∈ (t0, t9) such thatX1
t10

≺ X2
t10

. SinceX1
t0

= X2
t0

,

(V 2
t10

− V 2
t0
) − (V 1

t10
− V 1

t0
) = X2

t10
− X1

t10
,

so

� (
(V 2

t10
− V 2

t0
) − (V 1

t10
− V 1

t0
)
) = � (X2

t10
− X1

t10
) ∈ [−α0, α0].

This condition and (5.9) applied witht = t10 cannot hold simultaneously for any triplet of vectors(V 1
t10

−V 1
t0
,V 1

t10
−

V 1
t0
, (V 2

t10
− V 2

t0
) − (V 1

t10
− V 1

t0
)). �

Suppose thatY is reflecting Brownian motion inDv with vertical direction of reflection,τ v
t = ∫ t

0 |(f −1
v )′(Ys)|2 ds,

σ v
t = inf{s > 0: τ v

s > t}, andXt = f −1
v (Y (σ v

t )). Then we will callX a conformally invariantreflecting Brownian
motion (CIRBM) in D with direction of reflectionv, and the same term will be applied to any process with
same distribution.

Recall the following. A functionφ is called lower semicontinuous onR if for every x ∈ R, φ(x) �
lim infy→x φ(y). A function φ is lower semicontinuous if and only if for eacha ∈ R, {x: φ(x) > a} is open.
A function ψ is called upper semicontinuous if−ψ is lower semicontinuous. Hence ifG is an open subset ofR,
then1G is lower semicontinuous. It is well known thatφ is lower semicontinuous if and only if there is a stric
increasing sequence of continuous functionsφn that converge toφ pointwise onR.

Lemma 5.4.(i) Suppose thatδ > 0 and the vector fieldv on ∂D is such that� v(x̃) is lower semicontinuous an
takes values in[α1 + δ,α2 − δ]. Then, given a Brownian motionW , there exists a CIRBMX in D with reflection
fieldv, adapted to the filtration ofW , and such thatXt = X0+Wt +Ut for everyt � 0 where� (Ut −Us) ∈ [α1, α2]
for all t > s, andU does not change whenX ∈ D, i.e.,Ut = Us if Xu ∈ D for all u ∈ [s, t].

(ii) If x0 ∈ D, v1 and v2 satisfy the assumptions of part(i), and � (v1(x̃)) � � (v2(x̃)) for all x̃, then one can
construct the corresponding CIRBM’sX1 andX2 as in(i), relative to the same Brownian motionW , starting from
x0 ∈ D, and such thatX2

t ≺ X1
t for all t � 0, a.s.

Proof. (i) It follows from the first part of the proof for Lemma 5.2 (see the paragraph containing (5.5)–(5.7
all RBMs with reflection fieldv ∈ V satisfy the same condition (5.7). Hence, they are equicontinuous.
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We will prove that there is sequence of vector fieldsvn ∈ V , such that� (vn(x̃)) < � (vm(x̃)) for all n < m andx̃,
and limn→∞ � (vn(x̃)) = � (v(x̃)) for all x̃.

Recall thatα1 ∈ (π
4 , 3π

8 ) is the angle specified in the fourth paragraph in this section. By the remark
before the lemma, in view of the assumption that� (v) is lower semicontinuous, there exists a strictly increas
sequence of continuous functionsψ̃n converging to� (v) pointwise onR. Let ψn(x̃) = max{ψ̃n(x̃), α1 + δ} and
we define forx̃ ∈ R,

φn(x̃) =


ψn(x̃), |x̃| � n,
α1 + δ, |x̃| � n + 1,
min{ψn(x̃), ψn(−n)(x̃ + n + 1) − (α1 + δ)(x̃ + n)}, x̃ ∈ (−n − 1, −n),
min{ψn(x̃), ψn(n)(n − x̃ + 1) + (α1 + δ)(x̃ − n)}, x̃ ∈ (n, n + 1).

It is easy to see that every functionφn is continuous and takes values in[α1 + δ,α2 − δ]. The sequence{φn,n � 1}
is nondecreasing and converges to� (v) pointwise onR. For eachn � 1, sinceφn(x̃) = α1 + δ for |x̃| � n + 1, by
Lemma 5.1(iii), there existvn ∈ V such that∣∣∣∣ � (

vn(x̃)
) −

(
φn(x̃) − δ

2n

)∣∣∣∣ <
δ

2n+2
for all x̃ ∈ R.

It is clear that� (vn(x̃)) < � (vm(x̃)) for all n < m andx̃ ∈ R, and limn→∞ � (vn(x̃)) = � (v(x̃)) for all x̃ ∈ R.
Let Xn = (Xn,1,Xn,2) be RBM inD with reflection directionvn. By Theorem 5.3,Xn

t � Xm
t for everyn < m

and everyt � 0 a.s., soXn,1
t � X

m,1
t , and, therefore, limn→∞ X

n,1
t = X

∞,1
t exists and is finite for allt � 0, a.s., by

(5.7). Next we will show that a.s., limn→∞ X
n,2
t exists for allt � 0. Suppose that this is not the case for someω.

Let

Mt = sup
{|Wu − Ws |: 0� s � u � t

} + dist(x0, ∂D);
this quantity is finite for everyt � 0, a.s. SinceXn is the sum ofW and a process which does not change w
Xn is inside the domain, the distance fromXn

t to the boundary ofD does not exceedMs for all 0 � t � s.
Using compactness and the diagonalization method, we can extract a subsequencenk (depending onω) such
that X

nk,2
t converges for every rationalt > 0. Let X̂

∞,2
t be the limit of Xnk,2

t . The functionX̂
∞,2
t can be ex-

tended in a continuous way to all realt � 0 and, moreover,Xnk,2
t → X̂

∞,2
t for all real t � 0, because (5.7

shows that the processesXnk,2
t are equicontinuous. We claim that if(X∞,1

t , X̂
∞,2
t ) ∈ D for all t ∈ [t1, t2]

where 0� t1 < t2 < ∞ then (X
∞,1
t , X̂

∞,2
t ) − (X

∞,1
s , X̂

∞,2
s ) = Wt − Ws for all s, t ∈ [t1, t2]. To see this, note

that δ0
def= inft∈[t1,t2] dist((X∞,1

t , X̂
∞,2
t ), ∂D) > 0. Since theXnk

t are equicontinuous, they converge uniformly
(X

∞,1
t , X̂

∞,2
t ) on [t1, t2], and so for largenk , inft∈[t1,t2] dist(Xnk

t , ∂D) � δ0/2. This implies that the local tim
term in the Skorokhod decomposition forXnk does not change on the interval[t1, t2], for any largenk , and so
X

nk
t − X

nk
s = Wt − Ws for largenk and alls, t ∈ [t1, t2]. Our claim now follows by taking the limit.

Suppose that for some other subsequencemk , limk→∞ X
mk,2
t = X̃

∞,2
t for all t � 0, wherẽX∞,2

t is not identically
equal toX̂

∞,2
t . Since both functions are continuous, there exist 0� t3 < t4 < ∞ such that at least one of th

following must hold: (I)(X∞,1
t , X̂

∞,2
t ) ∈ ∂D for t = t3, t4 but not for anyt ∈ (t3, t4), and(X

∞,1
t5

, X̃
∞,2
t5

) ∈ ∂D for

somet5 ∈ (t3, t4), or (II) (X
∞,1
t , X̃

∞,2
t ) ∈ ∂D for t = t3, t4 but not for anyt ∈ (t3, t4), and(X

∞,1
t5

, X̂
∞,2
t5

) ∈ ∂D for

somet5 ∈ (t3, t4). We will only discuss (I) as (II) can be treated in an analogous way. Lett6 = sup{t < t5: X̃
∞,2
t =

X̂
∞,2
t } and note thatt6 � t3. The second component of every vectorv(x̃) is positive, so the second component∫ t

s
vn(X

n
u) dLn

u is non-negative for alln and 0� s < t , and we obtaiñXn,2
t5

− X̃
n,2
t6

� W2
t5

−W2
t6

. Passing to the limi
alongmk ,

X̃
∞,2
t5

− X̃
∞,2
t6

� W2
t5

− W2
t6

= X̂
∞,2
t5

− X̂
∞,2
t6

.

But this contradicts the fact that̃X
∞,2
t5

< X̂
∞,2
t5

. This completes the proof that the limit limn→∞ X
n,2
t exists. Hence

Xt = limn→∞ Xn
t exists for allt � 0, a.s.
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Next we will show thatX is a CIRBM with reflection directionv. Let σn
t = ∫ t

0 |f ′
vn

(Xn
s )|2 ds, τn

t = inf{s >

0: σn
s � t}, and recall from Lemma 5.2 thatYn

t = fvn(X
n(τn

t )) is RBM in Dvn with vertical direction of reflection
(always pointing up).

The domainDv has the representation{(x̃, x̂) : x̂ > Φv(x̃)} for some continuous (in fact, Lipschitz) functionΦv.
Recall thatfv(x0) = 0. If a two-dimensional Brownian motionZ = (Z1,Z2) is given, we let̃Y 1 = Z1 and we define
Ỹ 2 as the reflection ofZ2 on the functionΦv(Z

1), using the deterministic Skorokhod lemma (see Lemma
of [16]). Then Ỹ = (Ỹ 1, Ỹ 2) is the (pathwise unique) RBM inDv with vertical direction of reflection, startin
from 0 and driven byZ. The boundary functionsΦvn of the domainsDvn converge, by Lemma 5.1(ii). Note th
Yn

0 = fvn(x0) = 0 for all n. Our explicit construction of the RBM with vertical direction of reflection together w
Corollary 3.16 of [16] show that if̃Yn is a sequence of RBMs inDvn with vertical direction of reflection, startin
from 0, and driven by the same Brownian motionZ, then Ỹ n converges a.s. to a RBM̃Y in Dv with vertical
direction of reflection, starting from 0, with respect to the uniform topology on bounded intervals. This, of c
implies that̃Yn converges in distribution tõY . By Lemma 5.2 eachYn has the same distribution as̃Yn. Hence,Yn

converges in distribution tõY . We will later show that a subsequence of{Yn, n � 1} converges a.s. to a processY .
Next we will show that the processes̃Y andX spend zero time on the boundary. Recall the constructioñY

using the ideas of [16] given in the previous paragraph. Conditioning on{Z1
t , t � 0}, and using Corollary 4.7 o

[16], we see that̃Y spends zero time on the boundary of the domain. The argument for the processX is different.
Let α3 = π/4+ (π/4− α0)/2. We will say thatW has anα3-cone point at timet1 � 0 if for somet2 > t1 and all
t ∈ (t1, t2), � (Wt − Wt1) ∈ (π/2− α3,π/2+ α3). Sinceα3 > π/4, Brownian paths containα3-cone points a.s., b
the results of [14] or [39]. We need the following stronger version of this result. For everyt1 > 0, with probability
1, for everyt2 ∈ (0, t1), there existst3 ∈ (t2, t1), depending onω, such that� (Wt − Wt3) ∈ (π/2 − α3,π/2 + α3)

for all t ∈ (t3, t1). This stronger version follows easily from an interpretation of cone points as the times wh
obliquely reflecting Brownian motion in a wedge hits the vertex (see [35]) and the fact that the vertex is a
point for such a process. Fix anyt1 > 0 and find a timet3 ∈ (0, t1) with the property stated above. Define t
processXn

t by Xn
t = Xn

t for t � t3 andXn
t = Xn

t3
+ Wt − Wt3 for t ∈ (t3, t1]. By the definition oft3, Xn

t stays in

the coneC = {x ∈ C: � (x − Xn
t3
) ∈ (π/2 − α3,π/2 + α3)} for t ∈ (t3, t1]. Any open cone with vertex inD and

the edges forming anglesπ/2− α3 andπ/2+ α3 with the horizontal is a subset ofD, by our assumptions on th
boundary ofD. We conclude thatXn

t stays inD for t ∈ (t3, t1] so it is a solution to (2.1) on[0, t1]. By the pathwise
uniqueness of the solution [24], we see thatXn

t = Xn
t for t ∈ [0, t1] (strictly speaking, the results in [24] are on

proved for bounded domains but a simple stopping time argument can be combined with those results to
needed conclusion; we leave the details to the reader). It follows that for a fixedt1, Xn

t1
∈ D with probability 1.

By Fubini’s theorem,Xn spends zero time on the boundary ofD. We can strengthen this result as follows. L
ρ(t1) > 0 be the distance fromXn

t1
= Xn

t1
to the boundary of the open coneC. The quantityρ(t1) depends only on

the trajectory ofW and by Fubini’s theorem,ρ(t) > 0 for almost allt > 0, a.s. Note thatρ(t1) is a lower bound for
the distance fromXn

t1
to ∂D. This property is invariant under limits in the following sense. IfV n is any sequence o

processes such that the distance fromV n
t to ∂D is bounded below byρ(t) for everyt > 0, then the same holds fo

V ∞ = limn→∞ V n, if the limit exists. By Fubini’s theorem,V ∞ spends zero time on∂D, a.s. The last conclusio
applies, in particular, to all processes appearing in Lemma 5.6 and its proof.

Recall the definition ofN(ε) from Lemma 5.1(iv) and letNc(ε) be the complement of this set. Letχε :R2 →
[0,1] be a smooth function that is equal to 1 onN(ε/2) and equal to 0 onNc(ε). We will denote 1−χε by χc

ε . For
t � 0, let

σ̄
n,ε
t =

t∫
0

∣∣f ′
vn

(Xn
s )

∣∣2χε(X
n
s ) ds, σ ε

t =
t∫

0

∣∣f ′
v(Xs)

∣∣2χε(Xs) ds, σ̃
n,ε
t =

t∫
0

∣∣f ′
vn

(Xn
s )

∣∣2χc
ε (Xn

s ) ds,

σ̃ ε
t =

t∫ ∣∣f ′
v(Xs)

∣∣2χc
ε (Xs) ds, σ n

t =
t∫ ∣∣f ′

v(Xs)
∣∣2(Xn

s ) ds, σt =
t∫ ∣∣f ′

v(Xs)
∣∣2(Xs) ds,
0 0 0
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onent

ies
τt = inf{s > 0: σs > t}, Nv(δ) = {
x ∈ Dv: dist(x, ∂Dv) < δ

}
,

and note thatσn
t = σ̄ σ

n,ε
t + σ̃

n,ε
t andσt = σ̄ ε

t + σ̃ ε
t . It follows from (5.4) thatf ′

vn
→ f ′

v uniformly on compact
subsets ofD. This and the convergence ofXn to X imply that for fixedt, ε > 0, we have a.s.,

lim
n→∞ σ̃

n,ε
t = σ̃ ε

t � σt . (5.10)

Let Kr
v be the closure ofB(0, r)∩Dv and letK∗

r be the closure off −1
v (Kr

v)∩⋂
n f −1

vn
(Kr

vn
). By Lemma 5.1(v),

for anyr1 < ∞ there existsr2 < ∞ such thatB(x0, r1)∩D ⊂ K∗
r for r � r2. LetT (Y, r) be the first exit time from

Kr for the processY and letT ∗(Xn, r) be the first exit time fromK∗
r for Xn. A similar notation will apply to other

processes.
Fix somet > 0 and arbitrarily smallp,η > 0. Findr1 > 0 so large that for somer2 > 0, B(x0, r2) ∩ D ⊂ K∗

r1
and

P
((

1+ (2/c1)
)

sup
u,v∈[0,t]

|Wu − Wv| � r2
)
� p.

Then, by (5.7), for alln,

P
(
T ∗(Xn, r2) � t

)
� p. (5.11)

Note that

σ̄
n,ε
T ∗(Xn,r2)

�
T (Yn,r1)∫

0

1fvn (N(ε))(Y
n
s ) ds.

The second component̃Y 2 of Ỹ is a Brownian motion plus a non-decreasing process. If the vertical comp
Z2 of the driving Brownian motionZ has an increment greater than 3r1 over some interval[s, t] then so does̃Y 2

and thenT (Ỹ , r1) � t . The probability that there are nos, t ∈ [m,m + 1] with Z2
t − Z2

s � 3r1 is less thanq1 < 1,
not depending onm. Hence, the probability that there are nos, t ∈ [0,m] with Z2

t − Z2
s � 3r1 is less thanqm

1 . This
shows thatP(T (Ỹ , r1) � m) � qm

1 , so the expectation ofT (Ỹ , r1) is finite. Note that the same argument appl
to Ỹ n in place ofỸ , so there is a uniform upper bound for expectations of stopping timesT (Ỹ n, r1).

SinceỸ spends zero time on the boundary, we can findδ > 0 small such that

P

( T (Ỹ ,r1)∫
0

1Nv(δ)(Ỹs) ds > η

)
� p.

SinceỸ n
t converges tõYt a.s.,

P

( T (Ỹ n,r1)∫
0

1Nv(δ/2)(Ỹ
n
s ) ds > 2η

)
� 2p,

for largen. By Lemma 5.1(iv), we may chooseε > 0 so small that

P

( T (Ỹ n,r1)∫
0

1fvn (N(ε))(Ỹ
n
s ) ds > 2η

)
� 2p,

for largen. Since the processesYn andỸ n have the same distribution,

P(σ̄
n,ε
T ∗(Xn,r2)

> 2η) � P

( T (Yn,r1)∫
1fvn (N(ε))(Y

n
s ) ds > 2η

)
� 2p,
0
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for largen. This and (5.11) imply that for each fixedt > 0, P
(
σ̄

n,ε
t > 2η

)
� 3p, for largen. By (5.10), we obtain

P
(
σn

t > σt + 3η
)
� 4p for largen. It follows from P

(
σ̄

n,ε
t > 2η

)
� 3p that P

(
lim infn→∞ σ̄

n,ε
t > 2η

)
� 3p for

everyt > 0. By Fatou’s lemma,P
(
σ̄ ε

t > 2η
)
� 3p. This holds for arbitrarily smallp > 0 and an appropriate choic

of ε = ε(p) > 0. It is clear that̃σε
t < ∞, soσt < ∞ a.s. Since limε↓0 σ̃ ε

t = σt , we can chooseε > 0 so small that
P(σt − σ̃ ε

t > η) < p. For sufficiently largen, by (5.10),P
(
σ

n,ε
t < σt −2η

)
� p. We see thatσn

t → σt in probability.
By passing to a subsequence, if necessary, and using the diagonal selection method, we conclude thatσn

t → σt a.s.
simultaneously for all rationalt � 0.

For a fixedε > 0, s > 0 and all largen, the functionst �→ σ̃
n,ε
t are Lipschitz on[0, s] with a constant dependin

onω, but not onn, because the integrands in their definitions are uniformly bounded. On an eventA of probability
greater than 1− 3p, the functionst �→ σ̄

n,ε
t are bounded by 2η on the interval[0, s], for largen. It is elementary to

show that the limit of the functionst �→ σ̃
n,ε
t + σ̄

n,ε
t cannot have jumps grater than 2η on A. We can makep and

η arbitrarily small, so the functiont �→ σt is continuous a.s.
Sincet �→ σn

t andt �→ σt are strictly increasing functions, the convergence ofσn
t to σt holds for all realt � 0

and is uniform on compact time intervals. It is elementary to show that all this implies the convergence
inverse functions, i.e.,τn

t → τt a.s. for all realt � 0. The processesXn converge a.s. in the uniform topology o
finite time intervals so for a fixedt � 0, Xn(τt ) → X(τt ), a.s. By (5.4),fvn converges tofv, uniformly on compact
subsets ofD. SinceX spends zero time on the boundary,fvn(X

n(τt )) → fv(X(τt )), a.s. We conclude that for
fixed t , Yn

t converges a.s. toYt = fv(X(τt )). SinceYn also converges in distribution tõY , the finite dimensiona
distributions ofY are the same as those ofỸ . Both processes are continuous so the distribution ofY is the same
asỸ .

It remains to show thatXt = f −1
v (Y (σt )). This follows immediately from the fact thatτt andσt are inverse

functions of each other, and from the fact thatX spends zero time on the boundary. This proves thatX is the
CIRBM with the reflection directionv.

The last claim of part (i) is elementary and left to the reader.
(ii) We will prove that if v1 andv2 satisfy the assumptions of (i) and� (v1(x̃)) � � (v2(x̃)) then one can find

vector fieldsv1
n,v2

n ∈ V such that limn→∞ � (v1
n(x̃)) = � (v1(x̃)), limn→∞ � (v2

n(x̃)) = � (v2(x̃)), � (v1
n) and � (v2

n)

are strictly increasing inn, and � (v1
n(x̃)) < � (v2

n(x̃)) for all n and x̃. The argument will be a modification of th
argument given at the beginning of part (i) of the proof.

Let φ1
n andφ2

n be defined relative tov1 andv2, respectively, in the same way asφn was defined relative tov at
the beginning of part (i) of the proof. Each functionφ1

n andφ2
n is continuous and takes values in[α1 + δ,α2 − δ].

The sequences{φ1
n, n � 1} and{φ2

n, n � 1} are nondecreasing and converge to� (v1) and � (v2) pointwise onR,
respectively. Since� (v1(x̃)) � � (v2(x̃)) for every x̃ ∈ R,

{
max{φ1

n,φ2
n}, n � 1

}
is a nondecreasing sequence

continuous functions taking values in[α1 + δ, α2 − δ] that converges to� (v2) pointwise onR. Recall that for each
n � 1 andi = 1,2, φi

n(x̃) = α1 + δ for |x̃| � n + 1. By Lemma 5.1(iii), there existv1
n ∈ V andv2

n ∈ V such that∣∣∣∣∣ � (
v1
n(x̃)

) −
(

φ1
n(x̃) − δ

2n

)∣∣∣∣ <
δ

2n+2
for all x̃ ∈ R,

and ∣∣∣∣ � (
v2
n(x̃)

) −
(

max
{
φ1

n(x̃), φ2
n(x̃)

} − δ

2n+2

)∣∣∣∣ <
δ

2n+4
for all x̃ ∈ R.

It is clear then that limn→∞ � (v1
n(x̃)) = � (v1(x̃)), limn→∞ � (v2

n(x̃)) = � (v2(x̃)), � (v1
n) and � (v2

n) are strictly
increasing inn, and � (v1

n(x̃)) < � (v2
n(x̃)) for all n andx̃.

Part (ii) of the lemma follows from part (i), Theorem 5.3 and the existence of vector fieldsv1
n,v2

n ∈ V with the
properties listed above.�
Lemma 5.5. For every positive bounded Lebesgue measurable functionu on R, there is a strictly decreasin
sequence of lower semicontinuous functionsun such thatu = limn→∞ un a.e. onR.
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Proof. Without loss of generality, we may assumeu is Borel measurable. Sinceu is bounded, there is a decreasi
sequence of simple Borel functionsun converging tou pointwise. For each Borel setA of finite Lebesgue measur
there is a decreasing sequence of open setsUn such that1Un → 1A a.e. onR. Note that1Un is lower semicontinuou
and (1 + 1

n
)1Un is strictly decreasing to1A a.e. onR. It follows that there is a decreasing sequence of sim

functionsun that are lower semicontinuous such thatu = limn→∞ un a.e. onR. �
Lemma 5.6.Suppose thatv is a vector field such that for someδ > 0, � (v(x̃)) ∈ [α1 + δ,α2 − δ] for all x̃. Then
given a Brownian motionW , there exists a conformally invariant reflecting Brownian motionX in D with direction
of reflectionv, adapted to the filtration ofW , and such thatXt = X0 + Wt + Ut where � (Ut − Us) ∈ [α1, α2] for
all t > s, andU does not change whenX ∈ D.

Proof. By Lemma 5.5, there is a sequence of vector fieldsvn such that� (vn(x̃)) ∈ [α1 + δ
2, α2 − δ

2] for all n and
x̃, � (vn(x̃)) is lower semicontinuous, is strictly decreasing, and converges to� (v(x̃)) for a.e.x̃ ∈ R. Let v′ be the
vector field with� (v′(x̃)) = limn→∞ � (vn(x̃)) for everyx̃ ∈ R. The argument from the proof of Lemma 5.4 sho
the existence of a conformally invariant reflecting Brownian motionX corresponding tov′. The definitions offv
andDv given in the proof of Lemma 5.1 are based on the harmonic extensionθ of π/2− � (v) to D. Sincev andv′
are equal almost everywhere, the corresponding harmonic extensions are equal everywhere inD, and soDv = Dv′ .
This implies that the processX is a CIRBM inD with direction of reflectionv. �
Theorem 5.7.Let v(x̃) = n(x̃) if n(x̃) exists in the classical sense and letv(x̃) = (0,1) otherwise. LetX be the
CIRBM constructed in Lemma5.6. ThenX has the same distribution as standard RBM inD and X is a strong
solution to(2.1)driven by the given Brownian motionW .

Proof. It is standard to check that� v is Lebesgue measurable. Note that� (v(x̃)) ∈ [π/2 − arctanκ, π/2 +
arctanκ] ⊂ (α1, α2), so Lemma 5.6 applies. What remains to be shown is that the CIRBMX in D with normal
reflectionv is indeed standard RBM with normal reflection inD.

Standard RBM with normal reflection in a Lipschitz domainU1 can be characterized (see [10] and [31]) as
continuous strong Markov processY on U1 whose Dirichlet form is(E,W1,2(U1)), whereW1,2(U1) consists of
all L2-integrable functions inU1 whose first order distributional derivatives areL2-integrable and

E(f, g) = 1

2

∫
U1

∇f (x) · ∇g(x)dx.

Supposeφ is a conformal map fromU1 onto another Lipschitz domainU2. Then the Dirichlet form for the imag
processφ(Y ) under the symmetrizing measure|φ′(x)|2 dx is (E,W1,2(U2)), whereE is defined as above exce
that U2 is in place ofU1. Thereforeφ(Y ) is a time changed standard reflecting Brownian motion inU2 with
normal reflection. The last assertion follows from the Dirichlet form characterization of time-changed pro
due to Silverstein and Fitzsimmons (see Theorems 8.2 and 8.5 of [40] – the proofs contained a gap, but a n
was given later by [28]).

Recall from the proof of Lemma 5.1(v) thatDv is a Lipschitz domain. Standard results on angular derivative
conformal mappings (see, e.g., Section V.5 in [4]) can be used to prove that for almost everyx ∈ ∂D, the half-line
with the endpoint atx along the direction ofn(x̃) is mapped byfv onto a smooth curve whose tangent line at
endpoint on∂Dv exists, is vertical and is perpendicular to∂Dv. This implies thatDv is the upper half-plane. Now
we apply the previous paragraph withU1 being the upper half space inR2 andU2 = D to see that the CIRBMX
in D obtained through Lemma 5.6 is a standard reflecting Brownian motion inD. We have mentioned in Section
that standard reflecting Brownian motion inD has the following Skorokhod decomposition:

Xt = X0 + Bt +
t∫
v(Xs) dLs for t � 0, (5.12)
0
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whereB is a Brownian motion that is adapted to the filtration generated byX andL is a positive continuou
additive functional ofX that increases only whenX ∈ ∂D.

The processX is adapted to the filtration ofW . Since the law ofX is that of standard RBM, then its law is equ
to P

x0 and is hence a weak solution to (2.1) as defined in Definition 2.1(1). On the other hand, by Lemma 5

Xt = X0 + Wt + Ut for t � 0, (5.13)

whereU is a continuousR2-valued process withU0 = (0,0) and� (Ut −Us) ∈ [α1, α2] for all t > s, andU does not
change whenX is in the interior ofD. Since[α1, α2] ⊂ (π/4, 3π/4), if we write Ut = (U

(1)
t ,U

(2)
t ), thent �→ U

(2)
t

is increasing andt �→ U
(1)
t is of bounded variation whose total variation process is dominated byU

(2)
t . Since

Wt = ∫ t

0 1D(Xs) dXs , W is adapted to the filtration generated byX. Now by the uniqueness of the Doob–Mey
decomposition for the semimartingaleX, we have from (5.12) and (5.13) thatBt = Wt andUt = ∫ t

0 n(Xs) dLs .
HenceX is a strong solution to (2.1) driven by the Brownian motionW as described in Definition 2.1.�
Theorem 5.8.LetD be a special planar lip domain andx0 ∈ D. Then(2.1)has a strong solution and the solutio
is pathwise unique.

Proof. The existence of strong solution is proved in Theorem 5.7. Suppose thatX andX′ are two weak solution
to (2.1) starting from the same pointx0 with the same driving Brownian motionW but possibly adapted to tw
different filtrations (we ignoreL in the spirit of Remark 2.2(ii)). LetX′′ be the strong solution to (2.1), starting fro
x0, with W as the driving Brownian motion that we constructed in Theorem 5.8; in particular this means thaX′′ is
adapted to the Brownian filtration{FW

t }t�0. Let C([0,∞),R
2) be the collection of the continuous functions fro

[0,∞) to R
2. It follows that there is a Borel measurable mapA from C([0,∞),R

2) to itself such thatX′′ = A(W).
SinceX,X′ andX′′ are weak solutions to (2.1), we have for allt � 0,

Wt =
t∫

0

1D(Xs) dXs, Wt =
t∫

0

1D(X′
s) dX′

s , and Wt =
t∫

0

1D(X′′
s ) dX′′

s . (5.14)

Each of the processesX,X′ andX′′ has the same lawPx0 by Theorem 2.3. Using (5.14), we conclude that the jo
laws of the pairs(X,W), (X′,W) and(X′′,W) are equal. So we have

P
(
X �= A(W)

) = P
(
X′ �= A(W)

) = P
(
X′′ �= A(W)

) = 0.

But thenX′ = A(W) = X a.s. This proves pathwise uniqueness.�
Note that in the above proof we use weak uniqueness for the law of the pair(X,W), not just weak uniquenes

for the law ofX.

Theorem 5.9.Let D be a bounded planar lip domain and letWt be a two-dimensional Brownian motion. The
exists a strong solution to(2.1)driven byWt .

Proof. First we will describe how Definition 2.1 can be generalized to allow for a random starting point.
it comes to weak solutions, Definition 2.1 can be extended in a straightforward way to allow for a random
starting distribution rather than a deterministic starting point.

A strong solution to (2.1) with a random starting pointX0 is defined as follows. Suppose thatW = {Wt, t � 0}
is a two-dimensional Brownian motion andξ is a random variable that takes values inD and is independent ofW ,
both defined on the same probability space(Ω,F ,P). Let {Ft }t�0 be the augmentation of the filtration genera
by the natural filtration ofW andξ . A strong solution to (2.1) withX0 = ξ , relative toW , is a pair of continuous
processes(X,L) such that(Ω,F , {Ft }t�0,P, (X,W,L)) is a weak solution to (2.1) with initial distribution ofξ .
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By Theorem 4.11 and Theorem 5.8, weak uniqueness and pathwise uniqueness hold for (2.1) for every dete
x0 ∈ D. Given any probability distributionµ on D, there exists astandardreflecting Brownian motion inD with
initial distributionµ; it is a weak solution to (2.1) with initial distributionµ. Hence by Corollary 3 of [45], there i
a universally measurable function

F :D × C
([0,∞),R

d
) → C

([0,∞),D
)

(5.15)

such that for everyt � 0, it is universally measurable as a map fromD × C([0, t],R
d) → C([0, t],D) and every

solution(X,W) of (2.1) with (random) starting pointX0 satisfiesX = F(X0,W). Moreover, since a weak solutio
to (2.1) exists for any initial random distribution, it follows that for any given Brownian motionW with W0 = 0
and random variableξ that takes values inD and is independent ofW , X = F(ξ,W) solves (2.1) withX0 = ξ .
That is, a strong solution to (2.1) exists for any initial random distribution.

Fix any x0 ∈ D. For eachx ∈ ∂D there existrx and a rotated special planar lip domainUx such thatD ∩
B(x,2rx) = Ux ∩ B(x,2rx). By compactness of∂D, we can find a finite subfamilyB1, . . . ,Bn of {B(x, rx)}x∈∂D

with ∂D ⊂ ⋃n
k=1 Bk . Let B0 be a smooth domain such that

D\
(

n⋃
k=1

Bk

)
⊂ B0 ⊂ B0 ⊂ D.

DefineU0 = B0 and for 1� i � n, if Bi = B(xi, rxi
), we will write Ui = Uxi

. For 1� i � n, let Fi be the function
defined in (5.15) withUi in place ofD. Let W = {Wt, t � 0} be a givend-dimensional Brownian motion with
W0 = 0. LetS0 = T0 = 0, X0

0 = x0, and letN0 = inf{j : x0 ∈ Bj }. For i � 0, define inductively

(i) Wi
t = Wt+Si

− WSi
for t � 0 (a Brownian motion),

(ii) (a) if Ni = 0, letXi+1
t = Xi

Ti
+ Wi

t for t � 0,

(b) if Ni � 1, letXi+1 = FNi
(Xi

Ti
,W i),

(iii) Ti+1 = inf{t > 0: Xi+1
t /∈ BNi

},
(iv) Ni+1 = inf{j : Xi+1

Ti+1
∈ Bj },

(vii) Si+1 = T0 + · · · + Ti+1.

Let Xt = Xi+1
t−Si

for Si � t < Si+1. WhenNi = 0, Xi+1 is a Brownian motion inB0, and whenNi �= 0, each

Xi+1 is a strong solution to (2.1) inUNi
with initial (random) positionXi

Ti
. The law ofXi+1 is the same as th

standard RBM inUNi
with initial starting pointXi

Ti
. Property 3.1(iii) and a standard argument show thatSi → ∞

a.s. asi → ∞ (cf. [6, Theorem VI.3.4]). It is now routine to check thatX is indeed a strong solution to (2.1) inD
with W as the driving Brownian motion.�
Remark 5.10.R. Atar pointed out to the first author that there is a gap in the proof of [12]. The proof that the
solution constructed in that paper is adapted is faulty. An attempt to correct this error in [7] was unsuc
A further discussion may be found in [9].

It is still an open question as to whether a strong solution to the Skorokhod equation exists inC1+α domains
in dimension three and higher. In [12] weak uniqueness for RBM inC1+α domains was proved under weak
assumptions than those in Definition 2.1; the conditions (2.2) and (2.3) are unnecessary. Therefore to sho
existence in theC1+α situation, one needs only to find an adapted solution to (2.1), whereL is a local time ofX
on the boundary ofD.
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6. Pathwise uniqueness for RBM in planar lip domains

In this section we will first prove Theorem 2.4, and then we will show that it also holds for the type of p
lip domains introduced in Burdzy and Chen [15], which are a variant of the ones considered above. Then
apply it to synchronous couplings of RBMs in both types of planar lip domains.

Proof of Theorem 2.4. The proof is the same as that for Theorem 5.8.�
In [15], Burdzy and Chen studied the behavior of “synchronous couplings” in polygonal and Lipschitz do

A synchronous coupling is a pair of reflecting Brownian motionsX and Y in the same domainD, driven by
the same Brownian motionWt . Lacking a strong existence result for RBM in general Lipschitz domains
synchronous coupling of RBMs in a Lipschitz domainD is constructed in a weak sense in [15] as a limit
synchronous couplings of RBMs in a sequence of smooth domains that increase toD. Atar and Burdzy [2] similarly
circumvented the problem of constructing a “mirror coupling” in a lip domain (we call reflecting Brownian mo
X andY in D a mirror coupling if the line of symmetry forX andY does not change whenever both proces
stay away from∂D).

Using Theorem 2.4, we can derive the following for planar lip domains.

Theorem 6.1.Given a planar lip domainD and a Brownian motionW , there exists a synchronous coupling(X,Y )

of reflecting Brownian motions inD driven byW such that{(Xt , Yt ), t � 0} is a strong Markov process with respe
to the filtration generated byW .

Although Theorem 6.1 does not immediately prove the existence of a “mirror coupling”(X,Y ) with the strong
Markov property in a lip domain, one could try to apply the method of this paper to answer this open quest

Theorem 6.1 derives its main interest from possible applications in the context of the research pres
Burdzy and Chen [15], where the definition of a lip domain is slightly different from this paper. For this reas
will prove Theorem 6.1 using the following alternative definition of a lip domain that was used in [15]. Ther
domain was defined to be a Lipschitz domainD that is bounded between two Lipschitz functionsf1 andf2:

D = {
(x1, x2): f1(x1) < x2 < f2(x1), z1 � x1 � z2

}
(6.1)

such thatf1(z1) = f2(z1), f1(z2) = f2(z2), f1(x1) < f2(x1) for −∞ < z1 < x1 < z2 < ∞, and the functionsf1
andf2 are Lipschitz with Lipschitz constantκ ∈ (0,1): for k = 1,2,∣∣fk(x1) − fk(y1)

∣∣ � κ|x1 − y1|, for all z1 � x1, y1 � z2. (6.2)

Note that the assumption thatD is a Lipschitz domain puts additional constraints on the functionsfk in addition
to (6.2). In a neighborhood of the left or right endpoint, the boundary ofD is the graph of a Lipschitz function i
some coordinate system, but the Lipschitz constant of that function may be larger than 1. This makes it im
to construct solutions inD of (6.1) using a piecing-together procedure – our main theorem does not apply ne
left and right endpoints of the domain defined by (6.1).

Proof of Theorem 6.1. It suffices to show that the conclusion of Theorem 2.4 holds for any planar lip domain
sense of (6.1). Since standard RBM in a Lipschitz domain does not hit points, our result follows from Theo
by a piecing-together procedure unless the starting point is either the left-most or right-most point of the d
Suppose thatx0 is one of the extreme points, say,x0 is the left-most point of the domain. Weak uniqueness follo
from Theorem 2.3. In particular, we may useP in place ofP in the remainder of the proof. We therefore turn
strong existence. Define

R+ = {
(s, t): s � 0, |t | < κs

}
.
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Take a sequence of pointsxn ∈ D converging tox0 so thatxm − xn ∈ R+ for everyn > m and letXn be the
strong solution for (2.1) starting fromxn. By step 3 in the proof of Theorem 1.1(ii) in [15] as well as Theorem
in [15], almost surelyXm

t − Xn
t ∈ R+ for all t � 0. By step 1 in the proof of Theorem 1.1(ii) in [15], there is

eigenfunctionφ corresponding to the second eigenvalueµ2 < 0 of the half Laplacian inD with Neumann boundar
conditions such that∇φ(x) ∈ R+ for everyx ∈ D. Thus forn > m, almost surelyφ(Xm

t ) − φ(Xn
t ) � 0 for every

t � 0; in other words,φ(Xn
t ) is decreasing inn. On the other hand, for eachn � 1, φ(Xn

t )e−µ2t is a martingale.
Thus for each fixedt > 0

e−µ2tE
[
φ(Xm

t ) − φ(Xn
t )

] = φ(xm) − φ(xn).

The right hand side goes to zero asn,m → ∞ by the continuity ofφ. Hence almost surely,φ(Xn
t ) − φ(Xm

t )

converges to zero for everyt � 0 whenn > m both go to infinity. By step 2 in the proof of Theorem 1.1(ii) in [1
and the fact that the amount of timeXn spends on the boundary has zero Lebesgue measure, one conclud
|Xn

t − Xm
t | goes to zero asn,m → ∞. Therefore almost surelyXt = limn→∞ Xn

t exists for everyt � 0. ClearlyX

has the same distribution as standard RBM inD starting fromx0 (cf. Lemma 4.3 of [10]). Note that for eachn,

Xn
t = xn + Wt +

t∫
0

n(Xn
s ) dLn

s for everyt � 0,

whereLn is the local time ofXn on the boundary of∂D corresponding to the measure1
2ν andν denotes surfac

measure on∂D. SinceXt = limn→∞ Xn
t , we see that the limitAt = limn→∞

∫ t

0 n(Xn
s ) dLn

s exists and

Xt = x0 + Wt + At for everyt � 0.

Let p(t, x, y) be the transition density function for standard RBM inD. We have fort � 0,

E[Ln
t ] = 1

2

t∫
0

∫
∂D

p(s, xn, y)ν(dy)ds � c1 ν(∂D)

in view of Theorem 3.1 of [10], wherec1 > 0 is a constant that depends only ont . It follows thatA is a process o
bounded variation. By an argument that is similar to but simpler than that from (5.12) to the end of the proof
orem 5.7, we conclude thatAt = ∫ t

0 n(Xs) dLs for t � 0, whereL is the boundary local time ofX corresponding
to the measure12ν. This shows thatX is a strong solution to (2.1) driven byW . �

7. Counterexamples

We will present two examples in this section. The first one will provide a proof for Theorem 2.5. The s
one will illustrate the importance of the choice of the definition ofN0(x).

Proof of Theorem 2.5. Fix some smallκ1 > 0 and letC1 ⊂ [0,1] be the classical Cantor set. Letφ :R → R be a
continuous function which is equal to 0 onC2 = (−∞,0] ∪ C1 ∪ [1,∞) and is defined elsewhere as follows. T
setC2 is closed so its complement consists of a countable union of disjoint open intervals. For every such
say,(a, b), we let the functionφ be linear on(a, (a + b)/2) with slope−κ1, and linear on((a + b)/2, b) with
slopeκ1.

Let D1 = {(x1, x2) ∈ R
2: x2 > φ(x1)} andC3 = {(x1, x2) ∈ ∂D1: x1 ∈ C1}. As φ is Lipschitz, it follows that

a subset ofD1 is not hit by standard RBM inD1 if and only if it is not hit by standard Brownian motion inR2

(see, for example, Remark 2.2(3) in [13]). AsC3 has positive log2/ log3-Hausdorff measure, it is hit by standa
Brownian motion inR2. ThereforeC3 will be hit by standard RBM inD1 with positive probability.
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Fix κ > 1 arbitrarily close to 1. LetD3 = {(x1, x2, x3) ∈ R
3: x3 > φ(x1)} and letD4 be obtained fromD3

by a rotationR around thex1-axis by an angleα with the following properties. First, the line{(x1, x2, x3) ∈
∂D4: x1 = 0} should form an angle with the(x1, x2)-plane strictly greater thanπ/4. Second,D4 should be a
domain above the graph of a Lipschitz functionΦ with Lipschitz constantκ2 = (κ + 1)/2 (see Section 2). I
is elementary to see that we can find an angleα with the above properties ifκ1 > 0 is sufficiently small. Let
C5 = {(x1, x2, x3) ∈ ∂D3: x1 ∈ C1}, C6 = R(C5), andm = R((0,1,0)). The component of standard RBM inD4

in the direction ofm is a standard 1-dimensional (non-reflecting) Brownian motion, independent of the oth
components, so the fact thatC3 is non-polar inD1 implies thatC6 is non-polar inD4.

SinceC6 is non-polar, it supports a measure which does not charge polar sets and which has positive ma
a measure will be the Revuz measure of a continuous additive functionalM of standard RBMX in D4 Assume
without loss of generality thatm = (0,m2,m3) with m2,m3 > 0. SupposeX is standard RBM inD4 starting from
(0,0,0), and let

Yt = Xt + Mtm, t � 0. (7.1)

Find t0 ∈ (0, ∞) such thatP(Mt0 > 1) > 3/4. Letκ3 = (κ2 + κ)/2,

A = (0,0,1) + {
(x1, x2, x3) ∈ R

3: x3 � −κ3

√
x2

1 + x2
2, (x1, x2, x3 + 1) · m � 0

}
,

andAε = εA. Note that every setAε lies below the graph of a Lipschitz function with Lipschitz constantκ3. Let
{(yj

1, y
j

2)}j�1 be a sequence consisting of all points in the plane whose coordinates are both rational a

that in some neighborhood ofyj = (y
j

1, y
j

2,Φ(y
j

1, y
j

2)), the boundary ofD4 is a piece of a plane. Sinceκ3 > κ2,
elementary geometry shows that for any fixedj , the domainsD4 \ (yj + Aε) converge toD4 as ε → 0. Any
single point is polar forX, so it is not hard to see that every pointyj is polar forY , i.e.,Y does not hityj , with
probability 1. Letεj > 0 be so small that the probability thatY hitsyj +Aεj

before timet0 is less than 2−j−1, and
yj + Aεj

does not intersectC6 ∪ (D4 ∩ ⋃
k<j (y

k + Aεk
)). If the last condition cannot be satisfied for anyεj > 0,

we takeεj = 0. LetD5 = D4 \ ⋃
j�1(y

j + Aεj
) and letT be the first hitting time of

⋃
j�1(y

j + Aεj
) by Y . Note

thatP(T � t0) � 1/2 and soP(MT > 1) � 1/4.
Let Zt = Yt for t � T . We continue the processZt for t � T as standard RBM inD5, starting fromYT but

otherwise independent of{Yt , t ∈ [0, T ]}. It follows from (7.1) thatZt satisfies

Zt = Wt +
t∫

0

n(Zt ) dLs +
t∫

0

m1C6(Zs) dMs∧T , t � 0,

for some Brownian motionW , whereL is the usual local time on the boundary ofD5 andn is the unit inward
normal vector field on∂D5. We claim that this is a solution to (2.1) inD5 (without the conditions (2.2) and (2.3)
Clearly, the processesL andM do not increase whenZ is in the interior ofD5. Recall the definition ofN0(x) from
Section 2. For pointsx ∈ C6, the normal vectorn(x) is not well defined so we have to use the alternative defini
of N0(x) as the intersection of{Nε(x)}ε>0 (see Section 2). We havem ∈ N0(x) for x ∈ C6 because by construction
every point ofC6 is a cluster point of the setsyj +Aεj

. This completes the proof of the claim thatZ satisfies (2.1)
Our construction generated a domainD5 lying above the graph of a Lipschitz function with Lipschitz const

κ3 < κ . Since{Zt ; t < T } is clearly different from standard RBMX in D4 (or equivalently, standard RBM inD5)
before hitting

⋃
j�1(y

j + Aεj
), we do not have pathwise uniqueness in the Lipschitz domainD5. �

Our next example will illustrate the importance of the definition of the “set of direction constraints”N0(x). On
the technical side, the construction given below is similar to that in the proof of Theorem 2.5, but simpler.
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Example 7.1.Fix an arbitrarily smallκ > 0, letD1 = {(x1, x2, x3) ∈ R
3: x3 > 0}, and letm = (κ,0,1). Let X be

RBM in D1 with oblique direction of reflectionm, starting from(0,0,0). The processX satisfies the equation

Xt = Wt +
t∫

0

mdLs for t � 0,

whereW is a Brownian motion andL does not increase whenX is in D1. Let

A = {
(x1, x2, x3) ∈ R

3: x3 � −κ

√
x2

1 + x2
2

}
,

and let{(yj

1, y
j

2)}j�1 be a sequence consisting of all points in the plane with rational coordinates. For any fij ,

the domainsD1 \ ((y
j

1, y
j

2, ε) + A) converge toD1 asε → 0. A fixed point is polar forX, so one can findεj > 0

so small that the probability thatX hits (y
j

1, y
j

2, εj ) + A before time 1 is less than 2−j−1. We makeεj > 0 even

smaller, if necessary, so that(y
j

1, y
j

2, εj ) + A does not intersectD1 ∩ ⋃
k<j ((y

k
1, yk

2, εk) + A). If the last condition

cannot be satisfied for anyεj > 0, we takeεj = 0. Let D2 = D1 \ ⋃
j�1((y

j

1 , y
j

2, εj ) + A) and letT be the first

hitting time of
⋃

j�1((y
j

1 , y
j

2, εj ) + A) by Xt . Note thatP(T � 1) � 1/2 and soP(LT > c1) � 1/4 for some
c1 > 0.

Let Zt = Xt for t ∈ [0, T ]. We continue the processZ for t � T as standard RBM inD2, starting fromXT but
otherwise independent of{Xt, t ∈ [0, T ]}. It follows thatZ satisfies

Zt = Wt +
t∧T∫
0

mdLs +
t∫

t∧T

n(Zt ) dLs, t � 0, (7.2)

for some Brownian motionW , and a processL which does not increase whenZ is insideD2. SinceP(LT > c1) �
1/4, the first integral gives a non-trivial contribution with positive probability.

The domainD2 is a Lipschitz domain with boundary functionΦ having Lipschitz constantκ . The process
satisfying (7.2) is a solution to (2.1) inD2 if we defineN0(x) as

⋂
ε>0 Nε(x) for everyx ∈ ∂D2. This is because

every pointx ∈ ∂D1 ∩ ∂D2 is a cluster point of the sets(yj

1, y
j

2, εj ) + A and som ∈ ⋂
ε>0 Nε(x).

We will argue thatZ is not standard RBM inD2. Note that forx ∈ ∂D1 ∩ ∂D2, the normal vectorn(x) is
equal to(0,0,1) or it is not well-defined. For standard RBM,dLt does not charge sets of measure 0, so ifZ were
standard RBM, we would have to have

t∧T∫
0

mdLs =
t∧T∫
0

n(Zt ) dLs =
t∧T∫
0

(0,0,1) dLs for t � 0,

a contradiction.
This proves that uniqueness for (2.1) does not hold even in Lipschitz domains with arbitrarily small Lip

constantκ if we adopt
⋂

ε>0 Nε(x) as the definition ofN0(x) for all x ∈ ∂D2.

We note that both examples in this section prove the lack of weak uniqueness, not just strong uniquen
examples indicate that when there is ambiguity about the choice of a normal reflection direction at a non-p
of boundary points for standard RBM, weak uniqueness of solutions of (2.1) might fail unless one specifie
extra conditions, such as (2.2)–(2.3). Consequently, this shows that the deterministic version of the Sk
equation in such a Lipschitz domain inR

3 might not have a unique solution, for otherwise we would have path
uniqueness and therefore weak uniqueness for (2.1).
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