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Abstract

We give a characterization of the equality in Hu's inequality (which is a correlation inequality between two convex functions
in R" with respect to the standard Gaussian measure). For this, we prove a new inequality which is slightly better than Hu'’s
inequality. Then, we obtain a result concerning the U-conjecture.

0 2004 Elsevier SAS. All rights reserved.

Résumé
On donne une caractérisation du cas d'égalité dans I'inégalité de Hu, qui est une inégalité de décorrélation entre deux fonc-
tions convexes contre la mesure gaussienne B&nBour cela, on démontre une inégalité Iégérement plus forte que I'inégalité

de Hu. On obtient aussi un résultat concernant la conjecture U.
0 2004 Elsevier SAS. All rights reserved.

MSC:primary: 52A40, 60E15

Keywords:Gaussian measure; Ornstein—Uhlenbeck semigroup; Convexity; Correlation

1. Introduction

We denote by, the standard Gaussian measureldn In 1973, Kagan, Linnik and Rao [11] considered the
following question: if P and Q are two polynomials ofiR” independent with respect o, (such that ifX is a
random vector oR” of law p,, then P(X) and Q(X) are independent random variables), is it possible to find
an orthogonal transformatioti on R” and an integek such thatP o U is a function of(x1, ..., xx) andQ o U
is a function of (xx41, ..., x,) ? If the answer is positive, we say thAtand Q are unlinked. This question is
known as the U-conjecture. Kagan, Linnik and Rao gave a partial answer in [11]. Recently, Bhandari and Basu [5]
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have shown that i and Q are two convex, positive polynomials independent with respegt,tand if P(0) =0

then P and Q are unlinked. Related to this problem, Bhandari and DasGupta [6] proved in 1994 that two convex
and even functiong’ andg are unlinked if they are uncorrelated (that if'if'g dun, = [ f dpn [ g dn) under an
additional hypothesis. This hypothesis is related to the Gaussian correlation conjecture which is still a conjecture in
dimension greater than two (see [7] for further details and references on this conjecture), so, the result of Bhandari
and DasGupta is not proved in the general case, that is, without this additional hypothesis. Recall now an inequality
due to Hu [10] and which concerns two convex functighandg in L2(,,) (see [9] or [8] for the second term in

the inequality):

[ reaun= [ san [ gdun+< [xrau. [ xgdun>. (1.1)

If (fxfdun, [xgdu,) >0, this is a correlation inequality betweghandg (() is the usual scalar product on
R™).

We will prove the following theorem, which shows in particular the result of Bhandari and DasGupta in the
general case, and which gives a partial answer to the U-conjecture:

Theorem 1.1. Let f, g :R” — R be convex functions ifi2(u,) for which equality holds irf1.1). Then, there exit
an orthoggnal transformatio®/ on R”, two vectorsx; andaz in R”, an integerk € {0, ..., n} and two convex
functionsf : R¥ — R in L2(ux) andg :R"* — R in L2(u,—x) such that, for allx in R”:

fUx)= (a1, x)+ f(x1,....xx) and g(Ux)= (a2, x) +Z(Xks1...., Xn) (x:(x1,...,x,,)).

Furthermore(ay); =0if i <k and(a2); =0if i > k (if Kk = 0 or k = n, we make obvious conventigns

Of course, the condition is sufficient. Actually, it is easy to see that 8" — R is a function inL?(u,,) and if
a belongs tdR” theng and the functionx — («, x) satisfy (1.1) with equality.
Secondly, we will show a generalization of the result of Bhandari and Basu:

Theorem 1.2. Denote byX a random vector of law,. Let f, g:R” — R be convex functions if?(,). We
assume thaf is an analytic function which verify, for allin R”, f(x) > f(0). If f(X) andg(X) are independent
random variables therf andg are unlinked.

The proof of Theorem 1.1 uses a new proof of Hu's inequality and the Ornstein—Uhlenbeck semigroup. In fact,
we will prove a new inequality which is slightly better than Hu'’s inequality.

2. Reinforcement of Hu'sinequality

Two functions f and g for which equality holds in (1.1) are not necessarily regular functions. Of course, it
is possible to approximate such functions with regular functions but those last functions do not satisfy automat-
ically (1.1) with equality. Nevertheless, that will be the case if we approxinfatend ¢ with the help of the
Ornstein—Uhlenbeck semigroup. For this, we will show an inequality which is a reinforcement of Hu'’s inequality
(Theorem 2.1 below) and which concerns the Ornstein—Uhlenbeck semigroup.

For the last thirty years, semigroups have been used to prove various inequalities as correlation, concentration,
Poincaré and log-Sobolev inequalities. Concerning correlation inequalities, it is possible to refer to the works of
Pitt [17] (perhaps the first use of the Ornstein—Uhlenbeck semigroup to prove a correlation inequality), Bakry and
Michel [3], Hu [10], or my former works [7,8]. There is also related work of Houdré, Pérez-Abreu and Surgailis
[9]. Concerning concentration, Poincaré and log-Sobolev inequalities, see for example the surveys of Bakry and
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Ledoux [1,2,12-14]. Furthermore, we will compare the following result with a work of Beckner [4] concerning
Poincaré inequality.
We define the Ornstein—Uhlenbeck semigroup with the Mehler formula:

VfeL?(un), Pf(x)= / flex+vV1-e2y)du,(y).
The Ornstein—Uhlenbeck operatbiis defined by:
Pf-f

t

D(L) = {feLzmn),

Pf—f

t

possesses a limit ih%(w,) whent goes to (}

Lf =tli_r)n0 for f € D(L).

Itis well known thatD(L) = { f € L2(n), Af — (x,V f) € L%(w)}andLf = Af — (x, V f) (whereAf — (x, V )
is taken in distribution sense). Furthermore, we have:

d .
VfeD(L), Vt>0, P, feD(L) and EPt(f) =LP f=PLf (in Lz(u,,)).
The properties o, and L we will use in the next theorems and remarks could be find in [15] or [16].

Theorem 2.1. Let f, g:R" — R be convex functions such thate L2%(un) andg € L?(uy), then, for allz > 0:

/ Fodun > / fPigdu, +(1—ef>< / xf djin, / xgdun>.

Remark 1. The inequality obtained in this theorem can be compared to a generalized Poincaré inequality due to
Beckner [4]. He showed, fof in L2(u,):

/ fPdu, — f (Pif)?dpn < (L—e?) / IV £1I2dpn.

If we choosef = g in Theorem 2.1 and if we replaeeby 2r, we obtain, for a convex functiofi (using the fact
that P, is a symmetric semigroup with respectig):

/Vfdun

Remark 2. We deduce from Theorem 2.1, thatfifandg are inL?(11,,) and convex, then:

— P, 1—e!
/fgtitgdun> . </deun,fxgdun>.

So, we obtain, whengoes to 0 and ig € D(L):

_/ngdMn ></deun,/xgdun>.

We will prove this inequality before Theorem 2.1.

2
(1—e2)

<ff2dun—/(af)2dun.

Remark 3. Recall that, forg € L2(w,), im0 Prg = [ gdp, (in L?(u,)). Consequently, if we let goes to
infinity in Theorem 2.1, we recover inequality (1.1).
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Remark 4. In fact, the inequality of Theorem 2.1 is more accurate than inequality (1.1). Actually, Theorem 2.1
gives:

/.fgdun 2/fPtgdun+(1—6_’)</xfdun,fxgdun>.

Furthermore, if we apply inequality (1.1) t6 and P,g (which is convex with the help of Mehler formula), we
obtain:

/szngn >ffdun/Pzngn+</deun,/xPzgdun>
>/fdunfgdun+e“</deun,fxgdun>,

because xP,gdu, = [ gPxdu, =e™" [ xgdup,. Consequently:

/fgdun 2/szgdun+(1—e")</deun,fxgdun>
2/fdun/gdun+</deun,/xgdun>.

Remark 5. Theorem 2.1 allows us to show thatfifandg are convex functions and satisfy (1.1) with equality then
P, f and P; g verify the same equality. Actually, we have:

/fgdun 2/fPZzgdun+(1—e_2’)</xfdun,/xgdun>

2/fdun/gdun+</deun,/xgdun>-

If f andg satisfy (1.1) with equality then:

/ fPugdpin = / fdin / gdin +e2'< / xf ditn, / xgdun>

=>/PtfPtgdun2/P;fduanzgdun+</xszdun,/xPzgdun>.
Before given the proof of Theorem 2.1, we will show the following result:

Theorem 2.2. If f, g:R" — R are convex functions ifi?(u1,) and if g € D(L), then

—/ngdun ></xfdun,fxgdun>.

Proof. We will prove this theorem foP, f and P,g (« > 0) instead off andg. Then, we will deduce easily the
result for f andg with the following convergences ih?(j,,):

imP,f=f, limP,g=g, IlimLP,g=1imP,Lg=1Lg.
u—0 u—0 u—0 u—0
We will use the following properties af, and L.

o Vh € L%(uy), Vit > 0, x > P,h(x) is a C*® function onR", fTi(Pth) € L%(u,) andVx € R", Vs > 0,
g (Poh) () = €7 Py (% (Prh) ().
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e Y(h1,hp) € D(L)?, [ hilhadu, = — [(Vh1, Vho) d .
We notice thatP, f and P, g are convex(C> and inD(L).

Defined (1) = [(V P, f, P,V P,g) du,. Because: is strictly positive,V P, f andV P, g are in L?(j,). Conse-
quently:

lim 6(¢) :</VPufd,un,/VPMgdun>.
— 00
Moreover:

t [P, f P,g “ AP, f P, g
0'(t) = “LP 2 )dun, =— V| —/=|.V| P, - dii,.
® ;/ ax; t( ax; ) a ;/< [ ax; } [ t( ax; )D a
It is possible to justify this equality by saying that(%/28) belongs toD(L) and that’.L belongs toD(L)
(becauséa%if = e*“/zPu/z(aaTi(Pu/zf)))- We write:

P, 9
P(E ) ot PPy,
3)6,‘ Bx,-

then, we obtain:

’ t . P, f 0Piiug '
0'ty=—eY [(V vl B e dpn =—é" | Tr(HessP, f HeSSP; ug) djin.
i=1 1 l

BecauseP, f and P, , g are convex, we dedud(r) < 0. Consequently:

/(VpufaVPug>dan ></Vpufd,unafvpugdﬂn>a

which gives:

_/PquPugdﬂn></xpufd,una/xpugd:“«n>- O

Proof of Theorem 2.1. For two convex functiong andg in L(i,,), we define:

§<r)=/fPtgdun —<fodMn,/xPzngn>
= [ regan, —e‘< [xrau. [ xgdun>.

It is sufficient to show thag is a decreasing function.

é:/(t):/fLPtgdﬂn —</deun,/xLPtgdun>

=/fLP,gdan—</xfdun,/Lthgd,un>
=ffLP,gdun+</xfdun,/xp,gdun>.

We apply the previous theorem jband P, g to obtain&’(r) <0. O
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3. Characterization of equality in Hu'sinequality

We begin to prove some elementary facts concerning convex functions. The following reasoning process is
inspired by the one of Bhandari and DasGupta [6].

Lemma 3.1. If ¢:R — R is a convex and non-constant function tHen,_, . o ¢(¢) = 400 or lim,_, _» ¢(¢) =
+o0 [6].

We deduce, by using the convexity@t) — («, x):

If ¢ :R" — R is convex and verify

Ja eR", IbeR, Vx eR", @) < {(a,x)+b,
then Vx e R", p(x) = (&, x) + ¢(0).

Lemma3.2. Let f:R" — R be a convex function. We define
E(f)=1{heR", 3(a,b) eR? Vi eR, f(th) <at+b}.

E(f) is alinear space contained IR" and
Ao e E(f), Yy1€&(f), Vy2€R",  f(y1+y2) = (o, y1) + f(2).

Proof. Itis obvious to see thal(f) is a linear space. L&y, ...e,) be an orthonormal basis éf /) andy be an
element ofR”. We denotey; andb; the numbers associateddpin the definition of€ (f). We have:

f(ine,» + y) < Hil (Z F(0+Dxiei) + f((r + 1)y)>
i=1 i=1
r 1 r
< <a, Zx,-ei> +o <;bi + f((r+ 1)y)>,

i=1

wherea = Y"/_; aje;. For a fixedy, the map:(x1,...x,) — f(Q_i_1xie; +y) is convex, so, we know from
Lemma 3.1 that:

Y(x1,...,x) €R", f(inei + y) = <a, inei> + £ ().
i=1

i=1
Unicity of « is obvious. O

Remark 6. If we choosey, = 0 andh € £(f) we see tha¥r e R, f(th) =t{«, h) + f(0).

Lemma 3.3. Letg:R" — R be a convex function if?(u,). Leth € R”, we assume that the map— ¢(th) is a
non-constant function. L&t, ..., ex) be an orthonormal family ifR” (k < n) and define

k

@(X)=/¢<X+Zyiei)duk(y) wherey = (y1, ..., yi)-

i=1
Then

Jee{-1,1}), lim @(th)=+oo,
&t—>—+00
Jee{-1,1}, Vs >0, lim (Psg)(th)=+to0.
&t——+00
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Proof. We know from Lemma 3.1 that

de e {—1,1}, lim @(th) = +oc.
et—+00
Lety e R™: g(5h) < 3(p(th + y) + (=) SO liMers o0 @ (th + y) = +o0. Furthermore:
t
JA > 0, st >A=>g0<§h> >0.
With Fatou’s lemma, we write:

o) o)

i=1

k k
<glgﬂrnol; |:go<th+2y,~e,~>+¢(—Zyi€i)i|duk(y)
i=1 i=1
= lim @(h)=+cc.
et——+00

We can prove the result fa?;¢ in the same way. O

Lemma34. Let f:R" — R be a convex function in2(u). Leth € R" ands > 0. Like in the previous lemma, we
associatef to f, then

h¢ E(f)= (h¢ E(F) andh ¢ E(P; f)).
Proof. h ¢ £(f) so, for every in R, the map — f(th) — at is non-constant. Defing, (x) = f(x) —a(x, W).
fa is convex and the map— f,(th) is non-constant, so, with the previous lemma:
Jee{-1,1}, lim fu(th) =+oc.
&t—>+00

Moreover: [ f,(th + Zf‘zl vie)dui(y) = [ f(th+ Zle yiei)dur(y) — at = f(th) — at. We deduce that the
mapt — f(th) — at is non-constant for alk. Soh ¢ £(f). We can prove the result faty¢ in the same way. O

Remark 7. In fact, the following equalities are trué(f) = E(f)=E(P f). Actually, we have for alB € [0, v2[
and becaus¢ € L2(ju,,): S1f(Bx)|dpn(x) < +oo. Leth € E(f) thenI(a, b) € R?,Vt € R, f(th) <at +b. For

y e R" andB € 11, V2[, we write:th + y = (1 — %)ﬂi_lth + 5By, consequently:

1 1
fh+y)<at+ (1— —)b + = f(BY).
B B
We deduceh € £(f) andh € E(P; f).
Now, we can prove Theorem 1.1.

Proof of Theorem 1.1. We choos€ex, ..., e,) an orthonormal basis @&" such that:

e (e1,...,e,41) is an orthonormal basis &f( )+,
e (¢/41,...,e41) is an orthonormal basis &f( )+ N E(g).
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We use Lemma 3.2 to construet associated tg” anda, associated tg. We obtain:

n r+k n
f(zxiei) = f(inel) +<061, Z xi€i>»
i=1 i=1

i=r4k+1
n r n r+k
8(2%‘%) = g(iné’i + Z xiei> + <012, Z xi€i>.
i=1 i=1 i=r+k+1 i=r+1

We want to prove = 0 so we assume## 0. We will use the fact tha}_;_; xie; ¢ E(f) UE(g) if (x1,...,xr)
#0.

Define (abuse of notations):

r+k

foa, .. x) = f(le'el') =/f(2xl'€i) At (Xr41s -2 Xr4k)s
i=1

i=1

r r n
g(x1,~--,xr)=§<zxiei> :/g(zxiei + Z xm) dpin—r—k(Xr4k+15 - - -5 Xn)-
i=1

i=1 i=r+k+1

Recall that ifg : R” — R is a function inL?(u,) and if« € R” theny and the map: — («, x) satisfy (1.1) with
equality. So, becausg andg satisfy (1.1) with equality, it is the case fgrandg againstu, in R”. Furthermore
(Lemma 3.4y 7 xie; ¢ E(f)UEQR) if (x1,...,x) #0. We deduce (f) = £(§) = {0}.

Using Remark 4 and becaugeandg satisfy (1.1) with equality, we have:

V>0, /fgdur=/fPugdur+<1—e”)</xfdur,/xgdur>,
(the Ornstein—Uhlenbeck semigroup we use here is the oRé)of

For the continuation of the proof, we only need the existence of one redl such that this equality is verified.
The functiont used in the proof of Theorem 2.1 is decreasing, so we deduce:

Vs e[0,u], &'(s)=0.

Consequently, for alt € [0, u]:

—/fLPsgfdur:</xfd,u,,/xPS§d,u,>
= [ Pitragan, =< [xidu. [ Ps/szs/zgdur>
=e5/2</xfdur,fm/z§dm>
=</xPs/2fdur,/xPs/2§er>

:>/<VPS/2f:VPs/2g)er=</ VPA‘/Zfdﬂrv/VPs/ngﬂr>-

We define, like in the proof of Theorem 2.2, the function:

0(t) = / (VP2 f PV Py .
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So we have, for every> 0, 6'(t) = 0, consequently:
vt >0, fTr(HessPs/gf HessP;,/28) du, = 0.

Using the formula HesB; /28 = e % P;(HessP;»g), we obtain:
vt >0, f Tr(HessPy /2 f Pi(HessP; 28)) d i, = 0.

Let ¢ goes to infinity, then:
Tr( / HessPs 2 f d, / HessPs/zgdur> =0. (3.1)

Matrices | HessP; 2 fdu, and [ HessP; 28 du, are symmetric and positive. It is easy to see that if both are
invertible then equality (3.1) is impossible. So, we can assumefthssPs/gfdu, is not invertible. We deduce
there exists an elementof R", i # 0, such that:

<U HessPs/zfdM,}h,h>:O

= /([HessPs/zf]h, hydu, =0
=VxeR’, ([HessP2f1(x)h,h)=0.
Definec(A) = Px/zf(kh), we obtain, for allk, ¢” (1) = 0, consequently:
I(a,b) eR? VAER, Pyof (Ah)=ar+b.
Soh e S(Ps/zf). Then, we deduce from Lemma 3.4 that 5(f) but this is impossible becaugef) ={0}. O

Remark 8. Actually, we have proved that if andg are two convex functions for which equality holds in Theo-
rem 2.1 for a fixed > 0, then the conclusion of Theorem 1.1 remains valid.

Remark 9. We obtain in the proof of the theoremi € £(f) andaz € £(g).
We deduce immediately from Theorem 1.1:

Corollary 35. Let f, g : R” — R be two convex functions ih?(w,) such that( fgdu, = [ fdu, [ gdu, and
([xfdun, [xgdu,) >0. Then([ xfdu,, [ xgdu,) =0 and there exist an orthogonal transformatiéh on
R”, two vectorsy; andas in R”, an integerk € {0, ..., n} and two convex functiong: R — R in L2(ux) and
2:R"* 5 Rin L?(u,_;) such that, for every in R”:

fUx)= (a1, x)+ f(x1,....xx) and g(Ux)= (a2, x) +Z(Xks1. ..., Xpn) (x:(x1,...,x,,)).

We havgai); =0if i <k and(ap); =0ifi > k.
Moreover, if [xfdu, = [xgdu, =0 then ([ xf dun, [ xgdu,) =0 is verified anda1 = a2 = 0 (conse-
quently, f andg are unlinked.

Proof. We start with Hu's inequality:

/fgdun>/fdun/gdun+</xfdun,/xgdun>>/fdun/gdun.
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We obtain:( [ xf du,, [ xgdu,) =0. Then, we use Theorem 1.1 to construct
Now, assume thaf xf du, = 0. Denotex = (y1, y2) whereyy = (x1, ..., x¢) andyz = (Xx+1, .-, Xp), @1 =
(0, &) with & € R" %, We obtain:/ xf(Ux)dpun(x) = ([ y1f(y1) duk(y1),@) anda =0. O

Remark 10. The second part of this corollary generalizes and proves the result of Bhandari and DasGupta [6] in
any dimension (iff andg are even functions thefixf du, = [xgdu, =0).

4. The U-conjecture

In the following, we denote by = (X3, ..., X,,) a random vector of law,. We deduce from the previous
corollary:

Theorem 4.1. Let £, g : R" — R be two convex functions ib?(i1,,). Assume thaf xf du, = 0 and thatf (X) and
g(X) are independent random variables thgrand g are unlinked.

Proof. The equality(/ xf dun, [ xgdu,) = 0is verified. With notations and results of the first part of the previous
corollary, we obtainv; = 0. So, it is possible to find/ and f such that:

fUx)= f(x1,...,xx) and g(Ux)=ax1+ §Xrs1, ..., Xn).

It is easy to see thaf (U X) andg(U X) are independent random variables. Denbte (X, ..., Xx) andZ =
(Xk+1s---» Xn). f(X1,Y) anda X1 + g(Z) are independent random variables, so it is the cas¢ (&, Y) and
aX1. Recall that in the proof of Theorem 1.1, we have obtained:

r+k
F g1, oo X)) = f( > Xiei>,
i=r+1

wh(_are, forr +1<i <r+k,e; € E(f)*. Consequentlyz_fifﬂx,»e,- ¢ E()If (xp11, ..., x4%) Z0. S0, we have
E(f) ={0}. Lety € L?(1) and let us assume+ 0 and f depends ony.

E(f(X1,Y)¥(aX1)=E(f(X1.Y))E(Y¥(aX1) = E( / FX1,y)dpk—1(y) z/x(axl)).

Define: f (x1) = [ f(x1, y) dpk—1(y). We haves(f) = {0} (Lemma 3.4). Furthermore:
E(f(X1)¥(aX1) = E(f(X1)E (¥ (aXy).

We choosey (x1) = f(2x1). We obtain:f(X1) = E(f(X1)) almost surely. Sof is a constant function, which is
a contradiction Witrf(f) = {0}. We deduce: = 0 or f does notdepend on. O

The following result is to be compared to the one of Bhandari and Basu [5] who show thainifl O are two
convex, positive polynomials independent with respegt eind if P(0) = 0 thenP and Q are unlinked.

Corollary 4.2. Let f, g: R" — R be two convex functions ib?(u,,). We assume that and g are bounded below,
that ([ xf dun, [xgdu,) =0and thatf fgdu, = [ fdu, [ gdum, thenf andg are unlinked.

Proof. We use notations and results of the first part of Corollary 3.5. Becfiumad ¢ are bounded below, it is
easytoseethat; =a2=0. O

Now, we will prove Theorem 1.2. We begin with a lemma:
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Lemma4.3. Let f: R" — R be a convex function such that
Vx eR", x#£0= f(x) > f(0).
For ¢ > 0, defines(¢) = sup||x||, x € R", f(x) — f(0) < ¢} thenlim,_,08(e) =0.
Proof. Assume tha(¢) does not go to 0. We construgt> 0 and a sequende)) ,>1 such that limy_, ; e, =0

andé(e,) > n for all p. We associate te, an elemenk, of R" such thaf|x, || > n and f(x,) — f(0) <¢&,. We
can assume th% goes toe (an element oR” of norm equal to 1). Then:

n n n
< 1— —— 0 4+ — < 0 + .
f(pr”xp) ( ||xp”>f() fxp) < FO) +¢,

llxpll
We obtain:f(ne) < f(0) , so f(ne) = f(0), butitis not possible becauge 0. O

Proof of Theorem 1.2. We use here the same orthonormal basis as in the proof of Theorem 1.1. So, we construct
a1 andag associated tg andg. Becausef is bounded below, we hawa = 0. Consequently:

n r+k
f(zxiez) = f(inez),
i=1 i=1
n r n r+k
g(zxiei) =g<2xi@i + Z xi€i> +<0lz, Z xi€i>-
i=1 i=1

i=r+k+1 i=r+1
We assume > 1. Define:

r n
§(X1,..-,xr)=/g<2xl'€i+ > xm) d (1) Xr k415 - -+ Xn),

i=1 i=r+k+1

r+k
fl(xl» e Xpgk) = f(zxiei)-
i=1

We haveg(g) = {0} (Lemma 3.4) and ( f1) = {0} (becauséex, ..., e,4x) is an orthonormal basis &f( f)+). Let
¥ :R — R be measurable and bounded, we obtain:

r+k

/(g(X1,.--,xr)+<Ot2, > Xiei>)lﬂ(f1)(X1,-..,xr+k)d,ur+k(x1,---,xr+k)

i=r+1

_ f 2CW o () dpty (x)

= [ s@din [ o re0dunco

r+k

=/<§(X1,.--,xr)+<a2, Z Xi€i>> ditrk (X1, .. Xr4k)

i=r+1
x f VDEL - Xrsk) ik (K1, - Xr40).

Let considery a random vector ifiR"+* of law 1,4, and choose, for > 0, ¥ (1) = 1j_¢.¢(t — f1(0)). We write
Y = (Y1, Yo) whereY; e R”, ¥» € R¥. So we have:

~ 1 —f1 <e ~ ~
E((gm) + (@2, 2)) 3 fl'(fy()y )_fff?(‘); = 8)) = E(2(Y1) + {02, Y2)) = E(3(11)).
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If there existsy £ 0 such thatfy(x) = f1(0), and asf is convex, we obtain:
vt e€[0,1], fi(tx)= f1(0).

But f1 is an analytic function, so:
vieR, fi(tx) = f1(0).

Consequently € £(f1), which impliesx = 0. We have obtained®x # 0, f1(x) > f1(0). Now, we use Lemma 4.3
for f1. We denotes () = sup||x ||, x € R, fi(x) — f1(0) < ¢}.

~ ~ 1 — f1 &
E<|g<Y1>+<az,Yz>—g(0>| A= 1O )

P AY) — f1(0)] < e)
1 n0-hoige )
1Y) — f200<e) )’

< E<|§(Y1) + (02, Y2) — 8(0) [y <sce) P
We deduce:

- ~ Lawm-noi<e ) .
lim E( (3(v Y = 3(0).
&0 <(g( D+ V) g - roi<e) ~ 4@

Consequently:

E(g(YD) = (0).

The mapg is convex, that means that there is equality in Jensen’s inequality. We dgdkiaa affine map, but this
is impossible becaus®&g) = {0}. Consequently = 0. Then, it is possible to find an orthogonal transformation
such that:

fUX)=f@rit X)), gUX) = Z(Xrphgls .- Xn) + aXpy1.

But f(UX) andg(U X) are independent random variables,se; 0 or f does not depend o)1 (see the proof
of Theorem 4.1). O

Remark 11. The idea of using a function liker 1, .1(r — f1(0)) and the case of equality in Jensen’s inequality is
due to Bhandari and Basu [5]. If we compare the proof given here to their proof, the novelty is thefigg die
choice of the orthonormal basis, the extension to an entire fungtiand the end of the proof (to prove= 0 or

f does not depend o) 1).

Remark 12. In the proof, we could uséx € R”, Vr € R, f(tx) = f(0)} instead of€(f). However, it is essential
to work with £(g). We have to notice that(x) > f(0) for all x implies{x € R",Vt e R, f(tx) = f(0)} = E(f)
(by usinga1 = 0 and Remark 6).
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