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Abstract

Under certain conditions okl we calculate the limit distribution of thith largest eigenvaluey,, of the Gaussian Unitary
Ensemble (GUE). More specifically, if is the dimension of a random matrix from the GUE a@ni such that botl — &
andk tends to infinity as: — oo thenxy is normally distributed in the limit. We also consider the joint limit distribution of
Xy < --- < xy,, Where we require that — k; andk;, 1 <i <m, tends to infinity withz. The result is am-dimensional normal
distribution.

0 2004 Elsevier SAS. All rights reserved.
Résumé

Sous certaines conditions sk nous calculons la distribution limite de kaéme valeur proprey;, du GUE (Ensemble
Unitaire Gaussien). Plus spécifiguement; sit la dimension de la matrice aléatoire du GUE est tel que: etn — k tendent
vers l'infini quandn — oo, alorsxy, est distribué normalement a la limite. Nous considérons aussi la distribution limite jointe de
Xpy < -0 <X, OUn —k; etk;, 1<i < m,tendent vers l'infini en méme temps quel e résultat est une distribution normale

de dimensiom:.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction and formulation of results

The Gaussian Unitary Ensemble (GUE) is a classical random matrix ensemble. It is defined by the probability
distribution on the space af x n Hermitian matrices given by

P(H) =C, - e~ Tacei? gy
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By dH we mean the Lebesgue measure onihessentially different members of the matrix, namely

(ReH;;; 1<i<j<n,ImH;;1<i < j<n} (1.0
In other words this means that the entries in (1.1) are |ndepemd@1tl+8”) random variables. The measure on
the matrices naturally induces a measure on the correspondésa elgenvalues,. This induced measure can be
explicitly calculated and it's density is given by

1
pn(xl»-nvxn)zﬁ l_[ |xi—x] eXp|: Zx:|

no1<i<j<n

The normalization consta? is called the partition function. It is often convenient to work with the eigenvalues
being ordered. Naming the eigenvalues so #hat - - - < x,, gives that the probability densiwy, , (x1, ..., x,) Of
the ordered eigenvalues defined on the space

{x1, .., xpx1 < - -- < xp}
is given by
pn,n(xl, ey Xn) =n!Pn(xl7 coesXp).

This densityp is a member of a family of functions called the correlation functions. These functions are defined by
n!

(n—k)!

pn,k(-xlv"'axk): f pn(xlw--’xn)dxk-l-ln-dxn—del(K ('xl9'xj))l/ =1
Rn—k
HereK, (x, y) is given by

n—1

1.2 2
Kn(x,y) = hi(x)hi(y)e 20717,
i=0

where{h;} are the orthonormalized Hermite polynomials, that is

o
[ meonj e a =,
—00
The kernelK, (x, y) can also be represented by the so called Christoffel-Darboux identity.Farit holds that
Kn(x,y) = ( >1/2h @ hn-1(¥) = hn(hn-1() _124y2)
2 X—y

and forx = y one has

Ku(x,y) = (nh3(x) = v/n(n + Dhp_1(x)hps1(x))e™™
The correlation functiom, 1 describes the overall density of the eigenvalues. Wigner’'s semi-circle law states that
2/1—x2 j
lim \fpn 1(V2nx) = { ¥ xS, (1.2)
if x| > 1.

All the results above and more can be found in the book of Mehta [7].
This paper deals with the distribution of eigenvalue numbef the GUE. More specifically we look at the
distribution of thekth largest eigenvalue asandk tends to infinity. For example if

k=k(n)=n—logn
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then asn becomes large is very close (relatively) to the right edge of the spectrum. Another example is when
k =n/2. In this case we are in the middle of the bulk of the spectrum. In both cases one ends up with a normal
distribution in the limit. The following theorems generalize and specify this statement.

Theorem 1.1 (The bulk) Set
t
2
G(t) = —/\/1—x2dx, -1<r<],
T
-1

andr =t(k,n) = G~1(k/n) wherek = k(n) is such thatk/n — a € (0,1) asn — oo. If x; denotes the-th
eigenvalue in the GUE then it holds thatas> oo
Xp —tA/2n

logn 1/2
(4(1—t2)n) /

in distribution.

—> N(O, 1)

Theorem 1.2 (The edge)Letk be such that — oo but§ — 0asn — oo and definex,_; as eigenvalue number
n — k in the GUE. Then it holds that as— oo,

Xk = ~20(1 = (F2)7%)

1 logk
((E)Z/Snl/siz/s )1/2

—> N(, 1)

in distribution.

Remark 1. The theorems deal with the bulk and the right spectrum edge. One gets the equivalent for the left edge
with some obvious modifications.

Remark 2. In [12] the distribution of the largest eigenvalue was studied. Also eigenvalue nunviidr & fixed
has been studied.

Remark 3. Setl = (—o0, s]. In[1] it is shown that

P(xp€(s+ds)) = < / Ji(x1, .oy Xg—1, 5)p(cxa) - "M(dxkl)>ﬂ(d5)- (1.3)

k=1

(k — 1!
1

Here J; is the so called Janossy density and
11(dx) = Const e */2dx.

In [1] it is also proven that/; can be expressed explicitly by a determinantal formula.fFand» as in (1.1) or
(2.2) we thus have that (1.3) is for largeapproximately equal to the probability density function of the Normal
Distribution N (u, o). The parametera ando should of course be taken to be those indicated from the relevant
theorem above.

Remark 4. The zero numbetk of the Hermite polynomial of degreeis close to the expected value of eigenvalue
numberk of GUE,. This can be shown directly by the following result [4]:

There are constanky andC such that fokkg < k <n — kg anda = k/n it holds that
Tk G_l[k C

ko 1 arcsifG(k/n)) + i” <— =
V2n n 2mn 2n ||~ nP(a(l—a))¥3
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Herezi, < --- <z, are the zeros of the Hermite polynomial of degre&Vhen we're in the Bulk this translates
into

k C
_vae(*) < £
* (n)‘ Jn

This means that one can replacg2n by z; , in Theorem 1.1. Close to the edge this replacement is not allowed.
The zeros and the expected values are not close enough there.
A motivation for this approximate equality between the locations of zeros and eigenvalues goes as follows. Set

1 n
W= Einz— Z log|x; — x|
i=1 1<i<j<n
and note that

Pnn(X1, ..., x,) = Const. 2V,

Itis a fact [7] thatW obtains its minimum exactly wher = z; ,, 1 <i < n. This configuration is hence the most
“probable” for the eigenvalues. Expanding around this minimum we see that it is reasonabie shatild have
Gaussian fluctuations aroung,, .

Remark 5. If one is interested in the distribution of the eigenvalues of some other ensemble one should in many
cases be able to apply the same methodology that has been used here.

It is also interesting to see what happens when looking at two eigenvalues at the same tinkgn Wit is
meant thak(n) = h(n) - n whereh is any function satisfying

)

n

—0 and h(m)n® — oo (1.4)

asn — oo for all ¢ > 0. We have the following results:

Theorem 1.3 (The bulk) Let {x;,}]' be eigenvalues of the GUE such titak k; — k; 11 ~ n%, 0<6; <1, and
ki /n — a;, wherea; € (0,1) asn — oo. Defines; = s, (k;, n) = G~ 1(k; /n) and set

Xk, — Siv2n

izm, l:].,...,m.
4(l—sl.2)n

Then ast — oo
PX1<x1, ..., Xon <xm] = @alx1, ..., Xm)

where A is them x m correlation matrix withA; ; =1 —max i< j<m O, and® 4 is the cdf for the normalized
m-dimensional Normal Distribution with correlation matrix.

Theorem 1.4 (The edge)Let {x,_, }1' be eigenvalues of the GUE such tiat~ n” where0 <y <1 and0 <
kiv1—ki ~nl 0<6 < y. Set

Xnky = N20(L— (T3
Xi= 123 9 12 , i=1...,m,
((m) W)

1 cumulative Distribution Function.
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then asn — oo
]P)[Xl < xls MR Xm < xm] - ¢A(-x1a .. "xm)»

whereA is them x m correlation matrix withA; ; =1 — % MaX <k« j<m Ok, and @ 4 is the cdf for the normalized
m-dimensional Normal Distribution with correlation matrix.

Remark 1. As one would expect the eigenvalues get less correlated as they get closer to the edge.

Remark 2. The eigenvalues are quite correlated in the bulk. In ordekfandx,, to be independent in the limit
it must hold thatk — m| ~ n. Itis interesting to compare with the following result by Mostels, p. 201]:

LetX; (i =1,...,n), be an independent random sample from the Uniform DistributiofOph). Consider the
asymptotic joint distribution of the: sample quantileX,; (j =1,...,m), wheren; = [A;n] + 1 and 0< A1 <
cee < A

Theorem 1.5 (Mosteller) Asn — oo the joint distribution ofX,,, ..., X,, tends to arm-dimensional Normal
Distribution with means. ;, variances: =1 (1 — 1) and correlations

p(Xp Xn )= [T i<
TR A (L= 1)

Hence in this casgX,,; }7' are in the limit globally correlated.

2. Proofsof Theorems1l.1and 1.2

The proofs of Theorems 1.1 and 1.2 relies on a theorem by Costin, Lebowitz and Soshnikov [2,10]. Before
presenting it we need some notation.

Let {P;}, t € R, be a family of random point fields [9], on the real line such that their correlation functions
have a determinantal formCall the determinant kernel&, (x, y) and let{/;} be a set of intervalsd, denotes
an integral operator ofy with kernel K, (x, y), A, : L2(1,) — L2(1,). By E, and Vaf is meant expectation and
variance with respect to the probability distributiBn Finally, let #, stand for the number of particles in

Theorem 2.1 (Costin, Lebowitz, Soshnikov).etA; = K, - x;, be a family of trace class operators associated with
determinantal random point field®;} such thatvar, (#1;,) = TracgA; — A,z) goes to infinity ag — oco. Then

#I; — E[#I;]
JVar(#l;)

in distribution with respect to the random point fiel.

— N0, 1)

The following lemmas will be proven in Sections 4 and 5:

Lemma 2.1. Letr =t (k, n) be the solution to the equation

t
2
n—/\/l—xzdx=k,
T
21

2 Mosteller actually allowed foX; to come from more general distributions.
3 An example is the GUE.
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wherek = k(n) is such thatt/n — a € (0, 1) asn — oo. The expected number of eigenvalues in the interval

n_[@t+ 'Zi” oo>

is given by
X logn
E[#I,,]:n—k—;,/(1—t2)logn+(9( ; )

Lemma 2.2. The expected number of eigenvalues in the intefyat [«/2nt, co] wherer — 1~ asn — oo, IS
given by

E[#1,] = g(t) = 43—fn(1 -2+ 0.

Lemma 2.3. The variance of the number of eigenvalues in the intefvaf2n, 0o) is equal tos > Iog[n(l —
H¥2](1 4 n(n)) wherelim,,_, oo n(n) =

Using the lemmas and Theorem 2.1 we are now ready to prove Theorems 1.1 and 1.2.
Proof of Theorem 1.1. Set

B logn 1\ Y2
o=z tim) )

Using Lemmas 2.1 and 2.3 we get

P, [( ,og:f < S} |:Xk < t@+§(mi)l/2]

1/2 _ 42
g )Y 41 —1t%)n

=Pu#l, <n—k]=P,

[#In —E,[#],] < n—k—E, [#In]}
(Var(#1,)/2 = (Var(#l,))1/?
#1, — E, [#1,,]
[(Var(#l piz S

whereg(n) — 0 asn — oo. By the Costin—Lebowitz—Soshnikov theorem the conclusion follows.

+€(n)},

Proof of Theorem 1.2. Let g(¢) be the expected humber of eigenvalues in the intekyal [1+/2n, 00). We have

B #I, — g(1) k=8
P[5k < 1V/20] = B[ty < k] = Pn[(Varn(#In))l/z = a1, 7 2}

If we can findr such that

k—g(t)
(Var, (#1,))1/2

asn — oo, then by the Costin—Lebowitz—Soshnikov theorem it holds that

— & (2.1)

&
2
]Pn [Xn—k g IN/Z] e / izr[ exp[_?i| dx.

—0o0
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The idea now is therefore to find a candidate fo¥We will then insert thig in the equation above to see if it is
satisfied. Set for simplicity (1) = (Var, (#1,))Y/2. We have from Lemmas 2.2 and 2.3 that
g(H)=amn(1—0%?+0(1),
h(t) = azlog"?[n(1 — 1)*2] + o(log”?[n(1 - 1*?]),
whereq; are known constants. We have the equation

k=g(t) +&h()

or, sinceg is a strictly decreasing function,

t=g Hk—ER@) =g M k) — (7H (k) - ER ().

Since
-1y e — =
0= o
we need to study (k).
r \2/3
k~anl—-10%? = 1~1-— (—) )
ain

A reasonable guess for the derivativego that
3a
gt~ —7111\/1 —t.
We now get

3a1 k %3\ ? 3a2/3
1 =1NY A 1 ,1/3 2/3
k)~ —— =——%
& (g ( )) 2 n(<a1n> ) 2 "

and
h(t) ~ h(g 1 (k)) ~ azlog"? [n i} ~ aylogY/?k.
an

When gluing the pieces together one gets

1 <k )2/3 2a; logt/2k

m Saf/3 ©1/3,,2/3"

When inserting this expression in (2.1) it turns out that it all works out. Some rearranging finally yields the re-
sult. O

3. Proof of Theorems 1.3 and 1.4
We shall use the following theorem [11]:
Theorem 3.1 (Soshnikov) Let (X, F, Pr) be a family of determinantal random point fields with Hermitian locally

trace class kernel«; and {Izl), e, Iék)}@o be a family of Borel subsets &, disjoint for any fixedL, with
compact closure. Then if for somag, .. ., ;. € R, the variance of the linear statisti@j’i_oo fr () with f7(x) =
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Z’;zl o) Xy (x), grows to infinity in such a way thafar, (#IZ’)) =ONar, (32 fr(x)) foranyl < j <k,
the Central Limit Theorem holds

L j L j
ShogalPun) — By e
=
JVar (4 P

in distribution.

— N(O, 1)

Remark 1. The theorem in [11] is actually more general than the theorem stated here.

Remark 2. If the prerequisites in the theorem holds for any..., o then #(1), .. .,#Iék) are jointly normally
distributed in the limit [5].

Proof of Theorem 1.3. Take{k;}, s; and X; as in the formulation of Theorem 1.3.Af — k; 1 ~ n% thens; —
si+1 ~n%~1 and for any real numberns we therefore have the identity (farlarge enough)
#I1 — E[#11] n—k1— E[#]1]
g 9

(Var(#I,))1/2 (Var(#I1))1/2
#I1 +#Ip — E[#I1+#I2] _ n — ko — E[#]1 + #15]

(Var(#tly, +#)Y/2 = (Var#l1 + #15)Y2 7777
s #li — ED iia #1i] _n— ki — B #11]

(Var(yjLy#1))Y2 = (Var(y Ly #1:))Y/?

]P)[Xlgxls"-9xm <xm]:P|:

Here the intervalg; are given by

1/2
Il:(S]_@"‘Xl(Ln)) ,OO),
n

41— 2
lo 12 lo 12
IiZ(SiV2n+xi<inz) ,Si—1\/2n+xi—1<¢g> }
41 —s)n 4(1—s7n

where 2<i < m. We would now like to investigate the joint normality of
m
#I#0 +#o, .Y #;
i=1
To do this we shall consider linear combinations of the variables and show that they are normally distributed in the
limit. Since

ar#tly + ax(#1 + #12) = (a1 + a)#1) + ax#l

and so forth itis clear that one can instead look at all linear combinatio#d;9%'. Hence, by the theorem abote,
we must calculate (Appendix)

Var(al#11+a2#12+--.+am#1m)=2a,?// KZ(x,y)dxdy —Zaiaj /f KZ(x,y)dxdy
i=1

= Iixlic i#] I; x1j

4 The theorem by Soshnikov does not apply directly to this situation sindees not have compact closure. This is however easily overcome
simply by chopping of the interval far out where the probability of finding any eigenvalue is exponentially small in
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to see that it is of magnitude lag First define the se¥ by k e M < 6, = 1. Hence
M={ky,....kj}; 1<ki<ka<---<kj<m-—1

for somej suchthat 6 j <m — 1.
Suppose first that = 0 which means that; < 1 for alli. If a3 # 0 then by using the inequalityy < %(x2+y2)
we get

Var(a1#1h + ao#tly + - - - + ap#ly,) > Zoc // 2(x y)dxdy — Z (o +(x2) /fK (x,y)dxdy

i=1

IixIf IixI;
-2 2([[ x2e ey - Z// KRonad) @
I xIE J# %1,

All the terms in the sum are non-negative and the first term can be calculated as in the proof of Lemma 2.3. It was
shown in the lemma that in the domain

1 1
= ;8 <x < —, 5 = <y<
{(x’y)’s TS+ logn s logn Y s}

it holds that
21K, ( 2nx@)—;+0 -
" VYT o2 — )2 '

logn

It was also shown that if
= {(x,y);VZns <x <00, —00<y< 2ns}/\/2n-.(2
ther?

/ Ks(x, y) dx dy = O(loglogn).

In what follows we shall often make use of these facts without mentioning it. The main contribution to the first
term in (3.1) can now be calculated to be (disregarda’ﬁp

1 *
s1t1og7 s—nf 1

! dr= 2% + O(loglogn)
= n n
x—y)? y o) g glog
51 Sl*]ﬁ
wheref* = max; 6; < 1. By our definition of~ above the integration in thg-variable should have been over the
interval (s1 — 1/logn, s1 — h(n)n? ~1) whereh(n) satisfies (1.4). However, because of the logarithmic answer this
h will only produce lower order terms.

Now suppose that = 0 as beforeg; = --- = a1 = 0 butey #£ 0. In this case we get
Var(ogp#ly + - - - + ap#ly,) > Z(x (// 2(x y)dxdy — Z f/ 2(x y)dxdy)
IxIE k<U#

Using the estimates above it is straightforward to verify thaktberm is of order log.

5 SinceK, (x,y) = K, (v, x) itis clear that the same estimates hold in the domains obtained from reflection with respeat to thine.
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Whenj > 1 meaning that there is at least dnwith 6, = 1, things are only slightly more complicated. L&t
be the largest integeérsuch that; = 1. It is sufficient to consider the case when there exists* + 1 such that
a; # 0. On the other hand if this is the case then we are in a situation very similar to jxa@n Eitheroy«11 # 0
oroy+y1=---=0oy_1 =0 bute; # 0. The details are left out.

Itis hence a fact that

m
#Iq, #11 + #1p, ...,Z#I,-
i=1

in the limit have a joint normal distribution.
To complete the proof we need to calculate the correlations between the différentf#j < i we have that
s; —s; ~n~Y wherey =1— max;<i; 0. Set

k
X = Z #I,,.
m=1

From a straightforward calculation (as above) we get that

Var(X; — X)) :Var( 3 #Ik) =Var<# U 1k> — X logn + O(loglogn).
T

k=j+1 k=j+1
Since
1
Var(X;) = — logn + O(loglogn)
22
the correlatiorp is given by
$(Var(X ;) + Var(X;) — Var(X; — X))

= 1).
Y Var(X;) Var(X ;) v +ol) .

Proof of Theorem 1.4. This proof is of course very similar to the previous one so some details will be skipped.
With notation as in the formulation of Theorem 1.4 the intervals of interest (cf. previous proof) are in this case

i\ 2/3 loak 1/2
11=(v2n<1—C1<—1> )+x1C2<7g 213) ,oo>,

n n1/3k1/

k; 2/3 logk; 1/2
n=(va(i-a() ) rne Rm)

ki-1\3 logk;—1 \*/?
Vonl1- . -l
i

whereC1, C» are known constants and<i < m. Given any{x;} it is straightforward to show that for large
enough{/;} really are intervals. As in the previous proof we want to show that

#I1,#1, ..., #],

are jointly normally distributed. The way to prove this is the same as before but some details are different. By
Lemma 2.3 we need to show that

|OgI’L = O(Var(Z Oli#li>)
i=1

for any realy;’s such that for someé«; # 0.

p(Xi, Xj) =
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Lett = ¢(n) be such that — 1~ asn — oo andn®=%3 <1 —t < n—* for some O< ¢ < 1/3. From the proof
of Lemma 2.3 we have that in the sets

1—1¢ 1—1¢
Q[ t\x\t+ ,t_ g)’gt
logn logn

1 1
272G —y)2 © O<|09n>'

Returning to the variance calculation we first assume ¢hat 0. We know from the previous proof that in this
case it is sufficient to to show that

// KZ(x,y)dydx

I (IN\UiLp 1)

it holds that

2nK5( 2nx,~2ny) =

is of order log:. In fact since the integrand is non-negative it is enough if
1
// — dy dx
(x =)
I*x 1y
is of order log: where

1-—1¢
1*=<t1+i’1,t1+ 1),
logn

I (t 1_tlt)
* = 1— 7 »im
logn

and

C( logk; )
ri=x;iC| ——= -
i i n1/3kl-2/3

An elementary calculation shows that this integral is indeed of order.log

If @3 =---=ar_1 =0 buta; # 0 itis sufficient that the integral
dx
/ / o ?
J*x T

is of order log: where

-t
J* =t 1, tk— )
(k 1+ re—1, -1+ logn )

oo = (t, k1)

Again we get the size lag This proves that we get a Normal Distribution in the limit. The calculations of the
correlations are very similar to the bulk case and the details are not presentedihere.
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4. The expected number of eigenvaluesin I,

In this section and the next we shall need asymptotics for the Airy function and the Hermite polynomials. In
[4] the asymptotics for a class containing the Hermite case was studied. It is shown there that forfiRetie
following holds:

1 -14+6<x<1-3.

2 \¥2 1 1. _
h,,(@x)exp[—nxﬁ:(nm) (1_x2)1/4<cos[2nF(x)—Earcsw(x)]+O(n 1)).

2. 1-86<x<1.

1/4
ha(V2nx)e ™ = (2n)_1/4{ ) [3nF ()] YO Al (—[3nF(0)]7®) (1+ O Y)

3. 1<x<1456.

(i
( ) [3nF ()] YO A (=[3n F(x)]2/3)(1+(9(n—1))}.
(5

1/4
By (W 2nx)e"% = (2n)~ 1/4{ ) 3nF ()] A ([3nF(x)]7)

- (i;i)m[&ﬁ(x)] Yo pi'([3 F(x)]z/s)}(1+0(n_l)).

4. x > 1+6.
ha(V2n2)€" = O(n~ e W),

In these expressions Ai stands for the Airy function and
1

/I 1—y?|dy|.

X

F(x)= (4.2)

There are of course also similar asymptotics for the Hermite polynomials near theqioint
The Airy function is bounded on the real line. It is exponentially small an R and forr > 0 it holds that [8]

Ai(—r) = n1/2r1/4{cos{§r3/2 -~ ﬂ + O(r3/2)},
A’ —1/2 1/4) 2 32 T -3/2
i'(—r)=m r sin ér 2 + O )t

Proof of Lemma 2.1. Set

JTogn
>

Sa(@)=t+x

We have that

e ¢]

E[#,] = / np (),
Ju(t)
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wherep, is the scaled density for the eigenvalues (the limiting density has suppp#tlirl]). From symmetry
one gets

0 fn(®)
n
/ np,(x) dx = 2 f npp(x) dx.
Jn(@) 0

Formula (4.2) in [6] applied to the hermitian case says that

1
2 1 1 1 2
— . I _ _ - 2 -1
non(x) = n n\/ﬁun(x_l x+1>co{nn/,/l y dy}rom ).
X

This formula is valid in the intervgl-1+ 8, 1 — §] for any (fixed)s > 0. We now get

Ju (0 Ju (D)

E[#ln]=%—n§ / \/1—x2dx+0(n71)=n—n§ / Vi—x2dx+0n™h
0 -1

t
:n—n§</\/1—x2dx+\/1—t2x Y 20ngn +O(|092”>> +0@m™t
n
—1

X logn
=n—k—=,/(1—-1?]I .
n—k - ( t)Ogn+(’)( . )

Proof of Lemma 2.2. From formula (4.4) and (4.21) in the paper [6] one gets after some minor calculations that

@@ Y0\ a ¥ o .
npu () = (4¢ D e )[2A| (@) A (@ ()] + &' [ (A () — &) (A (@ (1)))?]
1
+O<n(«/l—x)>

in a fixed neighborhood dD, 1]. Herep, is the scaled density for the eigenvalues so that

g(®) Z/npn(x)dx-
t

The functionsy and@® are given by

x—1 1/4

)/(x)=(m> )

®(x) = ~(3n [1VI=y2dy)*” ifr<t
(3n [ Vy? - ldy)z/3 if x> 1.

The functiony is evaluated taking the limit from the upper half plane using the principal branch.

The fact that the asymptotics only holds ff, 1 + §], for somes > 0 (independent af) is not a problem. It is
not difficult to show that forx > 1+ § p, (x) is exponentially small im and exponentially decaying in

We now look at the different terms in the asymptotical expressiop,fabove. When looking at the asymptotics
for Ai and A’ it easy to see that

| Ai (x) A’ (x)| = O(D).
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This together with the fact that
@' (x) V’(X)>
— =01
<4<P(X) 7(x) @
gives

146

P'(x) Y (x) , . -
/ <4¢(x) - y(x)>[2A'(¢(x))A' (@))]dr = O(D).

t
The main contribution comes from the second term. In fact a primitive function can be found for this expression:
1+ @ (1+3)
/ ' (0 [(A (@ (1)) — b () (Ai (@ (1)) 2] dr = [y = D ()] = / (A" (1)) = y (A () dy
! ®(1)

@ (1+6)

2 _ . 1 .
= —[—(yZ(Al ()% = y(A'M)?) = S Ai() AI’(y)}
3 3 D(t)

— :—i(qﬁ(t)z(Ai (@(1)))* — &) (A (1)))%) — %Ai (@) Ai' (@ (1)) + O(exp—[cn]).

Herec is a positive constant. Integrating the third term only gives a contribution of ardferOne can now use
the asymptotics for the Airy function and it's derivative to get the stated resuit.

5. Thevariance of the number of eigenvaluesin I,

Proof of Lemma 2.3. The proof will be divided into two basic cases. The first case is wherr & § for a fix
3 > 0, i.e. in the bulk. The second case is whear(n) — 1~ asn — oo i.e. near the spectrum edge (considering
the right edge here).

First definel, = [tv/2n, 00) and #,, as the number of eigenvaluesiin It is a fact (see Appendix B) that

Var(I,,):f/ Kf(x,y)dxdy—f/ Kf(x,y)dxdy:// Kf(x,y)dxdy.
I, R

I, I, I I¢

HereK, is the usual determinant kernel for the Hermitian ensemble. The advantage with this representation is that
there is only one singular point in the Christoffel-Darboux representatiah, of, y):

K, (x,5) = \/g hn<x)hn_1<y; - /;n_l(xm(y) exp<_ % o2+ yz))_
Case | (the bulk). After a change of variables6 +/2nx) we get the integrand
[@Kn(@x, @y)]z.
First consider the domain where both variables are in the bulk:
F={(x,y;1<x<1-8,-1+8<y <1t} (5.1)

In I" h, has asymptotics as

hn(V2nx) expl—nx?] =

2 1/2 1 | .
(n@> (1_x2)1/4<cos[2nF(x)—Earcsw(x)}+o(n )>.
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Here

1
F(x):/\/l—zzdz= (arccost — xv/1—x?).

1
2
The asymptotics fok,,_1 becomes

2 1/2 1
hn—1(v/2nx) expl—nx?] = (nm> (1—x2)i/4

x (cos[Z(n — 1D F(x,) — %arcsir(x,,)} + O(nl))

(2 \Y? 1 on— 1 F 1 -
—(n@) (1_x2)1/4<cos[ (n—1) (Xn)—éarCS|r(xn)j|+ (n ))’

wherex, = /=5 x. A Taylor expansion gives

Fon) = F@) = 5o 1= 224 00 7)

leading to

2(n — 1) F(xp) = 2nF (x) — 2F (x) —xvV1—x2+ O~ = 2n F (x) — arccosc + O(n™Y).
One can now write
2
JT«/Z(]. _ x2)1/4(1 _ y2)l/4

1 1
x cos[ZnF(x) -5 arcsinx] cos[ZnF(y) -5 arcsiny — arccogz] +0m3%?.

hn (XN 2n) 1 (¥ 20y) exp[—n(x% + y))] =

Set, for simplicity,

1 .
oy =2nF(x)— > arcsinx,
0, = arccost.
By the Christoffel-Darboux formula

1 cosa, codary — 6] — codary — 6] coSary + O(n1)
(1—x)Y4Q - y2)l/4 X—y '
To prepare for integration we now divide into four disjoint sets. Set

«/ZK,,( 2nx, \/Zy) = -

1 1
Fo={(x,y);t<X<t+—,t——<y<t},
n n

1 5 1—1¢ t+1 1
N=IyuUly=1xy;t<x<t+——,t— <y <
r(n) r(n) n

1 1—1 1
Ut yst+—<x<t+——,1——-<y<ry,
n r(n) n
=T\ oV,

wherer (n) =logn andI” was defined in (5.1).
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I'v: When integrating ovefp one can use the fact that
sin(x —
V2nK,(v2nx,v2ny) < CnM
X =y

whereC > 0. Hence
/ (V21 K, (vZx, 2y P de dy = O(D).
Io

I'1: In I'T we have

1
6, = arccosc = arccos + (9( " ))
and of course also the equivalent fgr. Definingé = arccos we get by the use of some trigonometric identities

that
coso, codary — 6y] — codar, — 6] COSy, = COSa, COYary — 6] — cOJax — O] COSry, + O( ( ))
r\n
=v1-1r?sinfa, — ax]+(’)( (1))
Since
Vit _140( =
(1—xDVA1— y2)1/4 ~ (m)
and
1
,—oay=2n(F F +0
ay — o n( ) - (X)) <(n)>
we now have
ine[2n(F F(x)]+ O(2-
// [V21K, (v/2nx, v2ny)]* dx dy = // L Smizntion - (xz))] (r("))dxdy+/f—0(1)2
(x—y) x—y
1—cod4n(F(y) — F(x))]
= // e dx dy + O(logr(n))

= Iogn —

// cod4n(F(y) —ZF(x))] dr dy + O(logr (n).
(x—y)

The remaining integral is not bigger than a constant as WI|| now be shown. a partial integratioryivaliable

gives
a-n
4=
T t—1/n

cod4n(F(y) — F(x))] _ sinf4n(F(x) — F(y)]
5 dxdy = - 5
(x—y) ) nF'(y)(x —y) (s

. 1 !
_ / s|n[4n(F(x) — F(y))] <4n[F’(y)(x — y)Z]) dy) dx
y

=11— D>
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Both the integrals are easy to estimate:

t+t
1 1
I < ——— k=0 —— | =0Q).
il f nx —y)>2 O(nmm(x—y)> oW
t
We have
, 1y y 2
Fox—»™, =- -
([ y y ] )y (1—y2)3/2(x—y)2 1_y2(x_y)3
which gives
1
I < S5 1)
I Cf/n<x—y)3 om
r
AboveC > 0.

I In I3 it holds that

[V2nK,(V2nx, /2ny)|* = O(#>

(x —y)2
and trivial calculations give

1
// =2 dxdy = (’)(Iogr(n)).
I3

To complete case | we must also integrate aex I \ I". The asymptotical expression fay, is different but
there are no difficulties. One can just take absolute values in the integral and the réxul.is
Case Il (the spectrum edge). First consider the subdomain

2={xyt<x<l-CnH1-5<y <1},

whereC is a large positive constant. After a change of variables the contribuiidnom +/2n - §2 to the variance
can be written as

Jo= / / [VZ0K, (v 2nx, V2y) ] d dy.
2

In order to deal with this integral we must first study the integrand and, via Christoffel-Darboux, especially the
difference

D = hy exp(—n(x? + y)) (V2nx)hy—1(v'2ny) — hy—1(V2nx)hy (v 20). (5.2)

We will show that ins2 it holds that
_ const
T (4n(n —1)l4

1 1—y¥*
+ O(n(l— x)) * O((l—x)l/“)'

Here Ai stands for the Airy function and

1
F(x) =/\/1— t2dr.

[Ai (—[3n F ()73 AV (—[3n F(1) %) = A (= [3n F () ]7°) Al (< [3n F (1) ]7)]
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In 2 h, has the following asymptotics:

1/4
hn(«/ﬂx)exp(—nxz):(Zn)1/4{(i—i) [3nF(0)]YC Al (=[3nF(0)]7%) (1+ 0 Y)

o \1/4
_(Li) [3nF (o] Yo Al (= [3nF(x)]2/3)(l+O(n_1))}.

If, for the moment, disregarding th@(n 1) terms in theh,-asymtotics (5.2) can be written as a sum of four
differencesD1—Da:

1/4 1/4
(4n(n — 1))1/4 (iti) (iti:) [3nF()c)]1/6[311’F(yn)]1/6
x A (=[3nF () ]%) A (=[3n' F(3)]%)

14x,\Y4/1 1/4
() () o

x A (=[3n'F ()73 Al (= [30 F(1)]73).

1 Varg—y\ Y4 _
(4n(n ))1/4 =< +x) ( ) ) [3nF(x)]1/6[3n'F(yn)] 16
]

1_x 1+yn
x Al (~[30F (0)]7°) Ai’ (—[30' Fom) [7°)

T+x, \ Y4 1—y\V4 _
() () et

x Al (—[30' F () %) A (~[3n F()]P®),

1o \Y4/1 1/4 B
(4n(n — 1))1/4 =<1+i> (1t§> [3n'F(xn)] 1/6[3nF(y)]1/6

x A’ (=[3n'F () |73 Al (= [30 F (1)]7?)

1\ Y414y, \ V4 B )
(152" ) o

x A'(=[3nF ()% Al (—[30 F ) ]®),

vya,, 1-x\"1—y\M* ~1/6 ~1/6
(4n(n — 1)) :( ) ( > [BnF(x)] "[3n'F(yn)]

1+=x 1+y
x Al (—[3nF ) [23) A (=[30' F (3)]2°)

\1/4, 4 \1/4
_<1 x,,) <1 y) [3}1/F(xn)]_l/6[3nF(y)]_1/6

1+x, 1+
x Al (=[3n F () %) Al (= [3n F (1) ]7®).

In the above:’ =n — 1 andx, =,/ "5 x. Note thatx, < 1in £2.
D1 A calculation using the series expansion
F1/6(x)

mZCO+C1(1—X)+"'



J. Gustavsson / Ann. I. H. Poincaré — PR 41 (2005) 151-178 169

gives

T+ \ Y4/ 14 y\ YA
(£22)(22) oo s oo

1/4 1/4

= <1+x) <1+ y) [3nF ()] °[3n F ()] + O(n ™31 - x))
1—x 1—y

= a4+ 0m3(1-y)),

where

. (3F (x))/3
= lim vV1+x——.
a“ x—1- x J1—x
Since
2/3 1
Ai(=[3nF@)]T) = O<n1/6(1_x)1/4>
it holds that

(4n(n — 1))1/4D1 = a1n1/3[A|( [3nF(x)]2/3) Ai (— [Bn’F(yn)]ZB)

. 1—y)¥4
— Al (=[30' Fea) 3 A (< [3n F 0 3)] + O<El_z;1/4).

D>—D4: The same procedure as in the previous case gives

(4n(n — 1)) Dy = OW[AI (= [3n F () ]7?) A (< [30 F (3)]°)

-3 P PO A ([P + o G727

Q-x)¥4)
(4n(n — D) D = OW[AI (= [3n'F(x)]7°) Al (= [3n F ()] 7?)

A (-[aurc ) i rn )] o S0
(4n(n — D) Ds= O~ V3[AI'(~[3nF () ]7?) A" (~[30' F ) |°)
— A (= [30 F o) |73) A (= [3n F () ]3)] + O(1 - 1)¥?).
Now consider the difference still left if4:
Ai(=[3nF () ]%) Al (~[30' F ) [/%) = AL (= [30 F ) %) AT (= [3n F (1 ]7/°).
To deal with this expression we shall first investigate the argument

30 F ()] = yr( |-~ "
[3u'Fon = 3= v (/)|

A simple integration shows that

1
F(x) :/\/1—t2dt= %(arcco& —xv1-x2)

and since

Xp =

X =

2
n—1 * o —1)+O(” )
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we have
. , X _2 7" -2y _ _ xi.l—xz ;
F(xn)_F(x)+F(x)<2(n_l)+O(n ))+(9(F xX)n™°)=F(x) 20— 1) +0<n2 1_x>

and hence

3n'F(xn)=3(n—1)F(x)—gx\/l—xz—l—(?( )=3nF(x)—garCCOSc~|—(’)< = >

1
nyvl—x nv1l—x

The argument can now finally be written as
, 2/3 2/3 arccose 1
—|3n'F =—|3nF ————— 4+ 0 ————— | 5.3
[ n (x”)] [ L (x)] + (3nF(x))1/3 + (n4/3(1_x) ( )
Note in the last expression that
arccose
_areeox -3
(BnF (x)V3
It is now possible to expand the difference in a Taylor series around the-pf8nt~ (x)]%2 and the result is

az
173

1 (1—y)¥4
* O<n4/3(1—x>> * O(n1/3<1—x>1/4>

whereas; is defined by
. arccosc
az= M S F )i
Similar computations can be doneliin—D,4 and one then ends up with

[Ai (—[3nF ()% A (—[3n F()]??) = A (= [3n F (0)]7®) Al (= [3n F(0)]°)]

1/4

(4n(n — 1)) (D24 D3+ Da) = O((L— )*/?).

Adding everything up we now have

aiaz

D= o pyalA (~[3nF ) 73 A (= [3n F)]7®) = A’ (= [3n F () ]%) Al (< [3n F () ]7%)]
1 (1—y)¥
+O<”(1—x)> +O<(1_x)1/4)' (5.4)
As we shall see the main contribution will come from the domain
{ 1—t 1t }
Ql: (X,y);f<X<l+—,t——<y<t_g .
r(n) r(n)

Herer(n) is a function tending slowly to infinity as tends to infinity and: = m The size of the expected

distance between two eigenvaluestas ¢. The reason why this is necessary lies in the asymptotics for the
Hermite polynomials. The error term given there however small will cause problems since the integral

t+e t 1
———dydx
/t/ =92 "

is divergent.
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From the asymptotics of the Airy function and it's derivative we have th&4in

Ai(~[3nF ) ?) A (~[3nF ()]?%) = (in(nF(x))‘l/ssin [ZnF(x) + ﬂ + O((nF(x))_7/6)>

§ <%(nF(y))l/6Sin|:2”F(y) _ %] +(’)((nF(y))5/e))

F(y) 1/6, T . b
(F(x)) sm[ZnF(x) + Z] sin |:2nF(y) — Z:|

If we definer by
1 1
I J1i—f —— =
max( " Togln(1- t)?ﬂ])
then in$2; it holds that

F(y)\Y® _
(ng> — 1+ 0((rm) 7Y,

F(x)\Y® _
)

1 B G )
O(ﬁ) =O((nF ) ) = O((rm) ),
1-¥ 1
O(m) =0((rm) 7).
From this it follows that inf2; D can be written as

_an1/4
Gnn =) _ 1<sin[2nF(x) + f} sin[ZnF(y) - Z}
aiar T 4 4

—sin [an(x) - ﬂ sin [an(y) + %]) +0((rm) ™

= 2 sin[2n(F(o) - FO)] + 0((rm) ).

b
The nominator in the integral of interest is

n 2 (a1a2)? B i
ZMD = T 4x2 SIn2[2n(F(x) F()’))]—i—(’)((r(n)) )

1 _
= 55 (1= cos[4n(F (x) = F(»))]) + O((rm) ).
It has here been used thati; = 2. A simple integration gives

é/ ﬁ dr dy = log[n(1 - ¥?] + O(logr (n)).
1

The integral

I [/ cos[4n(F (x) — F()] dx dy
(x — y)?
21
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is O(1): by doing a partial integratioh can be split into two integrals:

+t B
sinf4n (F (x) — F(y))]}"e / . ( 1 )
1= + n(F(x)—F —— ) dy)dx
f ([ —4nF'(y)(x _y)z t—}(%’ l Sln[ n( (x) (y))] 4nF' (y)(x —y)2 , y
=
=1+ I,
1 e 1 T g 2
L] <2 x==-| —— <=--=1
Il t/ dn1—t(x —(t —¢))2 2|:x—t+€i|t 2 ¢
Since
_ 2
F/ _ 21—1y/ __ y _
([ (}’)(X }’) ] )y (1_ y2)3/2(x _ y)z /—1_ yz(x _ y)3
we get

1 1
2l < C(// n(1— y)32(x — y)2 d”'”// nVI—y(x —y)3 dXdy)'
21 21

The first part is small:

1 1 1 A (logln(1—1)%/?]
//n<1—y>3/2<x—y>2dx‘jy<n(l—r)S/Z// (x—y)ZdXdy_O< n(1—1)32 )
21 21

The second part is also easily estimated:

1 1
——dxdy < dxdy =0Q).
ZZ,/n«/l—y(x—y)3 Y Sé./ (x—y)3 Y @
1 1

This concludes the calculations {&.
The calculations made above can also be applied to the small slice

{(x,y);t+8<x<t+ ,t—8<y<t}

r(n)

and the result i® (log[r (n)]).
The corner

Qo={(. it <x<t+et—e<y<t}
requires a special technique. In this domain a different representatiin wfll be used, namely
n—1

1
Ko(x,y) =) pit0)pi(y) EBXD(—E[JC2 + y2]>.
i=0
By use of the Cauchy—Schwartz inequality we have
K2(x,y) < Kn(x, ) Kn(y, y).
Having separated the variables one can now use the calculations of the expected value giving

t t+e

/ /(\/ZK”( an,@y))zdxdyz(Q(l).
t—e’ t
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Note that
t+e
l/KﬂdZ@v@hnuzgn—ga+a)
t

where, as usuag(z) is the expected value.
Now we shall look at the other part still left 2. This domain can conveniently be written@s U 23 where

1—1¢
sz{u)ot<x 1-Cnt1-s<y<t— }
r(n)

and

1- 1 1—1¢
23=1(x,y); t+—<x 1-Cn "t — <y<iry.
r(n) r(n)

When looking at the expression fér in (5.4) above it is clear that every term is smaller than
2/3 2/3 1—y\"*
nil/ZAI( [3nF(x)] / ) (—[BnF(y)] / )=O<n1/2(1—> )
— X
This means that it is sufficient to calculate the integrals

vi-y .
————dxd =23
I Ay =2

The calculations are straightforward so some details will be skipped. When first integrating with respect to the
x-variable one gets

o=y o1 mgrvq—JF%Jl—l4ﬂJl—y-¢l—fﬁ{
vl XQ—yV 2(1-y) V1-y+V1-H)W1-y-V1-Ly

N 1 ( 1 ~ 1
Vi-y\V1-y-Vvi1-L1 J1I-y-J1-H;

1 1
+ - :
VI-y+J1-H \/1—y+x/1—L1>

£2,: Letting H; = 1 instead of - Cn~1 we get nicer expressions. This is allowed since the domain of integration
becomes larger. The task is to get an upper bound for the integrals

B P T

21— y) VI—y-JVi—-L —J1-L;
2 VI-H;
and
H>
1 ( 1 1 )
/ VI-y\VI-y-V1i-L1 JVI-y+J1-1L1
2
VI-L;
2 ( L L )d
= - Z,
z—1—L1 z4+J/1-11
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where

and Li=t.

1—
Ly=1-6, Ho=t—
r(n)

When manipulating the integrand in A one gets

1 |Og|:1+ 2—"1_1‘1i| — }@(7”'_L1>
Z z—1—1L1 Z z—+1—1L1
Some algebra shows that
J1-1L1 1 1

z2(z —«/1—L1) - z—+1—1L1 _g

which can easily be integrated:
I L1V L2

R

< VvI-H;
The integral B is even easier and one gets
z—/1—11 Vi=L2
B=2|log| ————=

+V1-Lillam,

£23: The same procedure as§2p gives that the contribution to the variance from this domaini3.o
We shall now consider the thin strip

= O(logr(n)).
= O(logr(n)).

.(24:{x,y;l—Cn_1<x<1+Cn_l,1—8<y<t}.

The asymptotics here are similar to thosef2nand hence many of the calculations already done can be applied
here as well. As befor® can be split up inD; — D4 which can all be treated similarly. Therefore we only look at
D1 here. We have that

(4n(n — 1))* D1 = arnP[AI (F[3n F ()]7%) Al (= [30' F ) °)

a—yﬁ“>

N , 2/3\ pi( 2/3 =
Ai (F[3n"F (xn)]77) Al (—[3nF ()] )]+O((1_x)1/4

where F[3n’ F(x,)]%® means minus when, < 1 and plus otherwise (the equivalent fgf3n F (x)]%3). This
follows from calculations done above and the asymptotics for the Hermite Polynomialsxnhen In £24 we
have

Ai(F[3nF(0)]%) = Al (0) + O~ 1/3),

Al (£[30'F(x)]7°) = AL (0) + O~ 3)
and by using Eq. (5.3) (for the-variable) one gets
(1- y>1/4)

|1— x|/
The error term here has actually already been dealt with in the estimations of the contribution comigfiZpfrom

Rather than to repeat a lot of calculations we now just give ideas of how to treat what's[leftbof x (—oo, £].
In the domain

froyil+Cnt<x<1468,1-8<y <1}

(4n(n — 1) Dy = (’)(
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one can perform much the same calculations & &nd the contribution i€ (1). In
{x,y;t<x<14+6,-1-6§<y<1-§}

one can use the fact that- y > § to show that the contribution from this domair@®1). If x > 1+8ory < —1—§
t one easily gets from the asymptotics for the Hermite Polynomialskhéy/2nx, v/2ny) is exponentially small
in n and exponentially decaying ir? (or y2). Thus the contribution from this domain iglo. O
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Appendix A. Someintegrals

The following equalities hold:

@]

/Aiz(y) dy = Ai'%(x) — x Ai%(x),

/ yAi%(y)dy = %(x AI"(x) — x? Ai%(x) — Ai (x) A’ (x)),

X
o0

/ A"2(y)dy = %(XZAiZ(x) — XA = 2A1(0) AI'(),

X
o

/yZAiZ(y) dy = %(szi'z(x) — x3Ai2(x) —2xAi(x) A’ (x) + Aiz(x)),

X

/yAi’z(y) dy = %(stiz(x) — x2Ai"?(x) — 3x Ai (x) A’ (x) + gAiz(x))

The first integral is obtained from one partial integration while remembering that
Ai”(x) = x Ai (x).

The integrals 3-5 can be obtained rather easily from the second which can be treated as follows:
Set

ug(x) =Ai(ax), oa>0.
The relationship

(u,up — uau}}]’ =uyug — uaug =x(a®— ﬂs)uaug
holds since

u (x) = a® Ai” (ax) = a®x Ail (ax) = a3y (x).
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Hence

o]

1
/xua(x)ulg(x)dx = _3_4

53 (UL up — uau};]go =
a

The idea now is to letr, 8 tend to one. Sek =1+ 4 andg = 1 — h whereh > 0 and small. The left hand side
tends to

ua(@)ug(a) — ug(a)up(a)
053 _ /33

o0

/xAiz(x)dx

ash — 0. Standard calculations show that at the same time the right hand side tends to

%(—azAiz(a) — Ai(@)Ai'(a) + a Ai'*(a)).

Appendix B. Variance calculations

Let/ls,..., I, be a set of disjoint intervals and#be the number of eigenvalues of the GUR the intervall;.
We shall give a formula for Vw1 1#11 + - - - + a,, #1,,). We have

n
#=Y xi(w), 1<i<n,
k=1
where xp is the characteristic function for the sBtand {x;}| are the (not ordered) eigenvalues. The expected
value is easy to compute:

E[#Ii]=/pn,1(x)dx=/Kn(x,x)dx.

I; I;

The correlation functiong,  were defined in the introduction. We also need to caIClEé[tﬂiz]:

E#I = E[ > X G (x ,J] =Y E[xi 0]+ Y E[xs o xi (x))]
k=1

Jk=1 Jj#k
=/Kn(x’x)dx+[/pn,2(xvy)dXdy
1,' 1,'><1,'
2
=/Kn(x,x)dx+</Kn(x,X)dX> —//K,f(x,y)dxdy
],' ],‘ Ii><li

We now have that
Var#l;) = / Kn(x,x)dx — // K2(x, y)dxdy.
I; I xI;
To get a more convenient formula to work with one can now use the identitiés;[4], y) = K,,(y, x) and

/Kn<x,y>Kn(y,z)dy=K<x,z>
R
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to get

Var(#m:/(/ Kf(x,y)dy)dx—// K,%(x,y)dxdy:f/ K,%(x,y)dxdy.

I; R Ii x1I; I,-><Il."

In more generality one gets

m
Elo#th + - - - + ap#l,] = Z(xi / K, (x,x)dx
i=1 7

and

m n 2 m n n
(Qattly + - + oy #tly)? = Za,z(z X1; (xk)> +) i, (Z X (xk)> (Z X1 (xk)>
k=1 k=1

i=1  \k=1 i#]
=81+ So.

From the calculations above we know that

m 2
E[Sl]=Zai2</Kn(x,x)dx+(/Kn(x,x)dx> —/[K,f(x,y)dxdy>
I 1 I;ix1;

i=1

i i

so it remains to calculaté[S>]. We have

(Z XI; (xk)) (Z X1 (xk)> = x5 () x; (x)
k=1 k=1

k£l
and hence

E[Sg]:Zaiotj //pnﬁz(x,y)dxdy:Zaiaj(/ Kn(x,x)dx/Kn(x,x)dx—// K,f(x,y)dxdy).
1

i#j I <1, i#] IixI;

i

Since

m 2 m
(E[a1#11+-~-—|—am#lm])2=Zozi2</ K,,(x,x)dx) + aiaj/Kn(x,x)dx/Kn(x,x)dx
I.

i=1 1 i#j 1; ;

we finally get (with manipulations as before)

Var(a1#1 + - - - + o #ly) =Za?ff KZ(x,y)dxdy —Z(xicxj/ KZ(x,y)dxdy.
i=1

- 1,'><[l.(y i#] I; x1j
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