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Abstract

Under certain conditions onk we calculate the limit distribution of thekth largest eigenvalue,xk , of the Gaussian Unitar
Ensemble (GUE). More specifically, ifn is the dimension of a random matrix from the GUE andk is such that bothn − k

andk tends to infinity asn → ∞ thenxk is normally distributed in the limit. We also consider the joint limit distribution
xk1 < · · · < xkm

where we require thatn − ki andki , 1� i � m, tends to infinity withn. The result is anm-dimensional norma
distribution.
 2004 Elsevier SAS. All rights reserved.

Résumé

Sous certaines conditions surk, nous calculons la distribution limite de lakième valeur propre,xk , du GUE (Ensemble
Unitaire Gaussien). Plus spécifiquement, sin est la dimension de la matrice aléatoire du GUE etk est tel quek etn − k tendent
vers l’infini quandn → ∞, alorsxk est distribué normalement à la limite. Nous considérons aussi la distribution limite join
xk1 < · · · < xkm

oùn − ki et ki , 1� i � m, tendent vers l’infini en même temps quen. Le résultat est une distribution norma
de dimensionm.
 2004 Elsevier SAS. All rights reserved.

MSC:15A52; 60F05
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1. Introduction and formulation of results

The Gaussian Unitary Ensemble (GUE) is a classical random matrix ensemble. It is defined by the pro
distribution on the space ofn × n Hermitian matrices given by

P(dH) = Cn · e−TraceH2
dH.
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0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.04.002
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By dH we mean the Lebesgue measure on then2 essentially different members of the matrix, namely

{ReHij ;1� i � j � n, ImHij ;1� i < j � n}. (1.1)

In other words this means that the entries in (1.1) are independentN(0,
1+δij

4 ) random variables. The measure
the matrices naturally induces a measure on the correspondingn real eigenvaluesxi . This induced measure can b
explicitly calculated and it’s density is given by

pn(x1, . . . , xn) = 1

Z
(2)
n

∏
1�i<j�n

|xi − xj |2 · exp

[
−

n∑
i=1

x2
i

]
.

The normalization constantZ
(2)
n is called the partition function. It is often convenient to work with the eigenva

being ordered. Naming the eigenvalues so thatx1 < · · · < xn, gives that the probability densityρn,n(x1, . . . , xn) of
the ordered eigenvalues defined on the space

{x1, . . . , xn;x1 < · · · < xn}
is given by

ρn,n(x1, . . . , xn) = n!pn(x1, . . . , xn).

This densityρ is a member of a family of functions called the correlation functions. These functions are defi

ρn,k(x1, . . . , xk) = n!
(n − k)!

∫
Rn−k

pn(x1, . . . , xn)dxk+1 . . .dxn = det
(
Kn(xi, xj )

)k

i,j=1.

HereKn(x, y) is given by

Kn(x, y) =
n−1∑
i=0

hi(x)hi(y)e− 1
2 (x2+y2),

where{hi} are the orthonormalized Hermite polynomials, that is
∞∫

−∞
hi(x)hj (x)e−x2

dx = δij .

The kernelKn(x, y) can also be represented by the so called Christoffel–Darboux identity. Forx �= y it holds that

Kn(x, y) =
(

n

2

)1/2
hn(x)hn−1(y) − hn(y)hn−1(x)

x − y
e− 1

2 (x2+y2)

and forx = y one has

Kn(x, y) = (
nh2

n(x) − √
n(n + 1)hn−1(x)hn+1(x)

)
e−x2

.

The correlation functionρn,1 describes the overall density of the eigenvalues. Wigner’s semi-circle law state

lim
n→∞

√
2

n
ρn,1(

√
2nx) =

{
2
π

√
1− x2 if |x| � 1,

0 if |x| > 1.
(1.2)

All the results above and more can be found in the book of Mehta [7].
This paper deals with the distribution of eigenvalue numberk of the GUE. More specifically we look at th

distribution of thekth largest eigenvalue asn andk tends to infinity. For example if

k = k(n) = n − logn
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then asn becomes large,k is very close (relatively) to the right edge of the spectrum. Another example is
k = n/2. In this case we are in the middle of the bulk of the spectrum. In both cases one ends up with a
distribution in the limit. The following theorems generalize and specify this statement.

Theorem 1.1 (The bulk). Set

G(t) = 2

π

t∫
−1

√
1− x2 dx, −1� t � 1,

and t = t (k, n) = G−1(k/n) wherek = k(n) is such thatk/n → a ∈ (0,1) as n → ∞. If xk denotes thek-th
eigenvalue in the GUE then it holds that asn → ∞

xk − t
√

2n

(
logn

4(1−t2)n
)1/2

−→ N(0,1)

in distribution.

Theorem 1.2 (The edge). Letk be such thatk → ∞ but k
n

→ 0 asn → ∞ and definexn−k as eigenvalue numbe
n − k in the GUE. Then it holds that asn → ∞,

xn−k − √
2n(1− ( 3πk

4
√

2n
)2/3)

(( 1
12π )2/3 logk

n1/3k2/3 )1/2
−→ N(0,1)

in distribution.

Remark 1. The theorems deal with the bulk and the right spectrum edge. One gets the equivalent for the l
with some obvious modifications.

Remark 2. In [12] the distribution of the largest eigenvalue was studied. Also eigenvalue numberk with k fixed
has been studied.

Remark 3. SetI = (−∞, s]. In [1] it is shown that

P
(
xk ∈ (s + ds)

) =
(

1

(k − 1)!
∫

I k−1

Jk(x1, . . . , xk−1, s)µ(dx1) · · ·µ(dxk−1)

)
µ(ds). (1.3)

HereJk is the so called Janossy density and

µ(dx) = Const· e−x2/2 dx.

In [1] it is also proven thatJk can be expressed explicitly by a determinantal formula. Fork andn as in (1.1) or
(1.2) we thus have that (1.3) is for largen approximately equal to the probability density function of the Norm
DistributionN(µ,σ). The parametersµ andσ should of course be taken to be those indicated from the rele
theorem above.

Remark 4. The zero numberk of the Hermite polynomial of degreen is close to the expected value of eigenva
numberk of GUEn. This can be shown directly by the following result [4]:

There are constantsk0 andC such that fork0 � k � n − k0 andα = k/n it holds that∣∣∣∣ zk,n√ − G−1
[

k − 1
arcsin

(
G−1(k/n)

) + 1
]∣∣∣∣ � C

2 4/3
.

2n n 2πn 2n n (α(1− α))
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Herez1,n < · · · < zn,n are the zeros of the Hermite polynomial of degreen. When we’re in the Bulk this translate
into ∣∣∣∣zk,n − √

2nG−1
(

k

n

)∣∣∣∣ � C√
n
.

This means that one can replacet
√

2n by zk,n in Theorem 1.1. Close to the edge this replacement is not allo
The zeros and the expected values are not close enough there.

A motivation for this approximate equality between the locations of zeros and eigenvalues goes as follo

W = 1

2

n∑
i=1

x2
i −

∑
1�i<j�n

log|xi − xj |

and note that

ρn,n(x1, . . . , xn) = Const· e−2W .

It is a fact [7] thatW obtains its minimum exactly whenxi = zi,n, 1� i � n. This configuration is hence the mo
“probable” for the eigenvalues. Expanding around this minimum we see that it is reasonable thatxk should have
Gaussian fluctuations aroundzk,n.

Remark 5. If one is interested in the distribution of the eigenvalues of some other ensemble one should i
cases be able to apply the same methodology that has been used here.

It is also interesting to see what happens when looking at two eigenvalues at the same time. Withk(n) ∼ nθ is
meant thatk(n) = h(n) · nθ whereh is any function satisfying

h(n)

nε
→ 0 and h(n)nε → ∞ (1.4)

asn → ∞ for all ε > 0. We have the following results:

Theorem 1.3 (The bulk). Let {xki
}m1 be eigenvalues of the GUE such that0 < ki − ki+1 ∼ nθi , 0 < θi � 1, and

ki/n → ai , whereai ∈ (0,1) asn → ∞. Definesi = si(ki, n) = G−1(ki/n) and set

Xi = xki
− si

√
2n

(
logn

4(1−s2
i )n

)1/2
, i = 1, . . . ,m.

Then asn → ∞
P[X1 � x1, . . . ,Xm � xm] → ΦΛ(x1, . . . , xm)

whereΛ is them × m correlation matrix withΛi,j = 1− maxi�k<j<m θk , andΦΛ is the cdf1 for the normalized
m-dimensional Normal Distribution with correlation matrixΛ.

Theorem 1.4 (The edge). Let {xn−ki
}m1 be eigenvalues of the GUE such thatk1 ∼ nγ where0 < γ < 1 and 0 <

ki+1 − ki ∼ nθi , 0 < θi < γ . Set

Xi =
xn−ki

− √
2n(1− (

3πki

4
√

2n
)2/3)

(( 1
12π )2/3 logki

n1/3k
2/3
i

)1/2
, i = 1, . . . ,m,

1 Cumulative Distribution Function.
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then asn → ∞
P[X1 � x1, . . . ,Xm � xm] → ΦΛ(x1, . . . , xm),

whereΛ is them × m correlation matrix withΛi,j = 1− 1
γ

maxi�k<j<m θk , andΦΛ is the cdf for the normalize
m-dimensional Normal Distribution with correlation matrixΛ.

Remark 1. As one would expect the eigenvalues get less correlated as they get closer to the edge.

Remark 2. The eigenvalues are quite correlated in the bulk. In order forxk andxm to be independent in the lim
it must hold that|k − m| ∼ n. It is interesting to compare with the following result by Mosteller2 [3, p. 201]:

Let Xi (i = 1, . . . , n), be an independent random sample from the Uniform Distribution on(0,1). Consider the
asymptotic joint distribution of them sample quantilesXnj

(j = 1, . . . ,m), wherenj = [λjn] + 1 and 0< λ1 <

· · · < λm.

Theorem 1.5 (Mosteller). Asn → ∞ the joint distribution ofXn1, . . . ,Xnm tends to anm-dimensional Norma
Distribution with meansλj , variancesn−1λj (1− λj ) and correlations

ρ(Xnj
Xnj ′ ) =

√
λj (1− λj ′)

λj ′(1− λj )
, j � j ′.

Hence in this case{Xnj
}m1 are in the limit globally correlated.

2. Proofs of Theorems 1.1 and 1.2

The proofs of Theorems 1.1 and 1.2 relies on a theorem by Costin, Lebowitz and Soshnikov [2,10].
presenting it we need some notation.

Let {Pt }, t ∈ R+, be a family of random point fields [9], on the real line such that their correlation func
have a determinantal form.3 Call the determinant kernelsKt(x, y) and let{It } be a set of intervals.At denotes
an integral operator onIt with kernelKt(x, y), At :L2(It ) → L2(It ). By Et and Vart is meant expectation an
variance with respect to the probability distributionPt . Finally, let #It stand for the number of particles inIt .

Theorem 2.1 (Costin, Lebowitz, Soshnikov). LetAt = Kt ·χIt be a family of trace class operators associated w
determinantal random point fields{Pt } such thatVart (#It ) = Trace(At − A2

t ) goes to infinity ast → ∞. Then

#It − E[#It ]√
Var(#It )

−→ N(0,1)

in distribution with respect to the random point fieldPt .

The following lemmas will be proven in Sections 4 and 5:

Lemma 2.1. Let t = t (k, n) be the solution to the equation

n
2

π

t∫
−1

√
1− x2 dx = k,

2 Mosteller actually allowed forXi to come from more general distributions.
3 An example is the GUE.
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wherek = k(n) is such thatk/n → a ∈ (0,1) asn → ∞. The expected number of eigenvalues in the interval

In =
[√

2nt + x

√
logn

2n
,∞

)

is given by

E[#In] = n − k − x

π

√
(1− t2) logn +O

(
logn

n

)
.

Lemma 2.2. The expected number of eigenvalues in the intervalIn = [√2nt,∞] wheret → 1− as n → ∞, is
given by

E[#In] = g(t) = 4
√

2

3π
n(1− t)3/2 +O(1).

Lemma 2.3. The variance of the number of eigenvalues in the interval[t√2n,∞) is equal to 1
2π2 log[n(1 −

t)3/2](1+ η(n)) wherelimn→∞ η(n) = 0.

Using the lemmas and Theorem 2.1 we are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Set

In =
[
t
√

2n + ξ

(
logn

4(1− t2)n

)1/2

,∞
)

.

Using Lemmas 2.1 and 2.3 we get

Pn

[
xk − t

√
2n

(
logn

4(1−t2)n
)1/2

� ξ

]
= Pn

[
xk � t

√
2n + ξ

(
logn

4(1− t2)n

)1/2]

= Pn[#In � n − k] = Pn

[
#In − En[#In]
(Var(#In))1/2

� n − k − En[#In]
(Var(#In))1/2

]

= Pn

[
#In − En[#In]
(Var(#In))1/2

� ξ + ε(n)

]
,

whereε(n) → 0 asn → ∞. By the Costin–Lebowitz–Soshnikov theorem the conclusion follows.�
Proof of Theorem 1.2. Let g(t) be the expected number of eigenvalues in the intervalIn = [t√2n,∞). We have

Pn

[
xn−k � t

√
2n

] = Pn[#In � k] = Pn

[
#In − g(t)

(Varn(#In))1/2
� k − g(t)

(Varn(#In))1/2

]
.

If we can findt such that

k − g(t)

(Varn(#In))1/2
→ ξ (2.1)

asn → ∞, then by the Costin–Lebowitz–Soshnikov theorem it holds that

Pn

[
xn−k � t

√
2n

] −→
ξ∫

1√
2π

exp

[
−x2

2

]
dx.
−∞
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The idea now is therefore to find a candidate fort . We will then insert thist in the equation above to see if it
satisfied. Set for simplicityh(t) = (Varn(#In))

1/2. We have from Lemmas 2.2 and 2.3 that

g(t) = a1n(1− t)3/2 +O(1),

h(t) = a2 log1/2[n(1− t)3/2] + o
(
log1/2[n(1− t)3/2]),

whereai are known constants. We have the equation

k = g(t) + ξh(t)

or, sinceg is a strictly decreasing function,

t = g−1(k − ξh(t)
) ≈ g−1(k) − (g−1)′(k) · ξh(t).

Since

(g−1)′(k) = 1

g′(g−1(k))

we need to studyg−1(k).

k ≈ a1n(1− t)3/2 ⇒ t ≈ 1−
(

k

a1n

)2/3

.

A reasonable guess for the derivative ofg is that

g′(t) ≈ −3a1

2
n
√

1− t .

We now get

g′(g−1(k)
) ≈ −3a1

2
n

((
k

a1n

)2/3)1/2

= −3a
2/3
1

2
k1/3n2/3

and

h(t) ≈ h
(
g−1(k)

) ≈ a2 log1/2
[
n

k

a1n

]
≈ a2 log1/2 k.

When gluing the pieces together one gets

t ≈ 1−
(

k

a1n

)2/3

+ ξ
2a2

3a
2/3
1

log1/2 k

k1/3n2/3
.

When inserting this expression in (2.1) it turns out that it all works out. Some rearranging finally yields
sult. �

3. Proof of Theorems 1.3 and 1.4

We shall use the following theorem [11]:

Theorem 3.1 (Soshnikov). Let(X,F ,PL) be a family of determinantal random point fields with Hermitian loca
trace class kernelsKL and {I (1)

L , . . . , I
(k)
L }L�0 be a family of Borel subsets ofR, disjoint for any fixedL, with

compact closure. Then if for someα1, . . . , αk ∈ R, the variance of the linear statistics
∑∞

i=−∞ fL(xi) with fL(x) =
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d in the

,

ome
∑k
j=1 αj ·χ

I
(j)
L

(x), grows to infinity in such a way thatVarL(#I
(j)
L ) = O(VarL(

∑∞
i=−∞ fL(xi))) for any1� j � k,

the Central Limit Theorem holds:∑k
j=1 α

(L)
j #I

(j)
L − EL[∑k

j=1 α
(L)
j #I

(j)
L ]√

VarL(
∑k

j=1 α
(L)
j #I

(j)
L )

−→ N(0,1)

in distribution.

Remark 1. The theorem in [11] is actually more general than the theorem stated here.

Remark 2. If the prerequisites in the theorem holds for anyα1, . . . , αk then #I (1)
L , . . . ,#I

(k)
L are jointly normally

distributed in the limit [5].

Proof of Theorem 1.3. Take{ki}, si andXi as in the formulation of Theorem 1.3. Ifki − ki+1 ∼ nθi thensi −
si+1 ∼ nθi−1 and for any real numbersxi we therefore have the identity (forn large enough)

P[X1 � x1, . . . ,Xm � xm] = P

[
#I1 − E[#I1]
(Var(#I1))1/2

� n − k1 − E[#I1]
(Var(#I1))1/2

,

#I1 + #I2 − E[#I1 + #I2]
(Var(#I1 + #I2))1/2

� n − k2 − E[#I1 + #I2]
(Var(#I1 + #I2))1/2

, . . . ,∑m
i=1 #Ii − E[∑m

i=1 #Ii]
(Var(

∑m
i=1 #Ii))1/2

� n − km − E[∑m
i=1 #Ii]

(Var(
∑m

i=1 #Ii))1/2

]
.

Here the intervalsIi are given by

I1 =
(

s1
√

2n + x1

(
logn

4(1− s2
1)n

)1/2

,∞
)

,

Ii =
(

si
√

2n + xi

(
logn

4(1− s2
i )n

)1/2

, si−1
√

2n + xi−1

(
logn

4(1− s2
i−1)n

)1/2]
,

where 2� i � m. We would now like to investigate the joint normality of

#I1,#I1 + #I2, . . . ,

m∑
i=1

#Ii .

To do this we shall consider linear combinations of the variables and show that they are normally distribute
limit. Since

α1#I1 + α2(#I1 + #I2) = (α1 + α2)#I1 + α2#I2

and so forth it is clear that one can instead look at all linear combinations of{#Ii}m1 . Hence, by the theorem above4

we must calculate (Appendix)

Var(α1#I1 + α2#I2 + · · · + αm#Im) =
m∑

i=1

α2
i

∫ ∫
Ii×I c

i

K2
n(x, y)dx dy −

m∑
i �=j

αiαj

∫ ∫
Ii×Ij

K2
n(x, y)dx dy

4 The theorem by Soshnikov does not apply directly to this situation sinceI1 does not have compact closure. This is however easily overc
simply by chopping of the interval far out where the probability of finding any eigenvalue is exponentially small inn.
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to see that it is of magnitude logn. First define the setM by k ∈ M ⇐⇒ θk = 1. Hence

M = {k1, . . . , kj }; 1� k1 < k2 < · · · < kj � m − 1

for somej such that 0� j � m − 1.
Suppose first thatj = 0 which means thatθi < 1 for all i. If α1 �= 0 then by using the inequalityxy � 1

2(x2+y2)

we get

Var(α1#I1 + α2#I2 + · · · + αm#Im) �
m∑

i=1

α2
i

∫ ∫
Ii×I c

i

K2
n(x, y)dx dy −

m∑
i �=j

1

2
(α2

i + α2
j )

∫ ∫
Ii×Ij

K2
n(x, y)dx dy

=
m∑

i=1

α2
i

(∫ ∫
Ii×I c

i

K2
n(x, y)dx dy −

m∑
j �=i

∫ ∫
Ii×Ij

K2
n(x, y)dx dy

)
. (3.1)

All the terms in the sum are non-negative and the first term can be calculated as in the proof of Lemma 2.
shown in the lemma that in the domain

Ω =
{
(x, y); s � x � s + 1

logn
, s − 1

logn
� y � s

}
it holds that

2nKn(
√

2nx,
√

2ny) = 1

2π2(x − y)2
+O

(
1

logn

)
.

It was also shown that if

Ω ′ = {
(x, y);√2ns � x � ∞,−∞ < y �

√
2ns

}
/
√

2n · Ω
then5 ∫ ∫

Ω ′
K2

n(x, y)dx dy = O(log logn).

In what follows we shall often make use of these facts without mentioning it. The main contribution to th
term in (3.1) can now be calculated to be (disregardingα2

1)

s1+ 1
logn∫

s1

s1−nθ∗−1∫
s1− 1

logn

1

(x − y)2
dy dx = 1− θ∗

2π2
logn +O(log logn)

whereθ∗ = maxi θi < 1. By our definition of∼ above the integration in they-variable should have been over t
interval(s1 −1/ logn, s1 −h(n)nθ∗−1) whereh(n) satisfies (1.4). However, because of the logarithmic answer
h will only produce lower order terms.

Now suppose thatj = 0 as before,α1 = · · · = αk−1 = 0 butαk �= 0. In this case we get

Var(αk#Ik + · · · + αm#Im) �
m∑

i=k

α2
i

(∫ ∫
Ii×I c

i

K2
n(x, y)dx dy −

m∑
k�j �=i

∫ ∫
Ii×Ij

K2
n(x, y)dx dy

)
.

Using the estimates above it is straightforward to verify that thek-term is of order logn.

5 SinceKn(x, y) = Kn(y, x) it is clear that the same estimates hold in the domains obtained from reflection with respect to thex = y-line.



160 J. Gustavsson / Ann. I. H. Poincaré – PR 41 (2005) 151–178

ed.
case

ent. By
Whenj � 1 meaning that there is at least onek with θk = 1, things are only slightly more complicated. Letk∗
be the largest integeri such thatθi = 1. It is sufficient to consider the case when there existsi � k∗ + 1 such that
αi �= 0. On the other hand if this is the case then we are in a situation very similar to whenj = 0. Eitherαk∗+1 �= 0
or αk∗+1 = · · · = αl−1 = 0 butαl �= 0. The details are left out.

It is hence a fact that

#I1,#I1 + #I2, . . . ,

m∑
i=1

#Ii

in the limit have a joint normal distribution.
To complete the proof we need to calculate the correlations between the different #Ii ’s. If j < i we have that

sj − si ∼ n−γ whereγ = 1− maxj�k<i θk . Set

Xk =
k∑

m=1

#Im.

From a straightforward calculation (as above) we get that

Var(Xi − Xj) = Var

(
i∑

k=j+1

#Ik

)
= Var

(
#

i⋃
k=j+1

Ik

)
= γ

π2
logn +O(log logn).

Since

Var(Xk) = 1

2π2
logn +O(log logn)

the correlationρ is given by

ρ(Xi,Xj ) =
1
2(Var(Xj ) + Var(Xi) − Var(Xi − Xj))√

Var(Xi)Var(Xj )
= γ + o(1). �

Proof of Theorem 1.4. This proof is of course very similar to the previous one so some details will be skipp
With notation as in the formulation of Theorem 1.4 the intervals of interest (cf. previous proof) are in this

I1 =
(√

2n

(
1− C1

(
k1

n

)2/3)
+ x1C2

(
logk1

n1/3k
2/3
1

)1/2

,∞
)

,

Ii =
(√

2n

(
1− C1

(
ki

n

)2/3)
+ xiC2

(
logki

n1/3k
2/3
i

)1/2

,

√
2n

(
1− C1

(
ki−1

n

)2/3)
+ xi−1C2

(
logki−1

n1/3k
2/3
i−1

)1/2]
,

whereC1,C2 are known constants and 2� i � m. Given any{xi} it is straightforward to show that forn large
enough{Ii} really are intervals. As in the previous proof we want to show that

#I1,#I2, . . . ,#Im

are jointly normally distributed. The way to prove this is the same as before but some details are differ
Lemma 2.3 we need to show that

logn = O
(

Var

(
m∑

i=1

αi#Ii

))

for any realαi ’s such that for somei αi �= 0.
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is

the
Let t = t (n) be such thatt → 1− asn → ∞ andnε−2/3 � 1 − t � n−ε for some 0< ε < 1/3. From the proof
of Lemma 2.3 we have that in the sets

Ωt =
{
t � x � t + 1− t

logn
, t − 1− t

logn
� y � t

}

it holds that

2nK2
n(

√
2nx,

√
2ny) = 1

2π2(x − y)2
+O

(
1

logn

)
.

Returning to the variance calculation we first assume thatα1 �= 0. We know from the previous proof that in th
case it is sufficient to to show that∫ ∫

I1×(I c\⋃m
i=2 Ii )

K2
n(x, y)dy dx

is of order logn. In fact since the integrand is non-negative it is enough if∫ ∫
I∗×I∗

1

(x − y)2
dy dx

is of order logn where

I ∗ =
(

t1 + r1, t1 + 1− t1

logn

)
,

I∗ =
(

t1 − 1− t1

logn
, tm

)

and

ti = 1− C1

(
ki

n

)2/3

,

ri = xiC2

(
logki

n1/3k
2/3
i

)
.

An elementary calculation shows that this integral is indeed of order logn.
If α1 = · · · = αk−1 = 0 butαk �= 0 it is sufficient that the integral∫ ∫

J ∗×J∗

1

(x − y)2
dy dx

is of order logn where

J ∗ =
(

tk−1 + rk−1, tk−1 + 1− tk−1

logn

)
,

J∗ = (tk, tk−1).

Again we get the size logn. This proves that we get a Normal Distribution in the limit. The calculations of
correlations are very similar to the bulk case and the details are not presented here.�
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ials. In
4. The expected number of eigenvalues in In

In this section and the next we shall need asymptotics for the Airy function and the Hermite polynom
[4] the asymptotics for a class containing the Hermite case was studied. It is shown there that for fixedδ > 0 the
following holds:

1. −1+ δ � x � 1− δ.

hn(
√

2nx)exp[−nx2] =
(

2

π
√

2n

)1/2 1

(1− x2)1/4

(
cos

[
2nF(x) − 1

2
arcsin(x)

]
+O(n−1)

)
.

2. 1− δ � x < 1.

hn(
√

2nx)e−nx2 = (2n)−1/4
{(

1+ x

1− x

)1/4[
3nF(x)

]1/6 Ai
(−[

3nF(x)
]2/3)(1+O(n−1)

)

−
(

1− x

1+ x

)1/4[
3nF(x)

]−1/6 Ai ′
(−[

3nF(x)
]2/3)(1+O(n−1)

)}
.

3. 1< x � 1+ δ.

hn(
√

2nx)e−nx2 = (2n)−1/4
{(

x + 1

x − 1

)1/4[
3nF(x)

]1/6 Ai
([

3nF(x)
]2/3)

−
(

x − 1

x + 1

)1/4[
3nF(x)

]−1/6
Ai ′

([
3nF(x)

]2/3)}(
1+O(n−1)

)
.

4. x > 1+ δ.

hn(
√

2nx)e−nx2 = O
(
n−1/4e−nF(x)

)
.

In these expressions Ai stands for the Airy function and

F(x) =
∣∣∣∣∣

1∫
x

|
√

1− y2|dy

∣∣∣∣∣. (4.1)

There are of course also similar asymptotics for the Hermite polynomials near the point−1.
The Airy function is bounded on the real line. It is exponentially small inx onR+ and forr > 0 it holds that [8]

Ai(−r) = π−1/2r−1/4
{

cos

[
2

3
r3/2 − π

4

]
+O(r−3/2)

}
,

Ai ′(−r) = π−1/2r1/4
{

sin

[
2

3
r3/2 − π

4

]
+O(r−3/2)

}
.

Proof of Lemma 2.1. Set

fn(t) = t + x

√
logn

2n
.

We have that

E[#In] =
∞∫

nρn(x)dx,
fn(t)
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that

cs
whereρn is the scaled density for the eigenvalues (the limiting density has support in[−1,1]). From symmetry
one gets

∞∫
fn(t)

nρn(x)dx = n

2
−

fn(t)∫
0

nρn(x)dx.

Formula (4.2) in [6] applied to the hermitian case says that

nρn(x) = n · 2

π

√
1− x2 + 1

4π

(
1

x − 1
− 1

x + 1

)
cos

[
n

2

π

1∫
x

√
1− y2 dy

]
+O(n−1).

This formula is valid in the interval[−1+ δ,1− δ] for any (fixed)δ > 0. We now get

E[#In] = n

2
− n

2

π

fn(t)∫
0

√
1− x2 dx +O(n−1) = n − n

2

π

fn(t)∫
−1

√
1− x2 dx +O(n−1)

= n − n
2

π

( t∫
−1

√
1− x2 dx +

√
1− t2x

√
logn

2n
+O

(
logn

n2

))
+O(n−1)

= n − k − x

π

√
(1− t2) logn +O

(
logn

n

)
. �

Proof of Lemma 2.2. From formula (4.4) and (4.21) in the paper [6] one gets after some minor calculations

nρn(x) =
(

Φ ′(x)

4Φ(x)
− γ ′(x)

γ (x)

)[
2 Ai

(
Φ(x)

)
Ai ′

(
Φ(x)

)] + Φ ′(x)
[(

Ai ′
(
Φ(x)

))2 − Φ(x)
(
Ai

(
Φ(x)

))2]
+O

(
1

n(
√

1− x)

)

in a fixed neighborhood of[0,1]. Hereρn is the scaled density for the eigenvalues so that

g(t) =
∞∫
t

nρn(x)dx.

The functionsγ andΦ are given by

γ (x) =
(

x − 1

x + 1

)1/4

,

Φ(x) =
{

−(
3n

∫ 1
x

√
1− y2 dy

)2/3 if x � 1,(
3n

∫ x

1

√
y2 − 1 dy

)2/3 if x > 1.

The functionγ is evaluated taking the limit from the upper half plane using the principal branch.
The fact that the asymptotics only holds for,[0,1+ δ], for someδ > 0 (independent ofn) is not a problem. It is

not difficult to show that forx � 1+ δ ρn(x) is exponentially small inn and exponentially decaying inx.
We now look at the different terms in the asymptotical expression forρn above. When looking at the asymptoti

for Ai and Ai′ it easy to see that∣∣Ai(x)Ai ′(x)
∣∣ = O(1).



164 J. Gustavsson / Ann. I. H. Poincaré – PR 41 (2005) 151–178

ssion:

ing

n is that
This together with the fact that(
Φ ′(x)

4Φ(x)
− γ ′(x)

γ (x)

)
= O(1)

gives

1+δ∫
t

(
Φ ′(x)

4Φ(x)
− γ ′(x)

γ (x)

)[
2 Ai

(
Φ(x)

)
Ai ′

(
Φ(x)

)]
dx = O(1).

The main contribution comes from the second term. In fact a primitive function can be found for this expre

1+δ∫
t

Φ ′(x)
[(

Ai ′
(
Φ(x)

))2 − Φ(x)
(
Ai

(
Φ(x)

))2]dx = [
y = Φ(x)

] =
Φ(1+δ)∫
Φ(t)

(
Ai ′(y)

)2 − y
(
Ai(y)

)2 dy

= −
[

2

3

(
y2(Ai(y)

)2 − y
(
Ai ′(y)

)2) − 1

3
Ai(y)Ai ′(y)

]Φ(1+δ)

Φ(t)

= 2

3

(
Φ(t)2(Ai

(
Φ(t)

))2 − Φ(t)
(
Ai ′

(
Φ(t)′

))2) − 1

3
Ai

(
Φ(t)

)
Ai ′

(
Φ(t)

) +O
(
exp−[cn]).

Herec is a positive constant. Integrating the third term only gives a contribution of ordern−1. One can now use
the asymptotics for the Airy function and it’s derivative to get the stated result.�

5. The variance of the number of eigenvalues in In

Proof of Lemma 2.3. The proof will be divided into two basic cases. The first case is when 1− t > δ for a fix
δ > 0, i.e. in the bulk. The second case is whent = t (n) → 1− asn → ∞ i.e. near the spectrum edge (consider
the right edge here).

First defineIn = [t√2n,∞) and #In as the number of eigenvalues inIn. It is a fact (see Appendix B) that

Var(In) =
∫
In

∫
R

K2
n(x, y)dx dy −

∫
In

∫
In

K2
n(x, y)dx dy =

∫
In

∫
I c
n

K2
n(x, y)dx dy.

HereKn is the usual determinant kernel for the Hermitian ensemble. The advantage with this representatio
there is only one singular point in the Christoffel–Darboux representation ofKn(x, y):

Kn(x, y) =
√

n

2

hn(x)hn−1(y) − hn−1(x)hn(y)

x − y
exp

(
−1

2
(x2 + y2)

)
.

Case I (the bulk). After a change of variables (x → √
2nx) we get the integrand[√

2nKn(
√

2nx,
√

2ny)
]2

.

First consider the domain where both variables are in the bulk:

Γ = {
(x, y); t � x � 1− δ,−1+ δ � y � t

}
. (5.1)

In Γ hn has asymptotics as

hn(
√

2nx)exp[−nx2] =
(

2√
)1/2 1

2 1/4

(
cos

[
2nF(x) − 1

arcsin(x)

]
+O(n−1)

)
.

π 2n (1− x ) 2
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Here

F(x) =
1∫

x

√
1− z2 dz = 1

2

(
arccosx − x

√
1− x2

)
.

The asymptotics forhn−1 becomes

hn−1(
√

2nx)exp[−nx2] =
(

2

π
√

2(n − 1)

)1/2 1

(1− x2
n)1/4

×
(

cos

[
2(n − 1)F (xn) − 1

2
arcsin(xn)

]
+O(n−1)

)

=
(

2

π
√

2n

)1/2 1

(1− x2)1/4

(
cos

[
2(n − 1)F (xn) − 1

2
arcsin(xn)

]
+O(n−1)

)
,

wherexn =
√

n
n−1x. A Taylor expansion gives

F(xn) = F(x) − x

2(n − 1)

√
1− x2 +O(n−2)

leading to

2(n − 1)F (xn) = 2nF(x) − 2F(x) − x
√

1− x2 +O(n−1) = 2nF(x) − arccosx +O(n−1).

One can now write

hn(x
√

2n)hn−1(
√

2ny)exp
[−n(x2 + y2)

] = 2

π
√

2n(1− x2)1/4(1− y2)1/4

× cos

[
2nF(x) − 1

2
arcsinx

]
cos

[
2nF(y) − 1

2
arcsiny − arccosy

]
+O(n−3/2).

Set, for simplicity,

αx = 2nF(x) − 1

2
arcsinx,

θx = arccosx.

By the Christoffel–Darboux formula

√
2nKn(

√
2nx,

√
2ny) = 1

π(1− x2)1/4(1− y2)1/4

cosαx cos[αy − θy] − cos[αx − θx]cosαy +O(n−1)

x − y
.

To prepare for integration we now divideΓ into four disjoint sets. Set

Γ0 =
{
(x, y); t � x � t + 1

n
, t − 1

n
� y � t

}
,

Γ1 = Γ 1
1 ∪ Γ 2

1 =
{
(x, y); t � x � t + 1− t

r(n)
, t − t + 1

r(n)
� y � t − 1

n

}

∪
{
(x, y); t + 1

n
� x � t + 1− t

r(n)
, t − 1

n
� y � t

}
,

Γ2 = Γ \ (Γ0 ∪ Γ1),

wherer(n) = logn andΓ was defined in (5.1).



166 J. Gustavsson / Ann. I. H. Poincaré – PR 41 (2005) 151–178

ies
Γ0: When integrating overΓ0 one can use the fact that
√

2nKn(
√

2nx,
√

2ny) � Cn
sin(x − y)

x − y

whereC > 0. Hence∫
Γ0

[√
2nKn(

√
2nx,

√
2ny)

]2 dx dy = O(1).

Γ1: In Γ1 we have

θx = arccosx = arccost +O
(

1

r(n)

)
and of course also the equivalent forθy . Definingθ = arccost we get by the use of some trigonometric identit
that

cosαx cos[αy − θy] − cos[αx − θx]cosαy = cosαx cos[αy − θ ] − cos[αx − θ ]cosαy +O
(

1

r(n)

)

=
√

1− t2 sin[αy − αx] +O
(

1

r(n)

)
.

Since √
1− t2

(1− x2)1/4(1− y2)1/4
= 1+O

(
1

r(n)

)
and

αy − αx = 2n
(
F(y) − F(x)

) +O
(

1

r(n)

)
we now have∫ ∫

Γ1

[√
2nKn(

√
2nx,

√
2ny)

]2 dx dy =
∫ ∫
Γ 1

1

1

π2

sin2[2n(F (y) − F(x))] +O( 1
r(n)

)

(x − y)2
dx dy +

∫ ∫
Γ 2

1

O(1)

(x − y)2
dx dy

= 1

2π2

∫ ∫
Γ 1

1

1− cos[4n(F (y) − F(x))]
(x − y)2

dx dy +O
(
logr(n)

)

= 1

2π2
logn − 1

2π2

∫ ∫
Γ 1

1

cos[4n(F (y) − F(x))]
(x − y)2

dx dy +O
(
logr(n)

)
.

The remaining integral is not bigger than a constant as will now be shown. a partial integration in they-variable
gives

∫ ∫
Γ 1

1

cos[4n(F (y) − F(x))]
(x − y)2

dx dy =
t+ (1−t)

r(n)∫
t

([
sin[4n(F (x) − F(y))]

4nF ′(y)(x − y)2

]t−1/n

t− t+1
r(n)

−
t− 1

n∫
t− t+1

r(n)

sin
[
4n

(
F(x) − F(y)

)]( 1

4n[F ′(y)(x − y)2]
)′

y

dy

)
dx

= I1 − I2.
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lly the
Both the integrals are easy to estimate:

|I1| � C

t+ 1−t
r(n)∫

t

1

n(x − y)2
dx = O

(
1

nmin(x − y)

)
= O(1).

We have([
F ′(y)(x − y)2]−1)′

y
= − y

(1− y2)3/2(x − y)2
− 2√

1− y2(x − y)3

which gives

|I2| � C

∫ ∫
Γ 1

1

1

n(x − y)3
= O(1).

AboveC > 0.
Γ2: In Γ2 it holds that[√

2nKn(
√

2nx,
√

2ny)
]2 = O

(
1

(x − y)2

)
and trivial calculations give∫ ∫

Γ2

1

(x − y)2
dx dy = O

(
logr(n)

)
.

To complete case I we must also integrate overIn × I c
n \ Γ . The asymptotical expression forhn is different but

there are no difficulties. One can just take absolute values in the integral and the result isO(1).
Case II (the spectrum edge). First consider the subdomain

Ω = {
(x, y); t � x � 1− Cn−1,1− δ � y � t

}
,

whereC is a large positive constant. After a change of variables the contributionJΩ from
√

2n · Ω to the variance
can be written as

JΩ =
∫ ∫
Ω

[√
2nKn(

√
2nx,

√
2ny)

]2 dx dy.

In order to deal with this integral we must first study the integrand and, via Christoffel–Darboux, especia
difference

D = hn exp
(−n(x2 + y2)

)
(
√

2nx)hn−1(
√

2ny) − hn−1(
√

2nx)hn(
√

2ny). (5.2)

We will show that inΩ it holds that

D = const

(4n(n − 1))1/4

[
Ai

(−[
3nF(x)

]2/3)Ai ′
(−[

3nF(y)
]2/3) − Ai ′

(−[
3nF(x)

]2/3)Ai
(−[

3nF(y)
]2/3)]

+O
(

1

n(1− x)

)
+O

(
(1− y)3/4

(1− x)1/4

)
.

Here Ai stands for the Airy function and

F(x) =
1∫ √

1− t2 dt.
x
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ur
In Ω hn has the following asymptotics:

hn(
√

2nx)exp(−nx2) = (2n)−1/4
{(

1+ x

1− x

)1/4[
3nF(x)

]1/6 Ai
(−[

3nF(x)
]2/3)(1+O(n−1)

)

−
(

1− x

1+ x

)1/4[
3nF(x)

]−1/6 Ai ′
(−[

3nF(x)
]2/3)(1+O(n−1)

)}
.

If, for the moment, disregarding theO(n−1) terms in thehn-asymtotics (5.2) can be written as a sum of fo
differencesD1–D4:

(
4n(n − 1)

)1/4
D1 =

(
1+ x

1− x

)1/4(1+ yn

1− yn

)1/4[
3nF(x)

]1/6[3n′F(yn)
]1/6

× Ai
(−[

3nF(x)
]2/3)Ai

(−[
3n′F(yn)

]2/3)
−

(
1+ xn

1− xn

)1/4(1+ y

1− y

)1/4[
3n′F(xn)

]1/6[3nF(y)
]1/6

× Ai
(−[

3n′F(xn)
]2/3)Ai

(−[
3nF(y)

]2/3)
,

(
4n(n − 1)

)1/4
D2 =

(
1+ x

1− x

)1/4(1− yn

1+ yn

)1/4[
3nF(x)

]1/6[3n′F(yn)
]−1/6

× Ai
(−[

3nF(x)
]2/3)Ai ′

(−[
3n′F(yn)

]2/3)
−

(
1+ xn

1− xn

)1/4(1− y

1+ y

)1/4[
3n′F(xn)

]1/6[3nF(y)
]−1/6

× Ai
(−[

3n′F(xn)
]2/3)Ai ′

(−[
3nF(y)

]2/3)
,

(
4n(n − 1)

)1/4
D3 =

(
1− xn

1+ xn

)1/4(1+ y

1− y

)1/4[
3n′F(xn)

]−1/6[3nF(y)
]1/6

× Ai ′
(−[

3n′F(xn)
]2/3)Ai

(−[
3nF(y)

]2/3)
−

(
1− x

1+ x

)1/4(1+ yn

1− yn

)1/4[
3nF(x)

]−1/6[3n′F(yn)
]1/6

× Ai ′
(−[

3nF(x)
]2/3)Ai

(−[
3n′F(yn)

]2/3)
,

(
4n(n − 1)

)1/4
D4 =

(
1− x

1+ x

)1/4(1− yn

1+ yn

)1/4[
3nF(x)

]−1/6[3n′F(yn)
]−1/6

× Ai ′
(−[

3nF(x)
]2/3)

Ai ′
(−[

3n′F(yn)
]2/3)

−
(

1− xn

1+ xn

)1/4(1− y

1+ y

)1/4[
3n′F(xn)

]−1/6[
3nF(y)

]−1/6

× Ai ′
(−[

3n′F(xn)
]2/3)Ai ′

(−[
3nF(y)

]2/3)
.

In the aboven′ = n − 1 andxn =
√

n
n−1x. Note thatxn < 1 in Ω .

D1: A calculation using the series expansion

F 1/6(x)

(1− x)1/4
= c0 + c1(1− x) + · · ·



J. Gustavsson / Ann. I. H. Poincaré – PR 41 (2005) 151–178 169
gives(
1+ xn

1− xn

)1/4(1+ y

1− y

)1/4[
3(n − 1)F (xn)

]1/6[3nF(y)
]1/6

=
(

1+ x

1− x

)1/4(1+ y

1− y

)1/4[
3nF(x)

]1/6[3nF(y)
]1/6 +O

(
n1/3(1− x)

)
= a1n

1/3 +O
(
n1/3(1− y)

)
,

where

a1 = lim
x→1−

√
1+ x

(3F(x))1/3

√
1− x

.

Since

Ai
(−[

3nF(x)
]2/3) = O

(
1

n1/6(1− x)1/4

)
it holds that(

4n(n − 1)
)1/4

D1 = a1n
1/3[Ai

(−[
3nF(x)

]2/3)Ai
(−[

3n′F(yn)
]2/3)

− Ai
(−[

3n′F(xn)
]2/3)

Ai
(−[

3nF(y)
]2/3)] +O

(
(1− y)3/4

(1− x)1/4

)
.

D2–D4: The same procedure as in the previous case gives(
4n(n − 1)

)1/4
D2 = O(1)

[
Ai

(−[
3nF(x)

]2/3)Ai ′
(−[

3n′F(yn)
]2/3)

− Ai
(−[

3n′F(xn)
]2/3)Ai ′

(−[
3nF(y)

]2/3)] +O
(

(1− y)5/4

(1− x)1/4

)
,

(
4n(n − 1)

)1/4
D3 = O(1)

[
Ai ′

(−[
3n′F(xn)

]2/3)Ai
(−[

3nF(y)
]2/3)

− Ai ′
(−[

3nF(x)
]2/3)Ai

(−[
3n′F(yn)

]2/3)] +O
(

(1− y)5/4

(1− x)1/4

)
,

(
4n(n − 1)

)1/4
D4 = O(n−1/3)

[
Ai ′

(−[
3nF(x)

]2/3)Ai ′
(−[

3n′F(yn)
]2/3)

− Ai ′
(−[

3n′F(xn)
]2/3)Ai ′

(−[
3nF(y)

]2/3)] +O
(
(1− y)3/2).

Now consider the difference still left inD1:

Ai
(−[

3nF(x)
]2/3)Ai

(−[
3n′F(yn)

]2/3) − Ai
(−[

3n′F(xn)
]2/3)Ai

(−[
3nF(y)

]2/3)
.

To deal with this expression we shall first investigate the argument

[
3n′F(xn)

]2/3 =
[
3(n − 1)F

(√
n

n − 1
x

)]2/3

.

A simple integration shows that

F(x) =
1∫

x

√
1− t2 dt = 1

2
(arccosx − x

√
1− x2)

and since

xn =
√

n
x = x + x +O(n−2)
n − 1 2(n − 1)
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d
he
we have

F(xn) = F(x) + F ′(x)

(
x

2(n − 1)
+O(n−2)

)
+O(F ′′(x)n−2) = F(x) − x

√
1− x2

2(n − 1)
+O

(
1

n2
√

1− x

)

and hence

3n′F(xn) = 3(n − 1)F (x) − 3

2
x
√

1− x2 +O
(

1

n
√

1− x

)
= 3nF(x) − 3

2
arccosx +O

(
1

n
√

1− x

)
.

The argument can now finally be written as

−[
3n′F(xn)

]2/3 = −[
3nF(x)

]2/3 + arccosx

(3nF(x))1/3
+O

(
1

n4/3(1− x)

)
. (5.3)

Note in the last expression that

arccosx

(3nF(x))1/3
∼ n−1/3.

It is now possible to expand the difference in a Taylor series around the point−[3nF(x)]2/3 and the result is

a2

n1/3

[
Ai

(−[
3nF(x)

]2/3)Ai ′
(−[

3nF(y)
]2/3) − Ai ′

(−[
3nF(x)

]2/3)Ai
(−[

3nF(y)
]2/3)]

+O
(

1

n4/3(1− x)

)
+O

(
(1− y)3/4

n1/3(1− x)1/4

)

wherea2 is defined by

a2 = lim
x→1−

arccosx

(3F(x))1/3
.

Similar computations can be done inD2–D4 and one then ends up with(
4n(n − 1)

)1/4
(D2 + D3 + D4) = O

(
(1− y)1/2).

Adding everything up we now have

D = a1a2

(4n(n − 1))1/4

[
Ai

(−[
3nF(x)

]2/3)Ai ′
(−[

3nF(y)
]2/3) − Ai ′

(−[
3nF(x)

]2/3)Ai
(−[

3nF(y)
]2/3)]

+O
(

1

n(1− x)

)
+O

(
(1− y)3/4

(1− x)1/4

)
. (5.4)

As we shall see the main contribution will come from the domain

Ω1 =
{
(x, y); t � x � t + 1− t

r(n)
, t − 1− t

r(n)
� y � t − ε

}
.

Herer(n) is a function tending slowly to infinity asn tends to infinity andε = 1
n(1−t)1/2 . The size of the expecte

distance between two eigenvalues att is ε. The reason why thisε is necessary lies in the asymptotics for t
Hermite polynomials. The error term given there however small will cause problems since the integral

t+ε∫
t

t∫
t−ε

1

(x − y)2
dy dx

is divergent.
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From the asymptotics of the Airy function and it’s derivative we have that inΩ1

Ai
(−[

3nF(x)
]2/3)Ai ′

(−[
3nF(y)

]2/3) =
(

1√
π

(
nF(x)

)−1/6 sin

[
2nF(x) + π

4

]
+O

((
nF(x)

)−7/6))

×
(

1√
π

(
nF(y)

)1/6 sin

[
2nF(y) − π

4

]
+O

((
nF(y)

)−5/6))

= 1

π

(
F(y)

F (x)

)1/6

sin

[
2nF(x) + π

4

]
sin

[
2nF(y) − π

4

]

+O
((

nF(x)
)−1)

.

If we definer by

1

r(n)
= max

(√
1− t,

1

log[n(1− t)3/2]
)

then inΩ1 it holds that(
F(y)

F (x)

)1/6

= 1+O
((

r(n)
)−1)

,

(
F(x)

F (y)

)1/6

= 1+O
((

r(n)
)−1)

,

O
(

1

n(1− x)

)
= O

((
nF(x)

)−1) = O
((

r(n)
)−1)

,

O
(

(1− y)3/4

(1− x)1/4

)
= O

((
r(n)

)−1)
.

From this it follows that inΩ1 D can be written as

(4n(n − 1))1/4

a1a2
D = 1

π

(
sin

[
2nF(x) + π

4

]
sin

[
2nF(y) − π

4

]

− sin

[
2nF(x) − π

4

]
sin

[
2nF(y) + π

4

])
+O

((
r(n)

)−1)
= 1

π
sin

[
2n

(
F(x) − F(y)

)] +O
((

r(n)
)−1)

.

The nominator in the integral of interest is

n

2
√

n(n − 1)
D2 = (a1a2)

2

4π2
sin2 [

2n
(
F(x) − F(y)

)] +O
((

r(n)
)−1)

= 1

2π2

(
1− cos

[
4n

(
F(x) − F(y)

)]) +O
((

r(n)
)−1)

.

It has here been used thata1a2 = 2. A simple integration gives∫ ∫
Ω ′

1

1

(x − y)2
dx dy = log

[
n(1− t)3/2] +O

(
logr(n)

)
.

The integral

I =
∫ ∫

cos[4n(F (x) − F(y))]
(x − y)2

dx dy
Ω1
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is O(1): by doing a partial integrationI can be split into two integrals:

I =
t+ 1−t

r(n)∫
t

([
sin[4n(F (x) − F(y))]
−4nF ′(y)(x − y)2

]t−ε

t− 1−t
r(n)

+
t−ε∫

t− 1−t
r(n)

sin
[
4n

(
F(x) − F(y)

)]( 1

4nF ′(y)(x − y)2

)′

y

dy

)
dx

= I1 + I2,

|I1| � 2

t+ 1−t
r(n)∫

t

1

4n
√

1− t(x − (t − ε))2
dx = ε

2

[ −1

x − t + ε

]t+ 1−t
r(n)

t

� ε

2
· 2

ε
= 1.

Since([
F ′(y)(x − y)2]−1)′

y
= − y

(1− y2)3/2(x − y)2
− 2√

1− y2(x − y)3

we get

|I2| � C

(∫ ∫
Ω1

1

n(1− y)3/2(x − y)2
dx dy +

∫ ∫
Ω1

1

n
√

1− y(x − y)3
dx dy

)
.

The first part is small:∫ ∫
Ω1

1

n(1− y)3/2(x − y)2
dx dy � 1

n(1− t)3/2

∫ ∫
Ω1

1

(x − y)2
dx dy = O

(
log[n(1− t)3/2]

n(1− t)3/2

)
.

The second part is also easily estimated:∫ ∫
Ω1

1

n
√

1− y(x − y)3
dx dy � ε

∫ ∫
Ω1

1

(x − y)3
dx dy = O(1).

This concludes the calculations inΩ1.
The calculations made above can also be applied to the small slice{

(x, y); t + ε � x � t + 1− t

r(n)
, t − ε � y � t

}
and the result isO(log[r(n)]).

The corner

Ω0 = {
(x, y); t � x � t + ε, t − ε � y � t

}
requires a special technique. In this domain a different representation ofKn will be used, namely

Kn(x, y) =
n−1∑
i=0

pi(x)pi(y)exp

(
−1

2
[x2 + y2]

)
.

By use of the Cauchy–Schwartz inequality we have

K2
n(x, y) � Kn(x, x)Kn(y, y).

Having separated the variables one can now use the calculations of the expected value giving

t∫
′

t+ε′∫ (√
2nKn(

√
2nx,

√
2ny)

)2 dx dy = O(1).
t−ε t
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t to the

ation
Note that
t+ε′∫
t

Kn(
√

2nx,
√

2nx)dx = g(t) − g(t + ε′)

where, as usual,g(t) is the expected value.
Now we shall look at the other part still left ofΩ . This domain can conveniently be written asΩ2 ∪ Ω3 where

Ω2 =
{
(x, y); t � x � 1− Cn−1,1− δ � y � t − 1− t

r(n)

}
and

Ω3 =
{
(x, y); t + 1− t

r(n)
� x � 1− Cn−1, t − 1− t

r(n)
� y � t

}
.

When looking at the expression forD in (5.4) above it is clear that every term is smaller than

n−1/2 Ai
(−[

3nF(x)
]2/3)Ai ′

(−[
3nF(y)

]2/3) = O
(

n−1/2
(

1− y

1− x

)1/4)
.

This means that it is sufficient to calculate the integrals∫ ∫
Ωi

√
1− y√

1− x(x − y)2
dx dy, i = 2,3.

The calculations are straightforward so some details will be skipped. When first integrating with respec
x-variable one gets

H1∫
L1

√
1− y√

1− x(x − y)2
dx = 1

2(1− y)
log

[
(
√

1− y + √
1− L1)(

√
1− y − √

1− H1)

(
√

1− y + √
1− H1)(

√
1− y − √

1− L1)

]

+ 1√
1− y

(
1√

1− y − √
1− L1

− 1√
1− y − √

1− H1

+ 1√
1− y + √

1− H1
− 1√

1− y + √
1− L1

)
.

Ω2: LettingH1 = 1 instead of 1−Cn−1 we get nicer expressions. This is allowed since the domain of integr
becomes larger. The task is to get an upper bound for the integrals

A =
H2∫

L2

1

2(1− y)
log

[√
1− y + √

1− L1√
1− y − √

1− L1

]
dy =

√
1−L2∫

√
1−H2

1

z
log

[
z + √

1− L1

z − √
1− L1

]
dz

and

B =
H2∫

L2

1√
1− y

(
1√

1− y − √
1− L1

− 1√
1− y + √

1− L1

)
dy

= 2

√
1−L2∫

√

(
1

z − √
1− L1

− 1

z + √
1− L1

)
dz,
1−H2
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plied
at
where

L2 = 1− δ, H2 = t − 1− t

r(n)
and L1 = t.

When manipulating the integrand in A one gets

1

z
log

[
1+ 2

√
1− L1

z − √
1− L1

]
= 1

z
O

( √
1− L1

z − √
1− L1

)
.

Some algebra shows that
√

1− L1

z(z − √
1− L1)

= 1

z − √
1− L1

− 1

z

which can easily be integrated:

A � C

[
log

[
z − √

1− L1

z

]]√
1−L2

√
1−H2

= O
(
logr(n)

)
.

The integral B is even easier and one gets

B = 2

[
log

[
z − √

1− L1

z + √
1− L1

]]√
1−L2

√
1−H2

= O
(
logr(n)

)
.

Ω3: The same procedure as inΩ2 gives that the contribution to the variance from this domain is o(1).
We shall now consider the thin strip

Ω4 = {x, y;1− Cn−1 � x � 1+ Cn−1,1− δ � y � t}.
The asymptotics here are similar to those inΩ and hence many of the calculations already done can be ap
here as well. As beforeD can be split up inD1 − D4 which can all be treated similarly. Therefore we only look
D1 here. We have that(

4n(n − 1)
)1/4

D1 = a1n
1/3[Ai

(∓[
3nF(x)

]2/3)Ai
(−[

3n′F(yn)
]2/3)

− Ai
(∓[

3n′F(xn)
]2/3)Ai

(−[
3nF(y)

]2/3)] +O
(

(1− y)3/4

(1− x)1/4

)
,

where∓[3n′F(xn)]2/3 means minus whenxn < 1 and plus otherwise (the equivalent for∓[3nF(x)]2/3). This
follows from calculations done above and the asymptotics for the Hermite Polynomials whenx > 1. In Ω4 we
have

Ai
(∓[

3nF(x)
]2/3) = Ai(0) +O(n−1/3),

Ai
(∓[

3n′F(xn)
]2/3) = Ai(0) +O(n−1/3)

and by using Eq. (5.3) (for they-variable) one gets

(
4n(n − 1)

)1/4
D1 = O

(
(1− y)1/4

|1− x|1/4

)
.

The error term here has actually already been dealt with in the estimations of the contribution coming fromΩ2.
Rather than to repeat a lot of calculations we now just give ideas of how to treat what’s left of[t,∞)× (−∞, t].
In the domain

{x, y;1+ Cn−1 � x � 1+ δ,1− δ � y � t}
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l

ful dis-
n the
one can perform much the same calculations as inΩ and the contribution isO(1). In

{x, y; t � x � 1+ δ,−1− δ � y � 1− δ}
one can use the fact thatx−y � δ to show that the contribution from this domain isO(1). If x � 1+δ ory � −1−δ

t one easily gets from the asymptotics for the Hermite Polynomials thatKn(
√

2nx,
√

2ny) is exponentially smal
in n and exponentially decaying inx2 (or y2). Thus the contribution from this domain is o(1). �
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Appendix A. Some integrals

The following equalities hold:

∞∫
x

Ai2(y)dy = Ai ′2(x) − x Ai2(x),

∞∫
x

y Ai2(y)dy = 1

3

(
x Ai ′2(x) − x2 Ai2(x) − Ai(x)Ai ′(x)

)
,

∞∫
x

Ai ′2(y)dy = 1

3

(
x2 Ai2(x) − x Ai ′2(x) − 2 Ai(x)Ai ′(x)

)
,

∞∫
x

y2 Ai2(y)dy = 1

5

(
x2 Ai ′2(x) − x3 Ai2(x) − 2x Ai(x)Ai ′(x) + Ai2(x)

)
,

∞∫
x

y Ai ′2(y)dy = 1

5

(
x3 Ai2(x) − x2 Ai ′2(x) − 3x Ai(x)Ai ′(x) + 3

2
Ai2(x)

)
.

The first integral is obtained from one partial integration while remembering that

Ai ′′(x) = x Ai(x).

The integrals 3–5 can be obtained rather easily from the second which can be treated as follows:
Set

uα(x) = Ai(αx), α > 0.

The relationship

[u′
αuβ − uαu′

β ]′ = u′′
αuβ − uαu′′

β = x(α3 − β3)uαuβ

holds since

u′′
α(x) = α2 Ai ′′(αx) = α3x Ai(αx) = α3xuα(x).
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e

cted
Hence
∞∫

a

xuα(x)uβ(x)dx = 1

α3 − β3
[u′

αuβ − uαu′
β ]∞a = uα(a)u′

β(a) − u′
α(a)uβ(a)

α3 − β3
.

The idea now is to letα, β tend to one. Setα = 1 + h andβ = 1 − h whereh > 0 and small. The left hand sid
tends to

∞∫
a

x Ai2(x)dx

ash → 0+. Standard calculations show that at the same time the right hand side tends to

1

3

(−a2 Ai2(a) − Ai(a)Ai ′(a) + a Ai ′2(a)
)
.

Appendix B. Variance calculations

Let I1, . . . , Im be a set of disjoint intervals and #Ii be the number of eigenvalues of the GUEn in the intervalIi .
We shall give a formula for Var(α1#I1 + · · · + αm#Im). We have

#Ii =
n∑

k=1

χIi
(xk), 1� i � n,

whereχB is the characteristic function for the setB and {xk}n1 are the (not ordered) eigenvalues. The expe
value is easy to compute:

E[#Ii] =
∫
Ii

ρn,1(x)dx =
∫
Ii

Kn(x, x)dx.

The correlation functionsρn,k were defined in the introduction. We also need to calculateE[#I2
i ]:

E[#I2
i ] = E

[
n∑

j,k=1

χIi
(xk)χIi

(xj )

]
=

n∑
k=1

E
[
χIi

(xk)
] +

∑
j �=k

E
[
χIi

(xk)χIi
(xj )

]

=
∫
Ii

Kn(x, x)dx +
∫ ∫
Ii×Ii

ρn,2(x, y)dx dy

=
∫
Ii

Kn(x, x)dx +
(∫

Ii

Kn(x, x)dx

)2

−
∫ ∫
Ii×Ii

K2
n(x, y)dx dy.

We now have that

Var(#Ii) =
∫
Ii

Kn(x, x)dx −
∫ ∫
Ii×Ii

K2
n(x, y)dx dy.

To get a more convenient formula to work with one can now use the identities [7]Kn(x, y) = Kn(y, x) and∫
Kn(x, y)Kn(y, z)dy = K(x, z)
R
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pect to
to get

Var(#Ii) =
∫
Ii

(∫
R

K2
n(x, y)dy

)
dx −

∫ ∫
Ii×Ii

K2
n(x, y)dx dy =

∫ ∫
Ii×I c

i

K2
n(x, y)dx dy.

In more generality one gets

E[α1#I1 + · · · + αm#Im] =
m∑

i=1

αi

∫
Ii

Kn(x, x)dx

and

(α1#I1 + · · · + αm#Im)2 =
m∑

i=1

α2
i

(
n∑

k=1

χIi
(xk)

)2

+
m∑

i �=j

αiαj

(
n∑

k=1

χIi
(xk)

)(
n∑

k=1

χIj
(xk)

)

= S1 + S2.

From the calculations above we know that

E[S1] =
m∑

i=1

α2
i

(∫
Ii

Kn(x, x)dx +
(∫

Ii

Kn(x, x)dx

)2

−
∫ ∫
Ii×Ii

K2
n(x, y)dx dy

)

so it remains to calculateE[S2]. We have(
n∑

k=1

χIi
(xk)

)(
n∑

k=1

χIj
(xk)

)
=

n∑
k �=l

χIi
(xk)χIi

(xl)

and hence

E[S2] =
m∑

i �=j

αiαj

∫ ∫
Ii×Ii

ρn,2(x, y)dx dy =
m∑

i �=j

αiαj

(∫
Ii

Kn(x, x)dx

∫
Ij

Kn(x, x)dx −
∫ ∫
Ii×Ij

K2
n(x, y)dx dy

)
.

Since

(E[α1#I1 + · · · + αm#Im])2 =
m∑

i=1

α2
i

(∫
Ii

Kn(x, x)dx

)2

+
m∑

i �=j

αiαj

∫
Ii

Kn(x, x)dx

∫
Ij

Kn(x, x)dx

we finally get (with manipulations as before)

Var(α1#I1 + · · · + αm#Im) =
m∑

i=1

α2
i

∫ ∫
Ii×I c

i

K2
n(x, y)dx dy −

m∑
i �=j

αiαj

∫ ∫
Ii×Ij

K2
n(x, y)dx dy.
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