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Abstract

In this paper we prove a large deviations principle for the invariant measures of a class of reaction—diffusion systems in
bounded domains &, 4 > 1, perturbed by a noise of multiplicative type. We consider reaction terms which are not Lipschitz-
continuous and diffusion coefficients in front of the noise which are not bounded and may be degenerate. This covers for example
the case of Ginzburg-Landau systems with unboundeldassibly degenerateuttiplicative noise.
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Résumé

Dans cet article on prouve un principe de grandes déviations pour les mesures invariantes de systémes de réaction—diffusic
stochastiques dans des domaines bornd¥/de > 1, perturbés par un bruit multiplicatif. On considére des termes de réaction
qui ne sont pas lipschitziens et des coefficients de diffusiomeusont pas bornés et peuvent étre dégénérés. Ceci s'applique

par exemple au cas de systemes de Ginzburg—Landau avec bruit multiplicatif non borné et éventuellement dégénéré.
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1. Introduction

In this paper we are dealing with the long-term bgbaof the stochastic reaction—diffusion system

B (t,8) = Aiui (1.6) + fi (¢ ua(t, £). ... up(1,8))
+ed i 18i( s,ul(t,s),...,ur(t,s))Q,;%(t £), t>0, £€0, (1.1)
u;(0,€) =x; (&), £€0, Biu;(t,£)=0, t>0, £€dO, 1<i<r,

with ¢ > 0. HereO is a bounded open set Bf, with ¢ > 1, having aC* boundary. For each=1, ..., r

d

d
Ai(¢,D) = Z 85},( hk(é)as > a, £€0. (1.2)

h,k=1

The constants; are strictly positive, the coefficients, are taken inrC>(0) and the matrices' (§) := [a}, (&) 1nk
are non-negative and symmetric, for egch O, and fulfill a uniform ellipticity condition, that is

inf (@' (£)h, h) > ri|h|%, heR?,
£€O

for some positive constants. Finally, the operator$’ act ond© and are assumed either of Dirichlet or of
co-normal type.

The mappingf := (f1, ..., f,):O x R” — R is only locally Lipschitz-continuous and has polynomial growth.
The mapping :=[gi;] 0 x R"” — L(R") is Lipschitz-continuous, without any assumption of boundedness and
non-degeneracy.

The linear operatorg) ; are bounded oi.2(®) and may be taken to be equal to the identity operator in case
of space dimensiod = 1. The noisy perturbationdw; /9t are independent cylindrical Wiener processes on a
stochastic basi&?, F, F;, P).

For example, in the case of space dimengieal andr = 2, we can deal with systems of the following type

9 9 (9 2k+1 2
it = e (a1 %52) — caur — crud T+ fi(ua, up) + (g1(us, u2), a—’f)
dup d

5= g(az%) — aoup — coud T+ fou, up) + (g2(u1, u2), 22),
ui(0,6) =x;(§), £€0, ui(t, &) =niu;(t, &)+ 1A - 77:)8“’ (1,6), £€00,
whereq; are positive functions i€1(0), n; € {0, 1}, o; andc; are positive constants (in fagt can be taken zero in
the case of Dirichlet boundary conditions, that ig;it=1), f = (f1. f2) : R? - RZis aC? function having linear
growth, with £(0) = 0 andDf (0) diagonal, anct = (g1, g2) : R — L(R?) is any Lipschitz continuous function
such thatg (0) either vanishes or is diagonal invertible and such that
lg(@) ”E(RZ) <c(l+lof"), o€ R?,
with
2k+1> (1+6y)Vv2

In particular, ifg is bounded in the reaction term we can take any power 2 > 3.

In [2] it is proved that for anye > 0 and p > 1 system (1.1) admits a unique global solutigh €
LP(£2; C([0, T1; E)), whereE is the space of continuous functions Ghwith values inR”, and for each ini-
tial datumx € E anda > 0 the family of probability measurd (u; (t)};>, is tight in (E, B(E)). In particular,
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due to the Krylov—Bogoliubov theorem this yields the existence of a sequerict +oo (possibly depending
on¢) such that the sequence of probability measures defined by

In

Ve () = %/P(ug(s) el)ds, I eB(E), (1.3)
0

converges weakly to some measugewhich is invariant for system (1.1).
In the earlier paper [3] we have proved that the prodes$...o is governed by a large deviation principle in
C([0,T]; E), for any T > 0. Our aim here is to prove that the family of invariant measyrgk.- o defined as
the weak limits of the sequences of measures as in (1.3) obeys a large deviation pringiplsingoes to zero
(precise hypotheses on the coefficients are specified in Section 2 below to which the reader is referred to).
Clearly the first step in the proof of large deviations estimates is defining an appropriate action furictional
having compact level sets. The hardest part here is not tolfifgke (5.1) below for its initial definition and, in
particular, [9] and [14]) but to find a good characterization of it, in order to prove that its level sets are compact and,
maybe more importantly, to get a better intuition abouhitsaning. So, we spend a great deal of effort to prove
that (as in [8] and [14]), the action functiont] also calledjuasi-potentialhas the following form

V(x)=min{/_c(2); z € C((—00,0%; E). 2(0) =x, lim_|z(1)|, =0}. (1.4)

Here I_(z) is the minimum energy required fwoducez as a solution of the skeleton equation corresponding
to (1.1) forz € (—oo, 0], i.e. replacedw/dr by a deterministic functior € L2(—o0, 0; L2(O,R")) so that the
corresponding solution(y) equalsz and the energy:£ |(p|i2(7oo 0.L2(0 R,))) is minimal (cf. Section 3 and the
beginning of Section 5 below). T

By compactness the infimum in (1.4) is indeed achieved by sgmehich exhibits more regularity in the space
variables than just being if (cf. Lemma 3.5 which in turn is essential for the proof of Proposition 5.4, but also
for the proof of Lemma 7.1 which yields upper bounds). We would like to mention at this point that proving (1.4)
requires considerable new input, since we consider space dimehsidn so the coefficient in front of the noise
(in contrast to the one-dimensional case considered]iarjél [14]) can no longer be invertible. In addition truly
degenerate multiplicative noise is included in our framework.

Once we have shown that the mappMgE — [0, +o0] is lower semi-continuous, with compact level sets, we
prove that the family of probability measurgs }.~o obeys a principle of large deviations with action functioWal
(cf.[9,10] and [14] for the formulation), i.e.

1. lower boundgcf. Section 6 below): for any, y > 0 andx € E there existgg > 0 such that
Vi
vg({x eE: |x—X|g< 8}) P exp(—%), e < &p;
&

2. upper boundgcf. Section 7 below): for any, §, y > 0 there existsg > 0 such that

vg({x eE; diStE(x, K(s)) > 5}) < exp(—s 8_2y), e < &o,

whereK (s) :={x € E: V(x) <s}isthe level set oV .

In accordance to the generakimks about the large deviations for the invariant meadurés.o (as beautifully
explained in the introduction of [9]) we have thdléwing interpretation. Due to the definition of for any set
A C E the numben,(A) is the mean expected time the processpends inA. Moreover, by the large deviation
results in [3] points inK (s), for smalls, are of course more likely to be visited by. So, according to statement
2 above, the mass of will concentrate ag — 0 at points inE which are minimum points o¥'. In our case

Vix)=0&x=0
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(cf. (5.2) below), sa; will converge to the Dirac measure at the zero functiofjn.e. the only stationary solution
of Eq. (1.1) fore =0.

In the framework considered in the present paper the skeleton equation associated with system (1.1) is not nul
controllable, as in the case considered by Sowers in [14]. Then the proof of lower bounds turns out to be more
complicate than in [14]. In fact, a crucial role is played by Lemma 6.2, whose proof is not immediate, as we are
dealing with non-Lipscitz reaction &rm, unbounded and any space dimensian> 1. To this purpose we note
that for the proof of Lemma 6.2 we also benefited from some ideas of I. Daw (see [6]).

Concerning the upper bounds, we have distinguished the case of bounded and unishiftiedG is bounded
we can use exponential estimates for the solutigproved in [3] and generalize some arguments of Sowers to
our more delicate situation. In the case of unboun@ethis is not anymore possible. Hence we need to prove
estimate (3.13) in Theorem 3.4 below, i.e. an estimate on the solution of the skeleton equation which is uniform
with respect to the initial datum. This allows us to prove Theorem 7.5, whergy satisfies the growth condition
in Hypothesis 6, without using the exponential tail estimates (7.2) for the solution of (1.1) which are only known
to hold for bounde@. Thus, Theorem 3.4 turns into a key step, since here we have not succeeded in applying a
localization argument as we did in [3].

Finally, let us mention that our general strategy mafollows R. Sowers [14], but our more general situation
requires various new techniques. These, in paldic becomes necessary because of the following.

1. Unlike in [13] and [14] (see also [6] and [11]), where global Lipschitz assumptions were imposed, here the
functions f; in (1.1) are only locally Lipschitz and of polynomial growth (see Hypothesis 3 and Remark 2.4
below).

2. g =[gij]in (1.1) is not assumed to be globally bounded (as e.g. done in [13] and [6]) and just assumed to be
globally Lipschitz (see Hypothesis 2, but also Hypothesis 6 for the proof of upper bounds). Mogemagy,
be degenerate. This means that we can consider for example = A;;u ;, with 1;; € R.

3. We consider systems pfcoupled stochastic reaction—diffusion etjaas, ruling out the maximum principle
and hence comparison techniques commonly used inrcask

4. Unlike in [14], where space dimensia@n= 1 is considered, we can allow arbitrary space dimension, i.e. for
E = C(O;R") we can allow® to be a bounded open subset®f, for arbitraryd > 1 (cf. Hypothesis 2
below).

2. Assumptions and preliminaries

Let O be a bounded open set Bf, with d > 1, having aC> boundary. In what follows we shall denote by
H the Hilbert spacé.?(O; R"), r > 1, endowed with the usual scalar product); and the corresponding norm
|- |g. The norminL?(O; R"), p € [1, 00], p # 2, shall be denoted by | ,.

For any 1< p < co andm € N, by W™?(0O) we shall denote the space of functiofi€ L”(O) such that the
weak derivativedD* f exist in L” (O), for each 0< |o| < m. W™ P(Q) is a Banach space, endowed with the norm

[flwmr ) = Z |D® flLr)-

loe] <m
Moreover, ifs > 0 is not integer, we defin@*? (©) as the space of functionse W57 () such that

|D* f(§) — D" f(mpI?
[flwsr0) =1 flwiiro) + Z & — [ G=p dédn < oo.

ler|=I[s] OxO

Next, we recall that for any € R and p € (1, oo) the Bessel potential spaég’?(R9) is defined by

H*PRY) = { f € ' ®R): | flyonay = |F LA+ 16122 F £, za) < 00},
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whereS’(R?) is the space of tempered distributions Bfi and F the Fourier transform. The Bessel potential
spaces oi® are defined by restriction as

HYP(O):={f = g0 g € H*PRD)},
with
s, = inf s, .
[ f s 0) s 181 gs.p (R
We note that fok € N we haveH*?(©0) = Wk?(0©) (for all definitions and detailed proofs see [15]).
Finally, we shall denote by*7(O; R") and H*-?(O; R") the space ofR"-valued functions such that each
component belongs tw*-7(0) and H*-?(0O), respectively.

In what follows we shall denote by the realization inH of the differential operatad = (A4, ..., A,) defined
in (1.2), endowed with the boundary conditidfis= (3%, ..., B"), where foreacli=1,...,r

Bu=u, or Bu=a'v,Vu), (2.1)
(herev is the normal vector at ). As proved e.g. in [15, Chapter 5] we have
D(A) = {u e H*?(O; R"): Bu=00n30} =: HZ*(O; R")
and the following optimal regularity result holds
ue D(A), Aue H2(O;R"), | e Nt = u € HF?2(O; R"). (2.2)
We recall that for any integer> 2 thekth power of the operatot is defined by
DAY :={ue DA AF e D)), Afu= A" ).
Analogously, we can define th¢h power of A by setting
Abu = A4 ) = (A (A ), o A A ), we HER2(O;R).
Thanks to (2.2) it is immediate to show that for any fixed intéger
D(A*) = HE 2O R") 1= {u € H*X(O; R): Bu=+-=B(Au) =0}, (2.3)
so that the operatotX is the realization irH of the differential operatad* endowed with the boundary conditions
Bi:={B.BA,...,BA}

Notice thatA generates an analytic semigroeld in eachL?(O; R"), with 1< p < oo, which is self-adjoint
on H and of negative type. Thus, asA is a positive self-adjoint operator dtif, for any 0< o < 8 andé € [0, 1]
we have

[D((=4)%). D((=A))], = (D((=A)%). D((=A)F)), , = D((=A)F=+%F), (2.4)

where in general, given any two Banach spakesndY, [X, Y]y denotes their complex interpolation space and
(X, Y)g,2 denotes their real interpolation space (for a proof see [15, Theorem 1.18.10]).
By complex interpolation arguments it is possible to characterize the domain of the fractional powets of

Proposition 2.1.Letm; := (14 2ordB’) /4. Then, forany > 0andi =1, ..., we have
AV — g2 . or
D(( A) )— HBy (O;R"),
whereB, := (B, ..., B7) with

Bi i 0 if)/G[O,mi],
_{{B",B"A,»,...,B"Ajf} if y e (k+mi, k+1+m;], ke NU{O}.

! (2.5)
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Proof. Due to (2.4) we have
D((—=AY) =[H,D((-A)YT)]_,

[y1+1

and then from (2.3) we obtain

D((=AY) =[H, Hg " *0R] (2.6)

[y1+1

It is not difficult to prove that for any integérthe operatord* endowed with the boundary conditid is regular
elliptic (for the definition and all details see [15, Section 5.2.1]). Thus, as proved in [4, Lemma 11] from (2.6) we
obtain

D((=4)) =

where

HY 2(0 R"),

B {B'.A’ 0<j <[yl Ord(Bi.A{)<2y—%}.

Hence, by easy computations we can check that the boundary condﬂ;}oabove coincide with the boundary
conditionsB;, in (2.5). O

Remark 2.2.1t is immediate to check that if € N the boundary conditions,, introduced in (2.3) coincide with
the boundary conditions, introduced in the proposition above.
In what follows we shall set
E := D(A) “OF) = p(Ap ©O® x ... x D(4,) CO®.

Each setD(4;) €©®) coincides withC(O; R) or Co(O; R), if B; is respectively a co-normal or a Dirichlet
boundary condition. In any case, with this definition of the spA¢endowed with the sup-norin |g and the
duality (-, -)g :=g~ (-, -}, the part of’4 in E (which we will still denote by’4) is strongly continuous. Moreover
foranys, € d|x|g :={x* € E*, (x,x*)g = |x|g, |x*|g~ =1} we have

(Ax,8:)p < —alx|g, x € D(A), (2.7)

whereo := minj—1,
As recalled also in [2] and [3k'4 has a smoothing effect. In fact, for any 0, 1< ¢ < p < oo ande > 0 the
semigroupe’4 mapsL?(O; R") into W&?(O; R") and

le' A x wenoimry < ce ' (t A1)~ + 45 )|x| x e LY(O;R"). (2.8)
Moreover,e'4 mapsk into C?(O; R"), for any6 > 0, and
_ _8
|etAx|C9(@;R,) <ce @t AL 2|x|g, x€E. (2.9)

We also notice that'4 is compact onl.?(O; R"), for all 1< p < co andr > 0, and the spectrurfi-a,,} is
independent op.
Our first hypothesis concerns the eigenvalueg of

Hypothesis 1.The complete orthonormal systemmfwhich diagonalizest is equi-bounded in the sup-norm.

Next, we assume thad := (Q1, ..., O,) : H — H is a bounded linear operator which satisfies the following
conditions.
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Hypothesis 2.0 is non-negative and diagonal with respect to the complete orthonormal basis which diagonal-
izesA, with eigenvalues$, }. Moreover, ifd > 2,
0 <00 ifd=2 00 /e
there exists 2d such that| 0|, := (Zxﬁ) < oo. (2.10)
Q

<d—_2 |fd>2 =1

Remark 2.3. Hypothesis 1 is satisfied e.g. by the Laplace operatdiOofi]? endowed with Dirichlet boundary
conditions. But there are several important cases in which it is not satisfied and it is only possible to say that
lexloo < ck?,

for somey > 0. In this more general situation one has to assthat the summabilityandition (2.10) imposed on
the eigenvalues of) is satisfied for some smaller constant In other words one has tmlor the noise more.

In Hypotheses 3 and 4 below we gigenditions on the coefficienté andg.
Hypothesis 3.The mapping: O x R" — L(R") is continuous. Moreover the mappigg¢, -) :R” — L(R") is
Lipschitz-continuous, uniformly with respectét@ O, that is

sup sup g, o) —gE Pllcw -0

EEC_) o,peR” |G - /0|
oFp

In what follows for anyx, y: O — R’ we set
(G)y)@E) =g(£.x®)yE), £€O.
Next, settingf := (f1, ..., f,), foranyx:O — R” we define
F() (€)= f(£.x(), £€0.

Hypothesis 4.

(1) The mapping”: E — E is locally Lipschitz-continuous and there exists> 1 such that
|F(x)|E<c(1+|x|’g), x€E. (2.11)

Moreover,F(0) = 0.
(2) Foranyx,h e E

(Fx+h) — F(x),8), <0, (2.12)

forsomes, € d|h|g :={h* € E*; |h*|g» =1, (h, h*)g = |h|E}.
(3) There exist: > 0 andc > 0 such that for eachr, 2 € E

(FOx+h) = F(x), ) < —alhl + (14 |xI%), (2.13)
for somes;, € 3|h|E.
Remark 2.4.Assume that

ﬁ(saUl’~-~’Ur) :Zki(saai)+hi(§aUl’~-~’Ur)’ i=17~-~7ra
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whereh; : O x R” — R is a continuous function such that(€, -) :R” — R is locally Lipschitz-continuous with
linear growth, uniformly with respect to e O, and

2n
ki(§,0:) :=—c()o" T+ Y cr(®)af,
k=0

wherec (&) andcy (£) are continuous functions(£) > ¢ > 0, £ € O andco(§) = —h; (€, 0).
Under these assumptions the functipsatisfies conditions (1) and (3) in Hypothesis 4 (see also [1, Chapter 6],
[2] and [3, Remark 2.1] for more general examples of functigrglfilling Hypothesis 4 and for all details).

The next set of conditions assure the compactness of level sets for the quasi-potential associated with sys
tem (1.1).
Hypothesis 5.Either G(0) = 0 or there exists a continuous increasing functign such that for any > 0
|Q[GO] MM+ OTh| > c(t)| Qe hly, heH. (2.14)

In the casg2.14)is verified, the following conditions hold.

(1) If {—ay,} and{r,} are respectively the eigenvaluesdfind Q, then

1
Ea;‘s < < ca_‘s, (2.15)

n

for somec > 0 and somé such that
. d—2
§>0, ifd=1, 5>T, if d > 2. (2.16)

(2) The mappingg andg are of classC>® on O x R".
(3) If § is the constant in(2.15)and B, is the boundary operator introduced {2.5), then for anyy < and
u,ve H22(O; R") we have

Byup,, =0= B, F(u),, =0,

(2.17)
Byuj,o =By =0= B, (Gm)v),, =0.
Moreover, ifu, v, w € H?:2(0; R") we have
Bﬁ”\ao =B(3U‘30 =0= Bg(F/(u)v)bO =0, (2.18)

Bsuy,, = Bsv),, = Bsw|,, =0= B(g([G’(u)v]w)h,O =0.
Remark 2.5.

1. We note that the assumption (2.14) iffified when there exist two diagonalx r matricesD; and D2, with
D1 invertible, such that

g(&,0) =Dy, Do f(£,00=D,, £€O.

In particular, when instead of a system a single equation is considered, condition (2.14) is always fulfilled if
bothg(¢,0) andD,, f (&, 0) do not depend o&.
2. Condition (2.15) means that Ran@e= D((—A)?%).
3. We assum¢g andg to beC> (O x R") only for simplicity. In fact we neeg andg to be of clasC¥ (O x R"),
for somek large enough, depending on the constaimtroduced in (2.15) (for example, in the caSe= 1 it
is sufficient to taket < 25 4+ 1/2, see also next remark).
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4. If we have
oy, an/d, neN

(this happens for example in the case of the Laplace operator strongly regularopen sets, both with
Dirichlet and with Neumann boundargeditions, see [5, Theorem 1.9.6]), then if (2.16) holds, there exists
somep which fulfills condition (2.10).

5. WhenB =1, foreachi = 1, ..., r, condition (2.17) is verified for example by functiofisandg such that

DLf(£,00=0, Dlg( 00=0 &0, (2.19)

foranyj=1,..., 2k, wherek € [§ — 5/4, 5 — 1/4) (notice that in this case; = 1/4, for eachi). In the same
setting, condition (2.18) holds fof andg fulfilling (2.19) foranyj =1,..., 2k + 1, with k as above.

For the proof of upper bounds in the case of unboungde® need the following condition on its growth.

Hypothesis 6.There existy € [0, 1] such that

suplg&, )| @y <c(l+lol”), o €R’, (2.20)
£cO
and
-1
m> [1+ (2+d)y(1— d(QZ 2)) } V2, (2.21)
0

wherep andm are the constants introduced respectively2n 0)and(2.13)

Remark 2.6.Condition (2.21) onl, m, ¢ andy says how the space dimension, the dissipativity pthe regularity
of Q and the growth of5 are related to one another, in order to have upper bounds.

In the case of space dimensidr= 1 and white noise (which mean® = 7 and hence = +00) the relation
betweenn (the dissipativity ofF’) andy (the growth ofG) is

m> (1+6y) V2,

so that in the case af having linear growth (that ig = 1) we have to assume > 7. If instead of a white noise
we take a coloured noise with Hilbert—Schmidt covariagcéhat ispo = 2) we have

m>(A+3y)v2

which becomes: > 4 in the case of = 1.

In general, from (2.10) we have that the bigger the space dimeddi@eomes, the smallerhas to be chosen
(and hence the more regul@rhas to be taken). Due to (2.21) this means that if we want to allow the same growth
of g with increasing dimensions,awhave to take reaction terniswith stronger and stronger dissipativity, that is,
larger and large.

3. The skeleton equation

With the notations introduced in the previous section system (1.1) can written more concisely as
du(t) =[Au@®) + F(u(®))]dt + G(u(®)) Qdw(t), u(0)=x. (3.1)

In this section we prove some results for the skeleton equation associated with the system above.
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For any—oo < 11 < t2 < 400 andg € L2(11, t2; H) we denote by (¢) any solution belonging t@ ([t1, ©2]; E)
of the deterministic problem
(1) =Az(t) + F(z(0)) + G(z(D)) Qo(1),  z(t1) = x. (3.2)
In several cases, when we need to stresszhat starts fromx at timer1, we shall writez;‘l (¢). As shown in [3,
Theorem 4.1], for any > 0 andr; < 1, there exists a constant,,—,, > 0 such that for any € E
SUD ‘Zx((ﬂ)‘c([tl),z];E) g Cr,tzfl‘]_(l—i_ I)C|E).
10 200y 111y <7

In fact, by proceeding as in [2, proofs of Proposition 6.1 dineorem 6.2], it is possible to get the following
stronger result.

Theorem 3.1.Under Hypothese$4, for anyr > 0 there exists a constairt > 0 such that for any € R and
xekE

sup |Z§(¢)‘C([T,oo);E) <eor(1+1xE). (3.3)
101127 001 11y ST
Moreover, there exist8, € (0, 1) andc, € (0, +00) such that forany > T andx € E
Ox
Sup |Z)]C‘((p)(t)|cth(@:Rr) gcr(1+ |X|'g)(1+(f - T)_7)- (34)
191127 00 11y ST '

Proof. For any fixedp € L%(T, o0; H), z € C([T, o0); E) andi > 0 we define

t

)Q/)T,)\(Z)(f) 3=/e(t_s)(A_)‘)G(z(s))Q(p(s) ds, t>T,
T

(and we sey, (2) ==y, o(2)). Clearly,y, (2) is the unique mild solution of the problem

%(t):(A—k)v(t)+G(z(t))Qcp(t), t>T, v(T)=0.

Thanks to the same arguments used in [2, proofs obfidma 4.2 and Proposition 4.5, Remark 4.6], due to (2.9) we
can fix somé, € (0, 1) such that forany. > 0 and7 € R

Sup|yg:x(z)(t)|c9*(('_):ﬂ§r) < C()")(1+ |Z|C([T,OO);E))|§0|L2(T,oo;H)’ (35)
t>T ’

=

for a constant (1) decreasing to zero asgoes to infinity.
Now, if we sety” (1) := VJA(Z)}(QD))(I) andu(r) :=z3.(p)(t) —yT (1), fort > T, we have

W (t) = (A= 2Du)+ Fu@®) +y" ) + 25 (@) @), u(T)=x.

We recall here that if a mapping: [0, T] — E is differentiable at some poing then
d a H / * *
- |u(t0)| ; = min{(u'(10), x*) ;. x* € 0|u(t0)| ,}

see for example [1, Proposition A.1.3]. Hencd,if;) is the element 0f|u(7)| g introduced in (2.13), due to (2.11)
we have

P
7 1O <{Au®, 8u)p + (F (u () + yT®) = F(y" ). 8u0),

H(F(r" ) + 225 @) 0, 8ur)p < —alu®p +c(1+ [y O} + A @) @) ).
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Then, recalling that}. () = u+ y(pT!A (z3(¢)), by a comparison argument (see for example [2, proof of Lemma 5.4])
forany: > T we obtain

1

7).

Thanks to (3.5) and to the Young inequality, this implies thégf 27 oo, 1) <7

(@) (®)

|5 @ @), < IxlE+ c(1+ S;Jp‘y‘zk(z’}(go))(r)u vy
r>T

1 —_—
sup|z; (@) (1), < |x|e + 2 S>U;)|z’}((p)(t)|E + )1+ 27D o ((7.000:2))7 + =1
t/

tz

Now, as lim_. o c(A) = 0, we can find. such that(1)r < 1/4 and then
suplz} (@) ()|, <er(1+ IxE),
1>T

for some positive constant.
Finally, in order to obtain (3.4), we remark that thanks to (2.9), (2.11) and (3.3) far ar§y we easily have

t

/ e(’_S)AF(Z’} (©)(s))ds

T

Co(O;R")
t

Ox
< c/e_“(t_s)((t =AD" 2 (14 |5 @)()|p) ds < e (14 |x[p). (3.6)
T
Then, as

t

@) (0) =D Ax 4 f eI (21 (9)(9)) ds + v, (23 (@) ),
T
from (3.3), (3.5) and (2.9) for ary> T we get

_bs
3@ @ipry (e (@ =T)AL) " 2 x| + o (L+1x17)),
which easily implies (3.4) O

The next proposition shows that if we start fram= 0 at timeT, thenz‘%(go) decreasesto zero ([T, o0); E),
as¢ decreases to zero iA(T, oo; H).

Proposition 3.2.Under Hypothese$—4, for anyT € R we have

R 0
lim 0|ZT(¢)|C([T,0°);E) =0. (3.7)

|(p|L2(T,(>0;H)*>

Proof. As in the proof of Theorem 3.1, if we setr) := z9.(p)(1) — ¥, z9.(9)) (1), we have
W (1) = Au(t) + F(u(®) + v} (22@) 1),  u(T)=0,

so that, with the notations of Theorem 3.1,
J-
o O] <{Au®, b)) +{F ) + 7, =2@)®) = F(r[ 3@) ). 8ui)

+(F(ry (3@)®),8ui)p < —alu®]y + | F (v, (2@) )]
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Recalling that«(z) := z(}(w)(t) - VJ (z(}(w))(t), by comparison this yields

sup|22(@) (1), < sup(ju®)] ;. + )] (2@)®)],)
t>T t>T

1

E)

<esupllyy (F@)O] g+ F 1 (@) 0)] 5
t>T
Now, thanks to (3.5) and (3.3), #1271, «: iy < r We have

s;JTrJIyJ (22@) 0| < crl0lL2(7.00: 1)
t

=

and then, ag'(0) = 0, we can conclude. O

Now we show that under the growth conditions ofgdthesis 6 it is possible to give estimateg0f(p) (¢)| e
which are uniform with respect to the initial datumTo this purpose we need a preliminary result on the convo-
lution y9(z).

¢

Lemma 3.3.Let us assume Hypothesks4 and 6. Then, ifo and y are the constants introduced {2.10)and
(2.20) respectively, for any > 1 such that
2 -2
4.1 @tdy , de—2
Y q 20
there exists some continuous increasing functipin) vanishing at = 0 such that for any. € L4(0, +o0; E) and
@ € L0, +00; H)

(3.8)

lYe @O < gL+ 12l g0 )0l L20 0y =0,

Proof. For anyg € (0, 1) andr > 0 we have
13
7200 =228 [ (1= ety s
0
where
N
vp(s) = f (s —0) b =D4G(2(0)) Qp(0) do.
0

Thanks to (2.8), forang € (0,1),¢ > 0andp > 1 suchthat —1—¢/2)p/(p — 1) > —1 we have

AHBI0)

13
Sin]T,B _1-¢£
weP(O;R") < T /([ — S)ﬁ Z‘Uﬁ(s)|pds
0

. t % t
< S'n”ﬁ</\u,g(s)\”ds) (/(t—s)wl%)p’il ds)
T p
0 0

Hence, ifep > d, that is, if

B> Q2+d)/2p, (3.9)

p—1
P
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we get

Y@ 1)z < cp®1vplLr 0. xO:R).
for some continuous increasing functiop(¢) vanishing at = 0. Now, for (s, £) € [0, T'] x O we have

vp(s,§) = / (s—0)~ ﬁZ 646 (2(0)) Qer](€) (9 (0), e do

k=1

/(s—cr) ﬂzkke“ DA[G(2(0))ex | E)|p(0), ex), d

k=1
and then

N

lug(s, &) </(s—cr) ’3(2| (), ex) ) <2k2| C=DAG(2(0))ex] @) )

2

s % s 00 %
< (/Iw(o)ﬁ, dfr) (/(s —0) % ZA§|E<S—0>A[G(z(a))ek](s;)|2da)
k=1
1

||Q||g|¢|Lz(osH)</(s—o) 2ﬁ<2\e<f DAG(2(0))er]®)] g) do) :

k=1

Nl

wheres = /(0 —2) andp =+ooif d =1,0rp < 2d/(d — 2), if d > 2 (see (2.10) in Hypothesis 4).
Now, as shown in [2, Proof of Theorem 4.2], we have

Z|e(S ”)A G(2(0))ex](®)] % Ce(s—o) 2|e(S ”)AC(',z(cr))‘z(gfl)‘e(““)/jf(',z(cr)) :

where the functions, ¢ : O x R” — R” are defined by

GE )= leE ol GE e =) ey

j=1 j=1
According to (2.20) this yields

i=1...,r

Z|e(s DG (2(0))ex]®)]* <els — o) 2 (14 |2(0)[ZF), £€O,

and then, if
d(o—2)
20
collecting all terms, from the Young inequality we get

d
2B+ — =28+ <1,
2¢

t

s
—(2B+4E 2y
|Uﬁ|lljp((0,;)><;Rr) <c|¢llli2(0,t;H)/(/(s —o0) @ Zg)(l-i- |Z(O)|E )dCT) ds

0 ‘0

(NS}

t by

(g d 2
<clel)zq,. H)(/s (2ﬁ+2§)ds) /(1+‘Z(S)‘Zy)ds

0 0

81

(3.10)

(3.11)

(3.12)
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Hence, as we can take=¢g/y > 1, for someg > 1 fulfilling (3.8), it is possible to fix8 € (0, 1) fulfilling both
(3.9) and (3.11) and thanks to (3.10) and (3.12) we obtain our lemma.

Theorem 3.4.Assume that Hypothesg&s4and6 hold. Then for any > 0 there exists, > 0 such that

sup  sup |z° (<p)(r)|E<c,(1+(m1)—m—1) t>0. (3.13)

XEE 191120 001y ST

Proof. If we setu := z*(¢) — y2(z" (¢)), we have
W' (1) = Au(t) + F(u(t) + v @) ®), u(©0) =x.
If 8, is the element o |u(z)|r introduced in (2.13), with the notations used in the proof of Theorem 3.1 we have
|u(r)\E {Au(), 8u)p + (F () + v (2" () () = F (v (2" () ) 8u) . + (F (v (2" () (), 8u)
<—alu®[" + (14 |y (¥ @) O [)-
Thus, thanks to Lemma 3.3,4fis any constant as in (3.8) we obtain
o O]y < =alu®@[" + e @+ 12" a10,1.5) 191 20 111 +

for some continuous increasing functie(r) vanishing att = 0. By a comparison argument proved in [1, Lem-
ma 1.2.6] this gives

|”(t)|E et +e@®(1+ ][ (¢)|Lq(0z E))|¢|L2(0,I;H) +c
so that

|75 (@) ()] < |M(t)|E+|V<p( (@)D g

< ct m- 1 +C(t)(1+ |Z ((p)‘Lq(ot E))|¢|L2(O,I;H) +c. (314)

Now, if (2.21) holds we can find > 1 fulfilling (3.8) such thag;/(m — 1) < 1. Hence, integrating with respect to
t € [0, T] thegth power of both sides in (3.14), for agye L2(0, co; H), with 191 12(0,00: ) <75 WE geL

T %
/\z @oldi<e [« ‘—1dr+c(T)</|z @0 dr) 0120 7 + DA+ 10120 1)
0

<C(T)rq/|Zx((p)(t)‘?5dt—i—c(T)(]__i_ré)’

for some continuous increasing functio@) vanishing at = 0. Thus, if we fix7, > 0 such that:(7,)r? < 1/2, it
follows

T,
1 q -
2 /|Zx(¢)(t)|‘§dt <T@ +r?),
0
and going back to (3.14), for any< 7, this yields

supgz* (@) ()] ; < et 4 (O (L4 ¢ (T)(L+rT)) +c. (3.15)

xeE
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Moreover, ifr > T, we havez* (¢)(t) = z;i(“’)(T’)(t) and then, due to (3.3)

@O <er(L+ @ T g), 1> T,
Together with (3.15) this gives (3.13) 0
The next regularity result will be crucial in the proof®foposition 5.4 which provides a characterization of the

quasi-potential. We recall that in what follows we endow the spga@e-oco; 0]; E) with the topology of uniform
convergence on bounded sgtsT, 0], for all 7 > 0.

Lemma 3.5.Letzg € C((—o0, O]; E) solve the problem

1 1

z0(t) = / e(’_S)AF(zO(s)) ds + / e(’_S)AG(zO(s)) Qu(s)ds, <0, (3.16)

-0 —00
for somey € L%(—o0, 0; H), and assume that
m_Jeoto)],, =0

Then, under Hypothesds-5 and condition(2.14) if § is the constant introduced i(2.15) we have thatg €
L™ (—00,0; D((—A)**/2)) and

IETOO|ZO(I)|D((_A)6+1/2) =0. (317)

Proof. For anye € (0, 1) we have

t

/ e(t_S)AF(zO(s)) ds

—00

t

<o [ e | o) s
D((—A)®) -0
t

<c / e U= —5)7F dsSUp|F(zO(s))|H

s<t

—00

< csudF(Zo(s))‘H,
s<t

so that the mapping

t
(—00,0]> 1+ / e""I4F (z0(s)) ds € D((—A)),
—00
belongs toL*°(—o0, 0; D((—A)%)). Moreover, sincef': E — H is continuous,F(0) = 0 and|zo(¢)|g goes to
Zero, ag goes to—oo, we have
t
/ e(’ﬂ)AF(zO(s)) ds
—00

Next, leth € L2(—o0, 0; D((—A)?)), for somey > 0. We have

lim

t——00

—0, ee(0,1). (3.18)
D((—A))

1 1

o0
(—A)y 2 f 1= An(s)ds = o] T2 / U (s). e, ds e

—00 k=1 —00
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and then

t

/ e (s) ds

t

/ ef(tfs)“k(h(s), ek>H ds

2 2

o0
— 2y+1
= Z“k

D((—A)Y+Y2) k=1

—00 —00
o t !
<Zak/efz(tfs)“kds/a,nyh(s),ek)H‘zds
k=1 —00
! o
<c/ Za,fy‘(h(s),ek)Hfds:clhliz(_m,t;D((_A)y). (3.19)
k=1

SinceG(zo) Q¢ € L2(—o0, 0; H) and forr < 0

6000|121y < (L4 SUR2009) | )| Q012
S

by takingy = 0 andh = G(z0) Q¢ in (3.19), we get

t

[ 6 o) @05 ds

—00

Thanks to (3.18) (witle = 1/2) this implies thatg € L>(—o0, 0; D((—A)Y/?)) and

lim

t——00

—0. (3.20)
D((—A)/2)

i |20 pg_ a2 =0- (3.21)

In particular, accordingat the characterization ob((—A)Y?) given in Proposition 2.1 this means that €
L% (—o00,0; Hé’jz(o; R”)). Then, sincef € C®(O x R";R"), from [12, Theorem 5.5.4.1] we obtain that

F(z0) € L®(—00,0; HY2(O; R")) and

tsg(;)jF(zo(t)) |Hl,2(O;Rr) < Ctsggzo(t)|H1,2(O;Rr) (1+ ?2([)120([) I£):

for somep > 1. Moreover, ago(t) € ngz(o; R"), for < 0, we have thaB1/2z0(t) = 0 on9dO and then, thanks
to assumption (2.17), we have thag,> F (zo(¢)) = 0 on9O. This means thak (zo(t)) € Hé’jz((’); R"), forz <0,

and hence, by using again Proposition 2.1 we hBye) € L>(—o0, 0; D((—A)Y?)). By proceeding as in the
proof of (3.18), due to (3.21) this yields

t

/ e(’f“')AF(Zo(s)) ds

—00

lim

t——00

D((—A)y+12)

By repeating these arguments we can conclude that fopany ande < 1

t

/ e(’_S)AF(zO(s)) ds

—00

=0. (3.22)
D((—=A)t7)

Jim_J200)] o ayry =0 =, lim

t——00

Next we notice that with the same arguments usedfiap) it is possible to prove that

g(-,z0) € L™ (=00, 0; HY%(0; L(R"))). (3.23)
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Moreover, as proved in [12, Theorem 4.6.1.1}if 5o andsy +s2 > 0

2> § = HY2O R H22O: ) > HY2(O: F) (3.24)
and

s2.< % = HYX(O;R)) - H22(O; R') <> B2 $2(O; RY). (3.25)

By using these embedding results we can study the regularity of the prédugtQ¢ (and hence of the second
integral in (3.16)). To this purpose we consider separately three different cases.

Cased =1 and2s < 1. SinceQo(r) € D((—A)%) = Hé‘:’z(o; R"), fort <0,as 1> 1/2=d/2, due to (3.23)
and (3.24) we have

G(z0(1)) Qop(1) € H¥(O;R"), <0,

and

‘G(ZO(I)) ng(t) | HZ‘S'Z(O;R') < C‘g(’v ZO(E )) | Hlvz(O;ﬁ(R’)) ng(t) ‘ HZ‘S'Z(O;R’)’

Moreover, sinceBi 2zo(t) = 0 and Bs(Qe(t)) = 0 on 90, for any ¢+ < 0, according to assumption (2.17)
we have Bs(G(20(1)) Qp (1) = 0 on 90, for any ¢ < 0, so thatG(z0)Qp € LA(—00,0; Hg *(O; R")) =
L2(—00, 0; D((—A)%)). Thanks to (3.19), withh = G (z0) Q¢ andy = §, this implies

t

/ e(’ﬂ')AG(zO(s)) Qu(s)ds =0

% D((_A)8+1/2)

so that, as (3.22) holds (with=1/2 ande = §), we obtain (3.17).
Cased > 1and2s > d/2 v 1. In this case, with the same arguments used above, we have that the mapping

lim

t——00

t
= /e(’_S)AG(zO(s))an(s)ds,

—00

belongs toL2(—o0, 0; D(—A)) and then, proceeding as for the previous case, due to (3.22) we havg that
L%®(—00, 0; D(—A)).

Now, if 28 < 2, by using again (3.24), we haw&(zp) Q¢ € L?(—0o0, 0; Hé‘j’z((’); R")) and then we can con-
clude as in the case af = 1 and 3 < 1. Otherwise, if 3 > 2 we use again (3.24) and we obtdi{zo) Q¢ €
L2(—00, 0; Héf((?; R")), so thatzg € L>®(—o0, 0; D((—A)¥?)). If 25 < 3 we conclude as above. If not, we go

on with these arguments and in a finite number of steps weggetl. > (—oo, 0; D((—A)*/2)), for somek > 25
and hence we can conclude.

Cased > 2 and25 < d/2. Due to (2.16) we can fix € (0,6 — (d — 2)/4). As 1< d/2, by using (3.25) (with
1— ¢ and & — ¢) we have that

’ oy 2—e—d/8)+1.2
G(zo)Qp e L (_Oo’ 0; HB(s_g_d/4+1/2

(O;R")),

so thatzg € L®(—o0, 0; D((—A)3—¢—4/4+1)),

If 6 —& —d/A+ 1> d/4, by using (3.24) we obtait¥(z0) Q¢ € L?(—c0, 0; H;"*(O; R")) and then we can
conclude as above (see the casd ef 1 and 3 < 1).

If § —e —d/4+ 1<d/4, then, by using again (3.25) (witl$ 2- 3¢ — d/2+ 2 and 3 — ¢) we easily obtain

G(20) Q¢ € L(—00,0; Hyo /220, RN,

Bas—e—a/a+1
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so thatzg € L®(—o00, 0; D((—A)20—e=d/+3/2)y |f 2(§ — ¢ — d/4) + 3/2 > d /4, we can conclude as above.
Otherwise we repeat the same arguisenfinite number of times and we get

0€ L°°(—oo, 0; D((_A)k(afs7d/4)+(k+l)/2)),
for somek € N such thatk(§ — e — d/4) + (k + 1)/2 > d/4 (and this is possible as< § — (d — 2)/4). At this
point we conclude as abover

Finally, we consider the uncontrolled version of Eq. (3.2), namely
) =Az()+ F(z(0), z(T)=nx. (3.26)

With the notations introduced at the beginning of this section its solution will be denoted 0.

Proposition 3.6.Under Hypotheset—4, for anyR > 0
lim  sup |z} (0)(®)|, =0. (3.27)

=T g <R

Proof. If &, is the element 0d|z7 (0)(¢)| ¢ introduced in (2.12), we have

d-
o [ @O <Az 00, 8:0); +(F (L ©0), 8:0)p < —a|2 O] -
By comparison this yields
|3 OO, <e™ " Pix|g, 12T,

so that (3.27) follows. O

4. A non-linear local exact controllability problem

Since we are dealing with space dimensibpe 1, we cannot assume in general the opergtdo be invertible
and then the proof of compactness of the level sets of the quasi-potential associated with system (1.1) is mor
delicate than in the classical non-degenerate case (see [14]). For later use, in this section we prove some prelimina
results about the local exact controlilitly of the skeleton system (3.2). Such results will be crucial in the proof of
the characterization of the quagsdtential given in Proposition 5.4.

We start with a few definitions about exact and local exact controllability.

Definition 4.1.
Let

() =H@®+ Kz e)), z(0) =0,

be some controlled system, with state specand control spac#, and letz(¢) denote the solution corresponding
to the controlp.

(1) The system igxactly controllablat time7 > O if for any statex € V there exists an admissible contyok U
such that(¢)(T) = x.

(2) The system idocally exactly controllableat time 7T > O if there existss > 0 such that for any € V, with
|x|y < €, there exists an admissible contyok U such that(¢)(T) = x.
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Here, in addition to the non-linear control problem

() =Az(t) + F(z(0) + G(z(1)) Qp(1), z(0)=0, (4.1)
for anyy € L2(0, T'; H) we consider the linearized problem
Y1) =[A+FO)]y®) +GOQvy (), y(0)=0. (4.2)

In what follows we shall denote the solution of (4.2) by. As y¥ e L2(0,T; D((—A)%)) and f’'(£,0)
C>®(0; L(R")), with the arguments used in the proof of Lemma 3.5, it is immediate to showythat
L>®(0, T; D((—A)**1/2)). Moreover, if we fixT > 0 and denote by.7 the mapping

Lr:L%0,T; H) = D((—A*?), ¢ > Lyy :=yV(T),
itis clearly continuous. Now, if we show that there exists> 0 such that for anyt € D((—A)%+1/2)
IL;]”LZ(O,T;H) 2 cT |h|D((7A)5+1/2)’ (43)

we have that for any: € D((—A)?TY/2) there existsy € L2(0, T; H) such thaty? (T) = h, so that the linear
system (4.2) with state spade:= D((—A)*+t1/2) and control spac® := L2(0, T; H) is exactly controllable at
timeT > 0.

It is immediate to check that

Lyh(s) = Q[GO)] e T—MATF O 50, T].
Then, due to (2.14) we have

T T
* * — (O 1. 12 —
|LTh|iZ(O!T;H) =/\Q[G(0)] T=MATF O < g >c(T)/|Qe<T DAp)2, ds
0 0

T o
=c(T) / > age 2 T2 ds,
o k=1
with hy = (h, ex) . Thanks to (2.15) this gives

ad ; 00 20T

* 712 —25,2 [ —2(T—s) 25,21 —e77%T)

\L5h1 20 gy = €T D o PhE [ e ds=c(T)Y o Phf—p—-
0

k=1 =1 20

9]
- —2(5+1/2 -
> e(T)Y(1—e 2aT)Zak (6+1/ )h;%=0(T)(l—e 2aT)|h|2D((_A)5+1/2),
k=1

so that (4.3) follows wittCr := ¢(T) (1 — e~2T).
Now, since the mappingr : L2(0, T; H) — D((—A)*tY?2) is surjective and continuous, by general arguments
we can define its pseudo-inver$ge at a pointr € D((—A)%t1/2) as the uniquey € L2(0, T'; H) such that

Lry=x, (y—@. Y2074 =0 forallgeL?0,T; H)with Lyo=x.

Equivalently ¢+ = Syx is the element of smallest norm satisfyingry» = x. We note that the operator
Sr:D((—A)*tY2) 5 12(0, T; H) is linear and

IS7 1l 2o a2y 120,710 < €T (4.4)
This allows us to prove the local exact casilability of the nontinear system (4.1).
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Theorem 4.2.There existslp > 0 such that systerfd.1) is locally exactly controllable, with state spade:=
D((—A)*tY/2) and control spacé/ := L2(0, T; H), forany T < To.

Proof.
For anyx € V we consider the problem

(1) =Az(t) + F(z(0) + G(z(1)) QSrx(1), z(0)=0,

whose solution®(S7x) at timer is denoted by} (x). Proceeding as in the proof of Lemma 3.5, it is possible to
prove that:°(Syx) € L>(0, T; V), so thatl; mapsV into V.

If we show that there exists sonfg > O such thatl; is differentiable in a neighborhood of zero, for any
T < To,andDIr(0) = I, by the local inversion theorem we have that there exist two neighbortioalsdU; of
0inV suchthatl’y : Uy — Us is invertible. Due to the definition af7, this means that for any € U, there exists
x =7 }(y) € Uy such that

T T
y= / T D4R (O(Srx) () ds + | eT™DAG(22(Srx)(5)) 0 S7x () ds,
0 0

so thaty” := S I'; *(y) is the control such thaf(¢¥)(T) = y.
For anyx € V we have that°(Srx) is the unique fixed point of the mappingr:V x L>(0,T;V) —
L>°(0, T; V) defined by

t t

Fr(x,2)(t) :=/e(’*“')AF(Z(s))ds+/e(t*S)AG(Z(s))QSTx(s)ds.
0 0

We denote such fixed point kgx). Notice that, proceeding as in the proof of Lemma 3.5, due to (3.19) and (4.4),
we have

| Fr(x, Z)|LO°(O,T;V) <cTlzle=rv)(1+ IZIZN(O,T;V)) + Cc;l(l"‘ IZIZN(O,T;V))I)C'V’
for somep > 1. Thus, if we fixT < T1:=1/4c andRy < cr/4c, we get
x|y <Ry, l|zlr=@rv) <1= |fT(x,Z)‘LOC(O)T;V) <1

so thatFr (x, -) mapsBr=(o,r;v)(1) into itself, for anyx € By (Rr).
It is immediate to check that for any fixede L>°(0, T'; V) the mapping

fT('vZ).V%LOO(Ov T; V)s XHfT(X,Z),

is Fréchet differentiable and for anyh € V
aF \
[a—T(x, z)hi| (1) = / e"™I4G(2(s)) QSrh(s)ds, t€[0,T]. (4.5)
X
0

Since 3 + 1> d/2, we haveH?+12(0; R") ¢ L>®(O; R") and then, as shown in [12, Theorem 5.5.3.1], the
Nemytskij composition operatdf is differentiable inH%+12(®; R") and for anyx, y € H#+12(0; R")

[F'(x)y]&) =Dy f(E.x(©)y ()., E€O. (4.6)

Notice that due to (2.18) if, y € D((—A)%) thenBs[F’(x)y]=00nd 0, so thatF’(x)y € D((—A)?%). In particu-
lar, since 3 +1 > d/2, by using (3.24) for any, y € V we have

[F'Q)y p_apy <@+ 1x17)Ivlv, (4.7)
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for some constanp > 1. Moreover, due to (3.24) and to the boundary assumptions (2.17) for any
and h € D((—A)%) we have thatG(x)h € D((—A)®). Then by using again the result proved in [12, Theo-
rem 5.5.3.1] we have that the mapping H?+t12(O; R") — G(x)h € H?2(O; R") is differentiable and for
anyy € H®+12(0; R")

([G')h]y) &) =[D(GC(Hh)(x)y]¢) =[Dsg(5. x () y(©)]h(E)., £€O. (4.8)
In particular, ifx, y € V andh € D((—A)%) due to (2.18) we have tha&’(x)h]y € D((—A)?) and
[G' @Ry | p_apy S X+ X199 IvI~I D~ ap)- (4.9)

for some constanp > 1.
Thus, thanks to (3.19) and to (4.6) and (4.8) it is not difficult to show that for any fixe® the mapping

z€L®0,T; V)~ Fr(x,z) € L*°(0, T; V)

is differentiable and for any € V andz, w € L*°(0, T'; V) it holds
13

[ 0Fr

t

8—(x,z)wj|(t) :/e(’_S)AF/(z(s))w(s)ds+/e(’_S)A[G'(z(s))w(s)]QSTx(s)ds.
Z

B 0 0

Moreover, according to (3.19) and (4.4) and to (4.7) and (4.9) we have

|:8.7:T i|
— &, 2w [(@)
0z

y < C(|F,(Z)w‘L2(0,t;D((7A)5)) + ‘[G/(Z)w]QSTX‘LZ(O,I;D((fA)fS)))

t 1/2
< C|:/(1+ |Z|€)2(1+ |STX(S)|%((—A)5))|W(S)|%/ds]

0
< (L4 12 o)) (VT + 7 M XY ) w1 0.1:v)-

Hence, ifT < Ty, |z|r~@.1;v) < 1 and|x|y < R, for someR < Rr, we get

[fnon]

This means that if we fix & « < 1 andTp := («/4c’) A Ty, for anyT < To and anyRr < cr(«/c’ A 1/c)/4 we
have

<2 (VT + ;' R) (w0, 7;v).-
\%

<a.
L(L>(O,T;V),L>(0,T;V))

lxlv < R7, |zleerv)y<1= ‘%(%Z)w
Thus from the theorem of contractiodspending on parameters (see forrapée [1, Proposition C.0.3] for a proof
in this setting), we have that for arfy < Tp the mapping

x € By(Ry) — z(x) e L*°(0, T; V),
is differentiable. Moreover, for any € By (R7), h € V andr € [0, T']

t t
[Dz(x)h](t) =D1",(x)h=/e<’*S>AF/(11(x))DFS(x)hds+/e(f*W‘[G/(z}(x))Drs(x)h]QSTx(s)ds

0 0
t

n / e(t_S)AG([} (x))QSTh(s) ds.
0
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SinceF (0) = 0 andS70= 0, we clearly have (0) = 0 andl;(0) =0, for anys € [0, T']. This implies that
t t
DI, (0)h = / e"IAF (0)DI(0)hds + / e"AG(0) QST h(s) ds.
0 0
Therefore, by a uniqueness argument we haveutiat= DI} (0)h is the solution of
V(1) =[A+ F (O)]v(®) + GO)QSTh(t), v(0)=0.
This means thab It (0O)h =v(T) =h,sothatDI'r (0)=1. O

5. Compactness of level sets of the quasi-potential
For anyr; <t andz € C([t1, r2]; E) we define

1
In.1p(@) = 5010172, 1oy 2 =2}

wherez(p) is the solution of the skeleton equation (3.2) in the intefsalk,], corresponding to the contrgl(with
the usual convention that ifif= +o00). For simplicity of notations, when = 0 ands =t > 0 we shall writel,
and wherr =0 andr; = —¢ < 0 we shall writel ;.

In [3, Theorem 5.1] we have proved that for ang E, r > 0 andr; < 1, the level set

Ky iip(r) :={z € C(l11, 12); E); 2(11) = x, Iy 1,(2) <1}

is compact. In fact, it is not difficult to adapt the proof of [3, Theorem 5.1] in order to show that for any compact
setA C E the level set

K0 = {z € C([tl, 12]; E); z(f) € A, Iy 1,(2) < r}
is compact. Notice that in what follows,if = 0 andr, = we shall writeK ;(r) andK 4 ,(r) instead ofK o (r)
andk 4.0.¢(r).

Analogously, for any. € C((—o0; 0]; E) we define
1.

I-oo(2) 1= SinHI0172 g 0,11 2= 20}
and forany- >0

K_oo(r):={z€ C((—00; 0L; E): I_o0(z) <, t_'irl‘oo‘Z(t”E =0}.
We note that for any € C((—o0; 0]; E)

I_co(2) = supl—;(z).
t>0

Finally, for anyx € E we define thejuasi-potential
Vix):= inf{I,(Z); t>0, z€ C([O, t; E), with z(0) = 0 andz(¢) =x}. (5.1)

In this section we shall prove that the level setdofire compact, so that is an admissible action functional for
the large deviations estimates of the family of invariant meauxés. o.
First of all we notice that = 0 is the unique minimum point of , i.e.

V(x)=0% x =0. (5.2)
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Actually, if x = 0 then clearlyV(x) = 0. On the other side, i’ (x) = 0 for anye > O there existr; > 0 and
ze € C([0, T¢]; E) such that, (0) = 0 andz.(7;) = x andIr, (z¢) < &. This means that for each> 0 there exists
¢- € L0, T;;; H) such that

1
e =20(pe) and Slgelfag g, < 22
According to Proposition.2 this implies that
; i 1,0
S“Ln0|Zs(Ts)|E = S“Ln0|zo(§0£)(Ts)‘E =0,

and hence, as (T;) = x, we have that = 0.

Now, as we are assuming(0) = 0, if G(0) = 0 then for eachr > 0 andz € C([0,¢]; E), with z(0) =0 and
z(t) = x # 0, we clearly havd, (z) = +o0. Due to the arbitrariness of> 0, this means that

GO)=0= V(x)= {+°° it x#0, (5.3)
0 if x =0.

In particular, ifG (0) = 0 the level sets oV are trivially compact.

Our aim is to prove that the level setsWfare compact irE, even under condition (2.14). We start by proving
the compactness of the s&s  (r).

Proposition 5.1.Assume Hypothesés4. Then for any- > 0 the setk_,(r) is compact inC ((—oo, 0]; E).

Proof. Given any sequendg,} C K_(r), we have to show that there exists a subsequénge converging in
C((—00,0]; E) to someZ € K_(r). For this purpose we need a preliminary result, whose proof is postponed.

Lemma 5.2.There exist®, € (0, 1) such that for any > 0

I_oo(x)<r and supz(r)|, <oco= suqz(t)\cg*(@_R,) < L(r),
t<0 t<0 ’

X

for some constant(r) > 0.

Due to the previous lemma, ife K_(r), for anyk € N the restriction of; to the interval—k, 0] belongs to
KA. —ko(r), where

A= {x € E; %] o @.Rry L(r}. (5.4)
As A is compact inE, we have thak 4 ¢ o(r) is compact inC ([—k, 0]; E) for anyk € N. Then by takingt =1
we can find{z,,,} € {z,} andzy € C([—1, 0]; E) such that

lim z,, =Z1, in C([—l, 0]; E)
ny1—oo  l[-1,0]
In particular, as/_1 is lower semi-continuous (see [3, Theorem 5.1]) we havgZz1) < r. With the same argu-
ments, we can find a subsequefigg} < {z,,} andzz € C([—2, O]; E) such that
lim z,, =22, InC([-2,0]; E),

ny— 00 I[—2,0]
and I_»(z2) < r. Proceeding in this way, we can find a subsequefage C {z,} converging to some in
C((—00, 0]; E). By construction for eaclt € N we have thatl_;(z,,) < r, for anyn’ € N large enough and
then, due to the lower semi-continuity 6f;, we havel_;(Z) < r. This implies that/_(Z) < r. Moreover, it is
immediate to check that

Sugé(tnc&(('_):ﬂy) < L(V) (55)
< ;

X
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Thus, in order to show thédte K_.(r), it remains to prove that
t—llrpoo‘Z(t”E =0.

If this is not true, there exist a constant- 0 and a sequende,} decreasing te-oo such thatz(s,)| g > n, for any
n € N. The next lemma, whose proof is postponed, shows that in fact this is not possible.

Lemma 5.3.There existyp > 0 and g > 0 such that

20| =n= L0 (2) = B.

Now, we can conclude the proof of the proposition. Actually, if we assumeztgl|z > n, due to the previous
lemma there existg > 0 such that,,_,, ;,(2) > B > 0, for anyn € N. Thus, if we fix any subsequen¢g, }  {#,}
such that,, ., <t,, —to, foranym € N we have

I—oo(Z) Z It,,k+1 Iy (Z) Z It,,k —10,n; (Z) = fm.

k=1
Thus, asn can be taken arbitrarily large, we get,, (z) = +00, which is not true. O

Now, in order to conclude the proof of Proposition 5.1 it remains to prove Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. Sincel_»(z) < r, forany—T <t < 0 we have

t
z(t)=e(’+T)Az(—T)+/ CIAF (2(s)) ds + y, T (2)(0),
7

for someg € L2(—T,0; H), with |(p|L2( 7.0:1) < 3r. Then, using (3.5) and (3.6) we can find a constamot

depending off” such that for ang, n € O andr > —

|2(t, &) — z2(t, )| < [T A2(—=T) (&) — e“*T)Az(—T)(n)\

+er (14 sup ()| + sup || )& — nl™.
t>-T t>-T

According to (2.9), withp = 0, and to (3.3) this implies

|2t &) — 2(t, )| < ce D) 2(=T)|, + o (L4 |2(=T)[}) 1 — n|*
and since sup |z(1)| £ =: k < oo, it follows that for anyr > —

|2(t,&) —z(t, )| < ce D |2(=T)|, + er (L +£™)|E — n|*.
By taking the limit above fofl" tending to infinity, we obtain

|2(t,8) — z(t, )| < ey L+ &™) g —nl™, <0,

which implies the lemma. O

Proof of Lemma 5.3. For anys > 0, letz;_(0) be the solution of problem (3.26) starting fronat timer — s. If
A is the set introduced in (5.4), due to (3.27) there exists 0 large enough such that

n
X 0 g o
supe O] < 3
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Thus, if
Hip:={zeC(lt —10.1]; E); 2(t —10) € A, |2(0)|, = n}.
we immediately have that ¥ € A thenz;_, (0) ¢ H . As H, 4, is closed, this implies that

B :=inf{l;_1(2); z € Hy 1o} > 0.

In fact, if 8 = 0 there existdz,} C H;  such thatl,_;,;(z,) < 1/n, for anyn € N. This means thafz,} C
KA,1—1,:(1) and then, a4 ;4 (1) is compact, there existg,, } < {z,} converging to Somé € K 4 ;s (1)
in C([t — to,t]; E). In particular, asl;_, ; is lower semi-continuous, we have thiat,, ,(zZ) = 0 and therz =
zf(f,;t(’) (0). But this leads to a contdictions because on one sigdée H, ,, (notice thatz(r — 7o) € A) and on the
other side; € H; ;,, asH; ;, is closed. O

The key point in the proof of compactness of the level sefg &f given by the following result.

Proposition 5.4.Assume Hypothesés5and assume that conditiq@.14)holds. Then for any € E
V(x) =min{l_o(2); z € C((—00,0; E), z2(0)=x, lim |z(1)|, =0}.

Proof. LetT > 0 and letz € C([0, T']; E), with z(0) = 0 andz(T) = x. We define
- {z(t+ T) ifre[-T,0],
Z(t) = .
0 ifr<—T.
Clearlyz € C((—00,0]; E), z(0) = x and|z(¢)|g — 0, ast — —oo. Moreover,/_«(z) = I_7(z) = IT(z) and then
min{l—oo(Z); zZ€ C((—oo, 0l; E) z(0) =x, t_lirpoo|z(t)|E = 0} < I (2).

SinceT andz are arbitrary, we get
V(x) 2 min{l_oo(2); z € C((—00,05; E), 2(0) =x, lim [z(1)|, =0}.

Thus, in order to conclude we have to prove the opposite inequality. If
min{/_oo(2): 2 € C((—00,0L; E). 2(0) =x, lim_|z(1)[, =0} = oo,

there is nothing to prove. Hence, we can assume gbhah a minimum is finite. In Proposition 5.1 we have
proved that for any- > 0 the level setk_.(r) is compact, so that the minimum is in fact attained by some
z0 € C((—00,0]; E).

In fact, such a minimunag is more regular. Namely we hayg(r) € D((—A)**+1/2), for anyr <0, and

tﬂmoo|zo(t)|D((_A)8+l/2) =0. (56)

Indeed, ifzg € K_so(r), there exists some € L2(—o0, 0; H), with |go|i;_,(_Oo 0.1, < 3r, such that for any > 0
and—T <t <0 -
t t
20(t) = e Az0(~T) + f e"IAF (z0(s)) ds + f "G (20(5)) Qp(s) ds.
-T -T
Since|zo(t)| g is bounded for € (—oo, 0] (in fact it converges to zero aggoes to—oo), due to (2.7) we can take
the limit above ag” goes to+oo and we get the following representation f@«z)
13 13
z20(t) = / e""IAF (z0(s)) ds + / e"4G(20(5)) Qp(s) ds.

—0o0 —0o0
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Thanks to Lemma 3.5 this gives (5.6).
Now, according to Theorem 4.2 there exigt> 0 and two neighborhoods; and U of 0 in D((—A)**1/2)
such that the mappingy, defined by

To To
Iyx = / T4 (% (5)) ds + / eT0™94G (2% (s)) QSpx ds
0 0

is an homeomorphism fromi; onto U,. Thus, for any > 0 there exist$, > 0 such that
1X| p((—ays+12) < 8e = |FT;lx|D((—A)5+l/2) <cepvee,

wherecy, is the positive constant introduced in (4.4), correspondiri £o To. According to the definition oz,
I'r, andV this means that

K| p—ay1r2) < 86 = St (T )| 20,111y S V26 = VX) <. (5.7)
Now, sincezo converges to zero i ((—A)*+1/2), asr goes to—oo, (see (5.6)) we can fig, > 0 such that
|ZO(_T€)|D((_A)6+1/2) < 86' (58)
If we define

2e(t) :=20(t — (T + T0)), 1 €[To, Tc + Tol,

we havez. (T + To) = z0(0) = x. Moreover,z.(To) = zo(—T¢) and then, due to (5.7) and (5.8), there exists
e € L%(0, To; H) such that(¢,)(0) = 0, z(¢:) (To) = z.(To) and

§|(p£|L2(O’TO;H) S

and hencdr, (z(¢.)) < e. This means that if we set (1) := z(¢:) (1), t € [0, Tol, we have
I7,415(ze) < I (2(9e)) + I1p, 1, 410(26) < € + 17, (20) < & + -0 (20).

Therefore, since, (0) = 0 andz. (T, + Tp) = x we have
V(x) < IT,+19(2¢) < €+ 1-00(20),

and from the arbitrariness efwe can conclude that
V() < Ioo(z0) =minfl oo (2);: 2 € C((=00, 01 E), 2(0) =x, lm [z()|;=0}. D

The characterization df given in Proposition 5.4 allows us to prove the compactness of the level sgts of

Theorem 5.5.Under Hypothese$-5, for anyr > 0 the level set
K(@r):={xeE: V(x)<r}
is compact inE.

Proof. Due to (5.3), ifG(0) = 0 the theorem is trivially true, ak (r) = {0}, for anyr > 0. Thus, according to
Hypothesis 5 we can assume that (2.14) holds.

Let {x,} C K(r). Thanks to Proposition 5.4, for eaehe N we can findz, € C((—o0, 0]; E) with z,(0) =
x, and|z,(t)|g converging to zero, as goes to—oo, such thatV (x,) = I_(z,). SinceV(x,) < r, we have
that {z,} C K_«(r). In Proposition 5.1 we have shown th&t ., (r) is compact and then there exidts, }
{zn} converging inC ((—oo, 0]; E) to somez € K_(r). In particular,x,, = z,,(0) — z(0) in E. Now, due to
Proposition 5.4 we have€ (z(0)) < I_(z) <r and therz(0) e K(r). O
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6. Lower bounds

Theorem 6.1.For anyé, y > 0 andx € E there existgg > 0 such that

vg({x eE: |x—X|E <8}) >exp<—&2+y), e < €.
£

Proof. If V(x) = +oo there is nothing to prove. ¥ (x) < +oo, then there exist§ > 0 andz € C([0, T]; E) such
thatz(0) =0, z(T) = ¥ andz = z(¢), for somep € L2(0, T; H) with

1_ LY
19120 .y S VEO + 5 (6.1)

For suchT andx we have the following crucial lemma which will be proved at the end of this section.

Lemma 6.2.For anys > 0 and R > O there existly > 0 andgg € L2(0, T + To; H) such that

1

2 - 14
§|§00|L2(0j+TO;H) g V(x) + E (62)

and

sup |z5(wo)(T + To) — |, < <. (6.3)

lx|[E<R

NI S

According to this result, for any € E, with |x|g < R, we have
luf(To+T) — x|, < |uf (To+T) — z5(90)(To+ T)| ; + |z5(w0) (To+ T) — X |,
- - )
< |uf(To+T) — z5(p0)(To+ T)| ; + >
and then, due to the invarianceigf

ve({x € E; |x —X|p < 8}) =/]P>(|ufg(To+ T) — x|, < 8)ve(dx)
E

_ _ 1)
> /P(\ug(Tw T) - z3(p0)(To+ 1), < E)vgwx)
E

8
2 /PO”? - ZS(¢0)|C([O,TO+T];E) = E)Vs(dx)'
E

Now, as proved in [3, Theorem 6.2] for aiy> 0 there existsg > 0 such that for any < eg and|x|g < R

2
8 9ol 2y T V() +
x x ,To+T:H) )4
IEJ)(|”s = 20(90)|c o1+ 1) < 5) = exp(— 202 ) > exp(—T),

so that

ve({x € E; Ix — %] < 8}) > ve (1|5 < R) exp(—@).

Therefore, we complete the proof of the theorem, if we show that there &xist8 such that
SIiLnovg(lx|E < R) =1 (6.4)
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We recall that we have taken as the weak limit of the sequence of measdrgs }, defined by
In

ven(I) := ;/P(ug(s) erl)ds, I eB(E),

n

for somer, 1 co. Thus, if we show that there exists soe- 0 such that

lim supP(|u2(s)|, > R) =0, (6.5)
s%OS>0
we are done.
Proceeding as in [2, Proof of Proposition 6.1] we have
%), <5(1+ssuq;/(u2)(s)|E), (6.6)
s<t
where

N

Y @)(s) = / S TAG (ud(r) @ dw(r).
0
Due to [2, Propositions 4.5 and 6.1 and (4.14)], for ary1 we have

ESUdy(uS)(t)|E < c(1+ESUqMS(I)|E) < 00.
>0 120

Then, thanks to (6.6) forang > ¢

R—c ec
P(|ul()|, > R) < P(sudy(ug)(t)\E > — ) < _c<1+EsquS(t)\E),
s<t &c R—c t>0
which implies (6.5). O
Now, in order to complete the proof for the lower bounds, we have to prove the lemma above.

Proof of Lemma 6.2. Let ¢ be the function introduced in (6.1). F&r> 0 fixed (to be chosen later) we define

0 0 if 1 €[0, T,
W=V —T) ifrell, T+T1
Thus, we have
T+T
2 — 2 -2
|¢0|L2(0,f+T;H) = / |§0(S - T)|HdS = |¢|L2(0,i;H)
T

and due to (6.1) we obtain (6.2).
Now, for anyx € E we considetg (o), the solution of the skeleton equation (3.2) starting froat time zero
and corresponding to the contkaj. Due to the definition ofy, it is immediate to check that

75(0) (@) if £ [0, T1,
Zp(@o)() =1 .
0 20D ooy i relT. T +T1,
wherez (0) is the solution of the uncontrolled problem (3.26) starting froat time zero and;g(o)m
solution of the skeleton equation (3.2) starting frg0)(7') at timeT" with controlgo.

(po) is the
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If we sety (1) := zg(wo)(t + T), t > 0, with a simple change of variable we have

T+t T+t
Y(t) = e A28 0)(T) + / e TH=IAE (25 (00) (5)) ds + / e TH=DAG (28(00)(5)) Q@(s — T) dss
T T

t t
= A O)(T) + / VA (3 (g0)(s + T)) ds + / 194G (3 (g0) (s + T)) 0F(s) ds,
0 0
so that for any € [0, T']

t
Y (1) — 20(@) (1) = e 25 (0)(T) + f TOAE (Y (s)) — F(z3(@) ()] ds
0

t
+ / TG (Y (9)) — G(23(9)(9))] Q@(s) ds.
0
Recalling thate! x| < e~ |x|g, for anyx € E andr > 0, we have
t
[y (1) — 2@ ()| p < e |25 ON(D)] , + / e I F (Y (s)) — F(z3@) ()|, ds

0
t

f TG (Y (9)) — G(29(@)(5))] Q@ () ds
0

+

E

By proceeding as in [2, proof of Theorem 4.2] (waestochastic convolutions are studied), for ary[0, 7] and
p large enough we have

t
/ GV () - G(0@)(5))]0g(s) ds

0

E

Sl

t
< eat”Q||p|¢|[‘2(0j;1-1)cp(7_w)</ fp(s)(sgpe“‘7|¢(cr) — Z8(¢)(0)‘E)pds) s
9 o<s

where||Q]|, is defined in (2.10) and

p

p 2
fr(s) = (/(s —o) " do)
0

for some positive constantless that 1 specified in [2, Proof of Theorem 4.2].
Moreover, as) (t) = zp(¢o)(t + T), t > 0, due to (3.3) we have

Squ(t)|E S ool 207470 (1+ |x|E) = €19l 20 7. 1) (1+ |x|E)

=

and analogously

Sugzg(@(fﬂg < gl

L2(0.T:H)"
> ( )
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As F is locally Lipschitz-continuous, this implies that there exiss> 0 (depending also olg|, 2o 7. ) such
that if |x|z < R

t t
f e I\ F(y(5)) — F(23@)(5))| pds < Lre™™" f Y (s) — 23@)(s)| , ds

0 0
t

< LRe*"‘t/SUpe"“’W(cr) — 20(@)(0)] y ds.
o<s
0

Hence, collecting all terms we obtain

t

|y () — 5@ D) < 5O, + Lr f Supe™”[/(0) = 209)()|  ds
o o<s

i

t S
+5P<T)< / fp(s) supe®”? |y (o) —z8(¢)(o>|’,}ds) ,
0

o<s

so that

N

supeapSW(s) ~ @) <3| OMD)|7 + 3pL§Tp_1/ supe® [y (0) — 20(@) (o) p dr

s o<r

+3P8,(T)P f fp(s) supe"‘”” ¥ (0) — 20(@) ()| ds.

Therefore, by using the Gronwall lemma we obtain

:
Ssupe“’”|¢@) — 2@ ()] 5 < 37|75 (O)(T)|%, exp( f g(s) ds>,
0

where

g(s) =3P LRTP™L 4 3PE,(T)? £, (s).
This yields

W () = 3@ ()|, <e T ep(T, R 1B 20,711 |25 ON(T)
that is

|25 (T +T) = &| p < (T, R. 18 20.5)) |2 O(D) | .-
According to (3.27)

E’

lim sup |z5(0)(D)|, =

T—o00 Ix|E<R
and then we can findp > 0 such that
8

|25 (o) (To+T) — |, < > 0
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7. Upper bounds
Before proceeding with the proof of upper boundsrveed the following pliminary result.
Lemma 7.1.Under Hypothese$-5, for anys, s > 0 there exist. > 0 and7 > 0 such that
. d -
{z);z€ K5, ()} {x € E; distg (x, K(s)) < 5}, t>T,
whereX, :={x € E; |x|g < A}.
Proof. If this is not true, there exist two sequenggs} | 0 and{7,} 1 +oc andz, € Kx;,, 1, (s) such that
. 8
distz (24 (), K (5)) > 5 neN.
Thus, if we defing,, (t) :=z,(t + T,), t € [-T,, 0], for eachw € N we havez, (0) = z,(T,,) and
1)
distz (2,(0), K () > 5 ne€ N.

Moreover, since., | 0 and7, 1 +oo, for anyk € N we have{z,},>« C K, 7 (5).
Now, for anyt > —T,, we have

14T,
Zn(t) =za(t + Tp) = "1 42,(0) + / T IAR (2,(5)) ds + v @) (¢ + T),
0
whereg, is some function inL2(0, T;,; H), with |¢"|i2(0 o <3 andygn (zn) is defined as in the proof of

Theorem 3.1. Thus, with the same notations as in Section 3 we have
20 =28 Qe+ T, 1>-T,
and then, thanks to (3.3), we have

sup |z2n(0)|, <cs(A+11), n>1.
te[-T,,0]

Moreover, thanks to (3.4) for any> —T,, we have

B0 o) <1+ O+ €+ T %),
so that, forany: > k andt > —T;/2

_ b
20| o @pry SeA+HAD A+ T/2A D7 2) = pr.
In particular for any € N
Zn,

>
Crzo € Kap ~T/2008),  n 2k,

where
Ap = 1{x € E x| co. @ry < P}

In Section 5 (see also [3]) we have seen that for éaciN the setKApk —1;./2,0(s) is compactinC([—T;/2,0]; E).
Thus there existz,,} C {z,} andz1 € K, ,—11/2,0(5) such thatz,, converges tdy in C([—71/2,0]; E). Anal-
ogously, there existz,,} < {z,,} andzz € KA, ~12/2,0(5) such thatz,, converges t@, in C([—72/2,0]; E).
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Moreoverzo = Z1 on [—T1/2, 0]. By proceeding in this way we find a subsequefige} C {z,} converging in
C((—00,0; E) to somez such that

I (?) <5, sugz(n)|, <c(l+ o).
t<0

This means that we can apply Lemma 5.2 and obtain|ﬁ{al|cg*(5:R,) < L(s), for some constank(s) > 0.

Then, by proceeding as in the proof of Proposition 5.1 we can concludgthag — 0, asr — —oo, and hence
Z € K_oo(s). According to Proposition.g this implies that’ (z(0)) < I--(2) < s. But this is not possible, as

A 1)
distz (2(0), K (s)) > > 0
In the proof of upper bounds we distinguish the two cases of bounded and unbatinded
7.1. Upper bounds whe@ is bounded

In [3, Theorem 3.3] we have proved that if

sup  [g(€.0)| £ (g, < 0, (7.1)
(€,0)OxR"

then for anyT, R > 0 ands > O there exist® > 0 such that
S
sup P(lu;lcqo.rye) = p) < eXp<——2), ¢€(0,1].
lx|[E<R 2
Here we are assuming that there exists 0 such that for any € E andh € D(A)
(Ah, p) + (F(x +h) — F(x), 5h) < —alh|g,

for somes;, € d|h|g. Thus, by adapting the proofs of [3, Theorems 3.2 and 3.3] it is possible to show that for any
R > 0 ands > 0 there exist® > 0 such that

N
sup P(|u§|c([0,+oo);E) > p) < exp(——z), e €(0,1]. (7.2)
Ix|[ESR €

We recall that in the present paper for each 0 we have defined the measuyeas the weak limit of the sequence
of probability measuref; ,},>1 defined by

In

Ve (1) 1= ;/P(ug(t) er)d:, I eB(E),

n

for some sequenag 1 oo possibly depending on Therefore, from (7.2) we obtain that for any- 0 there exists
p > 0 such that for any € (0, 1]

vg({x eE;|x|g> ,0}) < |Lr1iorlf vg)n({x eE;|x|g> p}) < eXp(—:—z). (7.3)
Now, for anyn € N andp, s, § > 0 we define
Hps5(n) :={z € C([0,n]; E): |2(0)| , < p.|2()|, =2 j=1.....n}, (7.4)

wherep is any positive constant aridis the constant introduced in Lemma 7.1 correspondingands.

Lemma 7.2.Under Hypothese$—4, for anyp, s, § > 0 there exists: € N such that
Bii :=inf{l;(2); z € Hy 5 5(1)} > s.
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Proof. If this is not true, then syps, <s. Thus, for eacl € N we can fixz, € H, 5,5(n) such that
I (zp) < inf{ln(z); ze Hp,s,S(”)} +1=8,+1<s+1
Due to (3.4) this easily implies that

S;J:HZn(t”CH*((_):Rr) <oy (1+ |Zn(o)|lg) < Cs(1+ Pm) =iCp,s- (75)
1> ’

Now, if we show that fok € N large enough

v =inf{Ik(z); z € C([0,k]; E),

20)|; <cps Ap. |2R)]; =2} >0, (7.6)

we are led to a contradiction. Indeed, after fixing ski¢hanks to (7.5) we have
s+12Li(z,p) > nug

and this is clearly not possible, azan be taken arbitrarily large.
Hence, to finish the proof of the lemma, it remains to prove (7.6). Forany we consider the solutiogy of
problem (3.26) (corresponding #©= 1). Due to (3.27), there exists> 1 such that

s N
IXlE<cps Ap= i), <%, 121,

>
and then, if we fix any integer> 7 we have

Z)lc‘[li] # {2 € C(ILAL E): [z0)]; > 2. (7.7)

Our aim is to prove that for sudhwe haveu; > 0. If v = 0, then there exists
{Zn) C {z € C([0,k]; E); z2(k)|p =1,

such thatl;(z,) converges to zero, as— oo. Hence, a3z,(0)|g < p, we have|2n(1)|ce*(5;R,) < ¢p,s, SO that
there exist{z,;} € {2,} andx € E such that,; (1) — . Now, sincel;(z,) — 0, there exists a sequengg,} C
L?(0, k; H) converging to zero such that = z(¢,). This implies thaﬁ,,j converges tq{ in C([1, k]; E) and then
|23 (k)| g > A. Butin fact, due to (7.7), this is not possiblex

20)|, <cpsAp,

With arguments analogous to those used by Sowers in [14] nhow we obtain the upper bounds.

Theorem 7.3.Assume that Hypothesgs5hold. Moreover, assume thatis uniformly bounded, that is

(€,0)OxR"

Then, for any, 8, y > 0 there existgp > 0 such that

ve({x € E; diste (x, K (5)) > 8)) < exp(—s ;2’/), £ < £0.

Proof. Due to the invariance of the measuxe for anyz > 0 we have

ve({x € E; distg (x, K (5)) > 8}) =/1P(distE(ug(t), K (s)) = 8)ve(dy).
E

Thus, according to (7.3), for> 0 fixed we can fingp > 0 such that for any € (0, 1]
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ve({x € E; distg (x, K (5)) > 8})
= / P(distg (u) (1), K (5)) = 8)ve(dy) + / P(distg (u} (1), K () > 8)ve (dy)

[ylE>p Iyle<p

< exp(—é) + / P(distg (u} (1), K (5)) = 8)ve(dy). (7.8)
Iyle<p
If H,,s(n) is the closed set defined in (7.4), by using the upper bounds for the path large deviations from [3,
Theorem 6.3] in its equivalent formulation due toisker and Varadhan (see [7] and [16]), due to Lemma 7.2 we
can fixn € N ande; > 0 such that

, _ —y/2
sup P(u} € Hp 5,5()) < eXp(—s 5/ ) e< el
Iyle<p e

Thus, from (7.8) for any < ¢1 we obtain

ve({x € E; distg (x, K (5)) = 8}) < exp(—é) + exp(—s . )

+ / P(distg (u) (1), K(s)) = 8,ul ¢ Hp.5(1))ve(dy). (7.9)
IylE<p
Concerning the integral above, recalling hasy has been defined in Lemma 7.1, we have

P(diste (1 (1), K (5)) = 8, u & Hps,5(1))ve(dy)

Iyle<p

i
< / IP( U{distE(ug‘(t), K(s)) =38, ul(k) € Z‘A})
IylE<p k=1
and then, due to the Markov property:gf, for anyr > i we get

/ P(dist (u} (1), K () > 8. u) ¢ Hp.5.5(0)) e (dy)

Iyle<p

<) supP(distz (u) (t — k), K (5)) > 9).
k=1Y€2

Now, thanks to Lemma 7.1 there exigts> 0 such that for any > T andy € X,

. B )
P(distg (u (1), K (5)) = 8) < P(|ug - KEA,,(s)|C([0)I];E) > 5) < P(\ug — Ky,t(s)|c([0)t];E) > E)'

Thus, by using the upper bounds for the trajectories of the solutigproved in [3, Theorem 6.3], we can find
&(t) > 0 such that

sup P(distg (u} (1), K (5)) > 8) < exp(—s — 5/2), e <e(r).
yeX) &

This means that if we take:= T + 7 ande := min{e(t — k), k=1,..., 1}, foranye < e

/ P(distg (u} (1), K (s)) =8, ul ¢ Hp5,5(1))ve(dy) <n eXp<—s _8’2’/2)

Iyle<p
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Hence, from (7.9) and the inequality above we can conclude thatfosz ;=1 A2 A 1

ve({x € E; distg (x, K(s)) > 8}) gexp<_:_2> +<1+ﬁ>exp(—s_8§/2>,

which yields upper bounds by taking somge< e3 sufficiently small. O

7.2. Upper bounds whedi is unbounded

For anyn € N ands, § > 0 we define
Hy 5(n):={z€C(10,n]; E); |z()|p = A j=1,...,n},

wherea is the constant introduced in Lemma 7.1 correspondingands. Notice that, unlike the functions of the
setH, ; s(n) defined in (7.4), the functions belonging # s(n) have no conditions on their initial value. This is
because in the proof of the upper bounds we don’t want tahesexponential estimate (7.3), where the assumption
of boundedness af7 is needed. Nevertheds, due to the estimates af (¢ (2))|g proved in Theorem 3.4, which
are uniform with respect to the initial datume E, we can prove a result analogous to Lemma 7.2 also in the case
of unboundeds.

Lemma 7.4.Assume that Hypothesgs4and 6 hold. Then for any, § > 0 there exists € N such that
Bii :=inf{ i (2); z € Hy s()} > s. (7.10)

Proof. If (7.10) does not hold, we have spyf, < s and then, as in the proof of Lemma 7.2, for each N we
can fixz, € Hy s(n) such thatl, (z,) < B, +1 < s + 1. This means that, = zé"(o) (¢n), for someyp € L2(0, n; H)

such thaﬂ<p,1|i2(0 s H) < 3(s + 1), and then, thanks to Theorem 3.4, we have

supz.(1/2)| , =: ¢5 < +oo0.
neN
According to (3.4) this yields
,ng|zn(t)|cg*(aw) =:c} < +00. (7.11)
neN
Now we show that there existse N such that

vk :=inf{Ix(2); z € C([1,kI; E),

2o @irry <6 |20 = 2} > 0.

If z7 denotes the solution of the uncontrolled problem (3.26), starting framE at time 1, as in the proof of
Lemma 7.2 we can fix such that

lx'C"*(@;R’) < C; = Za\:l[“;] ¢ {Z S C([l, ];], E),

2|, =1}

With the same arguments used in the proof of Lemma 7.2, we can prove;thad for suchk. Thus, as in the
proof of Lemma 7.2 we get a contradiction, asaarbitrarily large, due to (7.11) we obtain

S+12 LGy 200 O
The previous lemma allows us to adapt the proof of Theorem 7.3 to the case of an unbounded diffusi®n term
Theorem 7.5.Assume that Hypothesgs6hold. Then, for any, §, y > 0 there existgg > 0 such that

ve({x € E; diste (x, K (5)) > 8)) < exp(—s ;2’/), £ < £0.
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Proof. For anyt > 0 we have

ve({x € E.distg (x, K(s)) > 8}) = | P(distz (u) (1), K(s)) > 8)ve(dy)

E
= /P(distE(ug(t), K(s)) = 8,u) € Hy 5(1))ve(dy)
E

+/]P>(distE(ug(t), K(5)) =8, u} ¢ Hy 5(7))ve (dy),
E

wherer is the integer found in Lemma 7.4 (see also the proof of Theorem 7.3). Then, due to Lemma 7.4 and to the
upper bounds for the trajectoriesf proved in [3, Theorem 6.3], we can fix > 0 such that for any < &1

ve({x € E; distg (x, K(s)) > 8}) < exp(—s_gig/z) + / P(distg (u} (1), K (s)) > 8; u) ¢ Hy 5(n))ve(dy).
E

Then we can conclude the proof of the theorem, by using the same arguments used in the proof of Theoram 7.3.
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