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Abstract

In this paper we prove a large deviations principle for the invariant measures of a class of reaction–diffusion sy
bounded domains ofRd , d � 1, perturbed by a noise of multiplicative type. We consider reaction terms which are not Lips
continuous and diffusion coefficients in front of the noise which are not bounded and may be degenerate. This covers fo
the case of Ginzburg–Landau systems with unbounded and possibly degenerate multiplicative noise.
 2004 Elsevier SAS. All rights reserved.

Résumé

Dans cet article on prouve un principe de grandes déviations pour les mesures invariantes de systèmes de réactio
stochastiques dans des domaines bornés deR

d , d � 1, perturbés par un bruit multiplicatif. On considère des termes de réa
qui ne sont pas lipschitziens et des coefficients de diffusion quine sont pas bornés et peuvent être dégénérés. Ceci s’ap
par exemple au cas de systèmes de Ginzburg–Landau avec bruit multiplicatif non borné et éventuellement dégénéré.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

In this paper we are dealing with the long-term behavior of the stochastic reaction–diffusion system


∂ui

∂t
(t, ξ) =Aiui (t, ξ) + fi(ξ, u1(t, ξ), . . . , ur (t, ξ))

+ ε
∑r

j=1 gij (ξ, u1(t, ξ), . . . , ur (t, ξ))Qj
∂wj

∂t
(t, ξ), t � 0, ξ ∈ O,

ui(0, ξ) = xi(ξ), ξ ∈O, Biui(t, ξ) = 0, t � 0, ξ ∈ ∂O, 1� i � r,

(1.1)

with ε > 0. HereO is a bounded open set ofR
d , with d � 1, having aC∞ boundary. For eachi = 1, . . . , r

Ai (ξ,D) =
d∑

h,k=1

∂

∂ξh

(
ai
hk(ξ)

∂

∂ξk

)
− αi, ξ ∈O. (1.2)

The constantsαi are strictly positive, the coefficientsai
hk are taken inC∞(O) and the matricesai(ξ) := [ai

hk(ξ)]hk

are non-negative and symmetric, for eachξ ∈ O, and fulfill a uniform ellipticity condition, that is

inf
ξ∈O

〈ai(ξ)h,h〉 � λi |h|2, h ∈ R
d,

for some positive constantsλi . Finally, the operatorsBi act on∂O and are assumed either of Dirichlet or
co-normal type.

The mappingf := (f1, . . . , fr ) :O×R
r → R

r is only locally Lipschitz-continuous and has polynomial grow
The mappingg := [gij ] :O × R

r → L(Rr ) is Lipschitz-continuous, without any assumption of boundedness
non-degeneracy.

The linear operatorsQj are bounded onL2(O) and may be taken to be equal to the identity operator in
of space dimensiond = 1. The noisy perturbations∂wj/∂t are independent cylindrical Wiener processes o
stochastic basis(Ω,F ,Ft ,P).

For example, in the case of space dimensiond = 1 andr = 2, we can deal with systems of the following type


∂u1
∂t

= ∂
∂ξ

(
a1

∂u1
∂ξ

) − α1u1 − c1u
2k+1
1 + f1(u1, u2) + 〈

g1(u1, u2),
∂w
∂t

〉
,

∂u2
∂t

= ∂
∂ξ

(
a2

∂u2
∂ξ

) − α2u2 − c2u
2k+1
2 + f2(u1, u2) + 〈

g2(u1, u2),
∂w
∂t

〉
,

ui(0, ξ) = xi(ξ), ξ ∈O, ui(t, ξ) = ηiui(t, ξ) + (1− ηi)
∂ui

∂ξ
(t, ξ), ξ ∈ ∂O,

whereai are positive functions inC1(�O), ηi ∈ {0,1}, αi andci are positive constants (in factαi can be taken zero i
the case of Dirichlet boundary conditions, that is ifηi = 1), f = (f1, f2) :R2 → R

2 is aC1 function having linear
growth, withf (0) = 0 andDf (0) diagonal, andg = (g1, g2) :R2 → L(R2) is any Lipschitz continuous functio
such thatg(0) either vanishes or is diagonal invertible and such that∥∥g(σ)

∥∥
L(R2)

� c
(
1+ |σ |γ )

, σ ∈ R
2,

with

2k + 1 > (1+ 6γ ) ∨ 2.

In particular, ifg is bounded in the reaction term we can take any power 2k + 1 � 3.

In [2] it is proved that for anyε > 0 and p � 1 system (1.1) admits a unique global solutionux
ε ∈

Lp(Ω;C([0, T ];E)), whereE is the space of continuous functions onO with values inR
r , and for each ini-

tial datumx ∈ E anda > 0 the family of probability measures{L(ux
ε (t)}t�a is tight in (E,B(E)). In particular,
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due to the Krylov–Bogoliubov theorem this yields the existence of a sequence{tn} ↑ +∞ (possibly depending
on ε) such that the sequence of probability measures defined by

νε,n(Γ ) := 1

tn

tn∫
0

P
(
u0

ε(s) ∈ Γ
)
ds, Γ ∈ B(E), (1.3)

converges weakly to some measureνε, which is invariant for system (1.1).
In the earlier paper [3] we have proved that the process{ux

ε }ε>0 is governed by a large deviation principle
C([0, T ];E), for anyT > 0. Our aim here is to prove that the family of invariant measures{νε}ε>0 defined as
the weak limits of the sequences of measures as in (1.3) obeys a large deviation principle inE, asε goes to zero
(precise hypotheses on the coefficients are specified in Section 2 below to which the reader is referred to)

Clearly the first step in the proof of large deviations estimates is defining an appropriate action functiV

having compact level sets. The hardest part here is not to findV (see (5.1) below for its initial definition and, i
particular, [9] and [14]) but to find a good characterization of it, in order to prove that its level sets are compa
maybe more importantly, to get a better intuition about itsmeaning. So, we spend a great deal of effort to pr
that (as in [8] and [14]), the action functionalV , also calledquasi-potential, has the following form

V (x) = min
{
I−∞(z); z ∈ C

(
(−∞,0];E

)
, z(0) = x, lim

t→−∞
∣∣z(t)∣∣

E
= 0

}
. (1.4)

HereI−∞(z) is the minimum energy required toproducez as a solution of the skeleton equation correspond
to (1.1) for t ∈ (−∞,0], i.e. replace∂w/∂t by a deterministic functionϕ ∈ L2(−∞,0;L2(O,R

r )) so that the
corresponding solutionz(ϕ) equalsz and the energy (:= |ϕ|2

L2(−∞,0;L2(O,Rr ))
) is minimal (cf. Section 3 and th

beginning of Section 5 below).
By compactness the infimum in (1.4) is indeed achieved by somez0, which exhibits more regularity in the spa

variables than just being inE (cf. Lemma 3.5 which in turn is essential for the proof of Proposition 5.4, but
for the proof of Lemma 7.1 which yields upper bounds). We would like to mention at this point that proving
requires considerable new input, since we consider space dimensiond � 1, so the coefficient in front of the nois
(in contrast to the one-dimensional case considered in [9] and [14]) can no longer be invertible. In addition tru
degenerate multiplicative noise is included in our framework.

Once we have shown that the mappingV :E → [0,+∞] is lower semi-continuous, with compact level sets,
prove that the family of probability measures{νε}ε>0 obeys a principle of large deviations with action functionaV

(cf. [9,10] and [14] for the formulation), i.e.

1. lower bounds(cf. Section 6 below): for anyδ, γ > 0 andx̄ ∈ E there existsε0 > 0 such that

νε

({
x ∈ E: |x − x̄|E < δ

})
� exp

(
−V (x̄) + γ

ε2

)
, ε � ε0;

2. upper bounds(cf. Section 7 below): for anys, δ, γ > 0 there existsε0 > 0 such that

νε

({
x ∈ E;distE

(
x,K(s)

)
� δ

})
< exp

(
− s − γ

ε2

)
, ε � ε0,

whereK(s) := {x ∈ E: V (x) � s} is the level set ofV .

In accordance to the general ideas about the large deviations for the invariant measures{νε}ε>0 (as beautifully
explained in the introduction of [9]) we have the following interpretation. Due to the definition ofνε for any set
A ⊂ E the numberνε(A) is the mean expected time the processuε spends inA. Moreover, by the large deviatio
results in [3] points inK(s), for smalls, are of course more likely to be visited byuε. So, according to stateme
2 above, the mass ofνε will concentrate asε → 0 at points inE which are minimum points ofV . In our case

V (x) = 0 ⇔ x = 0
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(cf. (5.2) below), soνε will converge to the Dirac measure at the zero function inE, i.e. the only stationary solutio
of Eq. (1.1) forε = 0.

In the framework considered in the present paper the skeleton equation associated with system (1.1) is
controllable, as in the case considered by Sowers in [14]. Then the proof of lower bounds turns out to b
complicate than in [14]. In fact, a crucial role is played by Lemma 6.2, whose proof is not immediate, as
dealing with non-Lipschitz reaction term, unboundedG and any space dimensiond � 1. To this purpose we not
that for the proof of Lemma 6.2 we also benefited from some ideas of I. Daw (see [6]).

Concerning the upper bounds, we have distinguished the case of bounded and unboundedG. WhenG is bounded
we can use exponential estimates for the solutionuε proved in [3] and generalize some arguments of Sower
our more delicate situation. In the case of unboundedG this is not anymore possible. Hence we need to pr
estimate (3.13) in Theorem 3.4 below, i.e. an estimate on the solution of the skeleton equation which is
with respect to the initial datum. This allows us to prove Theorem 7.5, whereg only satisfies the growth conditio
in Hypothesis 6, without using the exponential tail estimates (7.2) for the solution of (1.1) which are only
to hold for boundedg. Thus, Theorem 3.4 turns into a key step, since here we have not succeeded in app
localization argument as we did in [3].

Finally, let us mention that our general strategy mainly follows R. Sowers [14], but our more general situat
requires various new techniques. These, in particular, becomes necessary because of the following.

1. Unlike in [13] and [14] (see also [6] and [11]), where global Lipschitz assumptions were imposed, h
functionsfi in (1.1) are only locally Lipschitz and of polynomial growth (see Hypothesis 3 and Remar
below).

2. g = [gij ] in (1.1) is not assumed to be globally bounded (as e.g. done in [13] and [6]) and just assume
globally Lipschitz (see Hypothesis 2, but also Hypothesis 6 for the proof of upper bounds). Moreover,g may
be degenerate. This means that we can consider for examplegij (u) = λij uj , with λij ∈ R.

3. We consider systems ofr coupled stochastic reaction–diffusion equations, ruling out the maximum principl
and hence comparison techniques commonly used in caser = 1.

4. Unlike in [14], where space dimensiond = 1 is considered, we can allow arbitrary space dimension, i.e
E = C(O;R

r ) we can allowO to be a bounded open subset ofR
d , for arbitraryd � 1 (cf. Hypothesis 2

below).

2. Assumptions and preliminaries

Let O be a bounded open set ofR
d , with d � 1, having aC∞ boundary. In what follows we shall denote b

H the Hilbert spaceL2(O;R
r ), r � 1, endowed with the usual scalar product〈· , ·〉H and the corresponding nor

| · |H . The norm inLp(O;R
r ), p ∈ [1,∞], p �= 2, shall be denoted by| · |p.

For any 1� p � ∞ andm ∈ N, by Wm,p(O) we shall denote the space of functionsf ∈ Lp(O) such that the
weak derivativesDαf exist inLp(O), for each 0� |α| � m. Wm,p(O) is a Banach space, endowed with the no

|f |Wm,p(O) :=
∑

|α|�m

|Dαf |Lp(O).

Moreover, ifs > 0 is not integer, we defineWs,p(O) as the space of functionsf ∈ W [s],p(O) such that

|f |Ws,p(O) := |f |W [s],p(O) +
∑

|α|=[s]

∫
O×O

|Dαf (ξ) − Dαf (η)|p
|ξ − η|d+(s−[s])p dξ dη < ∞.

Next, we recall that for anys ∈ R andp ∈ (1,∞) the Bessel potential spaceHs,p(Rd) is defined by

Hs,p(Rd) := {
f ∈ S ′(Rd): |f |Hs,p(Rd) := ∣∣F−1(1+ |ξ |2)s/2Ff

∣∣
p d < ∞}

,

L (R )
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whereS ′(Rd) is the space of tempered distributions onR
d andF the Fourier transform. The Bessel poten

spaces onO are defined by restriction as

Hs,p(O) := {
f = g|∂O ;g ∈ Hs,p(Rd)

}
,

with

|f |Hs,p(O) := inf
f =g|∂O

|g|Hs,p(Rd).

We note that fork ∈ N we haveHk,p(O) = Wk,p(O) (for all definitions and detailed proofs see [15]).
Finally, we shall denote byWs,p(O;R

r ) andHs,p(O;R
r ) the space ofRr -valued functions such that eac

component belongs toWs,p(O) andHs,p(O), respectively.
In what follows we shall denote byA the realization inH of the differential operatorA = (A1, . . . ,Ar ) defined

in (1.2), endowed with the boundary conditionsB = (B1, . . . ,Br ), where for eachi = 1, . . . , r

Biu = u, or Biu = 〈aiν,∇u〉, (2.1)

(hereν is the normal vector at∂O). As proved e.g. in [15, Chapter 5] we have

D(A) = {
u ∈ H 2,2(O;R

r ): Bu = 0 on∂O
} =: H 2,2

B (O;R
r )

and the following optimal regularity result holds

u ∈ D(A), Au ∈ Hl,2(O;R
r ), l ∈ N

+ ⇒ u ∈ Hl+2,2(O;R
r ). (2.2)

We recall that for any integerk � 2 thekth power of the operatorA is defined by

D(Ak) := {
u ∈ D(Ak−1): Ak−1u ∈ D(A)

}
, Aku := A(Ak−1u).

Analogously, we can define thekth power ofA by setting

Aku :=A(Ak−1u) = (
A1(Ak−1

1 u1), . . . ,Ar (Ak−1
r ur)

)
, u ∈ H 2k,2(O;R

r ).

Thanks to (2.2) it is immediate to show that for any fixed integerk

D(Ak) = H
2k,2
Bk

(O;R
r ) := {

u ∈ H 2k,2(O;R
r ): Bu = · · · = B(Ak−1u) = 0

}
, (2.3)

so that the operatorAk is the realization inH of the differential operatorAk endowed with the boundary condition

Bk := {
B,BA, . . . ,BAk−1}.

Notice thatA generates an analytic semigroupetA in eachLp(O;R
r ), with 1� p � ∞, which is self-adjoint

on H and of negative type. Thus, as−A is a positive self-adjoint operator onH , for any 0� α � β andθ ∈ [0,1]
we have[

D
(
(−A)α

)
,D

(
(−A)β

)]
θ
= (

D
(
(−A)α

)
,D

(
(−A)β

))
θ,2 = D

(
(−A)(1−θ)α+θβ

)
, (2.4)

where in general, given any two Banach spacesX andY , [X,Y ]θ denotes their complex interpolation space a
(X,Y )θ,2 denotes their real interpolation space (for a proof see [15, Theorem 1.18.10]).

By complex interpolation arguments it is possible to characterize the domain of the fractional powers of−A.

Proposition 2.1.Letmi := (1+ 2 ordBi )/4. Then, for anyγ > 0 andi = 1, . . . , r we have

D
(
(−A)γ

) = H
2γ,2
Bγ

(O;R
r ),

whereBγ := (B1
γ , . . . ,Br

γ ) with

Bi
γ :=

{∅ if γ ∈ [0,mi],
{Bi,BiAi , . . . ,BiAk

i } if γ ∈ (k + mi, k + 1+ mi], k ∈ N ∪ {0}. (2.5)
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Proof. Due to (2.4) we have

D((−A)γ ) = [
H,D

(
(−A)[γ ]+1)]

γ
[γ ]+1

and then from (2.3) we obtain

D((−A)γ ) = [
H,H

2([γ ]+1),2
B[γ ]+1

(O;R
r )

]
γ

[γ ]+1
. (2.6)

It is not difficult to prove that for any integerk the operatorAk endowed with the boundary conditionBk is regular
elliptic (for the definition and all details see [15, Section 5.2.1]). Thus, as proved in [4, Lemma 11] from (2
obtain

D
(
(−A)γ

) = H
2γ,2
Bγ

(O;R
r ),

where

Bi
γ :=

{
BiAj

i ;0� j � [γ ], ord(BiAj
i ) < 2γ − 1

2

}
.

Hence, by easy computations we can check that the boundary conditionsBi
γ above coincide with the bounda

conditionsBi
γ in (2.5). �

Remark 2.2. It is immediate to check that ifγ ∈ N the boundary conditionsBγ introduced in (2.3) coincide with
the boundary conditionsBγ introduced in the proposition above.

In what follows we shall set

E := D(A) C(O;Rr ) = D(A1)
C(O;R) × · · · × D(Ar)

C(O;R).

Each setD(Ai)
C(O;R) coincides withC(O;R) or C0(O;R), if Bi is respectively a co-normal or a Dirichl

boundary condition. In any case, with this definition of the spaceE, endowed with the sup-norm| · |E and the
duality〈·, ·〉E :=E� 〈· , ·〉E , the part ofetA in E (which we will still denote byetA) is strongly continuous. Moreove
for anyδx ∈ ∂|x|E := {x� ∈ E�, 〈x, x�〉E = |x|E, |x�|E� = 1} we have

〈Ax, δx〉E � −α|x|E, x ∈ D(A), (2.7)

whereα := mini=1,...,r αi .
As recalled also in [2] and [3],etA has a smoothing effect. In fact, for anyt > 0, 1� q � p � ∞ andε � 0 the

semigroupetA mapsLq(O;R
r ) into Wε,p(O;R

r ) and

|etAx|Wε,p(O;Rr ) � ce−αt(t ∧ 1)
−( ε

2+ d(p−q)
2pq

)|x|q, x ∈ Lq(O;R
r ). (2.8)

Moreover,etA mapsE into Cθ(O;R
r ), for anyθ � 0, and

|etAx|
Cθ(O;Rr )

� ce−αt(t ∧ 1)−
θ
2 |x|E, x ∈ E. (2.9)

We also notice thatetA is compact onLp(O;R
r ), for all 1 � p � ∞ and t > 0, and the spectrum{−αn} is

independent ofp.
Our first hypothesis concerns the eigenvalues ofA.

Hypothesis 1.The complete orthonormal system ofH which diagonalizesA is equi-bounded in the sup-norm.

Next, we assume thatQ := (Q1, . . . ,Qr) :H → H is a bounded linear operator which satisfies the follow
conditions.
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Hypothesis 2.Q is non-negative and diagonal with respect to the complete orthonormal basis which diag
izesA, with eigenvalues{λn}. Moreover, ifd � 2,

there exists




� < ∞ if d = 2

� <
2d

d − 2
if d > 2

such that‖Q‖� :=
( ∞∑

k=1

λ
�
n

)1/�

< ∞. (2.10)

Remark 2.3.Hypothesis 1 is satisfied e.g. by the Laplace operator on[0, T ]d endowed with Dirichlet boundar
conditions. But there are several important cases in which it is not satisfied and it is only possible to say th

|ek|∞ � ckγ ,

for someγ � 0. In this more general situation one has to assume that the summability condition (2.10) imposed on
the eigenvalues ofQ is satisfied for some smaller constant�′. In other words one has tocolor the noise more.

In Hypotheses 3 and 4 below we giveconditions on the coefficientsf andg.

Hypothesis 3.The mappingg :O × R
r → L(Rr ) is continuous. Moreover the mappingg(ξ, ·) :Rr → L(Rr ) is

Lipschitz-continuous, uniformly with respect toξ ∈ O, that is

sup
ξ∈O

sup
σ,ρ∈Rr

σ �=ρ

‖g(ξ, σ ) − g(ξ,ρ)‖L(Rr )

|σ − ρ| < ∞.

In what follows for anyx, y :O → R
r we set(

G(x)y
)
(ξ) := g

(
ξ, x(ξ)

)
y(ξ), ξ ∈ O.

Next, settingf := (f1, . . . , fr ), for anyx :O → R
r we define

F(x)(ξ) := f
(
ξ, x(ξ)

)
, ξ ∈ O.

Hypothesis 4.

(1) The mappingF :E → E is locally Lipschitz-continuous and there existsm � 1 such that∣∣F(x)
∣∣
E

� c
(
1+ |x|mE

)
, x ∈ E. (2.11)

Moreover,F(0) = 0.

(2) For anyx,h ∈ E〈
F(x + h) − F(x), δh

〉
E

� 0, (2.12)

for someδh ∈ ∂|h|E := {h� ∈ E�; |h�|E� = 1, 〈h,h�〉E = |h|E}.
(3) There exista > 0 andc � 0 such that for eachx,h ∈ E〈

F(x + h) − F(x), δh

〉
E

� −a|h|mE + c
(
1+ |x|mE

)
, (2.13)

for someδh ∈ ∂|h|E .

Remark 2.4.Assume that

fi(ξ, σ1, . . . , σr ) := ki(ξ, σi) + hi(ξ, σ1, . . . , σr ), i = 1, . . . , r,
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wherehi :O × R
r → R is a continuous function such thathi(ξ, ·) :Rr → R is locally Lipschitz-continuous with

linear growth, uniformly with respect toξ ∈ O, and

ki(ξ, σi) := −c(ξ)σ 2n+1
i +

2n∑
k=0

ck(ξ)σ k
i ,

wherec(ξ) andck(ξ) are continuous functions,c(ξ) � ε > 0, ξ ∈ O andc0(ξ) = −hi(ξ,0).
Under these assumptions the functionf satisfies conditions (1) and (3) in Hypothesis 4 (see also [1, Chapt

[2] and [3, Remark 2.1] for more general examples of functionsf fulfilling Hypothesis 4 and for all details).

The next set of conditions assure the compactness of level sets for the quasi-potential associated
tem (1.1).

Hypothesis 5.EitherG(0) = 0 or there exists a continuous increasing functionc(t) such that for anyt � 0∣∣Q[
G(0)

]�
et [A+F ′(0)]�h

∣∣
H

� c(t)|QetAh|H , h ∈ H. (2.14)

In the case(2.14)is verified, the following conditions hold.

(1) If {−αn} and{λn} are respectively the eigenvalues ofA andQ, then

1

c
α−δ

n � λn � cα−δ
n , (2.15)

for somec > 0 and someδ such that

δ � 0, if d = 1, δ >
d − 2

4
, if d � 2. (2.16)

(2) The mappingsf andg are of classC∞ onO × R
r .

(3) If δ is the constant in(2.15)andBγ is the boundary operator introduced in(2.5), then for anyγ � δ and
u,v ∈ H 2γ,2(O;R

r ) we have

Bγ u|∂O = 0⇒ Bγ F (u)|∂O = 0,

Bγ u|∂O = Bγ v|∂O = 0 ⇒ Bγ (G(u)v)|∂O = 0.
(2.17)

Moreover, ifu,v,w ∈ H 2δ,2(O;R
r ) we have

Bδu|∂O = Bδv|∂O = 0⇒ Bδ(F
′(u)v)|∂O = 0,

Bδu|∂O = Bδv|∂O = Bδw|∂O = 0 ⇒ Bδ([G′(u)v]w)|∂O = 0.
(2.18)

Remark 2.5.

1. We note that the assumption (2.14) is fulfilled when there exist two diagonalr × r matricesD1 andD2, with
D1 invertible, such that

g(ξ,0) = D1, Dσ f (ξ,0) = D2, ξ ∈O.

In particular, when instead of a system a single equation is considered, condition (2.14) is always fu
bothg(ξ,0) andDσ f (ξ,0) do not depend onξ .

2. Condition (2.15) means that RangeQ = D((−A)δ).
3. We assumef andg to beC∞(O×R

r ) only for simplicity. In fact we needf andg to be of classCk(O×R
r ),

for somek large enough, depending on the constantδ introduced in (2.15) (for example, in the caseBi = I it
is sufficient to takek < 2δ + 1/2, see also next remark).
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xists

e

n
rowth
is,
4. If we have

αn ∼ n2/d, n ∈ N

(this happens for example in the case of the Laplace operator� in strongly regularopen sets, both with
Dirichlet and with Neumann boundary conditions, see [5, Theorem 1.9.6]), then if (2.16) holds, there e
someρ which fulfills condition (2.10).

5. WhenBi = I , for eachi = 1, . . . , r, condition (2.17) is verified for example by functionsf andg such that

Dj
σ f (ξ,0) = 0, Dj

σ g(ξ,0) = 0, ξ ∈ O, (2.19)

for anyj = 1, . . . ,2k, wherek ∈ [δ − 5/4, δ − 1/4) (notice that in this casemi = 1/4, for eachi). In the same
setting, condition (2.18) holds forf andg fulfilling (2.19) for anyj = 1, . . . ,2k + 1, with k as above.

For the proof of upper bounds in the case of unboundedg we need the following condition on its growth.

Hypothesis 6.There existsγ ∈ [0,1] such that

sup
ξ∈O

∣∣g(ξ, σ )
∣∣
L(Rr )

� c
(
1+ |σ |γ )

, σ ∈ R
r , (2.20)

and

m >

[
1+ (2+ d)γ

(
1− d(� − 2)

2�

)−1]
∨ 2, (2.21)

where� andm are the constants introduced respectively in(2.10)and(2.13).

Remark 2.6.Condition (2.21) ond , m, � andγ says how the space dimension, the dissipativity ofF , the regularity
of Q and the growth ofG are related to one another, in order to have upper bounds.

In the case of space dimensiond = 1 and white noise (which meansQ = I and hence� = +∞) the relation
betweenm (the dissipativity ofF ) andγ (the growth ofG) is

m > (1+ 6γ ) ∨ 2,

so that in the case ofG having linear growth (that isγ = 1) we have to assumem > 7. If instead of a white nois
we take a coloured noise with Hilbert–Schmidt covarianceQ (that is� = 2) we have

m > (1+ 3γ ) ∨ 2

which becomesm > 4 in the case ofγ = 1.
In general, from (2.10) we have that the bigger the space dimensiond becomes, the smaller� has to be chose

(and hence the more regularQ has to be taken). Due to (2.21) this means that if we want to allow the same g
of g with increasing dimensions, we have to take reaction termsF with stronger and stronger dissipativity, that
larger and largerm.

3. The skeleton equation

With the notations introduced in the previous section system (1.1) can written more concisely as

du(t) = [
Au(t) + F

(
u(t)

)]
dt + G

(
u(t)

)
Qdw(t), u(0) = x. (3.1)

In this section we prove some results for the skeleton equation associated with the system above.
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g

we

)

For any−∞ � t1 < t2 � +∞ andϕ ∈ L2(t1, t2;H) we denote byz(ϕ) any solution belonging toC([t1, t2];E)

of the deterministic problem

z′(t) = Az(t) + F
(
z(t)

) + G
(
z(t)

)
Qϕ(t), z(t1) = x. (3.2)

In several cases, when we need to stress thatz(ϕ) starts fromx at timet1, we shall writezx
t1
(ϕ). As shown in [3,

Theorem 4.1], for anyr � 0 andt1 < t2 there exists a constantcr,t2−t1 > 0 such that for anyx ∈ E

sup
|ϕ|

L2(t1,t2;H)
�r

∣∣zx(ϕ)
∣∣
C([t1,t2];E)

� cr,t2−t1

(
1+ |x|E

)
.

In fact, by proceeding as in [2, proofs of Proposition 6.1 and Theorem 6.2], it is possible to get the followin
stronger result.

Theorem 3.1.Under Hypotheses1–4, for any r � 0 there exists a constantcr > 0 such that for anyT ∈ R and
x ∈ E

sup
|ϕ|

L2(T ,∞;H)
�r

∣∣zx
T (ϕ)

∣∣
C([T ,∞);E)

� cr

(
1+ |x|E

)
. (3.3)

Moreover, there existsθ� ∈ (0,1) andcr ∈ (0,+∞) such that for anyt > T andx ∈ E

sup
|ϕ|

L2(T ,∞;H)
�r

∣∣zx
T (ϕ)(t)

∣∣
Cθ� (O;Rr )

� cr

(
1+ |x|mE

)(
1+ (t − T )−

θ�
2
)
. (3.4)

Proof. For any fixedϕ ∈ L2(T ,∞;H), z ∈ C([T ,∞);E) andλ � 0 we define

γ T
ϕ,λ(z)(t) :=

t∫
T

e(t−s)(A−λ)G
(
z(s)

)
Qϕ(s) ds, t � T ,

(and we setγ T
ϕ (z) := γ T

ϕ,0(z)). Clearly,γ T
ϕ,λ(z) is the unique mild solution of the problem

dv

dt
(t) = (A − λ)v(t) + G

(
z(t)

)
Qϕ(t), t � T , v(T ) = 0.

Thanks to the same arguments used in [2, proofs of Theorem 4.2 and Proposition 4.5, Remark 4.6], due to (2.9)
can fix someθ� ∈ (0,1) such that for anyλ � 0 andT ∈ R

sup
t�T

∣∣γ T
ϕ,λ(z)(t)

∣∣
Cθ�(O;Rr )

� c(λ)
(
1+ |z|C([T ,∞);E)

)|ϕ|L2(T ,∞;H), (3.5)

for a constantc(λ) decreasing to zero asλ goes to infinity.
Now, if we setγ T (t) := γ T

ϕ,λ(z
x
T (ϕ))(t) andu(t) := zx

T (ϕ)(t) − γ T (t), for t � T , we have

u′(t) = (A − λ)u(t) + F
(
u(t) + γ T (t)

) + λzx
T (ϕ)(t), u(T ) = x.

We recall here that if a mappingu : [0, T ] → E is differentiable at some pointt0 then

d

dt

−∣∣u(t0)
∣∣
E

= min
{〈

u′(t0), x�
〉
E
, x� ∈ ∂

∣∣u(t0)
∣∣
E

}
see for example [1, Proposition A.1.3]. Hence, ifδu(t) is the element of∂|u(t)|E introduced in (2.13), due to (2.11
we have

d

dt

−∣∣u(t)
∣∣
E

�
〈
Au(t), δu(t)

〉
E

+ 〈
F

(
u(t) + γ T (t)

) − F
(
γ T (t)

)
, δu(t)

〉
E

+ 〈
F

(
γ T (t)

) + λzx
T (ϕ)(t), δu(t)

〉
� −a|u(t)|mE + c

(
1+ ∣∣γ T (t)

∣∣m + λ
∣∣zx

T (ϕ)(t)
∣∣ )

.

E E E
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5.4])
Then, recalling thatzx
T (ϕ) = u+γ T

ϕ,λ(z
x
T (ϕ)), by a comparison argument (see for example [2, proof of Lemma

for anyt � T we obtain∣∣zx
T (ϕ)(t)

∣∣
E

� |x|E + c
(
1+ sup

r�T

∣∣γ T
ϕ,λ

(
zx
T (ϕ)

)
(r)

∣∣
E

+ λ
1
m

∣∣zx
T (ϕ)(t)

∣∣ 1
m

E

)
.

Thanks to (3.5) and to the Young inequality, this implies that if|ϕ|L2(T ,∞;H) � r

sup
t�T

∣∣zx
T (ϕ)(t)

∣∣
E

� |x|E + 1

4
sup
t�T

∣∣zx
T (ϕ)(t)

∣∣
E

+ c(λ)
(
1+ ∣∣zx

T (ϕ)
∣∣
C([T ,∞);E)

)
r + λ

1
m−1 .

Now, as limλ→∞ c(λ) = 0, we can find̄λ such thatc(λ̄)r � 1/4 and then

sup
t�T

∣∣zx
T (ϕ)(t)

∣∣
E

� cr

(
1+ |x|E

)
,

for some positive constantcr .
Finally, in order to obtain (3.4), we remark that thanks to (2.9), (2.11) and (3.3) for anyt � T we easily have∣∣∣∣∣

t∫
T

e(t−s)AF
(
zx
T (ϕ)(s)

)
ds

∣∣∣∣∣
Cθ�(O;Rr )

� c

t∫
T

e−α(t−s)
(
(t − s) ∧ 1

)− θ�
2
(
1+ ∣∣zx

T (ϕ)(s)
∣∣m
E

)
ds � cr

(
1+ |x|mE

)
. (3.6)

Then, as

zx
T (ϕ)(t) = e(t−T )Ax +

t∫
T

e(t−s)AF
(
zx
T (ϕ)(s)

)
ds + γ T

ϕ

(
zx
T (ϕ)

)
(t),

from (3.3), (3.5) and (2.9) for anyt > T we get∣∣zx
T (ϕ)(t)

∣∣
Cθ�(O;Rr )

� c
(
e−α(t−T )

(
(t − T ) ∧ 1

)− θ�
2 |x|E + cr

(
1+ |x|mE

))
,

which easily implies (3.4) �
The next proposition shows that if we start fromx = 0 at timeT , thenz0

T (ϕ) decreases to zero inC([T ,∞);E),
asϕ decreases to zero inL2(T ,∞;H).

Proposition 3.2.Under Hypotheses1–4, for anyT ∈ R we have

lim|ϕ|
L2(T ,∞;H)

→0

∣∣z0
T (ϕ)

∣∣
C([T ,∞);E)

= 0. (3.7)

Proof. As in the proof of Theorem 3.1, if we setu(t) := z0
T (ϕ)(t) − γ T

ϕ (z0
T (ϕ))(t), we have

u′(t) = Au(t) + F
(
u(t) + γ T

ϕ

(
z0
T (ϕ)

)
(t)

)
, u(T ) = 0,

so that, with the notations of Theorem 3.1,

d

dt

−∣∣u(t)
∣∣
E

�
〈
Au(t), δu(t)

〉
E

+ 〈
F

(
u(t) + γ T

ϕ

(
z0
T (ϕ)

)
(t)

) − F
(
γ T
ϕ

(
z0
T (ϕ)

)
(t)

)
, δu(t)

〉
E

+ 〈
F

(
γ T
ϕ

(
z0
T (ϕ)

)
(t)

)
, δu(t)

〉
� −a

∣∣u(t)
∣∣m + ∣∣F (

γ T
ϕ

(
z0
T (ϕ)

)
(t)

)∣∣ .

E E E
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vo-
Recalling thatu(t) := z0
T (ϕ)(t) − γ T

ϕ (z0
T (ϕ))(t), by comparison this yields

sup
t�T

∣∣z0
T (ϕ)(t)

∣∣
E

� sup
t�T

(∣∣u(t)
∣∣
E

+ ∣∣γ T
ϕ

(
z0
T (ϕ)

)
(t)

∣∣
E

)
� c sup

t�T

(∣∣γ T
ϕ

(
z0
T (ϕ)

)
(t)

∣∣
E

+ ∣∣F (
γ T
ϕ

(
z0
T (ϕ)

)
(t)

)∣∣
E

∣∣ 1
m
)
.

Now, thanks to (3.5) and (3.3), if|ϕ|L2(T ,∞;H) � r we have

sup
t�T

∣∣γ T
ϕ

(
z0
T (ϕ)

)
(t)

∣∣
E

� cr |ϕ|L2(T ,∞;H),

and then, asF(0) = 0, we can conclude.�
Now we show that under the growth conditions of Hypothesis 6 it is possible to give estimates of|zx(ϕ)(t)|E

which are uniform with respect to the initial datumx. To this purpose we need a preliminary result on the con
lution γ 0

ϕ (z).

Lemma 3.3.Let us assume Hypotheses1–4 and 6. Then, if� and γ are the constants introduced in(2.10)and
(2.20), respectively, for anyq � 1 such that

q

γ
� 1,

(2+ d)γ

q
< 1− d(� − 2)

2�
(3.8)

there exists some continuous increasing functioncq(t) vanishing att = 0 such that for anyz ∈ Lq(0,+∞;E) and
ϕ ∈ L2(0,+∞;H)∣∣γ 0

ϕ (z)(t)
∣∣
E

� cq(t)
(
1+ |z|γLq(0,t;E)

)|ϕ|L2(0,t;H), t � 0.

Proof. For anyβ ∈ (0,1) andt � 0 we have

γ 0
ϕ (z)(t) = sinπβ

π

t∫
0

(t − s)β−1e(t−s)Avβ(s) ds,

where

vβ(s) :=
s∫

0

(s − σ)−βe(s−σ)AG(z(σ ))Qϕ(σ) dσ.

Thanks to (2.8), for anyβ ∈ (0,1), ε > 0 andp � 1 such that(β − 1− ε/2)p/(p − 1) > −1 we have

∣∣γ 0
ϕ (z)(t)

∣∣
Wε,p(O;Rr )

� sinπβ

π

t∫
0

(t − s)β−1− ε
2
∣∣vβ(s)

∣∣
p

ds

� sinπβ

π

( t∫
0

∣∣vβ(s)
∣∣p
p

ds

) 1
p
( t∫

0

(t − s)
(β−1− ε

2 )
p

p−1 ds

) p−1
p

.

Hence, ifεp > d , that is, if

β > (2+ d)/2p, (3.9)
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we get∣∣γ 0
ϕ (z)(t)

∣∣
E

� cp(t)|vβ |Lp((0,t )×O;Rr), (3.10)

for some continuous increasing functioncp(t) vanishing att = 0. Now, for(s, ξ) ∈ [0, T ] ×O we have

vβ(s, ξ) =
s∫

0

(s − σ)−β

∞∑
k=1

e(s−σ)A
[
G

(
z(σ )

)
Qek

]
(ξ)〈ϕ(σ), ek〉H dσ

=
s∫

0

(s − σ)−β

∞∑
k=1

λke
(s−σ)A

[
G

(
z(σ )

)
ek

]
(ξ)

〈
ϕ(σ), ek

〉
H

dσ

and then

∣∣vβ(s, ξ)
∣∣ �

s∫
0

(s − σ)−β

( ∞∑
k=1

∣∣〈ϕ(σ), ek

〉
H

∣∣2)
1
2
( ∞∑

k=1

λ2
k

∣∣e(s−σ)A
[
G

(
z(σ )

)
ek

]
(ξ)

∣∣2)
1
2

dσ

�
( s∫

0

∣∣ϕ(σ)
∣∣2
H

dσ

) 1
2
( s∫

0

(s − σ)−2β

∞∑
k=1

λ2
k

∣∣e(s−σ)A
[
G

(
z(σ )

)
ek

]
(ξ)

∣∣2 dσ

) 1
2

� ‖Q‖� |ϕ|L2(0,s;H)

( s∫
0

(s − σ)−2β

( ∞∑
k=1

∣∣e(s−σ)A
[
G

(
z(σ )

)
ek

]
(ξ)

∣∣2ς

) 1
ς

dσ

) 1
2

,

whereς = �/(� − 2) and� = +∞ if d = 1, or� < 2d/(d − 2), if d � 2 (see (2.10) in Hypothesis 4).
Now, as shown in [2, Proof of Theorem 4.2], we have

∞∑
k=1

∣∣e(s−σ)A
[
G

(
z(σ )

)
ek

]
(ξ)

∣∣2ς � c(s − σ)−
d
2
∣∣e(s−σ)Aζ

(·, z(σ )
)∣∣2(ς−1)

E

∣∣e(s−σ)Aζ̄
(·, z(σ )

)∣∣
E
,

where the functionsζ, ζ̄ :O × R
r → R

r are defined by

ζi(ξ, ρ) :=
r∑

j=1

∣∣gij (ξ, ρ)
∣∣, ζ̄i(ξ, ρ) :=

r∑
j=1

∣∣gij (ξ, ρ)
∣∣2, i = 1, . . . , r.

According to (2.20) this yields
∞∑

k=1

∣∣e(s−σ)A
[
G

(
z(σ )

)
ek

]
(ξ)

∣∣2ς � c(s − σ)−
d
2
(
1+ ∣∣z(σ )

∣∣2γ ζ

E

)
, ξ ∈ O,

and then, if

2β + d

2ς
= 2β + d(� − 2)

2�
< 1, (3.11)

collecting all terms, from the Young inequality we get

|vβ |p
Lp((0,t )×;Rr)

� c|ϕ|p
L2(0,t;H)

t∫
0

( s∫
0

(s − σ)
−(2β+ d

2ς )(1+ ∣∣z(σ )
∣∣2γ

E

)
dσ

) p
2

ds

� c|ϕ|p
L2(0,t;H)

( t∫
s
−(2β+ d

2ς )
ds

) p
2

t∫ (
1+ ∣∣z(s)∣∣pγ

E

)
ds. (3.12)
0 0
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ave

m-

to
Hence, as we can takep = q/γ � 1, for someq � 1 fulfilling (3.8), it is possible to fixβ ∈ (0,1) fulfilling both
(3.9) and (3.11) and thanks to (3.10) and (3.12) we obtain our lemma.�
Theorem 3.4.Assume that Hypotheses1–4and6 hold. Then for anyr � 0 there existscr > 0 such that

sup
x∈E

sup
|ϕ|

L2(0,∞;H)
�r

∣∣zx(ϕ)(t)
∣∣
E

� cr

(
1+ (t ∧ 1)−

1
m−1

)
, t > 0. (3.13)

Proof. If we setu := zx(ϕ) − γ 0
ϕ (zx(ϕ)), we have

u′(t) = Au(t) + F
(
u(t) + γ 0

ϕ

(
zx(ϕ)

)
(t)

)
, u(0) = x.

If δu is the element of∂|u(t)|E introduced in (2.13), with the notations used in the proof of Theorem 3.1 we h

d

dt

−∣∣u(t)
∣∣
E

�
〈
Au(t), δu

〉
E

+ 〈
F

(
u(t) + γϕ

(
zx(ϕ)

)
(t)

) − F
(
γϕ

(
zx(ϕ)

)
(t)

)
, δu

〉
E

+ 〈
F

(
γϕ

(
zx(ϕ)

)
(t)

)
, δu

〉
E

� −a
∣∣u(t)

∣∣m + c
(
1+ ∣∣γϕ

(
zx(ϕ)

)
(t)

∣∣m
E

)
.

Thus, thanks to Lemma 3.3, ifq is any constant as in (3.8) we obtain

d

dt

−∣∣u(t)
∣∣
E

� −a
∣∣u(t)

∣∣m + c(t)
(
1+ |zx |γm

Lq(0,t;E)

)|ϕ|m
L2(0,t;H)

+ c,

for some continuous increasing functionc(t) vanishing att = 0. By a comparison argument proved in [1, Le
ma 1.2.6] this gives∣∣u(t)

∣∣
E

� ct−
1

m−1 + c(t)
(
1+ ∣∣zx(ϕ)

∣∣γ
Lq(0,t;E)

)|ϕ|L2(0,t;H) + c,

so that∣∣zx(ϕ)(t)
∣∣
E

�
∣∣u(t)

∣∣
E

+ ∣∣γϕ

(
zx(ϕ)

)
(t)

∣∣
E

� ct−
1

m−1 + c(t)
(
1+ ∣∣zx(ϕ)

∣∣γ
Lq(0,t;E)

)|ϕ|L2(0,t;H) + c. (3.14)

Now, if (2.21) holds we can find̄q � 1 fulfilling (3.8) such that̄q/(m − 1) < 1. Hence, integrating with respect
t ∈ [0, T ] the q̄th power of both sides in (3.14), for anyϕ ∈ L2(0,∞;H), with |ϕ|L2(0,∞;H) � r, we get

T∫
0

∣∣zx(ϕ)(t)
∣∣q̄
E

dt � c

T∫
0

t−
q̄

m−1 dt + c(T )

( T∫
0

∣∣zx(ϕ)(t)
∣∣q̄
E

dt

)γ

|ϕ|q̄
L2(0,T ;H)

+ c(T )
(
1+ |ϕ|q̄

L2(0,T ;H)

)

� c(T )rq̄

T∫
0

∣∣zx(ϕ)(t)
∣∣q̄
E

dt + c(T )(1+ rq̄ ),

for some continuous increasing functionc(t) vanishing att = 0. Thus, if we fixTr > 0 such thatc(Tr)r
q̄ � 1/2, it

follows

1

2

Tr∫
0

∣∣zx(ϕ)(t)
∣∣q̄
E

dt � c(Tr)(1+ rq̄ ),

and going back to (3.14), for anyt � Tr this yields

sup
∣∣zx(ϕ)(t)

∣∣
E

� ct−
1

m−1 + c(t)r
(
1+ cγ (Tr )(1+ rq̄ )γ

) + c. (3.15)

x∈E
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the
Moreover, ift > Tr we havezx(ϕ)(t) = z
zx(ϕ)(Tr )
Tr

(t) and then, due to (3.3)∣∣zx(ϕ)(t)
∣∣
E

� cr

(
1+ ∣∣zx(ϕ)(Tr)

∣∣
E

)
, t > Tr .

Together with (3.15) this gives (3.13).�
The next regularity result will be crucial in the proof ofProposition 5.4 which provides a characterization of

quasi-potential. We recall that in what follows we endow the spaceC((−∞;0];E) with the topology of uniform
convergence on bounded sets[−T ,0], for all T > 0.

Lemma 3.5.Let z0 ∈ C((−∞,0];E) solve the problem

z0(t) =
t∫

−∞
e(t−s)AF

(
z0(s)

)
ds +

t∫
−∞

e(t−s)AG
(
z0(s)

)
Qϕ(s) ds, t � 0, (3.16)

for someϕ ∈ L2(−∞,0;H), and assume that

lim
t→−∞

∣∣z0(t)
∣∣
E

= 0.

Then, under Hypotheses1–5 and condition(2.14), if δ is the constant introduced in(2.15) we have thatz0 ∈
L∞(−∞,0;D((−A)δ+1/2)) and

lim
t→−∞

∣∣z0(t)
∣∣
D((−A)δ+1/2)

= 0. (3.17)

Proof. For anyε ∈ (0,1) we have∣∣∣∣∣
t∫

−∞
e(t−s)AF

(
z0(s)

)
ds

∣∣∣∣∣
D((−A)ε)

� c

t∫
−∞

e−α(t−s)(t − s)−ε
∣∣F (

z0(s)
)∣∣

H
ds

� c

t∫
−∞

e−α(t−s)(t − s)−ε ds sup
s�t

∣∣F (
z0(s)

)∣∣
H

� c sup
s�t

∣∣F (
z0(s)

)∣∣
H

,

so that the mapping

(−∞,0] � t �→
t∫

−∞
e(t−s)AF

(
z0(s)

)
ds ∈ D

(
(−A)ε

)
,

belongs toL∞(−∞,0;D((−A)ε)). Moreover, sinceF :E → H is continuous,F(0) = 0 and |z0(t)|E goes to
zero, ast goes to−∞, we have

lim
t→−∞

∣∣∣∣∣
t∫

−∞
e(t−s)AF

(
z0(s)

)
ds

∣∣∣∣∣
D((−A)ε)

= 0, ε ∈ (0,1). (3.18)

Next, leth ∈ L2(−∞,0;D((−A)γ )), for someγ � 0. We have

(−A)γ+1/2

t∫
e(t−s)Ah(s) ds =

∞∑
k=1

α
γ+1/2
k

t∫
e−(t−s)αk

〈
h(s), ek

〉
H

ds ek,
−∞ −∞
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and then∣∣∣∣∣
t∫

−∞
e(t−s)Ah(s) ds

∣∣∣∣∣
2

D((−A)γ+1/2)

=
∞∑

k=1

α
2γ+1
k

∣∣∣∣∣
t∫

−∞
e−(t−s)αk

〈
h(s), ek

〉
H

ds

∣∣∣∣∣
2

�
∞∑

k=1

αk

t∫
−∞

e−2(t−s)αk ds

t∫
−∞

α
2γ
k

∣∣〈h(s), ek

〉
H

∣∣2 ds

� c

t∫
−∞

∞∑
k=1

α
2γ

k

∣∣〈h(s), ek

〉
H

∣∣2 ds = c|h|2
L2(−∞,t;D((−A)γ )

. (3.19)

SinceG(z0)Qϕ ∈ L2(−∞,0;H) and fort � 0∣∣G(z0)Qϕ
∣∣
L2(−∞,t;H)

� c
(
1+ sup

s�t

∣∣z0(s)
∣∣
E

)|Qϕ|L2(−∞,t;H),

by takingγ = 0 andh = G(z0)Qϕ in (3.19), we get

lim
t→−∞

∣∣∣∣∣
t∫

−∞
e(t−s)AG

(
z0(s)

)
Qϕ(s) ds

∣∣∣∣∣
D((−A)1/2)

= 0. (3.20)

Thanks to (3.18) (withε = 1/2) this implies thatz0 ∈ L∞(−∞,0;D((−A)1/2)) and

lim
t→−∞

∣∣z0(t)
∣∣
D((−A)1/2)

= 0. (3.21)

In particular, according to the characterization ofD((−A)1/2) given in Proposition 2.1 this means thatz0 ∈
L∞(−∞,0;H

1,2
B1/2

(O;R
r )). Then, sincef ∈ C∞(O × R

r;R
r ), from [12, Theorem 5.5.4.1] we obtain th

F(z0) ∈ L∞(−∞,0;H 1,2(O;R
r )) and

sup
t�0

∣∣F (
z0(t)

)∣∣
H1,2(O;Rr )

� c sup
t�0

∣∣z0(t)
∣∣
H1,2(O;Rr )

(
1+ sup

t�0

∣∣z0(t)
∣∣p
E

)
,

for somep � 1. Moreover, asz0(t) ∈ H
1,2
B1/2

(O;R
r ), for t � 0, we have thatB1/2z0(t) = 0 on∂O and then, thank

to assumption (2.17), we have thatB1/2F(z0(t)) = 0 on∂O. This means thatF(z0(t)) ∈ H
1,2
B1/2

(O;R
r ), for t � 0,

and hence, by using again Proposition 2.1 we haveF(z0) ∈ L∞(−∞,0;D((−A)1/2)). By proceeding as in th
proof of (3.18), due to (3.21) this yields

lim
t→−∞

∣∣∣∣∣
t∫

−∞
e(t−s)AF

(
z0(s)

)
ds

∣∣∣∣∣
D((−A)ε+1/2)

= 0, ε < 1.

By repeating these arguments we can conclude that for anyγ � 0 andε < 1

lim
t→−∞

∣∣z0(t)
∣∣
D((−A)γ )

= 0 ⇒ lim
t→−∞

∣∣∣∣∣
t∫

−∞
e(t−s)AF

(
z0(s)

)
ds

∣∣∣∣∣
D((−A)ε+γ )

= 0. (3.22)

Next we notice that with the same arguments used forF(z0) it is possible to prove that

g(· , z0) ∈ L∞(−∞,0;H 1,2(O;L(Rr )
))

. (3.23)
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Moreover, as proved in [12, Theorem 4.6.1.1], ifs1 � s2 ands1 + s2 > 0

s2 >
d

2
⇒ Hs1,2(O;R

r ) · Hs2,2(O;R
r ) ↪→ Hs1,2(O;R

r ) (3.24)

and

s2 <
d

2
⇒ Hs1,2(O;R

r ) · Hs2,2(O;R
r ) ↪→ Hs1+s2− d

2 ,2(O;R
r ). (3.25)

By using these embedding results we can study the regularity of the productG(z0)Qϕ (and hence of the secon
integral in (3.16)). To this purpose we consider separately three different cases.

Cased = 1 and2δ � 1. SinceQϕ(t) ∈ D((−A)δ) = H
2δ,2
Bδ

(O;R
r ), for t � 0, as 1> 1/2 = d/2, due to (3.23)

and (3.24) we have

G
(
z0(t)

)
Qϕ(t) ∈ H 2δ,2(O;R

r ), t � 0,

and ∣∣G(
z0(t)

)
Qϕ(t)

∣∣
H2δ,2(O;Rr )

� c
∣∣g(·, z0(t, ·)

)∣∣
H1,2(O;L(Rr))

∣∣Qϕ(t)
∣∣
H2δ,2(O;Rr )

.

Moreover, sinceB1/2z0(t) = 0 and Bδ(Qϕ(t)) = 0 on ∂O, for any t � 0, according to assumption (2.1

we haveBδ(G(z0(t))Qϕ(t)) = 0 on ∂O, for any t � 0, so thatG(z0)Qϕ ∈ L2(−∞,0;H
2δ,2
Bδ

(O;R
r )) =

L2(−∞,0;D((−A)δ)). Thanks to (3.19), withh = G(z0)Qϕ andγ = δ, this implies

lim
t→−∞

∣∣∣∣∣
t∫

−∞
e(t−s)AG

(
z0(s)

)
Qϕ(s) ds

∣∣∣∣∣
D((−A)δ+1/2)

= 0

so that, as (3.22) holds (withγ = 1/2 andε = δ), we obtain (3.17).
Cased � 1 and2δ > d/2∨ 1. In this case, with the same arguments used above, we have that the mapp

t �→
t∫

−∞
e(t−s)AG

(
z0(s)

)
Qϕ(s) ds,

belongs toL2(−∞,0;D(−A)) and then, proceeding as for the previous case, due to (3.22) we have thaz0 ∈
L∞(−∞,0;D(−A)).

Now, if 2δ � 2, by using again (3.24), we haveG(z0)Qϕ ∈ L2(−∞,0;H
2δ,2
Bδ

(O;R
r )) and then we can con

clude as in the case ofd = 1 and 2δ � 1. Otherwise, if 2δ > 2 we use again (3.24) and we obtainG(z0)Qϕ ∈
L2(−∞,0;H

2,2
B1

(O;R
r )), so thatz0 ∈ L∞(−∞,0;D((−A)3/2)). If 2δ � 3 we conclude as above. If not, we g

on with these arguments and in a finite number of steps we getz0 ∈ L∞(−∞,0;D((−A)k/2)), for somek � 2δ

and hence we can conclude.
Cased � 2 and2δ � d/2. Due to (2.16) we can fixε ∈ (0, δ − (d − 2)/4). As 1� d/2, by using (3.25) (with

1− ε and 2δ − ε) we have that

G(z0)Qϕ ∈ L2(−∞,0;H
2(δ−ε−d/4)+1,2
Bδ−ε−d/4+1/2

(O;R
r )

)
,

so thatz0 ∈ L∞(−∞,0;D((−A)δ−ε−d/4+1)).
If δ − ε − d/4 + 1 > d/4, by using (3.24) we obtainG(z0)Qϕ ∈ L2(−∞,0;H

2δ,2
Bδ

(O;R
r )) and then we can

conclude as above (see the case ofd = 1 and 2δ � 1).
If δ − ε − d/4+ 1 � d/4, then, by using again (3.25) (with 2δ − 3ε − d/2+ 2 and 2δ − ε) we easily obtain

G(z0)Qϕ ∈ L2(−∞,0;H
4(δ−ε−d/4)+2,2

(O;R
r )

)
,
B2(δ−ε−d/4)+1
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so thatz0 ∈ L∞(−∞,0;D((−A)2(δ−ε−d/4)+3/2)). If 2(δ − ε − d/4) + 3/2 > d/4, we can conclude as abov
Otherwise we repeat the same arguments a finite number of times and we get

z0 ∈ L∞(−∞,0;D
(
(−A)k(δ−ε−d/4)+(k+1)/2)),

for somek ∈ N such thatk(δ − ε − d/4) + (k + 1)/2 > d/4 (and this is possible asε < δ − (d − 2)/4). At this
point we conclude as above.�

Finally, we consider the uncontrolled version of Eq. (3.2), namely

z′(t) = Az(t) + F
(
z(t)

)
, z(T ) = x. (3.26)

With the notations introduced at the beginning of this section its solution will be denoted byzx
T (0).

Proposition 3.6.Under Hypotheses1–4, for anyR > 0

lim
t−T →∞ sup

|x|E�R

∣∣zx
T (0)(t)

∣∣
E

= 0. (3.27)

Proof. If δz(t) is the element of∂|zx
T (0)(t)|E introduced in (2.12), we have

d

dt

−∣∣zx
T (0)(t)

∣∣
E

�
〈
Azx

T (0)(t), δz(t)

〉
E

+ 〈
F

(
zx
T (0)(t)

)
, δz(t)

〉
E

� −α
∣∣zx

T (0)(t)
∣∣
E
.

By comparison this yields∣∣zx
T (0)(t)

∣∣
E

� e−α(t−T )|x|E, t � T ,

so that (3.27) follows. �

4. A non-linear local exact controllability problem

Since we are dealing with space dimensiond � 1, we cannot assume in general the operatorQ to be invertible
and then the proof of compactness of the level sets of the quasi-potential associated with system (1.1)
delicate than in the classical non-degenerate case (see [14]). For later use, in this section we prove some p
results about the local exact controllability of the skeleton system (3.2). Such results will be crucial in the proo
the characterization of the quasi-potential given in Proposition 5.4.

We start with a few definitions about exact and local exact controllability.

Definition 4.1.
Let

z′(t) = H(z)(t) + K(z,ϕ)(t), z(0) = 0,

be some controlled system, with state spaceV and control spaceU , and letz(ϕ) denote the solution correspondi
to the controlϕ.

(1) The system isexactly controllableat timeT > 0 if for any statex ∈ V there exists an admissible controlϕ ∈ U

such thatz(ϕ)(T ) = x.
(2) The system islocally exactly controllableat timeT > 0 if there existsε > 0 such that for anyx ∈ V , with

|x|V < ε, there exists an admissible controlϕ ∈ U such thatz(ϕ)(T ) = x.
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Here, in addition to the non-linear control problem

z′(t) = Az(t) + F
(
z(t)

) + G
(
z(t)

)
Qϕ(t), z(0) = 0, (4.1)

for anyψ ∈ L2(0, T ;H) we consider the linearized problem

y ′(t) = [
A + F ′(0)

]
y(t) + G(0)Qψ(t), y(0) = 0. (4.2)

In what follows we shall denote the solution of (4.2) byyψ . As yψ ∈ L2(0, T ;D((−A)δ)) and f ′(ξ,0) ∈
C∞(O;L(Rr )), with the arguments used in the proof of Lemma 3.5, it is immediate to show thatyψ ∈
L∞(0, T ;D((−A)δ+1/2)). Moreover, if we fixT > 0 and denote byLT the mapping

LT :L2(0, T ;H) → D
(
(−A)δ+1/2), ψ �→ LT ψ := yψ(T ),

it is clearly continuous. Now, if we show that there existscT > 0 such that for anyh ∈ D((−A)δ+1/2)

|L�
T h|L2(0,T ;H) � cT |h|D((−A)δ+1/2), (4.3)

we have that for anyh ∈ D((−A)δ+1/2) there existsψ ∈ L2(0, T ;H) such thatyψ(T ) = h, so that the linea
system (4.2) with state spaceV := D((−A)δ+1/2) and control spaceU := L2(0, T ;H) is exactly controllable a
time T > 0.

It is immediate to check that

L�
T h(s) = Q

[
G(0)

]�
e(T −s)[A+F ′(0)]�h, s ∈ [0, T ].

Then, due to (2.14) we have

|L�
T h|2

L2(0,T ;H)
=

T∫
0

∣∣Q[
G(0)

]�
e(T −s)[A+F ′(0)]�h

∣∣2
H

ds � c(T )

T∫
0

|Qe(T −s)Ah|2H ds

= c(T )

T∫
0

∞∑
k=1

λ2
ke

−2αk(T −s)h2
k ds,

with hk = 〈h, ek〉H . Thanks to (2.15) this gives

|L�
T h|2

L2(0,T ;H)
� c(T )

∞∑
k=1

α−2δ
k h2

k

T∫
0

e−2αk(T −s) ds = c(T )

∞∑
k=1

α−2δ
k h2

k

(1− e−2αkT )

2αk

� c(T )(1− e−2αT )

∞∑
k=1

α
−2(δ+1/2)

k h2
k = c(T )(1− e−2αT )|h|2

D((−A)δ+1/2)
,

so that (4.3) follows withCT := c(T )(1− e−2αT ).
Now, since the mappingLT :L2(0, T ;H) → D((−A)δ+1/2) is surjective and continuous, by general argume

we can define its pseudo-inverseST at a pointx ∈ D((−A)δ+1/2) as the uniqueψ ∈ L2(0, T ;H) such that

LT ψ = x, 〈ψ − ϕ,ψ〉L2(0,T ;H) = 0, for all ϕ ∈ L2(0, T ;H) with LT ϕ = x.

Equivalently ψ = ST x is the element of smallest norm satisfyingLT ψ = x. We note that the operato
ST :D((−A)δ+1/2) → L2(0, T ;H) is linear and

‖ST ‖L(D((−A)δ+1/2);L2(0,T ;H)) � c−1
T . (4.4)

This allows us to prove the local exact controllability of the non-linear system (4.1).
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(4.4),

the
Theorem 4.2.There existsT0 > 0 such that system(4.1) is locally exactly controllable, with state spaceV :=
D((−A)δ+1/2) and control spaceU := L2(0, T ;H), for anyT � T0.

Proof.
For anyx ∈ V we consider the problem

z′(t) = Az(t) + F
(
z(t)

) + G
(
z(t)

)
QST x(t), z(0) = 0,

whose solutionz0(ST x) at timet is denoted byΓt(x). Proceeding as in the proof of Lemma 3.5, it is possible
prove thatz0(ST x) ∈ L∞(0, T ;V ), so thatΓt mapsV into V .

If we show that there exists someT0 > 0 such thatΓT is differentiable in a neighborhood of zero, for a
T � T0, andDΓT (0) = I , by the local inversion theorem we have that there exist two neighborhoodsU1 andU2 of
0 in V such thatΓT :U1 → U2 is invertible. Due to the definition ofΓT , this means that for anyy ∈ U2 there exists
x = Γ −1

T (y) ∈ U1 such that

y =
T∫

0

e(T −s)AF
(
z0(ST x)(s)

)
ds +

T∫
0

e(T −s)AG
(
z0(ST x)(s)

)
QST x(s) ds,

so thatϕy := ST Γ −1
T (y) is the control such thatz0(ϕy)(T ) = y.

For anyx ∈ V we have thatz0(ST x) is the unique fixed point of the mappingFT :V × L∞(0, T ;V ) →
L∞(0, T ;V ) defined by

FT (x, z)(t) :=
t∫

0

e(t−s)AF
(
z(s)

)
ds +

t∫
0

e(t−s)AG
(
z(s)

)
QST x(s) ds.

We denote such fixed point byz(x). Notice that, proceeding as in the proof of Lemma 3.5, due to (3.19) and
we have∣∣FT (x, z)

∣∣
L∞(0,T ;V )

� cT |z|L∞(0,T ;V )

(
1+ |z|p

L∞(0,T ;V )

) + cc−1
T

(
1+ |z|p

L∞(0,T ;V )

)|x|V ,

for somep � 1. Thus, if we fixT � T1 := 1/4c andRT � cT /4c, we get

|x|V � RT , |z|L∞(0,T ;V ) � 1 ⇒ ∣∣FT (x, z)
∣∣
L∞(0,T ;V )

� 1,

so thatFT (x, ·) mapsBL∞(0,T ;V )(1) into itself, for anyx ∈ BV (RT ).
It is immediate to check that for any fixedz ∈ L∞(0, T ;V ) the mapping

FT (·, z) :V → L∞(0, T ;V ), x �→FT (x, z),

is Fréchet differentiable and for anyx,h ∈ V

[
∂FT

∂x
(x, z)h

]
(t) =

t∫
0

e(t−s)AG
(
z(s)

)
QST h(s) ds, t ∈ [0, T ]. (4.5)

Since 2δ + 1 > d/2, we haveH 2δ+1,2(O;R
r ) ⊂ L∞(O;R

r ) and then, as shown in [12, Theorem 5.5.3.1],
Nemytskij composition operatorF is differentiable inH 2δ+1,2(O;R

r ) and for anyx, y ∈ H 2δ+1,2(O;R
r )[

F ′(x)y
]
(ξ) = Dσ f

(
ξ, x(ξ)

)
y(ξ), ξ ∈ O. (4.6)

Notice that due to (2.18) ifx, y ∈ D((−A)δ) thenBδ[F ′(x)y] = 0 on∂O , so thatF ′(x)y ∈ D((−A)δ). In particu-
lar, since 2δ + 1 > d/2, by using (3.24) for anyx, y ∈ V we have∣∣F ′(x)y

∣∣
δ � c

(
1+ |x|p )|y|V , (4.7)
D((−A) ) V
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for some constantp � 1. Moreover, due to (3.24) and to the boundary assumptions (2.17) for anyx ∈ V

and h ∈ D((−A)δ) we have thatG(x)h ∈ D((−A)δ). Then by using again the result proved in [12, Th
rem 5.5.3.1] we have that the mappingx ∈ H 2δ+1,2(O;R

r ) �→ G(x)h ∈ H 2δ,2(O;R
r ) is differentiable and for

anyy ∈ H 2δ+1,2(O;R
r )([

G′(x)h
]
y
)
(ξ) = [

D
(
G(·)h)

(x)y
]
(ξ) = [

Dσ g
(
ξ, x(ξ)

)
y(ξ)

]
h(ξ), ξ ∈ O. (4.8)

In particular, ifx, y ∈ V andh ∈ D((−A)δ) due to (2.18) we have that[G′(x)h]y ∈ D((−A)δ) and∣∣[G′(x)h
]
y
∣∣
D((−A)δ)

� c
(
1+ |x|pV

)|y|V |h|D((−A)δ), (4.9)

for some constantp � 1.
Thus, thanks to (3.19) and to (4.6) and (4.8) it is not difficult to show that for any fixedx ∈ V the mapping

z ∈ L∞(0, T ;V ) �→ FT (x, z) ∈ L∞(0, T ;V )

is differentiable and for anyx ∈ V andz,w ∈ L∞(0, T ;V ) it holds

[
∂FT

∂z
(x, z)w

]
(t) =

t∫
0

e(t−s)AF ′(z(s))w(s) ds +
t∫

0

e(t−s)A
[
G′(z(s))w(s)

]
QST x(s) ds.

Moreover, according to (3.19) and (4.4) and to (4.7) and (4.9) we have∣∣∣∣
[
∂FT

∂z
(x, z)w

]
(t)

∣∣∣∣
V

� c
(∣∣F ′(z)w

∣∣
L2(0,t;D((−A)δ))

+ ∣∣[G′(z)w
]
QST x

∣∣
L2(0,t;D((−A)δ))

)

� c

[ t∫
0

(
1+ ∣∣z∣∣p

V

)2(
1+ ∣∣ST x(s)

∣∣2
D((−A)δ)

)∣∣w(s)
∣∣2
V

ds

]1/2

� c′(1+ |z|p
L∞(0,t;V)

)(√
t + c−1

T |x|V
)|w|L∞(0,t;V ).

Hence, ifT � T1, |z|L∞(0,T ;V ) � 1 and|x|V � R, for someR � RT , we get∣∣∣∣
[
∂FT

∂z
(x, z)w

]∣∣∣∣
V

� 2c′(√T + c−1
T R

)|w|L∞(0,T ;V ).

This means that if we fix 0< α < 1 andT0 := (α/4c′)2 ∧ T1, for anyT � T0 and anyRT � cT (α/c′ ∧ 1/c)/4 we
have

|x|V � RT , |z|L∞(0,T ;V ) � 1 ⇒
∣∣∣∣∂FT

∂z
(x, z)w

∣∣∣∣
L(L∞(0,T ;V ),L∞(0,T ;V ))

� α.

Thus from the theorem of contractionsdepending on parameters (see for example [1, Proposition C.0.3] for a proo
in this setting), we have that for anyT � T0 the mapping

x ∈ BV (RT ) �→ z(x) ∈ L∞(0, T ;V ),

is differentiable. Moreover, for anyx ∈ BV (RT ), h ∈ V andt ∈ [0, T ]
[
Dz(x)h

]
(t) = DΓt (x)h =

t∫
0

e(t−s)AF ′(Γs(x)
)
DΓs(x)hds +

t∫
0

e(t−s)A
[
G′(Γs(x)

)
DΓs(x)h

]
QST x(s) ds

+
t∫
e(t−s)AG

(
Γs(x)

)
QST h(s) ds.
0
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SinceF(0) = 0 andST 0= 0, we clearly havez(0) = 0 andΓs(0) = 0, for anys ∈ [0, T ]. This implies that

DΓt(0)h =
t∫

0

e(t−s)AF ′(0)DΓs(0)hds +
t∫

0

e(t−s)AG(0)QST h(s) ds.

Therefore, by a uniqueness argument we have thatv(t) := DΓt (0)h is the solution of

v′(t) = [
A + F ′(0)

]
v(t) + G(0)QST h(t), v(0) = 0.

This means thatDΓT (0)h = v(T ) = h, so thatDΓT (0) = I . �

5. Compactness of level sets of the quasi-potential

For anyt1 < t2 andz ∈ C([t1, t2];E) we define

It1,t2(z) := 1

2
inf

{|ϕ|2
L2(t1,t2;H)

; z = z(ϕ)
}
,

wherez(ϕ) is the solution of the skeleton equation (3.2) in the interval[t1, t2], corresponding to the controlϕ (with
the usual convention that inf∅ = +∞). For simplicity of notations, whent1 = 0 andt2 = t > 0 we shall writeIt

and whent2 = 0 andt1 = −t < 0 we shall writeI−t .
In [3, Theorem 5.1] we have proved that for anyx ∈ E, r � 0 andt1 < t2 the level set

Kx,t1,t2(r) := {
z ∈ C

([t1, t2];E
); z(t1) = x, It1,t2(z) � r

}
is compact. In fact, it is not difficult to adapt the proof of [3, Theorem 5.1] in order to show that for any co
setΛ ⊂ E the level set

KΛ,t1,t2(r) := {
z ∈ C

([t1, t2];E
); z(t1) ∈ Λ, It1,t2(z) � r

}
is compact. Notice that in what follows, ift1 = 0 andt2 = t we shall writeKx,t (r) andKΛ,t (r) instead ofKx,0,t (r)

andKΛ,0,t (r).
Analogously, for anyz ∈ C((−∞;0];E) we define

I−∞(z) := 1

2
inf

{|ϕ|2
L2(−∞,0;H)

; z = z(ϕ)
}

and for anyr � 0

K−∞(r) := {
z ∈ C

(
(−∞;0];E

); I−∞(z) � r, lim
t→−∞

∣∣z(t)∣∣
E

= 0
}
.

We note that for anyz ∈ C((−∞;0];E)

I−∞(z) = sup
t�0

I−t (z).

Finally, for anyx ∈ E we define thequasi-potential

V (x) := inf
{
It (z); t > 0, z ∈ C

([0, t];E
)
, with z(0) = 0 andz(t) = x

}
. (5.1)

In this section we shall prove that the level sets ofV are compact, so thatV is an admissible action functional fo
the large deviations estimates of the family of invariant measures{νε}ε>0.

First of all we notice thatx = 0 is the unique minimum point ofV , i.e.

V (x) = 0 ⇔ x = 0. (5.2)
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Actually, if x = 0 then clearlyV (x) = 0. On the other side, ifV (x) = 0 for anyε > 0 there existTε > 0 and
zε ∈ C([0, Tε];E) such thatzε(0) = 0 andzε(Tε) = x andITε (zε) < ε. This means that for eachε > 0 there exists
ϕε ∈ L2(0, Tε;H) such that

zε = z0
0(ϕε) and

1

2
|ϕε|2L2(0,Tε;H)

� 2ε.

According to Proposition 3.2 this implies that

lim
ε→0

∣∣zε(Tε)
∣∣
E

= lim
ε→0

∣∣z0
0(ϕε)(Tε)

∣∣
E

= 0,

and hence, aszε(Tε) = x, we have thatx = 0.
Now, as we are assumingF(0) = 0, if G(0) = 0 then for eacht > 0 andz ∈ C([0, t];E), with z(0) = 0 and

z(t) = x �= 0, we clearly haveIt (z) = +∞. Due to the arbitrariness oft > 0, this means that

G(0) = 0 ⇒ V (x) =
{+∞ if x �= 0,

0 if x = 0.
(5.3)

In particular, ifG(0) = 0 the level sets ofV are trivially compact.
Our aim is to prove that the level sets ofV are compact inE, even under condition (2.14). We start by provi

the compactness of the setsK−∞(r).

Proposition 5.1.Assume Hypotheses1–4. Then for anyr � 0 the setK−∞(r) is compact inC((−∞,0];E).

Proof. Given any sequence{zn} ⊂ K−∞(r), we have to show that there exists a subsequence{znk } converging in
C((−∞,0];E) to someẑ ∈ K−∞(r). For this purpose we need a preliminary result, whose proof is postpone

Lemma 5.2.There existsθ� ∈ (0,1) such that for anyr � 0

I−∞(z) � r and sup
t�0

∣∣z(t)∣∣
E

< ∞ ⇒ sup
t�0

∣∣z(t)∣∣
Cθ�(O;Rr )

� L(r),

for some constantL(r) > 0.

Due to the previous lemma, ifz ∈ K−∞(r), for anyk ∈ N the restriction ofz to the interval[−k,0] belongs to
KΛ,−k,0(r), where

Λ := {
x ∈ E; |x|

Cθ�(O;Rr )
� L(r)

}
. (5.4)

As Λ is compact inE, we have thatKΛ,−k,0(r) is compact inC([−k,0];E) for anyk ∈ N. Then by takingk = 1
we can find{zn1} ⊆ {zn} andẑ1 ∈ C([−1,0];E) such that

lim
n1→∞ zn1|[−1,0]

= ẑ1, in C
([−1,0];E

)
.

In particular, asI−1 is lower semi-continuous (see [3, Theorem 5.1]) we haveI−1(ẑ1) � r. With the same argu
ments, we can find a subsequence{zn2} ⊆ {zn1} andẑ2 ∈ C([−2,0];E) such that

lim
n2→∞ zn2|[−2,0]

= ẑ2, in C
([−2,0];E

)
,

and I−2(ẑ2) � r. Proceeding in this way, we can find a subsequence{zn′ } ⊆ {zn} converging to somêz in
C((−∞,0];E). By construction for eachk ∈ N we have thatI−k(zn′) � r, for any n′ ∈ N large enough and
then, due to the lower semi-continuity ofI−k , we haveI−k(ẑ) � r. This implies thatI−∞(ẑ) � r. Moreover, it is
immediate to check that

sup
∣∣ẑ(t)∣∣

Cθ�(O;Rr )
� L(r). (5.5)
t�0
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Thus, in order to show thatẑ ∈ K−∞(r), it remains to prove that

lim
t→−∞

∣∣ẑ(t)∣∣
E

= 0.

If this is not true, there exist a constantη > 0 and a sequence{tn} decreasing to−∞ such that|ẑ(tn)|E � η, for any
n ∈ N. The next lemma, whose proof is postponed, shows that in fact this is not possible.

Lemma 5.3.There existt0 > 0 andβ > 0 such that∣∣ẑ(t)∣∣
E

� η ⇒ It−t0,t (ẑ) � β.

Now, we can conclude the proof of the proposition. Actually, if we assume that|ẑ(tn)|E � η, due to the previou
lemma there existst0 > 0 such thatItn−t0,tn(ẑ) � β > 0, for anyn ∈ N. Thus, if we fix any subsequence{tnk } ⊆ {tn}
such thattnk+1 � tnk − t0, for anym ∈ N we have

I−∞(ẑ) �
m∑

k=1

Itnk+1,tnk
(ẑ) �

m∑
k=1

Itnk
−t0,tnk

(ẑ) � βm.

Thus, asm can be taken arbitrarily large, we getI−∞(ẑ) = +∞, which is not true. �
Now, in order to conclude the proof of Proposition 5.1 it remains to prove Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. SinceI−∞(z) � r, for any−T � t � 0 we have

z(t) = e(t+T )Az(−T ) +
t∫

−T

e(t−s)AF
(
z(s)

)
ds + γ −T

ϕ (z)(t),

for someϕ ∈ L2(−T ,0;H), with |ϕ|2
L2(−T ,0;H)

� 3r. Then, using (3.5) and (3.6) we can find a constantcr not

depending onT such that for anyξ, η ∈ O andt � −T∣∣z(t, ξ) − z(t, η)
∣∣ �

∣∣e(t+T )Az(−T )(ξ) − e(t+T )Az(−T )(η)
∣∣

+ cr

(
1+ sup

t�−T

∣∣z(t)∣∣m
E

+ sup
t�−T

∣∣z(t)∣∣
E

)|ξ − η|θ� .

According to (2.9), withθ = 0, and to (3.3) this implies∣∣z(t, ξ) − z(t, η)
∣∣ � ce−α(t+T )

∣∣z(−T )
∣∣
E

+ cr

(
1+ ∣∣z(−T )

∣∣m
E

)|ξ − η|θ�

and since supt�0 |z(t)|E =: κ < ∞, it follows that for anyt � −T∣∣z(t, ξ) − z(t, η)
∣∣ � ce−α(t+T )

∣∣z(−T )
∣∣
E

+ cr (1+ κm)|ξ − η|θ� .

By taking the limit above forT tending to infinity, we obtain∣∣z(t, ξ) − z(t, η)
∣∣ � cr (1+ κm)|ξ − η|θ� , t � 0,

which implies the lemma. �
Proof of Lemma 5.3. For anys > 0, letzx

t−s(0) be the solution of problem (3.26) starting fromx at timet − s. If
Λ is the set introduced in (5.4), due to (3.27) there existst0 > 0 large enough such that

sup
∣∣zx

t−t0
(0)(t)

∣∣
E

� η

2
.

x∈Λ
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Thus, if

Ht,t0 := {
z ∈ C

([t − t0, t];E
); z(t − t0) ∈ Λ,

∣∣z(t)∣∣
E

� η
}
,

we immediately have that ifx ∈ Λ thenzx
t−t0

(0) /∈ Ht,t0. As Ht,t0 is closed, this implies that

β := inf
{
It−t0,t (z); z ∈ Ht,t0

}
> 0.

In fact, if β = 0 there exists{zn} ⊂ Ht,t0 such thatIt−t0,t (zn) � 1/n, for any n ∈ N. This means that{zn} ⊂
KΛ,t−t0,t (1) and then, asKΛ,t−t0,t (1) is compact, there exists{znk } ⊆ {zn} converging to somêz ∈ KΛ,t−t0,t (1)

in C([t − t0, t];E). In particular, asIt−t0,t is lower semi-continuous, we have thatIt−t0,t (ẑ) = 0 and thenẑ =
z
ẑ(t−t0)
t−t0

(0). But this leads to a contradictions because on one sideẑ /∈ Ht,t0 (notice thatẑ(t − t0) ∈ Λ) and on the
other sidêz ∈ Ht,t0, asHt,t0 is closed. �

The key point in the proof of compactness of the level sets ofV is given by the following result.

Proposition 5.4.Assume Hypotheses1–5and assume that condition(2.14)holds. Then for anyx ∈ E

V (x) = min
{
I−∞(z); z ∈ C

(
(−∞,0];E

)
, z(0) = x, lim

t→−∞
∣∣z(t)∣∣

E
= 0

}
.

Proof. Let T > 0 and letz ∈ C([0, T ];E), with z(0) = 0 andz(T ) = x. We define

z̄(t) :=
{

z(t + T ) if t ∈ [−T ,0],
0 if t � −T .

Clearlyz̄ ∈ C((−∞,0];E), z̄(0) = x and|z̄(t)|E → 0, ast → −∞. Moreover,I−∞(z̄) = I−T (z̄) = IT (z) and then

min
{
I−∞(z); z ∈ C

(
(−∞,0];E

)
, z(0) = x, lim

t→−∞
∣∣z(t)∣∣

E
= 0

}
� IT (z).

SinceT andz are arbitrary, we get

V (x) � min
{
I−∞(z); z ∈ C

(
(−∞,0];E

)
, z(0) = x, lim

t→−∞
∣∣z(t)∣∣

E
= 0

}
.

Thus, in order to conclude we have to prove the opposite inequality. If

min
{
I−∞(z); z ∈ C

(
(−∞,0];E

)
, z(0) = x, lim

t→−∞
∣∣z(t)∣∣

E
= 0

} = ∞,

there is nothing to prove. Hence, we can assume thatsuch a minimum is finite. In Proposition 5.1 we ha
proved that for anyr � 0 the level setK−∞(r) is compact, so that the minimum is in fact attained by so
z0 ∈ C((−∞,0];E).

In fact, such a minimumz0 is more regular. Namely we havez0(t) ∈ D((−A)δ+1/2), for anyt � 0, and

lim
t→−∞

∣∣z0(t)
∣∣
D((−A)δ+1/2)

= 0. (5.6)

Indeed, ifz0 ∈ K−∞(r), there exists someϕ ∈ L2(−∞,0;H), with |ϕ|2
L2(−∞,0;H)

� 3r, such that for anyT > 0
and−T < t � 0

z0(t) = e(t+T )Az0(−T ) +
t∫

−T

e(t−s)AF
(
z0(s)

)
ds +

t∫
−T

e(t−s)AG
(
z0(s)

)
Qϕ(s) ds.

Since|z0(t)|E is bounded fort ∈ (−∞,0] (in fact it converges to zero ast goes to−∞), due to (2.7) we can tak
the limit above asT goes to+∞ and we get the following representation forz0(t)

z0(t) =
t∫

e(t−s)AF
(
z0(s)

)
ds +

t∫
e(t−s)AG

(
z0(s)

)
Qϕ(s) ds.
−∞ −∞
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Thanks to Lemma 3.5 this gives (5.6).
Now, according to Theorem 4.2 there existT0 > 0 and two neighborhoodsU1 andU2 of 0 in D((−A)δ+1/2)

such that the mappingΓT0 defined by

ΓT0x =
T0∫

0

e(T0−s)AF
(
zx(s)

)
ds +

T0∫
0

e(T0−s)AG
(
zx(s)

)
QST0x ds

is an homeomorphism fromU1 ontoU2. Thus, for anyε > 0 there existsδε > 0 such that

|x|D((−A)δ+1/2) � δε ⇒ |Γ −1
T0

x|D((−A)δ+1/2) � cT0

√
2ε,

wherecT0 is the positive constant introduced in (4.4), corresponding toT = T0. According to the definition ofST0,
ΓT0 andV this means that

|x|D((−A)δ+1/2) � δε ⇒ ∣∣ST0(Γ
−1
T0

x)
∣∣
L2(0,T0;H)

�
√

2ε ⇒ V (x) � ε. (5.7)

Now, sincez0 converges to zero inD((−A)δ+1/2), ast goes to−∞, (see (5.6)) we can fixTε > 0 such that∣∣z0(−Tε)
∣∣
D((−A)δ+1/2)

� δε. (5.8)

If we define

zε(t) := z0
(
t − (Tε + T0)

)
, t ∈ [T0, Tε + T0],

we havezε(Tε + T0) = z0(0) = x. Moreover,zε(T0) = z0(−Tε) and then, due to (5.7) and (5.8), there ex
ϕε ∈ L2(0, T0;H) such thatz(ϕε)(0) = 0, z(ϕε)(T0) = zε(T0) and

1

2
|ϕε|2L2(0,T0;H)

� ε,

and henceIT0(z(ϕε)) � ε. This means that if we setzε(t) := z(ϕε)(t), t ∈ [0, T0], we have

ITε+T0(zε) � IT0

(
z(ϕε)

) + IT0,Tε+T0(zε) � ε + I−Tε (z0) � ε + I−∞(z0).

Therefore, sincezε(0) = 0 andzε(Tε + T0) = x we have

V (x) � ITε+T0(zε) � ε + I−∞(z0),

and from the arbitrariness ofε we can conclude that

V (x) � I−∞(z0) = min
{
I−∞(z); z ∈ C

(
(−∞,0];E

)
, z(0) = x, lim

t→−∞
∣∣z(t)∣∣

E
= 0

}
. �

The characterization ofV given in Proposition 5.4 allows us to prove the compactness of the level sets ofV .

Theorem 5.5.Under Hypotheses1–5, for anyr � 0 the level set

K(r) := {
x ∈ E: V (x) � r

}
is compact inE.

Proof. Due to (5.3), ifG(0) = 0 the theorem is trivially true, asK(r) = {0}, for any r � 0. Thus, according to
Hypothesis 5 we can assume that (2.14) holds.

Let {xn} ⊂ K(r). Thanks to Proposition 5.4, for eachn ∈ N we can findzn ∈ C((−∞,0];E) with zn(0) =
xn and |zn(t)|E converging to zero, ast goes to−∞, such thatV (xn) = I−∞(zn). SinceV (xn) � r, we have
that {zn} ⊂ K−∞(r). In Proposition 5.1 we have shown thatK−∞(r) is compact and then there exists{znk } ⊆
{zn} converging inC((−∞,0];E) to somez̄ ∈ K−∞(r). In particular,xnk = znk (0) → z̄(0) in E. Now, due to
Proposition 5.4 we haveV (z̄(0)) � I−∞(z̄) � r and then̄z(0) ∈ K(r). �
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6. Lower bounds

Theorem 6.1.For anyδ, γ > 0 and x̄ ∈ E there existsε0 > 0 such that

νε

({
x ∈ E: |x − x̄|E < δ

})
� exp

(
−V (x̄) + γ

ε2

)
, ε � ε0.

Proof. If V (x̄) = +∞ there is nothing to prove. IfV (x̄) < +∞, then there exists̄T > 0 andz̄ ∈ C([0, T̄ ];E) such
that z̄(0) = 0, z̄(T̄ ) = x̄ andz̄ = z(ϕ̄), for someϕ̄ ∈ L2(0, T̄ ;H) with

1

2
|ϕ̄|2

L2(0,T̄ ;H)
� V (x̄) + γ

2
. (6.1)

For suchT̄ andx̄ we have the following crucial lemma which will be proved at the end of this section.

Lemma 6.2.For anyδ > 0 andR > 0 there existT0 > 0 andϕ0 ∈ L2(0, T̄ + T0;H) such that

1

2
|ϕ0|2L2(0,T̄ +T0;H)

� V (x̄) + γ

2
(6.2)

and

sup
|x|E�R

∣∣zx
0(ϕ0)(T̄ + T0) − x̄

∣∣
E

� δ

2
. (6.3)

According to this result, for anyx ∈ E, with |x|E � R, we have∣∣ux
ε (T0 + T̄ ) − x̄

∣∣
E

�
∣∣ux

ε (T0 + T̄ ) − zx
0(ϕ0)(T0 + T̄ )

∣∣
E

+ ∣∣zx
0(ϕ0)(T0 + T̄ ) − x̄

∣∣
E

�
∣∣ux

ε (T0 + T̄ ) − zx
0(ϕ0)(T0 + T̄ )

∣∣
E

+ δ

2
,

and then, due to the invariance ofνε

νε

({
x ∈ E; |x − x̄|E < δ

}) =
∫
E

P
(∣∣ux

ε (T0 + T̄ ) − x̄
∣∣
E

< δ
)
νε(dx)

�
∫
E

P

(∣∣ux
ε (T0 + T̄ ) − zx

0(ϕ0)(T0 + T̄ )
∣∣
E

<
δ

2

)
νε(dx)

�
∫
E

P

(∣∣ux
ε − zx

0(ϕ0)
∣∣
C([0,T0+T̄ ];E)

<
δ

2

)
νε(dx).

Now, as proved in [3, Theorem 6.2] for anyR > 0 there existsε0 > 0 such that for anyε � ε0 and|x|E � R

P

(∣∣ux
ε − zx

0(ϕ0)
∣∣
C([0,T1+T̄ ];E)

<
δ

2

)
� exp

(
−

|ϕ0|2L2(0,T0+T̄ ;H)
+ γ

2ε2

)
� exp

(
−V (x̄) + γ

ε2

)
,

so that

νε

({
x ∈ E; |x − x̄|E < δ

})
� νε

(|x|E � R
)
exp

(
−V (x̄) + γ

ε2

)
.

Therefore, we complete the proof of the theorem, if we show that there existsR̄ > 0 such that

lim νε

(|x|E � R̄
) = 1. (6.4)
ε→0
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We recall that we have takenνε as the weak limit of the sequence of measures{νε,n}n defined by

νε,n(Γ ) := 1

tn

tn∫
0

P
(
u0

ε(s) ∈ Γ
)
ds, Γ ∈ B(E),

for sometn ↑ ∞. Thus, if we show that there exists someR̄ > 0 such that

lim
ε→0

sup
s�0

P
(∣∣u0

ε(s)
∣∣
E

> R̄
) = 0, (6.5)

we are done.
Proceeding as in [2, Proof of Proposition 6.1] we have∣∣u0

ε(t)
∣∣
E

� c̄
(
1+ ε sup

s�t

∣∣γ (u0
ε)(s)

∣∣
E

)
, (6.6)

where

γ (u0
ε)(s) :=

s∫
0

e(s−r)AG
(
u0

ε(r)
)
Qdw(r).

Due to [2, Propositions 4.5 and 6.1 and (4.14)], for anyε � 1 we have

Esup
t�0

∣∣γ (u0
ε)(t)

∣∣
E

� c
(
1+ Esup

t�0

∣∣u0
ε(t)

∣∣
E

)
< ∞.

Then, thanks to (6.6) for anyR > c̄

P
(∣∣u0

ε(t)
∣∣
E

> R
)
� P

(
sup
s�t

∣∣γ (u0
ε)(t)

∣∣
E

>
R − c̄

εc̄

)
� εc̄

R − c̄
c

(
1+ Esup

t�0

∣∣u0
ε(t)

∣∣
E

)
,

which implies (6.5). �
Now, in order to complete the proof for the lower bounds, we have to prove the lemma above.

Proof of Lemma 6.2. Let ϕ̄ be the function introduced in (6.1). ForT > 0 fixed (to be chosen later) we define

ϕ0(t) :=
{

0 if t ∈ [0, T ],
ϕ̄(t − T ) if t ∈ [T ,T + T̄ ].

Thus, we have

|ϕ0|2L2(0,T̄ +T ;H)
=

T +T̄∫
T

∣∣ϕ̄(s − T )
∣∣2
H

ds = |ϕ̄|2
L2(0,T̄ ;H)

and due to (6.1) we obtain (6.2).
Now, for anyx ∈ E we considerzx

0(ϕ0), the solution of the skeleton equation (3.2) starting fromx at time zero
and corresponding to the controlϕ0. Due to the definition ofϕ0, it is immediate to check that

zx
0(ϕ0)(t) =

{
zx

0(0)(t) if t ∈ [0, T ],
z
zx

0(0)(T )

T (ϕ0)(t) if t ∈ [T ,T + T̄ ],
wherezx

0(0) is the solution of the uncontrolled problem (3.26) starting fromx at time zero andz
zx

0(0)(T )

T (ϕ0) is the
solution of the skeleton equation (3.2) starting fromzx(0)(T ) at timeT with controlϕ0.
0
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If we setψ(t) := zx
0(ϕ0)(t + T ), t > 0, with a simple change of variable we have

ψ(t) = etAzx
0(0)(T ) +

T +t∫
T

e(T +t−s)AF
(
zx

0(ϕ0)(s)
)
ds +

T +t∫
T

e(T +t−s)AG
(
zx

0(ϕ0)(s)
)
Qϕ̄(s − T ) ds

= etAzx
0(0)(T ) +

t∫
0

e(t−s)AF
(
zx

0(ϕ0)(s + T )
)
ds +

t∫
0

e(t−s)AG
(
zx

0(ϕ0)(s + T )
)
Qϕ̄(s) ds,

so that for anyt ∈ [0, T̄ ]

ψ(t) − z0
0(ϕ̄)(t) = etAzx

0(0)(T ) +
t∫

0

e(t−s)A
[
F

(
ψ(s)

) − F
(
z0

0(ϕ̄)(s)
)]

ds

+
t∫

0

e(t−s)A
[
G

(
ψ(s)

) − G
(
z0

0(ϕ̄)(s)
)]

Qϕ̄(s) ds.

Recalling that|etAx|E � e−αt |x|E , for anyx ∈ E andt � 0, we have

∣∣ψ(t) − z0
0(ϕ̄)(t)

∣∣
E

� e−αt
∣∣zx

0(0)(T )
∣∣
E

+
t∫

0

e−α(t−s)
∣∣F (

ψ(s)
) − F

(
z0

0(ϕ̄)(s)
)∣∣

E
ds

+
∣∣∣∣∣

t∫
0

e(t−s)A
[
G

(
ψ(s)

) − G
(
z0

0(ϕ̄)(s)
)]

Qϕ̄(s) ds

∣∣∣∣∣
E

.

By proceeding as in [2, proof of Theorem 4.2] (where stochastic convolutions are studied), for anyt ∈ [0, T̄ ] and
p large enough we have∣∣∣∣∣

t∫
0

e(t−s)A
[
G

(
ψ(s)

) − G
(
z0

0(ϕ̄)(s)
)]

Qϕ̄(s) ds

∣∣∣∣∣
E

� e−αt‖Q‖ρ |ϕ̄|L2(0,T̄ ;H)cp(T̄ )

( t∫
0

fp(s)
(
sup
σ�s

eασ
∣∣ψ(σ) − z0

0(ϕ̄)(σ )
∣∣
E

)p
ds

) 1
p

,

where‖Q‖ρ is defined in (2.10) and

fp(s) :=
( s∫

0

(s − σ)−η dσ

) p
2

for some positive constantη less that 1 specified in [2, Proof of Theorem 4.2].
Moreover, asψ(t) = zx

0(ϕ0)(t + T ), t � 0, due to (3.3) we have

sup
t�0

∣∣ψ(t)
∣∣
E

� c|ϕ0|
L2(0,T +T̄ ;H)

(
1+ |x|E

) = c|ϕ̄|
L2(0,T̄ ;H)

(
1+ |x|E

)
and analogously

sup
∣∣z0

0(ϕ̄)(t)
∣∣
E

� c|ϕ̄|
L2(0,T̄ ;H)

.

t�0
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As F is locally Lipschitz-continuous, this implies that there existsLR > 0 (depending also on|ϕ̄|L2(0,T̄ ;H)) such
that if |x|E � R

t∫
0

e−α(t−s)
∣∣F (

ψ(s)
) − F

(
z0

0(ϕ̄)(s)
)∣∣

E
ds � LRe−αt

t∫
0

eαs
∣∣ψ(s) − z0

0(ϕ̄)(s)
∣∣
E

ds

� LRe−αt

t∫
0

sup
σ�s

eασ
∣∣ψ(σ) − z0

0(ϕ̄)(σ )
∣∣
E

ds.

Hence, collecting all terms we obtain

eαt
∣∣ψ(t) − z0

0(ϕ̄)(t)
∣∣
E

�
∣∣zx

0(0)(T )
∣∣
E

+ LR

t∫
0

sup
σ�s

eασ
∣∣ψ(σ) − z0

0(ϕ̄)(σ )
∣∣
E

ds

+ c̃p(T̄ )

( t∫
0

fp(s) sup
σ�s

eαpσ
∣∣ψ(σ) − z0

0(ϕ̄)(σ )
∣∣p
E

ds

) 1
p

,

so that

sup
s�t

eαps
∣∣ψ(s) − z0

0(ϕ̄)(s)
∣∣p
E

� 3p
∣∣zx

0(0)(T )
∣∣p
E

+ 3pL
p

RT̄ p−1

s∫
0

sup
σ�r

eαpσ
∣∣ψ(σ) − z0

0(ϕ̄)(σ )
∣∣p
E

dr

+ 3pc̃p(T̄ )p

t∫
0

fp(s) sup
σ�s

eαpσ
∣∣ψ(σ) − z0

0(ϕ̄)(σ )
∣∣p
E

ds.

Therefore, by using the Gronwall lemma we obtain

sup
s�t

eαps
∣∣ψ(s) − z0

0(ϕ̄)(s)
∣∣p
E

� 3p
∣∣zx

0(0)(T )
∣∣p
E

exp

( t∫
0

g(s) ds

)
,

where

g(s) := 3pL
p
RT̄ p−1 + 3pc̃p(T̄ )pfp(s).

This yields∣∣ψ(T̄ ) − z0
0(ϕ̄)(T̄ )

∣∣
E

� e−αT̄ cp

(
T̄ ,R, |ϕ̄|L2(0,T̄ ;H)

)∣∣zx
0(0)(T )

∣∣
E
,

that is∣∣zx
0(ϕ0)(T + T̄ ) − x̄

∣∣
E

� cp

(
T̄ ,R, |ϕ̄|L2(0,T̄ )

)∣∣zx
0(0)(T )

∣∣
E
.

According to (3.27)

lim
T →∞ sup

|x|E�R

∣∣zx
0(0)(T )

∣∣
E

= 0,

and then we can findT0 > 0 such that∣∣zx
0(ϕ0)(T0 + T̄ ) − x̄

∣∣
E

� δ

2
. �
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f

7. Upper bounds

Before proceeding with the proof of upper bounds weneed the following preliminary result.

Lemma 7.1.Under Hypotheses1–5, for anyδ, s > 0 there existλ > 0 andT̄ > 0 such that

{
z(t); z ∈ KΣλ,t (s)

} ⊆
{
x ∈ E;distE

(
x,K(s)

)
<

δ

2

}
, t � T̄ ,

whereΣλ := {x ∈ E; |x|E � λ}.

Proof. If this is not true, there exist two sequences{λn} ↓ 0 and{Tn} ↑ +∞ andzn ∈ KΣλn ,Tn(s) such that

distE
(
zn(Tn),K(s)

)
� δ

2
, n ∈ N.

Thus, if we definēzn(t) := zn(t + Tn), t ∈ [−Tn,0], for eachn ∈ N we havez̄n(0) = zn(Tn) and

distE
(
z̄n(0),K(s)

)
� δ

2
, n ∈ N.

Moreover, sinceλn ↓ 0 andTn ↑ +∞, for anyk ∈ N we have{zn}n�k ⊂ KΣλk
,Tk (s).

Now, for anyt � −Tn we have

z̄n(t) = zn(t + Tn) = e(t+Tn)Azn(0) +
t+Tn∫
0

e(t+Tn−s)AF
(
zn(s)

)
ds + γ 0

ϕn
(zn)(t + Tn),

whereϕn is some function inL2(0, Tn;H), with |ϕn|2L2(0,Tn;H)
� 3s, andγ 0

ϕn
(zn) is defined as in the proof o

Theorem 3.1. Thus, with the same notations as in Section 3 we have

z̄n(t) = z
zn(0)
0 (ϕn)(t + Tn), t � −Tn

and then, thanks to (3.3), we have

sup
t∈[−Tn,0]

∣∣z̄n(t)
∣∣
E

� cs(1+ λ1), n � 1.

Moreover, thanks to (3.4) for anyt > −Tn we have∣∣z̄n(t)
∣∣
Cθ�(O;Rr )

� cs

(
1+ ∣∣zn(0)

∣∣m
E

)(
1+ (t + Tn)

− θ�
2
)
,

so that, for anyn � k andt � −Tk/2∣∣z̄n(t)
∣∣
Cθ�(O;Rr )

� cs(1+ λm
k )

(
1+ (Tk/2∧ 1)−

θ�
2
) := ρk.

In particular for anyk ∈ N

z̄n|[−Tk/2,0] ∈ KΛρk
,−Tk/2,0(s), n � k,

where

Λρk := {
x ∈ E; |x|

Cθ�(O;Rr )
� ρk

}
.

In Section 5 (see also [3]) we have seen that for eachk ∈ N the setKΛρk
,−Tk/2,0(s) is compact inC([−Tk/2,0];E).

Thus there exist{z̄n1} ⊆ {z̄n} and ẑ1 ∈ KΛρ1 ,−T1/2,0(s) such that̄zn1 converges tôz1 in C([−T1/2,0];E). Anal-
ogously, there exist{z̄n2} ⊆ {z̄n1} and ẑ2 ∈ KΛρ ,−T2/2,0(s) such thatz̄n2 converges tôz2 in C([−T2/2,0];E).
2
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or any

e

Moreoverẑ2 ≡ ẑ1 on [−T1/2,0]. By proceeding in this way we find a subsequence{z̄n′ } ⊆ {z̄n} converging in
C((−∞,0;E) to someẑ such that

I−∞(ẑ) � s, sup
t�0

∣∣ẑ(t)∣∣
E

� c(1+ λ1).

This means that we can apply Lemma 5.2 and obtain that|ẑ(t)|
Cθ�(O;Rr )

� L(s), for some constantL(s) > 0.
Then, by proceeding as in the proof of Proposition 5.1 we can conclude that|ẑ(t)|E → 0, ast → −∞, and hence
ẑ ∈ K−∞(s). According to Proposition 5.4 this implies thatV (ẑ(0)) � I−∞(ẑ) � s. But this is not possible, as

distE
(
ẑ(0),K(s)

)
� δ

2
. �

In the proof of upper bounds we distinguish the two cases of bounded and unboundedG.

7.1. Upper bounds whenG is bounded

In [3, Theorem 3.3] we have proved that if

sup
(ξ,σ )O×Rr

∣∣g(ξ, σ )
∣∣
L(Rr )

< ∞, (7.1)

then for anyT ,R > 0 ands > 0 there existsρ > 0 such that

sup
|x|E�R

P
(|ux

ε |C([0,T ];E) � ρ
)
� exp

(
− s

ε2

)
, ε ∈ (0,1].

Here we are assuming that there existsα > 0 such that for anyx ∈ E andh ∈ D(A)

〈Ah, δh〉 + 〈
F(x + h) − F(x), δh

〉
� −α|h|E,

for someδh ∈ ∂|h|E . Thus, by adapting the proofs of [3, Theorems 3.2 and 3.3] it is possible to show that f
R > 0 ands > 0 there existsρ > 0 such that

sup
|x|E�R

P
(|ux

ε |C([0,+∞);E) � ρ) � exp

(
− s

ε2

)
, ε ∈ (0,1]. (7.2)

We recall that in the present paper for eachε > 0 we have defined the measureνε as the weak limit of the sequenc
of probability measures{νε,n}n�1 defined by

νε,n(Γ ) := 1

tn

tn∫
0

P
(
u0

ε(t) ∈ Γ
)
dt, Γ ∈ B(E),

for some sequencetn ↑ ∞ possibly depending onε. Therefore, from (7.2) we obtain that for anys > 0 there exists
ρ > 0 such that for anyε ∈ (0,1]

νε

({
x ∈ E; |x|E > ρ

})
� lim inf

n→∞ νε,n

({
x ∈ E; |x|E > ρ

})
� exp

(
− s

ε2

)
. (7.3)

Now, for anyn ∈ N andρ, s, δ > 0 we define

Hρ,s,δ(n) := {
z ∈ C

([0, n];E
); ∣∣z(0)

∣∣
E

� ρ,
∣∣z(j)

∣∣
E

� λ, j = 1, . . . , n
}
, (7.4)

whereρ is any positive constant andλ is the constant introduced in Lemma 7.1 corresponding tos andδ.

Lemma 7.2.Under Hypotheses1–4, for anyρ, s, δ > 0 there exists̄n ∈ N such that

βn̄ := inf
{
In̄(z); z ∈ Hρ,s,δ(n̄)

}
> s.
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Proof. If this is not true, then supn βn � s. Thus, for eachn ∈ N we can fixzn ∈ Hρ,s,δ(n) such that

In(zn) � inf
{
In(z); z ∈ Hρ,s,δ(n)

} + 1 = βn + 1 � s + 1.

Due to (3.4) this easily implies that

sup
t�1

∣∣zn(t)
∣∣
Cθ�(O;Rr )

� cs

(
1+ ∣∣zn(0)

∣∣m
E

)
� cs(1+ ρm) =: cρ,s . (7.5)

Now, if we show that fork ∈ N large enough

υk := inf
{
Ik(z); z ∈ C

([0, k];E
)
,
∣∣z(0)

∣∣
E

� cρ,s ∧ ρ,
∣∣z(k)

∣∣
E

� λ
}

> 0, (7.6)

we are led to a contradiction. Indeed, after fixing suchk̄ thanks to (7.5) we have

s + 1 � Ink̄(znk̄) � nυk̄

and this is clearly not possible, asn can be taken arbitrarily large.
Hence, to finish the proof of the lemma, it remains to prove (7.6). For anyx ∈ E we consider the solutionzx

1 of
problem (3.26) (corresponding toT = 1). Due to (3.27), there existst̄ � 1 such that

|x|E � cρ,s ∧ ρ ⇒ ∣∣zx
1(t)

∣∣
E

� λ

2
, t � t̄ ,

and then, if we fix any integer̄k � t̄ we have

zx
1|[1,k̄]

/∈ {
z ∈ C

([1, k̄];E
); ∣∣z(k̄)∣∣

E
� λ

}
. (7.7)

Our aim is to prove that for such̄k we haveυk̄ > 0. If υk̄ = 0, then there exists

{ẑn} ⊂ {
z ∈ C

([0, k̄];E
); ∣∣z(0)

∣∣
E

� cρ,s ∧ ρ,
∣∣z(k̄)

∣∣
E

� λ
}
,

such thatIk̄(ẑn) converges to zero, asn → ∞. Hence, as|ẑn(0)|E � ρ, we have|ẑn(1)|
Cθ�(O;Rr )

� cρ,s , so that
there exist{ẑnj } ⊆ {ẑn} andx̄ ∈ E such that̂znj (1) → x̄. Now, sinceIk̄(ẑn) → 0, there exists a sequence{ϕn} ⊂
L2(0, k̄;H) converging to zero such thatẑn = z(ϕn). This implies that̂znj converges tozx̄

1 in C([1, k̄];E) and then
|zx̄

1(k̄)|E � λ. But in fact, due to (7.7), this is not possible.�
With arguments analogous to those used by Sowers in [14] now we obtain the upper bounds.

Theorem 7.3.Assume that Hypotheses1–5hold. Moreover, assume thatg is uniformly bounded, that is

sup
(ξ,σ )O×Rr

∣∣g(ξ, σ )
∣∣
L(Rr )

< ∞.

Then, for anys, δ, γ > 0 there existsε0 > 0 such that

νε

({
x ∈ E;distE

(
x,K(s)

)
� δ

})
< exp

(
− s − γ

ε2

)
, ε � ε0.

Proof. Due to the invariance of the measureνε , for anyt � 0 we have

νε

({
x ∈ E;distE

(
x,K(s)

)
� δ

}) =
∫
E

P
(
distE

(
uy

ε (t),K(s)
)
� δ

)
νε(dy).

Thus, according to (7.3), fors > 0 fixed we can findρ > 0 such that for anyε ∈ (0,1]
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rom [3,
we

d

νε

({
x ∈ E;distE

(
x,K(s)

)
� δ

})
=

∫
|y|E>ρ

P
(
distE

(
uy

ε (t),K(s)
)
� δ

)
νε(dy) +

∫
|y|E�ρ

P
(
distE

(
uy

ε (t),K(s)
)
� δ

)
νε(dy)

� exp

(
− s

ε2

)
+

∫
|y|E�ρ

P
(
distE

(
uy

ε (t),K(s)
)
� δ

)
νε(dy). (7.8)

If Hρ,s,δ(n) is the closed set defined in (7.4), by using the upper bounds for the path large deviations f
Theorem 6.3] in its equivalent formulation due to Donsker and Varadhan (see [7] and [16]), due to Lemma 7.2
can fix n̄ ∈ N andε1 > 0 such that

sup
|y|E�ρ

P
(
uy

ε ∈ Hρ,s,δ(n̄)
)
� exp

(
− s − γ /2

ε2

)
, ε � ε1.

Thus, from (7.8) for anyε � ε1 we obtain

νε

({
x ∈ E;distE

(
x,K(s)

)
� δ

})
� exp

(
− s

ε2

)
+ exp

(
− s − γ /2

ε2

)

+
∫

|y|E�ρ

P
(
distE

(
uy

ε (t),K(s)
)
� δ,uy

ε /∈ Hρ,s,δ(n̄)
)
νε(dy). (7.9)

Concerning the integral above, recalling howΣλ has been defined in Lemma 7.1, we have∫
|y|E�ρ

P
(
distE

(
uy

ε (t),K(s)
)
� δ, uy

ε /∈ Hρ,s,δ(n̄)
)
νε(dy)

�
∫

|y|E�ρ

P

(
n̄⋃

k=1

{
distE

(
uy

ε (t),K(s)
)
� δ, uy

ε (k) ∈ Σλ

})

and then, due to the Markov property ofu
y
ε , for anyt > n̄ we get∫

|y|E�ρ

P
(
distE

(
uy

ε (t),K(s)
)
� δ, uy

ε /∈ Hρ,s,δ(n̄)
)
νε(dy)

�
n̄∑

k=1

sup
y∈Σλ

P
(
distE

(
uy

ε (t − k),K(s)
)
� δ

)
.

Now, thanks to Lemma 7.1 there existsT̄ > 0 such that for anyt � T̄ andy ∈ Σλ

P
(
distE

(
uy

ε (t),K(s)
)
� δ

)
� P

(∣∣uy
ε − KΣλ,t (s)

∣∣
C([0,t ];E)

� δ

2

)
� P

(∣∣uy
ε − Ky,t (s)

∣∣
C([0,t ];E)

� δ

2

)
.

Thus, by using the upper bounds for the trajectories of the solutionu
y
ε proved in [3, Theorem 6.3], we can fin

ε(t) > 0 such that

sup
y∈Σλ

P
(
distE

(
uy

ε (t),K(s)
)
� δ

)
� exp

(
− s − γ /2

ε2

)
, ε � ε(t).

This means that if we taket := T̄ + n̄ andε2 := min{ε(t − k), k = 1, . . . , n̄}, for anyε � ε2∫
P
(
distE

(
uy

ε (t),K(s)
)
� δ, uy

ε /∈ Hρ,s,δ(n̄)
)
νε(dy) � n̄exp

(
− s − γ /2

ε2

)
.

|y|E�ρ
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Hence, from (7.9) and the inequality above we can conclude that forε � ε3 := ε1 ∧ ε2 ∧ 1

νε

({
x ∈ E;distE

(
x,K(s)

)
� δ

})
� exp

(
− s

ε2

)
+ (1+ n̄)exp

(
− s − γ /2

ε2

)
,

which yields upper bounds by taking someε0 � ε3 sufficiently small. �
7.2. Upper bounds whenG is unbounded

For anyn ∈ N ands, δ > 0 we define

Hs,δ(n) := {
z ∈ C

([0, n];E
); ∣∣z(j)

∣∣
E

� λ, j = 1, . . . , n
}
,

whereλ is the constant introduced in Lemma 7.1 corresponding tos andδ. Notice that, unlike the functions of th
setHρ,s,δ(n) defined in (7.4), the functions belonging toHs,δ(n) have no conditions on their initial value. This
because in the proof of the upper bounds we don’t want to usethe exponential estimate (7.3), where the assump
of boundedness ofG is needed. Nevertheless, due to the estimates of|zx(ϕ(t))|E proved in Theorem 3.4, whic
are uniform with respect to the initial datumx ∈ E, we can prove a result analogous to Lemma 7.2 also in the
of unboundedG.

Lemma 7.4.Assume that Hypotheses1–4and6 hold. Then for anys, δ > 0 there exists̄n ∈ N such that

βn̄ := inf
{
In̄(z); z ∈ Hs,δ(n̄)

}
> s. (7.10)

Proof. If (7.10) does not hold, we have supn βn � s and then, as in the proof of Lemma 7.2, for eachn ∈ N we
can fixzn ∈ Hs,δ(n) such thatIn(zn) � βn + 1 � s + 1. This means thatzn = z

zn(0)
0 (ϕn), for someϕ ∈ L2(0, n;H)

such that|ϕn|2L2(0,n;H)
� 3(s + 1), and then, thanks to Theorem 3.4, we have

sup
n∈N

∣∣zn(1/2)
∣∣
E

=: cs < +∞.

According to (3.4) this yields

sup
t�1
n∈N

∣∣zn(t)
∣∣
Cθ�(O;Rr )

=: c′
s < +∞. (7.11)

Now we show that there existsk ∈ N such that

υk := inf
{
Ik(z); z ∈ C

([1, k];E
)
,
∣∣z(1)

∣∣
Cθ�(O;Rr )

� c′
s ,

∣∣z(k)
∣∣
E

� λ
}

> 0.

If zx
1 denotes the solution of the uncontrolled problem (3.26), starting fromx ∈ E at time 1, as in the proof o

Lemma 7.2 we can fix̄k such that

|x|
Cθ�(O;Rr )

� c′
s ⇒ zx

1|[1,k̄]
/∈ {

z ∈ C
([1, k̄];E

); ∣∣z(k̄)
∣∣
E

� λ
}
.

With the same arguments used in the proof of Lemma 7.2, we can prove thatυk̄ > 0 for suchk̄. Thus, as in the
proof of Lemma 7.2 we get a contradiction, as forn arbitrarily large, due to (7.11) we obtain

s + 1 � Ink̄+1(znk̄+1) � nυk̄. �
The previous lemma allows us to adapt the proof of Theorem 7.3 to the case of an unbounded diffusionG.

Theorem 7.5.Assume that Hypotheses1–6hold. Then, for anys, δ, γ > 0 there existsε0 > 0 such that

νε

({
x ∈ E;distE

(
x,K(s)

)
� δ

})
< exp

(
− s − γ

ε2

)
, ε � ε0.
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Proof. For anyt � 0 we have

νε

({
x ∈ E,distE

(
x,K(s)

)
� δ

}) =
∫
E

P
(
distE

(
uy

ε (t),K(s)
)
� δ

)
νε(dy)

=
∫
E

P
(
distE

(
uy

ε (t),K(s)
)
� δ,uy

ε ∈ Hs,δ(n̄)
)
νε(dy)

+
∫
E

P
(
distE

(
uy

ε (t),K(s)
)
� δ,uy

ε /∈ Hs,δ(n̄)
)
νε(dy),

wheren̄ is the integer found in Lemma 7.4 (see also the proof of Theorem 7.3). Then, due to Lemma 7.4 an
upper bounds for the trajectories ofu

y
ε proved in [3, Theorem 6.3], we can fixε1 > 0 such that for anyε � ε1

νε

({
x ∈ E;distE

(
x,K(s)

)
� δ

})
� exp

(
− s − γ /2

ε2

)
+

∫
E

P
(
distE

(
uy

ε (t),K(s)
)
� δ;uy

ε /∈ Hs,δ(n̄)
)
νε(dy).

Then we can conclude the proof of the theorem, by using the same arguments used in the proof of Theorem�
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