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Abstract

Adjugate Jacobians of mappingsfj :Ω ⊂ R
2 → R

2 can be represented in terms of Jacobian matrices: adjDfj =Aj (x)Df
t
j ,

for j = 1,2, . . . , by mean of symmetric matrix fieldsAj (x) with detAj (x) = 1 a.e. Under suitable conditions, we pro

that Dfj ⇀ Df weakly in L1
loc(Ω;R

2) if and only if Aj (x) Γ -converges to a matrixA(x) with detA(x) = 1 satisfying
adjDf = A(x)Df t . To cite this article: C. Sbordone, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur la Γ -convergence de champs de matrices relatifs au jacobien adjugué.La transposée des cofacteurs de la mat
jacobienne de l’applicationfj :Ω ⊂ R

2 → R
2 peut être exprimée en fonction de la matrice jacobienne : adjDfj =Aj (x)Df

t
j
,

pour j = 1,2, . . . , en utilisant une matrice symétriqueAj (x) telle que detAj (x) = 1 p.p. Sous des hypothèses approprié

nous prouvons queDfj converge faiblement versDf dansL1
loc(Ω;R

2) si et seulement siAj (x) Γ -converge vers une matric
A(x) telle que detA(x) = 1 p.p. et vérifiant adjDf = A(x)Df t . Pour citer cet article : C. Sbordone, C. R. Acad. Sci. Paris,
Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Version française abrégée

Pour toute matriceD ∈ R
2×2 on dénote par adjD la matrice transposée des cofacteurs. SiK � 1 et D est

K-quasiconforme, c’est-à-dire‖D‖2 �K detD, alors il existe une unique matrice symétriqueA ∈ R
2×2 verifiant :

|ξ |2
K

� 〈Aξ, ξ 〉 �K|ξ |2, et detA= 1

telle que adjD =ADt .

Nous appelonsA le tenseur de distorsioninverse deD.
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reserved.
doi:10.1016/S1631-073X(03)00280-2
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Pour une fonction measurable à valeurs matriciellesD = D(x), K-quasiconforme pourx ∈ Ω ⊂ R
2 p.p., nous

prouvons que siDj ⇀D dansL1
loc(Ω,R2) et CurlDj = 0, alors les tenseurs inverses de distorsionA(x,Dj ) de

Dj (x) satisfontA(x,Dj )
G−→ A(x,D) au sens de De Giorgi–Spagnolo (see [7,10]). En remplaçant CurlDj = 0

par DivDj = 0 nous trouvons :

A(x,Dj )
−1 G−→ A(x,D)−1.

Une généralisation aux matrices de distorsionK(x) est présentée.

1. TheG-convergence in the uniformly elliptic case

For any matrixD ∈ R
2×2, let adjD be its adjugate matrix, i.e., the transpose of its cofactors, defined b

identity

D adjD = (detD)I , (1)

whereI is the unit matrix.
We note that if detD > 0, then there exists a symmetric matrixA =A(D) with detA = 1 such that

adjD =A(D)Dt , (2)

namely

A(D) =
[
DtD

detD

]−1

. (3)

In the following we supplyR2×2 with the operator norm‖D‖ = max|ξ |=1 |Dξ | or, sometimes, with the Hilbert
Schmidt norm,|D| = [Tr(DtD)]1/2 where Tr(C) = ∑2

i=1 cii if C = (cij ).
The natural ellipticity bounds we will consider onA are:

|ξ |2
K

� 〈Aξ, ξ 〉 �K|ξ |2 (4)

for aK � 1, and we prove that (4) holds true forA=A(D) if and only ifD is aK-quasiconformalmatrix, i.e.,

‖D‖2 �K detD. (5)

Let us first introduce the following sets of matrices:

Q2(K)= {
D ∈ R

2×2: ‖D‖2 �K detD
}
,

E2(K)=
{
A ∈ R

2×2: At =A,
I
K

� A�KI , detA = 1

}
.

The two sets are related via the mappingD → A(D), according to the following:

Proposition 1.1.If D ∈ R
2×2, detD > 0 andA(D) is defined by(3), then:

D ∈Q2(K) if and only if A ∈ E2(K). (6)

MoreoverA(D) is the unique matrix inE2(K) such thatadjD =A(D)Dt .

Proof. First of all it is easy to check that a matrixD belongs toQ2(K) if and only if:

|D|2 �
(
K + 1

K

)
detD. (7)
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Now for D ∈ Q2(K) with detD > 0, consider the inverse matrix ofA, G = DtD
detD . Then, obviously detG = 1 and

the distortion inequality (7) is equivalent to Tr(G) � K + 1
K
. Let λ and 1

λ
be the eigenvalues ofG. Then the last

inequality means thatλ+ 1
λ

�K + 1
K

; hence1
K

� λ�K and soA(D) belongs toE2(K).
Notice that, ifA ∈ E2(K) andD ∈ R

2×2 with positive determinant are related by the identity (2) then we ded

Tr(DtD) = Tr
(
A−1(adjD)D

) = Tr
(
A−1(detD)I

) = Tr
(
A−1)detD �

(
K + 1

K

)
detD,

since Tr(A−1) = Tr(A) � (K + 1
K
).

To prove the last statement, observe thatADt = (detD)D−1[Dt ]−1Dt = (detD)D−1 = adjD. ✷
Now we are interested in variable matricesD = D(x) ∈ Q2(K), for a.e.x ∈ Ω whereΩ ⊂ R

2 is a simply
connected bounded domain. IfD(x) is measurable then the pointwise distortion tensorA(x) = A(x,D(x)),
associated to adjD(x), i.e., satisfying

adjD(x)=A(x)D(x)t (8)

is a measurable matrix field which is uniformly elliptic with detA(x) = 1 a.e. An important point here is that
converse statement is also true. By the so-called measurable Riemann mapping theorem, given any m
symmetric matrix fieldA(x) in Ω ⊂ R

2 such thatA(x) ∈ E2(K) a.e.x ∈ Ω we can findD ∈ L2(Ω,R2×2) such
thatD(x) ∈ Q2(K) a.e., CurlD(x) = 0, for which (8) holds. A natural question is to see how does thepointwise
inverse distortion tensorA=A(x,D) change withD(x).

We are particularly concerned with the continuity properties of the operator,D ∈ L2(Ω,R2) → A(x,D) ∈
L∞(Ω,R2), when we supplyL2(Ω,R2) with the weak topology. IfDj converges weakly toD, this does
not guarantee convergence of matricesA(x,Dj ) to A(x,D) in any familiar sense. Note that the conditi
detA(x,Dj ) = 1 is not necessarily preserved under the weak∗ convergence ofA(x,Dj ). The relevant concep
to be considered here is that ofG-convergence, at least in the case CurlDj = 0 a.e. inΩ (see also related idea
in [1–3,10]) . LetAj =Aj(x) be a sequence of measurable matrix valued functionsAj :Ω → R

2×2 satisfying the
ellipticity condition:

|ξ |2
K

�
〈
Aj(x)ξ, ξ

〉
�K|ξ |2 (9)

for a.e.x ∈Ω and∀ξ ∈ R
2, with K � 1. Assume that

detAj(x)= 1 a.e.x ∈Ω. (10)

We are ready for the definition ofG-convergence ofAj to a matrix valued functionA = A(x) satisfying (9)
and (10).

Definition 1.2.The sequenceAj G-converges toA if and only if, forDj ∈ L2
loc(Ω,R2×2) satisfying:

Div
(
Aj(x)D

t
j (x)

) = 0, and CurlDj(x)= 0,

the conditions, (i)Dj (x)⇀D(x); and (ii)Aj(x)D
t
j (x)⇀A(x)Dt(x), are equivalent each other.

Here, the Div operator is defined as

(
DivM(x)

)
i
=

2∑
k=1

∂Mki(x)

∂xk
, i = 1,2, M ∈L2

loc

(
Ω,R2×2).

We have the following:
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Theorem 1.3.Let Ω be a simply connected bounded open set inR
2. LetDj belong toL2(Ω,R2) andDj (x) ∈

Q2(K) a.e.(K � 1). Assume

Dj ⇀D �= 0 weakly inL2(Ω,R2×2). (11)

Then(i) and(ii) holds true:

(i) if CurlDj = 0, thenD(x) ∈Q2(K) a.e. andA(x,Dj )
G−→ A(x,D);

(ii) if DivDj = 0, thenD(x) ∈Q2(K) a.e. andA(x,Dj )
−1 G−→A(x,D)−1.

Remark 1. Roughly speaking, in case (i) Theorem 1.3 has the following meaning: ifDj = Dfj then, by a well
known property of the adjugate Jacobian, Div(adjDfj ) = 0, and so the mappingsfj solve their own second orde
elliptic system Div(A(x,Dfj )Df

t
j ) = 0. Actually, the mappingsfj behave as “principal solutions” to such

system, their convergence governing the convergence of all other sequencesgj of solutions.

Proof of Theorem 1.3. (i) Let fj , f ∈ W1,2(Ω,R2) satisfyDfj =Dj , Df =D. By our assumption:

Dfj ⇀Df (12)

we obtain, via a classical result of Reshetnyak [8,4]:

detDfj ⇀ detDf weakly inL1
loc(Ω)

and soDf (x) ∈ Q2(K), a.e. inΩ in virtue of the lower semicontinuity of the norm. By theG-compactness

theorem [10] (see also [5] for more general cases of degenerate elliptic equations) we may assumeA(x,Dfj )
G−→

A0(x).Since Div(A(x,Dfj )Df
t
j )= Div(adjDfj ) = 0 by definition ofG-convergence,we haveA(x,Dfj )Df

t
j ⇀

A0(x)Df
t . But (12) and the definition ofA(x,Dfj ) imply A(x,Dfj )Df

t
j ⇀A(x,Df )Df t and soA(x,Df )Df t

=A0(x)Df
t . SinceDf t �= 0 a.e., we deduceA(x,Df )=A0(x).

(ii) Taking into account thatΩ is a simply connected open set inR2, the condition DivDj = 0 implies
Dj = adjDgj for somegj ∈ W1,2(Ω;R

2). Hence, by the definition ofA(x,Dgj ), Dj = A(x,Dgj )D
tgj which,

of course can be rewritten as:Dgj =A(x,Dgj )
−1Dt

j . Now, the hypothesisDj ⇀D in L2(Ω,R2×2) is equivalent

to Dgj ⇀Dg and so, by part (i) we haveD(x) ∈ Q2(K) a.e. inΩ , andA(x,Dgj )
G−→ A(x,Dg). Note that

A(x,Dgj )=A(x,Dj )
−1. (13)

Actually (13) is a consequence of the equivalence

C = adjD ⇔ D = adjC

which holds for all 2× 2 matricesC,D ∈ R
2×2. ✷

2. The case of mappings with unbounded distortion

For the purpose of this section we adopt the following variant of De Giorgi’s notion ofΓ -convergence. Le
Aj , A be symmetric matrix fields satisfying:

0�
〈
Aj(x)ξ, ξ

〉
�Kj(x)|ξ |2, (14)

0�
〈
A(x)ξ, ξ

〉
�K(x)|ξ |2, (15)

whereKj,K ∈ L1(Ω).
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Definition 2.1.We say thatAj Γ -converges toA, (Aj
Γ−→A), if the following two conditions are verified:

(i) the inequality∫
Ω

〈
A(x)∇u,∇u

〉
dx � lim inf

j→∞

∫
Ω

〈
Aj(x)∇uj ,∇uj

〉
dx

holds wheneveruj ,u ∈ Lip(Ω) anduj → u in L1(Ω).
(ii) For everyv ∈ Lip(Ω) there exist a sequencevj ∈ Lip(Ω) converging tov in L1(Ω) such thatvj − v ∈

C0
0(Ω) and∫

Ω

〈
A(x)∇v,∇v

〉
dx = lim

j→∞

∫
Ω

〈
Aj(x)∇vj ,∇vj

〉
dx.

Note that by general properties ofΓ -convergence, (2.1)(i) and (2.1)(ii) remain true if we replaceΩ by any of
its open subsets. It is worth pointing out here that ifAj satisfy the ellipticity conditions (9) the two definitions
Γ andG convergence agree (see, e.g., [6]).

We report here a compactness result concerningΓ -convergence [6].

Theorem 2.2.LetAj be a sequence of symmetric2× 2 matrices satisfying(14) with Kj ⇀K weakly inL1(Ω).
Then, there exists a subsequenceAjr Γ -converging to a symmetric matrixA satisfying(15).

Let us now consider a sequencefj = (f 1
j , f

2
j ) ∈ W1,1(Ω,R2) of non constant mappings offinite distortion,

i.e., satisfying thedistortion inequality:∥∥Dfj (x)∥∥2 �Kj(x)J (x,fj ) a.e.x ∈ Ω (16)

under the following assumptions:

there existλ0 � 1, c0 > 0 such that
∫
Ω

eλ0Kj (x) dx � c0 for j = 1,2, . . . , (17)

Kj ⇀K weakly inL1(Ω), (18)

fj ⇀ f = (
f 1, f 2) weakly inW1,1(Ω,R2), (19)

there existsc1 > 0 such that
∫
Ω

J (x,fj )dx � c1 for j = 1,2, . . . . (20)

Note that we do not assumefj ∈ W1,2(Ω,R2). Actually (16), (17) and (20) imply, via Hölder inequality, on
Dfj ∈ L2 lg−1L(Ω).

Set nowAj (x)=A(x,Dfj ) then, by our previous results,Aj enjoy the ellipticity bounds,

|ξ |2
Kj(x)

�
〈
Aj (x)ξ, ξ

〉
�Kj(x)|ξ |2, (21)

for almost everyx ∈Ω and allξ ∈ R
2.

Theorem 2.3.Under the above assumptions(16)–(20), the limit mappingf is either constant or, if not, has finit
distortionK(x) and∫

Ω

〈
Aj (x)∇v,∇v

〉
dx

Γ−→
∫
Ω

〈
A(x)∇v,∇v

〉
dx, (22)

whereA(x)=A(x,Df ).
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We emphasize that, under our general assumptions (17), (21) of degenerate ellipticity onAj , no compactnes
theorem is avaible with respect toG-convergence.

This is why we are invokingΓ -convergence as a tool, since it enjoys the above mentioned compactness p
(Theorem 2.2).

We conclude our paper with the following:

Corollary 1. Under the assumptions of Theorem2.3, we have: Aj = A(x,Dfj )
G−→ A = A(x,Df ) in the

following sense: if vj ∈ W
1,1
loc (Ω1) are finite energy solutions to the equations

div
(
Aj (x)∇vj

) = 0 in Ω1 ⊂Ω,

(
∫
Ω1

〈Aj(x)∇vj ,∇vj 〉 � c1, j = 1,2, . . .) and

∇vj ⇀∇v weakly inL1(Ω1,R
2),

then

Aj∇vj ⇀A∇v weakly inL1(Ω1,R
2)

andv is a finite energy solution inΩ1 to the equation

div
(
A(x)∇v

) = 0.

The proof of Theorem 2.3 will appear in [9].
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