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Abstract

Adjugate Jacobians of mappings: £2 C R? - R2 can be represented in terms of Jacobian matrice€? Ad= A (x)Df]’.,
for j =1,2,..., by mean of symmetric matrix fieldg; (x) with detA;(x) = 1 a.e. Under suitable conditions, we prove
that Df; — Df weakly in LL (£2;R?) if and only if A;(x) I'-converges to a matri¥i(x) with detA(x) = 1 satisfying
adjDf = A(x)Df*!. Tocitethisarticle: C. Sbordoqe, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
0 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur la I'-convergence de champs de matrices relatifs au jacobien adjuguéa transposée des cofacteurs de la matrice
jacobienne de I'application; : 2  R? — R? peut étre exprimée en fonction de la matrice jacobienneDigi= A ®)Df,
pourj=1,2,..., en utilisant une matrice symétriqué; (x) telle que detd;(x) = 1 p.p. Sous des hypotheses appropriees,
nous prouvons quéf; converge faiblement ve® f dansLﬁ)c(Q; R?) si et seulement silj (x) I'-converge vers une matrice
A(x) telle que detd(x) =1 p.p. et vérifiant adPf = A(x)Df". Pour citer cet article: C. Sbordone, C. R. Acad. Sci. Paris,
Ser. | 337 (2003).

O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Version francaise abrégée

Pour toute matricedD € R>*? on dénote par ad) la matrice transposée des cofacteurskSk 1 et D est
K -quasiconforme, c’est-a-difgD |2 < K detD, alors il existe une unique matrice symétrigde R>*2 verifiant :

2
e _
K

telle que adp = AD'.
Nous appelongl le tenseur de distorsioimverse deD.

(AE,€) < KIE%, et detd=1
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Pour une fonction measurable & valeurs matricielles D(x), K -quasiconforme pour € £2 ¢ R? p.p., nous

prouvons que sD; —~ D dansL&JC(Q, R?) et CurlD; =0, alors les tenseurs inverses de distorsign, D;) de

D;(x) satisfontA(x, D;) <, A(x, D) au sens de De Giorgi—Spagnolo (see [7,10]). En remplacantDGu# 0
par DivD; =0 nous trouvons :
A, D1 -S A, D)L,

Une généralisation aux matrices de distorskofr) est présentée.

1. The G-convergence in the uniformly elliptic case
For any matrixD € R?*?, let adjD be its adjugate matrix, i.e., the transpose of its cofactors, defined by the
identity
DadjD = (detD)lI, Q)

wherel is the unit matrix.
We note that if deD > 0, then there exists a symmetric matdx= A(D) with det4 = 1 such that

adjD = A(D)D', 2)
namely
p'D1?t
AD) = [detD} ' ®)

In the following we supplyR?*2 with the operator nornj D|| = maxg|=1 | D&| or, sometimes, with the Hilbert—
Schmidt norm|D| = [Tr(D’ D)]¥2 where T(C) = Y2, ¢i; if C = (cij).
The natural ellipticity bounds we will consider ohare:

P ae ) < K12 4

7\< £§,§) < KI§| (4)
foraK > 1, and we prove that (4) holds true fdr= A(D) if and only if D is a K-quasiconformammatrix, i.e.,

| D|I? < K detD. (5)

Let us first introduce the following sets of matrices:
Q2(K) = {D e R?*2: | D||> < K detD},
Ex(K) = {Ae R?*2; A" = A, |? < A<KI, detd = 1}.
The two sets are related via the mappihg- A(D), according to the following:

Proposition 1.1.1f D € R?*2, detD > 0 and.A(D) is defined by3), then
D e Qx(K) ifandonlyif Ae&2(K). (6)
MoreoverA(D) is the unique matrix ir€2(K) such thatadjD = A(D)D’.

Proof. First of all it is easy to check that a matrix belongs toQ2(K) if and only if:

1
ID|? < <K+?> detD. (7)
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Now for D € Q»(K) with detD > 0, consider the inverse matrix of, G = (fe%. Then, obviously daf =1 and
the distortion inequality (7) is equivalent to(@ < K + % Let 1 and% be the eigenvalues @f. Then the last
inequality means that + £ < K + 1; hencet < < K and soA(D) belongs taf>(K).

Notice that, ifA € £(K) andD € R?*2 with positive determinant are related by the identity (2) then we deduce:
1
Tr(D' D) = Tr(A Y (adjD) D) = Tr(A™(detD)l) = Tr(A™?) detD < (K + ?> detD,

since TEA™) = Tr(A) < (K + =).
To prove the last statement, observe tHd' = (detD)D~1[D']"1D! = (detD)D~! =adjD. O

Now we are interested in variable matricBs= D(x) € Q»(K), for a.e.x € 2 where2 c R? is a simply
connected bounded domain. fi(x) is measurable then the pointwise distortion tenggx) = A(x, D(x)),
associated to aflj(x), i.e., satisfying

adjD(x) = A(x)D(x)’ (8)

is a measurable matrix field which is uniformly elliptic with détr) = 1 a.e. An important point here is that a
converse statement is also true. By the so-called measurable Riemann mapping theorem, given any measurab
symmetric matrix field4(x) in £2 ¢ R? such thatd(x) € £&2(K) a.e.x € 2 we can findD € L2(£2, R%*?) such
that D(x) € Q2(K) a.e., CurD(x) = 0, for which (8) holds. A natural question is to see how doepthiatwise
inverse distortion tensadl = A(x, D) change withD(x).

We are particularly concerned with the continuity properties of the operater,L2($2, R?) — A(x, D) €
L>(£2,R?), when we supplyL?($2, R?) with the weak topology. IfD; converges weakly taD, this does
not guarantee convergence of matricdéx, D;) to A(x, D) in any familiar sense. Note that the condition
detA(x, Dj) = 1 is not necessarily preserved under the weeinvergence of4d(x, D;). The relevant concept
to be considered here is that Gfconvergence, at least in the case Qurl=0 a.e. ins2 (see also related ideas
in [1-3,10]) . LetA; = A;(x) be a sequence of measurable matrix valued functions2 — R2%2 satisfying the
ellipticity condition:

HE
— <4 e €) < K2 9)
for a.e.x € 2 andvé € R?, with K > 1. Assume that

detA;(x)=1 a.exef. (10)

We are ready for the definition af-convergence ofd; to a matrix valued functiom = A(x) satisfying (9)
and (10).

Definition 1.2. The sequencd ; G-converges to if and only if, for D; € L2 (52, R?*?) satisfying:
Div(Aj(x)D;. (x))=0, and CurlD;(x)=0,
the conditions, (D (x) — D(x); and (ii) Aj(X)D;- (x) = A(x)D'(x), are equivalent each other.
Here, the Div operator is defined as
2\ 0 Myi (x) )

(Div M (x)), =Y oy (L2 Me L2o(2,R??).
k=1

We have the following:



168 C. Sbordone / C. R. Acad. Sci. Paris, Ser. | 337 (2003) 165-170

Theorem 1.3.Let £2 be a simply connected bounded open sék#nLet D; belong toL2(£2, R?) and D; (x) €
Q2(K) a.e.(K > 1). Assume

D; —~D#0 weaklyinL?(2, R?*?). (11)
Then(i) and(ii) holds true

(i) if CurlD; =0, thenD(x) € Qa(K) a.e. andA(x, D;) —> A(x., D);
(i) if DivD; =0, thenD(x) € Qa(K) a.e. andA(x, D;)~L -% A(x, D)L,
Remark 1. Roughly speaking, in case (i) Theorem 1.3 has the following meanin; i Df; then, by a well
known property of the adjugate Jacobian, @ijDf;) = 0, and so the mapping§ solve their own second order
elliptic system Div.A(x, ij)DfJ?) = 0. Actually, the mappingsf; behave as “principal solutions” to such a
system, their convergence governing the convergence of all other seqyemde®lutions.
Proof of Theorem 1.3. (i) Let f;, f € W12(2, R?) satisfy Df; = D;, Df = D. By our assumption:
Df; — Df (12)
we obtain, via a classical result of Reshetnyak [8,4]:
detDf; — detDf weaklyinLi.(£2)
and soDf (x) € Q2(K), a.e. in£2 in virtue of the lower semicontinuity of the norm. By tl@&-compactness

theorem [10] (see also [5] for more general cases of degenerate elliptic equations) we may.a6suing ) N
Ao(x). Since DI A(x, ij)Df]?) = Div(adjDf;) = 0 by definition ofG-convergence, we havé(x, ij)ij? —
Ao(x)Df". But (12) and the definition afi(x, Df;) imply A(x, Df]-)Df} — A(x, Df)Df" and soA(x, Df)Df!
= Ap(x)Df!. SinceDf" #£0 a.e., we deducd (x, Df) = Ag(x).

(ii) Taking into account that2 is a simply connected open set R?, the condition DivD; = 0 implies
D; = adjDg; for someg; € W12(£2; R?). Hence, by the definition ofl(x, Dg,), D; = A(x, Dgé-)D’gj which,
of course can be rewritten aBg; = A(x, ng)—lD;.. Now, the hypothesi®; — D in L?(2, R?*?) is equivalent

to Dg; — Dg and so, by part (i) we havB(x) € Q2(K) a.e. in$2, and A(x, Dg;) G, A(x, Dg). Note that
A(x, Dgj) = A(x, D;)7L. (13)
Actually (13) is a consequence of the equivalence
C=adiD <& D=ad|C
which holds for all 2x 2 matricesC, D e R?*2, 0

2. The case of mappings with unbounded distortion

For the purpose of this section we adopt the following variant of De Giorgi's notiafi-obnvergence. Let
Aj, A be symmetric matrix fields satisfying:

0<(Aj(0E &) < K ()€, (14)
0< (A()E, &) < K ()%, (15)
whereK ;, K € L1(£2).
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Definition 2.1. We say thatA ; I"-converges toA, (A N A), if the following two conditions are verified:

(i) the inequality

/(A(x)Vu, Vu)dx < Iiminf/(Aj(x)Vuj, Vuj)dx
—00

2 T

holds whenevex ;, u € Lip(£2) andu; — u in L1(£2).

(i) For everyv € Lip(£2) there exist a sequenag € Lip(£2) converging tov in L1(£2) such thatv; — v €
CJ($2) and

/(A(x)Vv, Vv)dx = jll)moo/<Aj(x)ij, ij>dx.
Q 2

Note that by general properties ff--convergence, (2.1)(i) and (2.1)(ii) remain true if we repl&zdy any of
its open subsets. It is worth pointing out here thatlif satisfy the ellipticity conditions (9) the two definitions of
I’ andG convergence agree (see, e.g., [6]).

We report here a compactness result concerflirgpnvergence [6].

Theorem 2.2.Let A; be a sequence of symmetBcc 2 matrices satisfyingl14) with K; — K weakly inL1(£2).
Then, there exists a subsequerge I"-converging to a symmetric matrix satisfying(15).

Let us now consider a sequenge= (fjl, sz) e Wh1(£2,R?) of non constant mappings €ifite distortion
i.e., satisfying thalistortion inequality

IDfi )< Kj(x)J(x, f;) aexeg (16)

under the following assumptions:
there existo > 1, co > 0 such that [ €°0Ki@dx <¢o forj=1,2,..., (17)

2

K;— K weaklyinL'(2), (18)
fi—f=(f1r?% weaklyinw(2,R?), (19)
there existg1 > 0 such that/ Jx, fpldx<ex forj=12.... (20)

2

Note that we do not assumg € W12($2, R?). Actually (16), (17) and (20) imply, via Holder inequality, only
Df;j e L?Ig71L(%2).
Set nowA; (x) = A(x, Df;) then, by our previous resultgl; enjoy the ellipticity bounds,

HE _ , 2
TS < (A ()&, E) < K ()€, (21)

for almost every € 2 and all € R?.

Theorem 2.3.Under the above assumptio(i6)—(20) the limit mappingf is either constant or, if not, has finite
distortion K (x) and

/(Aj(x)Vv, Vv)dx N /(.A(x)Vv, Vv) dx, (22)
2 2
where A(x) = A(x, Df).
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We emphasize that, under our general assumptions (17), (21) of degenerate elliptigity momcompactness
theorem is avaible with respect &-convergence.

This is why we are invoking™-convergence as a tool, since it enjoys the above mentioned compactness property
(Theorem 2.2).

We conclude our paper with the following:

Corollary 1. Under the assumptions of Theoreh8 we have A; = A(x, Df}) N A = A(x, Df) in the
following senseif v; € Wlﬁ’cl(gl) are finite energy solutions to the equations

div(4;(x)Vv;) =0 in21C 2,
([, (Aj(X)Vvj, Vo)) <e1, j=1,2,...) and
Vu; = Vv weakly inL}(£21, R?),
then
AjVv; — AVy  weakly inL(£21, R?)
andv is a finite energy solution 24 to the equation
div(.A(x)Vv) =0.

The proof of Theorem 2.3 will appear in [9].
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