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Abstract

This Note is devoted to study the control, observation and polynomial decay of a linearized 1-d model for fluid—structure
interaction, where a wave and a heat equation evolve in two bounded intervals, with natural transmission conditions at the
point of interface. These conditions couple, in particular, the heat unknown with the velocity of the wave solution. The
controllability and observability of the system through the wave component are derived from sidewise energy estimate and
Carleman inequalities. As for the control and observation through the heat component, we need to develop first a careful
spectral high frequency analysis for the underlying semigroup, which yields a new Ingahm-type inequality. It is shown that the
controllable/observable subspace for both cases are quite different. Also, we obtain a sharp polynomial decay rate for the energ
of smooth solutionsTo citethisarticle: X. Zhang, E. Zuazua, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
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Résumé

Contrdle, observation et décroissance polynomiale pour un systéme couplé ondes-chaleur. On considére un modéle
couplé ondes-chaleur 1-d. Lintervalle-1, 1) est divisé en deux parties. Dans1, 0) I'équation des ondes a lieu pour la
variablez tandis que, dan@, 1), y résout I'équation de la chaleur. Au point d’interface on impose les conditions de transmission
y =z etyy = zx. Ces sont des conditions plus naturelles dans le contexte de I'interaction fluide—structure. Dans cette Note,
suivant les techniques developpées dans nos travaux précédents on donne des résultats optimaux de contréle et d’observati
depuis le bord parabolique= 1 et hyperboliquer = —1 et on montre la décroissance polynomiale des solutions réguliéres.
Pour citer cet article: X. Zhang, E. Zuazua, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
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Version francaise abr égée

Dans cette Note on étudie le systéme 1-d ondes-chaleur :
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yi—yxx=0 dans (0, co) x (0, 1),

2t —Zxx =0 dans (0, oo) x (—1, 0),
yt,)=z(t,-1)=0, y(,0=z(0), y:(t,00=2:(0), te(0,00), (1)
y(0) =yo dans (0, 1),

20 =z0, zO0)=z21 dans (-1, 0).

Il s’agit d’'un modéle linéarisé pour l'interaction fluide—structure.

Un systéme semblable a été considéré dans [2] et [5]. Mais, dans [2] et [5] on avait imposé la condition de
transmissiony (¢, 0) = z(z, 0) au lieu dey(r, 0) = z (¢, 0), qui est plus naturelle dans le contexte de l'interaction
fluide—structure. En effey; représente I'analogue de la vitesse dans un fluide tandis que la vitesse de déformation
de la structure est décrite par; cf. (1).

Dans cette Note on étudie les problémes de contrdle et d'observation aussi bien depuis le bord hyperbolique
x = —1 que depuis le bord paraboligue= 1. On analyse aussi le taux de décroissance de I'énergie des solutions.

On adopte I'analyse développée dans [2] et [5] et on obtient des résultats analogues : (a) a hautes fréquence
le spectre peut se décomposer en une partie « parabolique » et autre « hyperbolique »; (b) les fonctions propre
hyperboliques sont trés concentrées dans I'intervalg, 0) et donc le taux de décroissance des solutions n'est
pas uniforme; (c) I'énergie des solutions régulieres décroit de maniére polynémiale ; (d) le systeme est contrdlable
dans I'espace d’énergie avec des contr@E'sagissant dans le bord hyperbolique= —1; (e) le systéme est
contrdlable depuis le bord parabolique= 1 dans un espace trés faible de fonctions ayant des coefficients de
Fourier exponentiellement petits dans les composantes hyperboliques.

Les techniques utilisées combinent des estimations d'énergie au bord, les inégalités de Carleman, I'analyse
spectrale et des inégalités généralisées d’'Ingham pour les spectres mixtes parabolique-hyperbolique.

1. Introduction

In this Note, we consider first the null controllability problem of the following 1-d linearized model for fluid—
structure interaction with boundary control either through the hyperbolic component:

Uy —Uyy =0 in(0,7T) x (0,1),
Uit — Uy =0 in(0,7T) x (=1, 0),
u(,1)=0, v, -1 =g1(), te(0,7), )
ut,0 =v,(,0), uy(t,0=v.(,0), te€(,7),
u(0) =ug in (0, 1),
v(0)=vo, v (0)=w1 in (-=1,0),
or through the parabolic one:
Uy —Uyy =0 in(0,7T) x (0,1),
Uiy — Uy =0 in(0,7T) x (-1, 0),
u(t,1) =go2(t), v(t,—-1)=0, te (0, T), 3)
u,0) =v,(t,0), uy(, 0 =v,(t,0), re(0,7T),
u(0) =ug in (0, 1),
v(0)=vg, v/(0)=wv1 in (-1, 0).

HereT > 0 is a finite control time, which will be needed to be large enough for the control problems to have
a positive answer. Similar null controllability problems for systems (2) and (3) with the transmission condition
u(t,0) = v, (¢, 0) replaced by:(z, 0) = v(¢, 0) were considered in [5] and [2]. Note however that, the transmission
condition considered in this paper is more natural from the modelling point of viemay be viewed as the
velocity of the linearized 1-d fluid; while; represents the velocity of the deformation of the structure.

In(2), g1(r) € Hol(o, T) is the control acting on the system through the wave extreme-1; while the state
space is the Hilbert spadé = L2(0, 1) x H(—1, 0) x L?(—1, 0) with the canonical norm.
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Putd ={(¢, ¥, n) | ¢ € L20,1), ¥ € HY(—1,0) with /(—1) =0, n € L2(—1, 0)}. Obviously,H is a Hilbert
space with the norm(¢, v, n)|g = [I¢Ii2(0’l) + |¢x|i2(_1’0) + |n|i2(_l,0)]l/2. By means of the transposition

method, it is easy to show that, for ayo, vo, v1) € H(G H) andg; € H01(0, T), system (2) admits a unique
solution(u, v, v;) in the clasC ([0, T'1; H) with (u(T), v(T), v,(T)) € H. Note that, of course, the trajectories of
(2) are not inH unlessg; = 0 (since the second component of the elemerH imanishes at = —1).
In(3),g2(¢) € H&(O, T) is the control acting on the system through the heat extremé ; while the state space
is H. Using again the transposition method, it is easy to show that, fo(ianyo, v1) € H andg; € H&(O, T),
system (3) admits a unique solutian, v, v;) in the classC ([0, T]; H).
Our first goal is to select a contrg} (resp.g2) such that the solution of (2) (resp. (3)) vanishes at tireT .
By a classical duality argument [1], this may be reduced to the obtention of boundary observability estimates for
the following system through the wave and heat components, respectively.

Vi —Yxx =0 in (0, 00) x (0, 1),

Ztr —Zxx =0 in (0, 00) x (=1,0),
yt,)=z(t,-1) =0, y,0=2z(10), y(,0=z(0), 1e(0,00), (4)
y(0) =yo in (0, 1),

20 =z0, z(0)=21 in (—1,0).

System (4) is well-posed i# . Moreover, the energy of system (4),
0

1
1
E(n= E[/(|zx(t,x)|2+ |20t 0)|?) dx + /|y(t,x)|2dx]
-1 0

decreases along trajectories. More precisely,

1
d 1
—E(@t)=—= [ |y:|?dx.
S B 2/|y| v
0

This formula shows that the only dissipation mechanism of system (4) comes from the heat component. The decay
rate of E(¢) will also be addressed in this Note. As we shall see, unlike the pure heat equation or the 1-d wave
equation dissipated on a subinterval, this dissipation mechanism is not strong enough to produce an exponentic
decay of the energy.

In order to show the boundary observability of (4)fhthrough the wave component, we proceed as in [5] by
combining the sidewise energy estimate for the wave equation and the Carleman inequalities for the heat equatior
However, due to the new transmission conditian, 0) = z;(z, 0) on the interface, some undesired lower order
term occurs in the observability inequality. Hence, we will need to use the classical Compactness—Uniqueness
Argument [4] to absorb it (note that this argument is not necessary in [5] and [2]). On the other hand, the functional
setting of the observability inequality differs from that in [5].

As for the boundary observability estimates for (4) through the heat component, similar to [2], we need to
develop first a careful spectral analysis for the underlying semigroup of (4). Our spectral analysis yields:

() Lack of observability of system (4) il from the heat extreme = 1 with a defect of infinite order;

(b) A new Ingham-type inequality for mixed parabolic and hyperbolic spectra;

(c) The observability of system (4) in a Hilbert space with, roughly speaking, exponentially small weight for the
Fourier coefficients of the hyperbolic eigenvectors;

(d) And then the null controllability of system (3) in a Hilbert space with, roughly speaking, exponentially large
weight for the Fourier coefficients of the hyperbolic eigenvectors.

We refer to [3] for detailed proof of the results in this paper and other results in this context.
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2. Boundary control and observation through the wave component

We begin with the following observability estimate:

Theorem 2.1. LetT > 2. Then there is a constadt > 0 such that every solution of E(#) satisfies
2 2
|((T), 2T (D) [} < Clzx, =D }2g7)» V(0. 20,21) € H. (5)

By means of the duality argument, Theorem 2.1 yields the null controllability of (2) but with the trajectories
in a Hilbert space larger thaH. In order to obtain the null controllability of (2) ifi(, we need to derive another
observability inequality, which reads:

Theorem 2.2. LetT > 2. Then there is a constant > 0 such that every solution of E¢4) satisfies
T
1
Zx('a _1) - ? /Zx(tv _1) dt

0

2

,  V(yo0,z0,21) € H. (6)
L2(0,T)

|(/(T), 2(T), 2 (D) |3, < C

Note that Theorem 2.1 will play a key role in Section 4 when deducing the Ingham-type inequality. Theorem 2.2
states that the observability is still true by making weaker, zero average, boundary measurements. As far as we
know, the fact this inequality holds is also new in the case of a simple wave equation.

As we mentioned before, similar to [5], the proof of Theorems 2.1 and 2.2 is based on the sidewise energy
estimate for the wave equation and the Carleman inequalities for the heat equation. However, some elementar
but key technique of lifting the underlying Hilbert space and the classical Compactness—Uniqueness Argument
(see [4]) are also necessary in the proof. Note that one does need the later two techniques in [5] and [2].

Theorem 2.2 implies the null controllability of system (2) through the wave component:

Theorem 2.3. Let T > 2. Then for every(ug, vo, v1) € H, there exists a controg; € Hol(O, T) such that the
solution(u, v, v;) of systen{2) satisfies«(T) =0in (0, 1) andv(T) = v,(T) =0in (-1, 0).

3. Spectral analysis

System (4) can be written in an abstract folin= AY with Y(0) = Yp. Here A: D(A) C H — H is an
unbounded operator defined as followls! = ( fy«x, i, gxx), WhereY = (f, g, h) € D(A), andD(A) ={(f, g, h) |
f€H?0,1), g€ H¥(=1,0), he H'(=1,0), f() =g(-) =h(=1) =0, f(0)=h(0), f+(0) =g (0)}.Itis
easy to show tha#l generates a contractivé-semigroup ind with compact resolvent. Hencé has a sequence
of eigenvalues (ifC) tending tooo.

The main result in this section can be written:

Theorem 3.1. The large eigenvalues af can be divided into two classeﬁsfz’},fiill and{k,’j ‘O,f‘:kl, wheref; andkq
are suitable positive integers, which satisfy the following asymptotic estimategrakk tend tooo respectively

1 2 1 _sgnk) .
M=—(Z+e) 7z2+24+0(7Y, M=-— + ki + i+ O(|k|71). 7
¢ <2 > () k 2k V2lkIn (Ik175) 0
Furthermore there exist integengy > 0, ¢1 > ¢1 and k1 > k1 such that{u; o, . cestim—1)72g U {”5};121
U{”Z}f;ﬁ:zl
algebraic multiplicitym ;, and{u; 1, ..., u;m -1} is the associated Jordan chain, auQ and uZ are eigenvectors
of A with respect to eigenvaluéé’ andA”, respectively.

form a Riesz basis dff, whereu ; o is an eigenvector afl with respect to some eigenvalpg with
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Here and in the sequel the superingestands for “parabolic” while: for “hyperbolic”. This theorem indeed
shows that there are two distinguished branches of the spectrum at high frequencies. The parabolic eigenvalues a
indeed close to those of a heat equation while the hyperbolic ones behaves like those of the wave equation with
weak damping term. It can be shown that the first order approximation of the parabolic component of the parabolic
eigenvalues are eigenfunctions of the heat equation in the intéyva) with Dirichlet boundary condition at
x =1 and Neumann boundary condition at the transmission gcin®; while the first order approximation of the
hyperbolic ones are eigenfunctions of the wave equation in the interdal) with Dirichlet boundary conditions.
The leading terms of the parabolic and hyperbolic eigenvalues in (7) correspond to the same boundary conditions
Note that the first order approximation of eigenvectors for the system discussed in [2] have a different behavior
since the boundary conditions for parabolic and hyperbolic eigenvectors are reversed in that case.

4. Ingham-typeinequality for mixed parabolic-hyperbolic spectra
By means of our spectral decomposition result the observability estimate (5) can be written as an Ingham-type
inequality (recall Theorem 3.1 fowg, m;, £1, kx andu;, Af andxf):

Lemma4.l. LetT > 2. Then there is a constadt = C(T) > 0 such that

no mj_l o0

o0
Z Z laj i+ Z lag|2 AT -DReN 4 Z bk |?

j=1 k=0 =0 lk|=ky

no mj—1 00 00 2
Yoo 3 it + Y acet+ Y et dr ®)

T
<cf
j=1 k=0 =0 |k|=ky

0

holds for all complex numbets;  (k=0,1,...,m; —1; j=1,2,...,n0), and all square-summable sequences

lacy2; and{bd ¢ in C.

The Ingham-type inequality (8) is similar to the one in [2] but for different seque{kgeiil and{kﬁ \01::121'
At this point we would like to underline that, as far as we know, there is no a direct proof of inequalities of the form
(8) in the literature devoted to this issue. Itis in fact a consequence of estimate (5) obtained by PDE techniques anc

the spectral analysis above.

5. Boundary control and observation through the heat component

We begin with the following negative result on the observability for system (4 ,imhich implies the lack of
boundary observability i from the heat component with a defect of infinite order.

Theorem 5.1. Let 7 > 0 and s > 0. ThenSUR,, - .yem (o) W = 400, where(y,z,z;) is the
solution of systerfé) with initial data (yo, zo, z1). ’

Theorem 5.1 is a consequence of Theorem 3.1. Indeed, from Theorem 3.1, one may deduce that the paraboli
component of solutions of system (4) decays rapidly while its hyperbolic component is “almost” conservative.
Moreover, the hyperbolic eigenvectors are mostly concentrated on the wave interval. This makes the observability
inequality from the heat extreme to fail in any Sobolev space.

By means of the well-known duality relationship between controllability and observability, from Theorem 5.1,
one concludes that system (3) is not null controllabléfinvith L2(0, T')-controls atx = 1 neither, with controls
in any negative index Sobolev space of the fadm* (0, T').
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However, the Ingham-type inequality (8), combined with Theorem 3.1 and a sharp description of the asymptotic
form of eigenvectors, allows one to get an observability inequality from the parabolic extreme in space with suitable
exponential weights in the Fourier coefficients. This is precisely what we shall do in the sequel.

Put (recall Theorem 3.1 foro, m j, u , €1, k1, u? andu?)

ng mj—1
{Z > ajauji+ Zamg + Z beuf | ajx. ae. by € C. Zma + Z |k|e¢m|bk|2<oo}

Jj=1 k=0 =0 |k|=k1 =0 |k|=k1

ng "M;—

|bi|?

ZZalkqu—i—Zaguz Zbkuk‘a]k ag, by € C, Z|a| +Z ’—2|k|

Jj=1 k=0 =0 u i
=0 Ik =k1 Ik|=k1

V andV’, endowed with their canonical norms, are mutually dual Hilbert spaces.
We have the following null controllability result on system (3):

Theorem5.2. LetT > 2. Then for everyug, vg, v1) € V, there exists a contrgly € Hol(o, T) such that the solution
(u, v, v;) of systen(3) satisfiesu(T) =0in (0, 1) andv(T) = v,(T) =0in (-1, 0).

In order to prove Theorem 5.2, we need to derive the following key observability estimate:

Theorem 5.3. Forany T > 2, there is a constant > 0 such that every solution (#) satisfies
2 2
|((T) (D), 2 (D)[5, Clyx D207y Y00, 20,20 € V. 9)
Inequality (9) follows from Lemma 4.1 together with Theorem 3.1.

6. Polynomial decay rate

According to the asymptotic form of the hyperbolic eigenvalues in (7) itis clear that the decay rate of the energy
is not uniform. Indeed, as (7) shows, Ejev —c/+/]k| for a positive constant > 0. In this situation, the best we
can expect is a polynomial decay rate for sufficiently smooth solutions. The following result is a consequence of
Theorem 3.1, which provides a sharp polynomial decay rate.

Theorem 6.1. There is a constanC > 0 such that for any(yo, zo, z1) € D(A), the solution of(4) satisfies
(@), z(®), z: () |w < Cl_2|(y07ZOle)|D(A)v vt > 0.
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