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Abstract

Using Strichartz estimates, it is possible to pass to the limit in the weakly compressible 2-D Euler system, when the Mach
numbere tends to zero, even if the initial data are not uniformly smooth. This leads to results of convergence to solutions of
the incompressible Euler system whose regularity is critical, such as vortex patches or Yudovich sdlatiteghis article:

A. Dutrifoy, T. Hmidi, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

En utilisant des inégalités de Strichartz, il est possible de passer a la limite dans le systeme d’Euler compressible 2-D, quanc
le nombre de Mach tend vers zéro, méme si les données initiales ne sont pas uniformément régulieres. Ceci méne a des résult
de convergence vers des solutions du systeme d’Euler incompressible dont la régularité est critique, comme des poches d

tourbillon ou des solutions de YudovidRour citer cet article: A. Dutrifoy, T. Hmidi, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

We consider a weakly compressible, isentropic fluid without viscosity, extended in the wholeRsh&abiee
Mach number, here a small positive parameter, is neteventually, we let tend to 0. The state of the fluid is
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described by the velocity field. (¢, x) = y cov: (¥ cot, x) and the speed of sourd(z, x) = co + ey coce (Y cot, x),
wherecp andy are positive constants. The scaled unknownandc, then satisfy
3D + Ve - Ve + 76 Vs + 1VE, =0,
e + e - V& + 78 divi, + 1 div, =0, (1)
(ﬁs’ Es)|t=0 = (50,57 50,8)'

We are interested in the convergence of solutions of (1) to solutions of the incompressible Euler system. This
problem, of course, has already been studied in numerous articles; our reference list only contains a few of them
[2,6,7].

The originality of this work is that we allow the initial data to be so ill-prepared that corresponding solutions

can tend to a vortex patch or even a Yudovich solution. Precise statements require some preparation, but we ca
present right away a particular case of our results.

Proposition 1.1. Suppose thatbo,e. ¢o.¢) — (T, ¢0) — 0in L2(R?), that || rotdg ¢ || zenz~ < C, wherea < oo, that

| rotvo.ell gs+1 < Cexp((In e~ H?) and that|| (Vo.e, €o.e) |l gs+11/4 < Ce=#, forsomes €10, 1[, « <1 andp < 1/8.
Then the times of existence fdr) tend to+o0; the incompressible parts of the solutions tend to a Yudovich

solution of the Euler system whose initial curlrigttp, and their compressible and acoustic parts tend to zero in

LL (R*;Lip).

2. Reformulation of the problem

We consider(il, 32) in some spaces’ 4+ L?(R?), whereo’(x1,x2) = (—x2, x1) fé"‘rg(r)dr/|x|2, with

g€ Cgo(RaL) — the existence of Yudovich solutions, indeed, is most naturally shown in those spaces [1]. If we
seto = (o', 67%,0), Us = (1, 12, &) — o andU, = (UL, U?), then (1) may be rewritten

{8,Ug+(Ué+o’)-V(Ug+a)+()7U§’+%)B(D)’ngo, @
Us't:O = UO,sy
where
0 0 o0
B(D) = ( 0 O 32) .
01 92 O

Solving (1) ino + B3 , is equivalent to solving (2) iI’BS,q, for anyg > 1 ands € R. (Since we always assume
s > 2, doing this Iocaﬁly in time is not a problem, essentially because (2) is symmetric and all derivatives of
belong toL?.)

3. Dispersive effects

Orthonormal eigenvectors oB(¢) are Vo(¢) = (—£2,£1,0)/|¢|, corresponding to the eigenvalue 0, and
Vi1(€) = (€1, ££2, 1£])/(V/2|€]), corresponding to the eigenvalugE|.

We shall use the projectod = V(D) Vo(D) and P11 = Va1(D) Va1 (D). If U is a vector field,PyU is its
incompressible part and’; + P_1)U is the sum of its compressible and acoustic parts.

Since

{atPﬂUs + YD|PuU, = —Pual,
(P£1U¢)|i=0 = P+1Uo,

with
I, = (U; +0)-V(Us +0)+ foB(D)Ug,
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we have forPy1U, Strichartz estimates similar to those valid for solutions of the wave equation [5] — as, for
example,

” P1U; ” L?(C5+1)
t

< 81/4<||Pi1U0,5 Il gg7ra + /(Co + Co||Us ("]
>q
0

33211/4 + H Us (1)) H Lip H U (1) |

l4
+11/4) dt’ ],
By . ) )

for ¢ € [1,4] ands €]0, 1[. The results presented just below are obtained thanks to the powendhe right
member of such inequalities. On the other hand, unfortunately, the presence of derivatives @f forces us to
assume more smoothness on the data than one might wish to.

4. Results

The first theorem is a statement about the growth of the lifespans.
Although we are in dimension 2, the formalism of 3-D vortex patches [4], slightly adapted, is convenient. So we

say that a system of continuous vector fields= {w"; v =1, ..., N} is admissiblaf [W]~1 d:e'((% Zivzl lw¥)~1
is bounded.

Theorem 4.1. Let Wo = {wg; v =1,..., N} be an admissible system 6f vector fields, withs €]0, 1[. Let
20 = 31'7(2),5 — 3217%,5 denote thecurl of U()yg + o’. Suppose that for some constdfgtgreater than

lo” - Vol gstrva + Vo || gsiava + 1ol csaya + 1,
2,9 2,q

the initial data of (2) are bounded as follows

N
1Uoell2<Co. IR0l + [ [Wol ™| oo + Y _Jwg ] s < Co.
=1
N v
ZHdiV(wSQo,sH cs1 S Ce, 1Uo.e IIB;11/4 < Cos™®, ||U0,s||35211/4 < Coe™?P,
v=1 ' '

withg € [1,4] and0 < o < B8 < 1/4, and whereC, is an arbitrary, non-increasing function ef
Then, for allu €10, 4—11 — af, the lifesparT, of the solutionl, is bounded from below by

1 In a+p—1/4
In (e ) >

W _ min( c=8/3:4/36-1/4
¢ 0 "CCo  In(e+Cy)

Moreover,

t
[10:6) ]yt < D nce @
0

forall r € [0, T/"], and

| P+1U; ||L;:(/L)(Lip) <éght. 4)

This theorem is interesting i, does not grow too fast as— 0, so thatTg(”) — 00. In particular, it applies
neatly if the data are regularizations of a vortex patch, becauseithenC; for some constant;, independent
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of e. (If the data are regularizations of a field without tangential regularity, as in the case of general Yudovich
solutions, we can still gain control afi by reducing the speed of regularization.)
Our convergence result is described by a second theorem.

Theorem 4.2. In addition to the hypotheses of Theorérh, suppose thaPoUg . — Ug in L2(R?), that|| 20, L« <
Co for somea < oo, that

In(e~1)
In(e+ Cy)
and that

IUo.ll g < Coe™  and [|Uo.ell yzs < Cos™

— +o0 ase— 0,

withy <d<aandy +48 < 1/4.
Theno’ + (PoU,)" converges inLX.(RT; 0’ + L?) to the unique solutiorv € C(R*; 0’ + L?) of the
incompressible Euler system

sv+v-Vv=—-Vp,
divv =0,
vi—o=0"+ U}
such thatp € L2 (R*; L?) androtv € L®(RT; L® N L9).

loc
5. Proofs

Detailed proofs for both theorems are avalaible in a preprint [3].

The proof of Theorem 4.1 is a mixing of two kinds of techniques. In order to estiy”éaltEoUg (") lILip dt’, we
use the static, logarithmic estimate relating the Lipschitzian norm of a divergence free vector field to the striated
regularity of its curl, and the dynamic estimates describing the evolution of this striated regularity [4]. Then we can
dispose of all compressible and acoustic quantities thanks to dispersive estimates (see Section 3) in which we als
introduce inequalities proved by classical energy methods.

The proof of Theorem 4.2 is basically an adaptation of the proof of Yudovich’s theorem as presented in the book
of Jean-Yves Chemin [1].
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