

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 336 (2003) 605-610

Statistique/Probabilités

Estimateur crible de l'opérateur d'un processus ARB(1) Sieve estimator of the operator in ARB(1) process

Fatiha Rachedi, Tahar Mourid

Université Abou Bekr Belkaid, Département de mathématiques, Faculté des sciences, Tlemcen 1300, Algérie Reçu le 1^{er} mars 2002 ; accepteé après révision le 23 janvier 2003 Présenté par Paul Deheuvels

Résumé

Nous considérons l'estimation par la méthode des «cribles» de Grenander de l'opérateur d'un processus autorégressif d'ordre un à valeurs dans un espace de Banach séparable. Nous montrons la convergence presque sûre de l'estimateur dans le cas où l'opérateur est strictement 2-intégral, 2-sommable et puis 2-nucléaire pour les normes adéquates. *Pour citer cet article : F. Rachedi, T. Mourid, C. R. Acad. Sci. Paris, Ser. I 336 (2003).*

© 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

Abstract

We consider the sieve estimator of the operator of a Banach autoregressive process. We show the almost sure convergence when the operator is 2-summing, strictly 2-integral, afterwards 2-nuclear for the adequate norms. *To cite this article: F. Rachedi, T. Mourid, C. R. Acad. Sci. Paris, Ser. I* 336 (2003).

© 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Abridged English version

Let $(B, \mathcal{B}, \| \|)$ be a separable Banach space equipped with its σ -algebra. We consider a sequence $(\varepsilon_n, n \in Z)$ of i.i.d. random variables, defined on a probability space (Ω, \mathcal{A}, P) and with values in B, of zero mean and $0 < \sigma^2 = E \|\varepsilon_n\|^2 < +\infty$ (a B-strong white noise). Let ρ be an operator of $\mathcal{L}(B)$ the space of bounded linear operators from B to B, such that $\exists j_0 \in \mathbb{N}^*$ for which $\|\rho^{j_0}\|_{\mathcal{L}} < 1$. A random process $(X_n, n \in Z)$ defined on the probability space (Ω, \mathcal{A}, P) is said an autoregressive process of order one with values in B (ARB(1)), if it satisfies the following relation:

$$X_n = \rho X_{n-1} + \varepsilon_n, \quad n \in \mathbb{Z}. \tag{1}$$

The process $(X_n, n \in Z)$ is strictly stationary ([3], p. 148). The problem in this Note is the estimation of the parameter ρ by the method of sieves define by Grenander [7] following the ideas of Hwang et Geman [6] for the case of observations i.i.d. and adapting them to the setting of dependent observations verifying (1).

Adresse e-mail: t_mourid@mail.univ-tlemcen.dz (T. Mourid).

We denote by Θ the space of the parameters equipped with a metric d. The sieve for the space Θ is a sequence $\{\Theta_m\}_m$ of Θ such that Θ_m is compact, $\Theta_m \subset \Theta_{m+1}$, and $\bigcup_m \Theta_m$ is dense in Θ . We denote by P_{ρ} the stationary law induced on (B, \mathcal{B}) by X_0 and by P_0 the law of ε_0 . We suppose that P_{ρ} is absolutely continuous with respect to P_0 . In ([4], Proposition 4) in the gaussian case and under some conditions, P_{ρ} and P_0 are equivalent. We denote by ρ_0 the true value of parameter. Now we introduce the following definitions and notations:

- (a) for $\rho \in \Theta_m$, $B_m(\rho, \varepsilon) := \{\theta \in \Theta_m \mid d(\rho, \theta) < \varepsilon\}$;
- (b) the density of the transition probability of process $(X_n)_n$ verifying (1), with respect to P_0 is noted by $g(x, y, \rho) = (P_{\rho}(dx/X_0 = y))/(P_0(dx))$ where $x, y \in B$ and $\rho \in \Theta$;
- (c) the conditional entropy $H(\rho, \theta) := E_{\rho} \ln g(X, y, \theta) = \int \ln(g(x, y, \theta))g(x, y, \rho) dP_0(x);$
- (d) for a real-valued function g we set $g(A) := \sup_{y \in A} g(y)$;
- (e) $L_n(x_1, ..., x_n; \rho)$ denote the conditional likelihood function. The set of points of Θ_m where $L_n(x_1, ..., x_n; \cdot)$ attains his maximum is denoted by:

```
\begin{split} &M_m^n = \{\rho \in \Theta_m \mid L_n(\omega; \, \rho) = L_n(\omega; \, \Theta_m) := \sup_{\theta \in \Theta_m} L_n(\omega; \, \theta)\}. \\ &\text{Similarly } A_m = \{\rho \in \Theta_m \mid H(\rho_0, \, \rho) = H(\rho_0, \, \Theta_m) := \sup_{\theta \in \Theta_m} H(\rho_0, \, \theta)\}. \end{split}
```

Let Θ be the space of 2-summing operators and the metric π_2 deduced from the norm of 2-summing operators. For this study we follow [6]. Especially we have:

Theorem. If the sieve $\{\Theta_m\}$ is chosen such that (1) for all m and all $\rho \in \Theta_m$, there exist $\varepsilon > 0$ such that $E_{\rho_0} \ln(g(X, y, B_m(\rho, \varepsilon))) < \infty$. (2) $A_m \underset{m \to +\infty}{\longrightarrow} \rho_0$ then $\sup_{\rho \in M_m^n} \pi_2(\rho, \rho_0) \underset{m,n \to +\infty}{\longrightarrow} 0$ a.s.

1. Introduction

Soit $(B, \mathcal{B}, \| \|)$ un espace de Banach séparable muni de sa tribu Borélienne $(\varepsilon_n, n \in Z)$ un bruit blanc fort à valeurs dans B et ρ un opérateur linéaire et borné de B dans B $(\rho \in \mathcal{L}(B))$ tel que $\exists j_0 \in \mathbb{N}^*$: $\|\rho^{j_0}\|_{\mathcal{L}} < 1$. $(X_n, n \in Z)$ est un processus autorégressif d'ordre un dans B (ARB(1)), associé à ρ et (ε_n) si:

$$X_n = \rho X_{n-1} + \varepsilon_n, \quad n \in \mathbb{Z}. \tag{2}$$

 $(X_n, n \in Z)$ est strictement stationnaire ([3], p. 148). Dans cette Note on considére l'estimation de ρ par la méthode des « cribles » de Grenander [7] en suivant Hwang et Geman [6] avec adaptation aux observations vérifiant (2). Le cas B un espace de Hilbert et ρ de Hilbert Schmidt a été résolue par les « moindres-carrées » [3]. L'estimation par le maximum de vraisemblance en dimension infinie est traitée par [7] par la méthode des « cribles ». Dans [2] le cas où B est un espace de Hilbert a été traité. Nous traitons le cas ρ 2-sommable, ensuite strictement 2-intégral et 2-nucléaire. Nous obtenons la convergence p.s. de l'estimateur crible (cas général) et avec exemples de cas de processus de Wiener. La géométrie de l'espace de Banach est cruciale.

2. Définitions et notations

Soit Θ l'espace des paramètres muni d'une métrique d. Un « crible » est une suite de sous ensembles $\{\Theta_m\}_m$ de Θ telle que Θ_m compact, $\Theta_m \subset \Theta_{m+1}$, et $\bigcup_m \Theta_m$ est dense dans Θ . Soit P_ρ la loi de X_n et P_0 de ε_0 . Supposons que P_ρ est absolument continu par rapport à P_0 ([4], Proposition 4). Le modèle (2) est identifiable ($P_\rho \neq P_\theta$ si $\rho \neq \theta$). Soit ρ_0 la vraie valeur. Introduisons les définitions suivantes :

- (a) Pour $\rho \in \Theta_m$, $B_m(\rho, \varepsilon) := \{\theta \in \Theta_m \mid d(\rho, \theta) < \varepsilon\}$.
- (b) La densité de la probabilité de transition du processus $(X_n)_n$ vérifiant (2), par rapport à P_0 est notée $g(x, y, \rho) = (P_{\rho}(dx/X_0 = y))/(P_0(dx))$ où $x, y \in B$ et $\rho \in \Theta$.
- (c) L'entropie conditionnelle $H(\rho, \theta) := E_{\rho} \ln g(X, Y, \theta) = \int \ln(g(x, Y, \theta))g(x, Y, \rho) dP_0(x)$.

- (d) Pour une fonction à valeurs réelles g nous posons $g(A) := \sup_{y \in A} g(y)$.
- (e) $L_n(x_1, ..., x_n; \rho)$ est la fonction de vraisemblance conditionnelle. L'ensemble des points de Θ_m où $L_n(x_1, ..., x_n; \cdot)$ atteint son maximum est noté : $M_m^n = \{ \rho \in \Theta_m \mid L_n(\omega; \rho) = L_n(\omega; \Theta_m) := \sup_{\theta \in \Theta_m} L_n(\omega; \theta) \}$.

De même $A_m = \{ \rho \in \Theta_m \mid H(\rho_0, \rho) = H(\rho_0, \Theta_m) := \sup_{\theta \in \Theta_m} H(\rho_0, \theta) \}.$

3. L'opérateur ρ est 2-sommable

 ρ est 2-sommable si $\exists C \geqslant 0 \mid \forall x_1, \dots, x_n \in B$: $\left(\sum_{i=1}^n \|\rho(x_i)\|^2\right)^{1/2} \leqslant C \cdot \sup_{\|x^*\| \leqslant 1} \left(\sum_{i=1}^n |(x^*, x_i)|^2\right)^{1/2}$ ([5], p. 31). La plus petite valeur de C est notée $\pi_2(\rho)$. Cet ensemble de Banach est noté $\Pi_2(B)$ et π_2 est sa norme : $\|\rho\|_{\mathcal{L}} \leqslant \pi_2(\rho)$ ([5], p. 38). Si B est un Hilbert, $\Pi_2(B)$ est l'espace des opérateurs de Hilbert–Schmidt ([5], p. 84). Soit $\Theta = \Pi_2(B)$. Nous avons le résultat suivant.

Théorème 1. Si le «crible », $\{\Theta_m\}$ est choisi tel que (1) pour tout m et tout $\rho \in \Theta_m$, il existe $\varepsilon > 0$ tel que $E_{\rho_0} \ln(g(X, y, B_m(\rho, \varepsilon))) < \infty$; (2) $A_m \underset{m \to +\infty}{\longrightarrow} \rho_0$ alors $\sup_{\rho \in M_m^n} \pi_2(\rho, \rho_0) \underset{m \to +\infty}{\longrightarrow} 0$ p.s.

Remarque. La condition (1) est une condition de finitude de moment. Comme dans [6] on peut avoir une condition suffisante pour la condition (2). En effet la condition $H(\rho_0, \rho_m) \to H(\rho_0, \rho_0)$ implique en général $\rho_m \to \rho_0$. Par suite si de plus le crible $\{\Theta_m\}$ est choisi tel que $\exists \rho_m \in \Theta_m$ et $H(\rho_0, \rho_m) \to H(\rho_0, \rho_0)$ on aura $\sup_{\rho \in M_m^n} \pi_2(\rho, \rho_0) \xrightarrow[m \to +\infty]{} 0$.

Pour l'ordre de croissance de m du crible Θ_m nous introduisons les conditions :

C₁: Si (ρ_m) est une suite telle que $\forall n, \ \rho_m \in \Theta_m$ et $H(\rho_0, \rho_m) \to H(\rho_0, \rho_0)$ alors $\rho_m \to \rho_0$. C₂: Il existe une suite $(\rho_m \in \Theta_m)$ telle que $H(\rho_0, \rho_m) \to H(\rho_0, \rho_0)$.

Pour $\delta > 0$ et n soit $D_m = \{ \rho \in \Theta_m \mid H(\rho_0, \rho) \leqslant H(\rho_0, \rho_m) - \delta \}$ où ρ_m est dans C_2 . Soit l sous ensembles $\Gamma_1, \ldots, \Gamma_l$ de Θ_m et

$$\varphi_m := \sup_{t} \inf_{t \geqslant 0} E_{\rho_0} \exp \left[t \ln \left\{ \frac{g(x, y, \Gamma_k)}{g(x, y, \rho_m)} \right\} \right].$$

Théorème 2. Soit $\{\Theta_m\}$ un crible vérifiant la condition C_1 . Si pour tout $\delta > 0$, on peut trouver $\Gamma_1^m, \ldots, \Gamma_{l_m}^m$ dans Θ_m , $n = 1, 2, \ldots$, tels que : (i) $D_m \subseteq \bigcup_{k=1}^{l_m} \Gamma_k^m$; (ii) $\sum_{n=1}^{+\infty} l_{m_n} (\varphi_{m_n})^n < +\infty$, $m_n \underset{n \to +\infty}{\longrightarrow} +\infty$ alors $\sup_{\rho \in M_{m_n}^n} \pi_2(\rho, \rho_0) \underset{n \to +\infty}{\longrightarrow} 0$ p.s.

4. L'opérateur ρ est strictement 2-intégral

Soient $(x_k)_k$ une base dans B et $(y_k^*)_k$ la suite des fonctionnelles de coéfficients associée à cette base. Si $(y_k^*)_k$ forme une base dans B^* , $(x_k)_k$ est dite base de shrinking. Si B est tel que B^* admet une base $(y_k^*)_k$, alors B admet une base de shrinking ([9], p. 10). On note (\cdot, \cdot) le crochet de dualité entre B et B^* . Le couple $(y_k^*, x_k)_k$ est dit système biorthogonal si $(y_k^*, x_j) = \delta_{kj}$, il forme une base de Markushevich dans B si l'espace engendré par $(x_k)_k$, noté $[x_k]_k$, est dense dans B et $[y_k^*]_k$ est faiblement dense dans B^* . En outre tout espace de Banach séparable B admet une base de Markushevich [10].

On note $\mathcal{J}_2(B)$ l'ensemble des opérateurs strictement 2-intégraux de B dans B, on associe la norme 2-intégrale, notée $\|\cdot\|_2$ ([5], p. 97), on a $\|\rho\|_{\mathcal{L}} \leqslant \|\rho\|_2$. ρ est 2-sommable tel que $\pi_2(\rho) = \|\rho\|_2$ ([5], p. 99). Soit $(\Gamma, \mathcal{F}, \nu)$ un espace mesurable. Toute fonction $\phi \in L^2(\nu)$ induit un opérateur M_ϕ de $L^\infty(\nu)$ dans $L^2(\nu)$ défini par : $f \to \phi f$, et $\|M_\phi\|_{\mathcal{L}} \leqslant \|\phi\|_{L_2(\nu)}$. On note $\mathcal{M}_2(L^\infty(\nu), L^2(\nu))$ l'ensemble des opérateurs de multiplication de $L^\infty(\nu)$ dans $L^2(\nu)$ et $\langle\cdot,\cdot\rangle$ le produit scalaire dans $L^2(\nu)$. D'aprés ([5], p. 111) ρ est strictement 2-intégral si et seulement s'il existe un espace mesurable $(\Gamma, \mathcal{F}, \nu)$, deux opérateurs linéaires bornés a et b de $L^2(\nu)$ dans B et de B dans $L^\infty(\nu)$ respectivement, et $M_\phi \in \mathcal{M}_2(L^\infty(\nu), L^2(\nu))$ (ou $\phi \in L^2(\nu)$) tel que le diagramme suivant commute :

$$\begin{array}{ccc}
B & \xrightarrow{\rho} & B \\
b \downarrow & \uparrow a \\
L^{\infty}(\nu) & \xrightarrow{M_{\phi}} & L^{2}(\nu)
\end{array} \tag{3}$$

L'étude de la fonction de vraissemblance pour des v.a. vérifiant (2) est assez compliquée dans le cas d'un opérateur quelconque. Ceci nous amène à considérer une représentation « spectrale » de ρ associée à une base biorthogonale. Soit $(e_k)_{k\in\mathbb{N}}$ une base orthonormale dans $L^2(\nu)$. La suite $(ae_k)_{k\in\mathbb{N}}$ forme une base dans $\mathrm{Im}(\rho)$ et si a est injective c'est une base de Schauder. Pour obtenir une décomposition de ρ nous introduisons l'hypothèse suivante : H : La suite $(ae_k)_{k\in\mathbb{N}}$ est une base de shrinking. Notons $(f_k^*)_{k\in\mathbb{N}}$ la suite des fonctionnelles de coefficients associée à $(ae_k)_{k\in\mathbb{N}}$, $\lambda_k=1/\|f_k^*\|^2$ et $u_k^*=f_k^*/\|f_k^*\|$, $\forall k\in\mathbb{N}$. Nous avons les lemmes suivants :

Lemme 1. Sous l'hypothèse H, les $(u_k^*)_{k\in\mathbb{N}}$ sont des vecteurs propres normés de aa^* de B^* associés aux valeurs propres $(\lambda_k)_{k\in\mathbb{N}}$.

Lemme 2. *Sous l'hypothèse* H, ρ *s'écrit* :

$$\rho(\cdot) = \sum_{k \in \mathbb{N}} \alpha_k \langle e_k, e_k b(\cdot) \rangle a e_k, \tag{4}$$

où $\alpha_k = \langle e_{\iota}, \phi \rangle$, $\forall k \in \mathbb{N}$, et $\phi \in L^2(v)$ est associée à ρ par le diagramme (3).

Si a et b sont connus l'estimation de ρ revient à l'estimation de ϕ dans $L^2(\nu)$. Comme $\phi = \sum_{k \in \mathbb{N}} \alpha_k e_k$ l'estimation de ϕ passe par l'estimation de ces coéfficients $(\alpha_k)_k$. Le fait de considérer que a et b sont connus, n'est pas trés restrictif. Voici un exemple :

Exemple. Soient B = C([0,1]) l'espace des fonctions continues sur [0,1] et $\mathcal{M}_2(B)$ l'ensemble des opérateurs de multiplication de B dans B. Toute fonction $\phi \in C([0,1])$ induit un opérateur de multiplication $M_{\phi} \in \mathcal{M}_2(C([0,1]))$ d'image dans $L^2([0,1])$ ([5], p. 40). Soit $\rho \in \mathcal{M}_2(C([0,1]))$ défini par $\phi \in C([0,1])$ (ρ intervient dans la représentation de certains processus autorégressif à temps continu (voir par exemple [3], p. 150)). Soit ρ une mesure de probabilité sur [0,1] de densité $d\mu(t)/dt = (\phi/\|\phi\|)^2$ ([5], p. 108), on obtient la décomposition de $\rho = ci_2d$ où ρ dest l'injection de ρ dest l'inj

Supposons que le processus $(X_n)_n$ vérifiant (2) est gaussien et P_ρ est absolument continue par rapport à P_0 (cf. Paragraphe 2). Donc $\forall k \in \mathbb{N}$ les v.a. réelles $(f_k^*, \varepsilon_n)_n$ sont gaussiennes indépendantes et de même variance σ_k^2 . Soit $\Theta = L^2(\nu)$. Nous considérons le crible $\Theta_m^* = \{\phi \in L^2(\nu) \mid \phi = \sum_{k=0}^m \alpha_k e_k, \ \sum_{k=0}^m k^2 |\alpha_k|^2 \leqslant m\}$.

Proposition 1. L'estimateur crible de ϕ est la fonction $\hat{\phi}_m = \sum_{k=0}^m \hat{\alpha}_k e_k$ où $\hat{\alpha}_k = \frac{\sum_{i=1}^n \langle e_k, e_k b x_{i-1} \rangle \langle f_k^*, x_i \rangle}{\sum_{i=1}^n \langle e_k, e_k b x_{i-1} \rangle \langle f_k^*, x_i \rangle}$, $k = 0, \ldots, m$, et tel que λ vérifie $\sum_{k=0}^m k^2 \left(\frac{\sum_{i=1}^n \langle e_k, e_k b x_{i-1} \rangle \langle f_k^*, x_i \rangle}{\sum_{i=1}^n \langle e_k, e_k b x_{i-1} \rangle \langle f_k^*, x_i \rangle} \right)^2 = m$.

Le Théorème 2 donne la convergence p.s. de $\hat{\phi}_m$, et l'ordre de la dimension m.

Théorème 3. Si
$$m_n = O(n^{1/3-\delta})$$
 pour $\delta > 0$, alors $\|\hat{\phi}_{m_n} - \phi_0\|_{L^2(\nu)} \underset{n \to \infty}{\longrightarrow} 0$ p.s.

Remarque. L' ordre de m est polynomial alors que dans [3] est logarithmique $m_n = o(\log n)$.

4.1. ρ est 2-nucléaire

Nous traitons l'estimation de ρ du diagramme (3) dans le cas où a et b ont une forme particulière (Lemme 3). ρ admet alors une décomposition « spectrale » (Lemme 4). Avec les mêmes notations du Paragraphe 4 et le diagramme (3) on prend v une mesure de dénombrement sur \mathbb{N} . ρ est dit alors 2-nucléaire et M_{ϕ} est un opérateur diagonal noté D_{α} où $\alpha = (\alpha_n)_n \in \ell^2$. On note $\mathcal{D}(\ell^{\infty}, \ell^2)$ l'ensemble des opérateurs diagonaux de ℓ^{∞} dans ℓ^2 . $\mathcal{N}_2(B)$ est l'espace de Banach des opérateurs 2-nucléaires muni de $\eta_2(\cdot)$: $\eta_2(\rho) = \inf_{b,a,D_{\alpha}} (\|b\|_{\mathcal{L}} \|a\|_{\mathcal{L}} \|D_{\alpha}\|_{\mathcal{L}})$. D'autre part, d'après ([5], Proposition 5.23) il existe $(h_k^*)_{k \in \mathbb{N}}$, $(v_k)_{k \in \mathbb{N}}$ deux suites normées dans la boule unité de B^* et B respectivement, et $\beta = (\beta_k)_{k \in \mathbb{N}} \in \ell^2$, tel que ρ s'ecrit $\rho = \sum_{k \in \mathbb{N}} \beta_k(h_k^*, \cdot) v_k$. Soit $(e_k)_{k \in \mathbb{N}}$ la base canonique de ℓ^2 . Le lemme suivant donne une représentation de a et b.

Lemme 3. a est défini par : $(\xi_k)_k \mapsto \sum_{k \in \mathbb{N}} \xi_k \ v_k$, et b par : $x \in B \mapsto ((h_k^*, x))_k$.

Ainsi nous obtenons la décomposition suivante de ρ :

Lemme 4. Sous H ρ s'écrit : $\rho = \sum_{k \in \mathbb{N}} \alpha_k(h_k^*, \cdot) ae_k$.

Remarque 1. Si $(f_k^*)_k = (h_k^*)_k$ alors les $(ae_k)_k$ sont des vecteurs propres de ρ associés aux valeurs propres $(\alpha_k)_k$.

Soit $\Theta = \ell^2$. Nous considérons le crible $\Theta_m^{**} = \{\alpha \in \ell^2 \mid \alpha = \sum_{k=0}^m \alpha_k e_k, \sum_{k=0}^m k^2 |\alpha_k|^2 \le m\}$.

Proposition 2. L'estimateur crible de α est la fonction $\hat{\alpha} = \sum_{k=0}^{m} \hat{\alpha}_k e_k$ où $\hat{\alpha}_k = \frac{\sum_{i=1}^{n} (h_k^*, x_{i-1}) (f_k^*, x_i)}{\sum_{i=1}^{n} (h_k^*, x_{i-1})^2 + 2n\lambda k}, \ k = 0, \dots, m,$ et tel que λ vérifie $\sum_{k=0}^{m} k^2 \left(\frac{\sum_{i=1}^{n} (h_k^*, x_{i-1}) (f_k^*, x_i)}{\sum_{i=1}^{n} (h_k^*, x_{i-1})^2 + 2n\lambda k} \right)^2 = m.$

La convergence de $\hat{\alpha}$ s'établie de la même façon que $\hat{\phi}$ du Théorème 3.

Remarque. Soit $\rho \in \mathcal{D}(\ell^{\infty}, \ell^{\infty})$ défini par $\alpha = (\alpha_{k})_{k \in \mathbb{N}} \in \ell^{2}$, alors ρ est 2-nucléaire d'image dans ℓ^{2} tel que $\|\rho\|_{2} = \|\alpha\|_{\ell^{2}}$. a de (3) est l'injection de ℓ^{2} dans ℓ^{∞} et b est l'identité dans ℓ^{∞} . L'estimation de ρ revient alors à l'estimation de α .

Soit P_{X_0} et P_{ε_0} les lois gaussiennes de X_0 et ε_0 , C_{X_0} et C_{ε_0} les opérateurs de covariance respectivement, \mathcal{H}_{X_0} et $\mathcal{H}_{\varepsilon_0}$ les espaces à noyau autoreproduisant associés à P_{X_0} et P_{ε_0} et supposons $P_{X_0} \sim P_{\varepsilon_0}$ (cf. Paragraphe 2). D'aprés [8] $\exists j_{X_0}$, j_{ε_0} continues et compactes de \mathcal{H}_{X_0} et de $\mathcal{H}_{\varepsilon_0}$ respectivement dans P_{ε_0} tels que P_{ε_0} et P_{ε_0} et

$$P_{X_0} \sim P_{\varepsilon_0} \quad \Longleftrightarrow \quad \begin{cases} \exists T: \mathcal{H}_{\varepsilon_0} \to \mathcal{H}_{X_0} \text{ un isomorphisme linéaire tels que}: \\ (\mathrm{i}) \ j_{X_0}^* = T j_{\varepsilon_0}^*, \\ (\mathrm{ii}) \ S = T^*T - \mathrm{Id}_{\mathcal{H}_{\varepsilon_0}} \text{ est un opérateur de Hilbert-Schmidt de } \mathcal{L}(\mathcal{H}_{\varepsilon_0}). \end{cases}$$

Soit $(\lambda_k, w_k)_{k \in \mathbb{N}}$ les éléments propres de S, $\exists ! \ w_k^*$ tel que $j_{\varepsilon_0}^* w_k^* = w_k$, $\forall k \in \mathbb{N}$. $(w_k)_{k \in \mathbb{N}}$ est une base orthonormale de $\mathcal{H}_{\varepsilon_0}$.

Lemme 5. ρ s'écrit : $\rho = \sum_{k \in \mathbb{N}} \alpha_k(w_k^*, \cdot) j_{\varepsilon_0} w_k$ où $\alpha_k \overline{\alpha_k} / (1 - \alpha_k \overline{\alpha_k}) = \lambda_k$, $\forall k \in \mathbb{N}$.

Lemme 6. Si C_{ε_0} est injective alors $(w_k^*, j_{\varepsilon_0}w_k)_{k\in\mathbb{N}}$ est une base de Markushevich et $(j_{\varepsilon_0}w_k)_{k\in\mathbb{N}}$ est une base de shrinking.

Exemple. Nous traitons l'estimation de ρ du Lemme 5 dans le cas où ε_0 est le processus de Wiener en s'inspirant de [1] (p. 81). Soient B=C([0,1]) muni de la topologie de la convergence uniforme et P_0 la mesure de Wiener de fonction de covariance $\gamma(s,t)=\min(s,t)$. Dans ce cas nous avons (cf. [1], p. 81) : $B^*([0,1])$ est identifié à M([0,1]) l'espace des mesures régulières de Borel sur $\mathcal{B}_{[0,1]},\ j_{\varepsilon_0}^*(\mu)(s)=C_{\varepsilon_0}(\mu)(s)=\int_0^1 \min(t,s)\mu(\mathrm{d}t)=\int_0^s \mu([t,1])\,\mathrm{d}t,\ \mu\in M([0,1]),\ s\in [0,1],\ \forall t\in [0,1],\ w_0(t)=t\ \mathrm{et}\ w_k(t)=\frac{\sqrt{2}}{k\pi}\sin k\pi t,\ k\neq 0,\ w_0^*=\delta_1\ \mathrm{la}$ mesure de Dirac en 1 et $w_k^*(\mathrm{d}t)=(-1)^k\sqrt{2}\delta_1(\mathrm{d}t)+\sqrt{2}k\pi\sin k\pi t(\mathrm{d}t),\ k\geqslant 1$. L'estimateur crible de ρ est $\hat{\rho}_m(f)(s)=\sum_{k=0}^m \hat{\alpha}_k\langle w_k^*,\cdot\rangle w_k$ où $\hat{\alpha}_0=\frac{\sum_{i=1}^n x_{i-1}(1)\cdot x_i(1)}{\sum_{i=1}^n x_{i-1}^2(1)+2n\lambda_n k},$

$$\hat{\alpha}_k = \frac{\sum_{i=1}^n ((-1)^k x_{i-1}(1) + k\pi \int_0^1 x_{i-1}(t) \sin k\pi t \, dt)((-1)^k x_i(1) + k\pi \int_0^1 x_i(t) \sin k\pi t \, dt)}{\sum_{i=1}^n ((-1)^k x_{i-1}(1) + k\pi \int_0^1 x_{i-1}(t) \sin k\pi t \, dt)^2 + 2n\lambda_n k}, \quad k = 1, \dots, m,$$

ou encore:

$$\hat{\rho}_m(f)(s) = \int_0^1 \left(\hat{\alpha}_0 \cdot I_{[0,1]}(s) \cdot + 2 \sum_{k=1}^m \hat{\alpha}_k \frac{(-1)^k}{k\pi} \sin k\pi s \right) \cdot f(t) \cdot \delta_1(\mathrm{d}t)$$

$$+ \int_0^1 2f(t) \left(\sum_{k=1}^m \hat{\alpha}_k \sin k\pi s \cdot \sin k\pi t \, \mathrm{d}t \right) \mathrm{d}t.$$

En posant $K_1(s,t) = \alpha_0 \cdot I_{[0,1]}(s) \cdot +2 \sum_{k\geqslant 1} \alpha_k \frac{(-1)^k}{k\pi} \sin k\pi s$, $K_2(s,t) = 2 \sum_{k\geqslant 1} \alpha_k \sin k\pi s \cdot \sin k\pi t$, et $K = K_1 + K_2$, ρ est à noyau K par rapport à la mesure $(\delta_1 + I_{[0,1]})\eta$ où η est la mesure de Lebesgue.

Références

- [1] A. Antoniadis, J.H. Beder, Joint estimation of the mean and the covariance of a Banach valued gaussien vector, Statistics 20 (1) (1989) 77–93
- [2] N. Bensmain, T. Mourid, Estimateur sieve de l'opérateur d'un processus ARH(1), C. R. Acad. Sci. Paris, Sér. I 332 (2001) 368–372.
- [3] D. Bosq, Linear Processes in Function Spaces: Theory and Applications, Springer, 2000.
- [4] D. Bosq, T. Mourid, On the equivalence of the measures induced by Banach valued Gaussian autoregressive processes, Stochastic Anal. Appl. 17 (2) (1999) 137–144.
- [5] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.
- [6] S. Geman, C.R. Hwang, Nonparametric maximum likelihood estimation by the method of sieves, Ann. Statist. 10 (1982) 401-414.
- [7] U. Grenander, Abstract Inference, Wiley, New York, 1981.
- [8] H.H. Kuo, Gaussian Measures in Banach Spaces, in: Lecture Notes in Math., Vol. 436, Springer-Verlag, New York, 1975.
- [9] J. Lindenstrauss, L. Tzafiri, Classical Banach Spaces I: Sequences Spaces, in: Ser. Modern Surveys in Math., Springer-Verlag, 1977.
- [10] A. Pelczynski, All separable Banach spaces admit for every $\varepsilon > 0$ fondamental and total biorthogonal sequences bounded by $(1 + \varepsilon)$, Studia Math. 55 (1976) 295–304.