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Abstract

We consider normal forms of Hopf-zero vector fieldsRA. Unique normal forms under conjugacy and orbital equivalence
for the generic case are givero citethisarticle: G. Chen et al., C. R. Acad. Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé
Nous étudions 'unicité des formes normales de champs de vecteurs de type Hopf—zéké.c[aesformes normales uniques
dans le cas générique sont données par rapport aux changements de coordonnées et pour I'équivalenBelorbitatecet

article: G. Chen et al., C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction and main results

Denote byX a germ of smooth@>) vector field inR3 whose linear part has eigenvalues zero aficind
whose nonlinear part is generic. Then in formal conjugacy category we can always normalize the lineakpart of
to the formX; = x302 — x203. Denote byH; (k > 2) the set of homogeneous vector fields of resonant terms of
degreek. One has, form > 1,

Hzm_spar{eraL 2m—2i 218 x2m —-2i—-1 ZzV x2m 2i—1 ZZXl, O<l _1}’

2m—2i+1_2i 2m—2i 2i 2m—2i 2i .
H2m+1:Spar{xl e, x7 T VL x7" T r Y X, 0<i gm},
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whereVi = x23, + x333 andr? = x3 + x3. Then the Poincaré—Dulac normal form can be written as

X=X1+Zxk, with X; € Hy. (1)
k=2
With a linear transformation one can obtain, in the generic case, a new vector field in which the quadratic terms
take the form:

Xz = (2 £r?)01 + x1(boVa + coX1), (2)
wherebg andcg are real parameters. To simplify notations and calculations, throughout the Note we shall suppose
that this step has already been done.

We remark that the signk and the values dfp andcg are invariants o in the conjugacy context and therefore
they do not depend on the choice of individual coordinates. In the orbital equivalence context, however, it does not
make any further sense to specify the value@findeed one can always eliminate the tergni X1 in (2) by
reparameterizing time (see shortly). Thus the quadratic terms can be reduced, under orbital equivalence, to

iz = (sz_ + r2) 01+ box1 V1.

Let H; = Spar{X1}. We have[Hy, H;] = {0} forany j > 1. One also hafH;, H;]1 C H;y;_1 foranyi, j. Let
L= Hji1thend -, Ly is a graded Lie algebra.To obtain a unique normal form we need to find a vectopfield
such that ex@d(®))(X) is in a normal form (see [1] or [4]).

We have obtained the following unique normal forms Xfwith respect to both conjugacy and orbital
equivalence, under nondegeneracy conditions. In terms of (2), the nondegeneracy conditions can be expresse
as follows, for any integer > 1,

2m 4+ 2jbo#2j,2j+1,2j+2, forO<j<m. 3)
We state our results in the following. We refer to [2] for more details.
Theorem 1.1 (Conjugacy equivalence normal fornet a vector field be given with a linear paxy; as above and

a generic quadratic park», i.e., verifying the conditiong). Then it can be formally conjugated to the following
unique normal form

X=X1+Xo+ (ale + Z amr2m>81 + Z (bmrzm Vi+ cmrszl). 4
m>2 m>1

Theorem 1.2 (Orbital equivalence normal formlet a generic vector field be given as in the above theorem, then
it is formally orbitally equivalent to the following unique normal form

§:X1+)?2+§3+ Z (&mr2m31+l;mr2mV1), (5)
m>=2
Where)?g = (x% +7r2)91 + box1V1 and }~(3 = &1)6%81 + b1r2vy.

2. Main steps of the proofs

Having put the vector field to a resonant normal form (1), we need to consider the adjoifXmajprestricted
to eachH; for k > 2, and find a complementary subspége; of its range inHy1. We can prove the following.

Lemma 2.1. Letm > 1 be an integer. Suppose that generic conditi@)sare satisfied.

(a) If m =1, thenkerl X2, -]z, = Spar{ X2} and
H3=[X2, Ho)l ®C3, withC3= Spar‘{xfal, r2vy, r2X1}.
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(b) If m > 2, thenker{ X2, -1| u,,, = {0} and
Homy1=1[X2, Hom] ® Coms1, WithCopq1= Spaf{rzm Vi, rszl}-
(c) If m > 1thenkel X2, -1|4,,,, = {0} and

Homyo=1[X2, Hount1]l ® Comi2,  WithCopyo = Spaf{f”z(mﬂ)al}-

Let k > 2 be an integer. Assume that we have obtained a conjugacy normal form up taofldecompute a
normal form of ordek + 1, we consider the linear mdi,, @] + - - - + [ Xy, @2] for &; € H;, subjected to the
conditions

j-2
D [X24i. @ i1=0 for2<j<k-—1. (6)
i=0
We compute its range iff; 1. Using Lemma 2.1 and by induction, we obta = o X; for j =2,..., k- 1.
Hence

k—2 k—2
D [Xowi, Pi] =X, Pl + ) [Xopi, aXi—i] = [X2, P — aXy].
i=0 i=1

Its range coincides with that of the adjoint operdt&p, -]. This proves the uniqueness of the conjugacy normal
form of Theorem 1.1. We notice that a similar unique conjugacy normal form is given in [6] by using a different
method.

Orbital equivalence consists of using coordinate transformations and reparametrization of the time, i.e.,
multiplication by a function. So the problemis to find a formal se€ies 1+ >_;>1Gj, WhereG ishomogeneous

of degreej, and a vector fielg so that expad(¢))(GX) is as simple as possible.
Let X be a vector field in a conjugacy normal form as described in (4)gbet1 — cox1. Then

X =goX =X —cox1X = X1+ X2 —cox1 X1+ = X1+ Xo+ -,

where the dots represent terms of degree higher than 2. One can then consider terms of degree 3 by renormalizir
again by coordinate transformations. The conjugacy normal form obtainexi i®iin the same form as before.
More generally fomn > 1, letg,, = 1 — ¢,,r?". Then

gnX =X —cyr®X =X1+ Xo+ -+ X —cnr?" Xp+ -+,

Itis clear now that one can use a sequence of multiplications and coordinate transformations to convert any generit
Hopf-zero vector field to a new one in the form (5). It remains to prove the uniqueness of this normal.form
We now consider some special cases for the funafiohetm > 2 andG =3} ;~,,, G;. Then

R_BT-T46E-F+ T S 6T
j=2mi=1

Now we renormalizé(\ under conjugacy equivalence. Lgt= @2, + P2, 41 + - - Where®; € H;. It turns out
that, to keer’ in a normal form up to ordern2 + 1, G2,,, 2, should be solutlons of the equatlon

[®2m, X2] + GowX1=0.
(2m) 2(m—j)-1 120X, = 2m) i-
One finds thatGs,, = X2(hom_1) and @2,,, Z] 0V X1 = hom-1X1, wherey are arbi

rary real parameters al 1= o V: X . Rherexs enotes the directional derivative
t | ters ard, ey J>121H X2(f) denotes the directional derivative @f
along X».
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Hence terms of orden2+ 1 in the orbital normal form ok are unchanged with arbitragy ™.
In order to determin@y,,+1 we need to substituté,,, andG,,,, and to solve similar equations as above. In
fact we obtaind,,, 1 and G2, which are solutions of the following equation

[®om+1, X2] + [@2m, X3] + G2nX2 + Gomp1X1=0.
One can prove that

Oomi1 =hom—1X2+howX1 and Gomy1 = X3(ham—1) + X2(hom),
whereho, =3 y;2m+l)xf(m_j )r2i andy @"*Y are arbitrary real parameters.

The key step in the proof of the uniqueness of the orbital normal form is to prove that fon gny, the
parametersr.(z’"“) keep the normal form of any order invariant. This is stated in the following lemma.We refer to
[2] for more details and proofs.

Lemma 2.2. Let notations be as above. Let= «g + Zk>1hk' oo € R and

[0 :ao(i — Xl) + thi —hX — ooX1.
>1

Then there exists a formal seri€s= Zk>2 G which is uniquely determined fromand X such that

expad¢))(X + GX) =X.

According to [3], where necessary and sufficient conditions are given for formal finite determinacy of germs of
vector fields, Hopf-zero vector fields are not finitely determined in the formal conjugacy category. In other words,
it cannot be reduced to a polynomial normal form. The above result shows that they are not finitely determined
in the orbital equivalence case either. On the other hand, in [5], it is proved that vector fields having two pairs of
purely imaginary eigenvalues generically are formally orbitally finitely determined, though they are not finitely
determined under the conjugacy equivalence. Thus the consequence of the present Note and the result of [5] brin
out an interesting problem in normal form theory: in terms of algebraic structure between eigenvalues of a vector
field, is it possible to give necessary or sufficient conditions for a vector field to be finitely determined in the orbital
equivalence category?

Acknowledgements

GC appreciates the hospitality of the Institute of Mathematics in Peking University where the Note was started.
JY is grateful for the hospitality of le laboratoire AGAT de I'Université de Lille 1 when he visited there. The work
of DW and JY are partially supported by NSFC-10271007 and NSFC-10271006.

References

[1] A. Baider, Unique normal forms for vector fields and Hamiltonians, J. Differential Equations 78 (1989) 33-52.

[2] G. Chen, D. Wang, J. Yang, Unique orbital normal forms for Hopf-zero vector fields, Preprint, 2002.

[3] F. Ichikawa, On finite determinacy of formal vector fields, Invent. Math. 70 (1982) 45-52.

[4] H. Kokubu, H. Oka, D. Wang, Linear grading function and further reduction of normal forms, J. Differential Equations 132 (1996) 293-318.

[5] J. Lamb, M.A. Teixeira, J. Yang, On the Hamiltonian structure of normal forms for elliptic equilibria of reversible vector figds in
Preprint, 2002.

[6] P.Yu, Y. Yuan, The simplest normal form for the singularity of a pure imaginary and a zero eigenvalue, Dyn. Cont. Disc. Impul. Syst. Ser. B,
Appl. and Algorithms 8 (2001) 219-249.



