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Abstract

We develop an asymptotic formula for calculating the implied volatility of European index options based on the vo
skews of the options on the underlying stocks and on a given correlation matrix for the basket. The derivation uses the
descent approximation for evaluating the multivariate probability distribution function for stock prices, which is ba
large-deviation estimates of diffusion processes densities by Varadhan (Comm. Pure Appl. Math. 20 (1967)). A detaile
of these results can be found in (RISK 15 (10) (2002)).To cite this article: M. Avellaneda et al., C. R. Acad. Sci. Paris, Ser. I
336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Nous montrons une formule asymptotique donnant la volatilité implicite d’une option sur indice à partir des volatili
actifs sous-jacents. La démonstration repose sur les estimations de densités de diffusion en temps petit du type grande
de Varadhan (Comm. Pure Appl. Math. 20 (1967)). On pourra trouver une version détaillée de ces résultats dans l’artic
15 (10) (2002)).Pour citer cet article : M. Avellaneda et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

We consider a basket ofn stocks described by their price processesSi(t), i = 1, . . . , n, and an index on thes
stocksB(t) =∑n

i=1wiSi(t), with thewi ’s constant.
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For simplicity we assume that each stock follows a one-factor risk-neutral process dSi/Si = σi(Si , t)dZi +
µi dt , whereσi (Si, t) is the so-calledlocal volatility function, µi is the drift associated with the cost of car
andZi = Zi(t) are standard Brownian motions which satisfyE(dZi dZj) = ρij dt , ρij constant.1 Typically, local
volatility functions for a particular underlying asset are derived from option market quotes by well-known m
[5–7,10].

To obtain the fair value of an index option in relation to its components, we compute an effective local vo
function for the index,σB,loc(B, t). This function is consistent with information on individual stock options
stock correlations, and has the property that the equation

dB

B
= σB,loc(B, t)dW +µB dt (1)

describes the evolution of the index the a “risk-neutral” world. (HereµB is the effective cost-of-carry rat
for the index.) Accordingly, the price of an European call option with maturityt and strikeB is given by
E(e−rt (B(t)−B)+), whereB(t) follows (1) andr is the interest rate.

From general principles [4,6,8,9], the square of the local volatility function in (1) is found to be the cond
expectation of thestochastic varianceσ 2

B(S, t) = 1
B2

∑n
i,j=1ρij σiσjwiwjSiSj given the value of the indexB at

time t . More precisely, we have:

σ 2
B,loc(B, t) = E

{
σ 2
B | B(t) = B

}= E

{
1

B2

n∑
ij=1

ρij σiσjwiwjSi(t)Sj (t)

∣∣∣∣
n∑

i=1

wiSi(t) = B

}
. (2)

In this paper, we propose an approximation to the functionσ 2
B,loc(B, t). This approximation gives rise to

formula that links the option prices in individual stocks, the correlations between different stocks, and the
of options on indices.

Let us note for further use that an important way of representing option prices in practice is by mean
so-called Black-Scholesimplied volatility: one replacesσB,loc in (1) by aconstantσ I

B so as to leave the value o
the option maturing att with strikeB unchanged. Note, however, that this constant depends on strike and m
as parameters. One proceeds in a similar way to define theσ I

i ’s.
Our strategy is to establish an asymptotic relation between the local and implied volatilities of the ind

the underlying assets in the limitσ̄ 2t � 1, whereσ̄ denotes a typical level of the volatilities involved. A typic
order of magnitude for the dimensionless parameterσ̄ 2t for major equity indices is 10−2, which is small enough
to justify the use of asymptotic methods. In practice, we found that the volatility reconstruction formulas de
hereafter are in excellent agreement with contemporaneous market quotes [1].

2. Main results

It is convenient to introduce the forward spot pricesFi = Si(0)eµit , F = B(0)eµBt , the forward log-moneynes
xi = ln(Si/Fi), x̄ = ln(B/F) and the fractions of holdingspi(x)= (Fi exiwi)/(

∑n
k=1Fk exkwk). Slightly abusing

the notations, we simply writeσi(xi)= σi(Fi ex
i
,0) andσB,loc(x̄)= σB,loc(F ex̄ ,0) (and similarly forσ I

i , σ I
B ).

Theorem 2.1 (Link between local volatilities).In the limit σ̄ 2t � 1 the local volatility of the index is given, to firs
order, by

σ 2
B,loc(x)=

n∑
i,j=1

ρij σi(x
∗
i )σj (x

∗
j )pi(x∗)pj (x∗), (3)

1 The results presented here apply to more general correlation/volatility structures, including for instance the case of multivariate
volatility/stochastic correlation models.
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wherex∗ = (x∗
1, . . . , x

∗
n) is the solution of the nonlinear system

x∗
i∫

0

du

σi(u)
= λ

n∑
j=1

ρijpj (x
∗)σj (x∗

j ), ∀i = 1, . . . , n;
n∑

i=1

wiFi ex
∗
i = B. (4)

Theorem 2.2 (Link between Black–Scholes implied volatilities).

(i) In the limit σ̄ 2t � 1 the implied volatility functions of the index and the underlying stocks are related

σ I
B(x̄)=

(
1

x̄

x̄∫
0

du

σB,loc(u)

)−1

, σi
(
xi
)=

(
d

dy

(
y

σ I
i (y)

)
|y=xi

)−1

, (5)

(i = 1, . . . , n) together with(3), (4).
(ii) In the at-the-(forward)money region{|x̄| � 1, |xi| � 1} this relation reduces, to first order, to

2σ I
B(x̄)− σ I

B(0)=
√√√√ n∑

i,j=1

ρijpi(x∗)pj (x∗)
(
2σ I

i (x
∗
i )− σ I

i (0)
)(

2σ I
j (x

∗
j )− σ I

j (0)
)
. (6)

(iii) The most likely configuration corresponding to a given index displacement is characterized, to firs
by

x∗
i

σ I
i (0)

� x̄

σ I
B(0)

(
n∑

j=1

ρij pj (0)
σ I
j (0)

σ I
B(0)

)
. (7)

3. Sketch of the proof

3.1. Proof of Theorem 2.1

We formally rewrite (2) as

σ 2
B,loc = E{σ 2

B δ(B(t) −B)}
E{δ(B(t)−B)} (8)

so thatσ 2
B,loc appears as an average ofσ 2

B . Whenσ̄ 2t is small, we shall prove that a concentration phenome
appears, reducing (8) to an evaluation at some point. For this purpose, we introduce the transition proba
Green function,π(0,0; x, t) of the diffusion processx = (x1, . . . , xn) with matrixaij = σiσjρij and we analyze i
thanks to a classical formula by Varadhan [11] that we now recall. Introducing the inverse matrix(gij ) = (aij )−1

and the associated Riemmanian metric ds2 =∑n
i,j=1gij dxi dxj , we have

π(0,0; x, t)∼ e−d2(0,x)/(2t ) = e−(σ̄ )2d2(0,x)/(2(σ̄)2t ), (9)

where

d2(0,x)= inf
x(0)=0, x(1)=x

1∫
0

n∑
i,j=1

gij (x(τ ),0)ẋi ẋj dτ. (10)

Hereẋ is the time-derivative ofx. The asymptotics in (9) are understood in the sense that the ratio of the loga
of the two terms tends to 1 asσ̄ 2t → 0.
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Henceπ(0,0; x, t) is strongly peaked near the pointsx whered2(0,x) is minimal. The method of steepe
descent thus impliesσB,loc(x̄, t) � σB(x∗, t), wherex∗ is the (generically unique) point realizing the distance
the sense of (10)) of the origin to the manifoldΓB = {x:

∑n
i=1wiFi exi = B}.

Introducing the change of variableyi = ∫ xi

0 du/σi(u), determiningx∗ is easily shown to be equivale

to minimizing
∫ 1

0

∑n
i,j=1(ρ

−1)ij ẏ
i ẏj dτ under the constraint

∑n
i=1wiFi(0)ex

i(yi) = B. Writing the first-order
Euler–Lagrange condition results in

n∑
j=1

(
ρ−1)

ij
ẏj = λ

B
wiFi(0)ex

i(yi) ∂x
i(yi)

∂yi
= λpi

(
xi
(
yi
))
σi
(
xi
(
yi
))
,

where for convenience the Lagrange multiplier has been written asλ/B. Looking for a solutiony(τ ) linear in τ

(so thatẏj = yj ) and multiplying by(ρ)−1 easily yields (4).

3.2. Proof of Theorem 2.2

Part 1 follows readily from the harmonic-mean relation between implied and local volatilities in the
σ̄ 2 t � 1 which can be found in [2,3]. Part 2 follows from a first-order expansion of that relation nearx̄ = 0
(resp.x̄i = 0). Similarly, Part 3 follows by Taylor expansion using Eqs. (4) and the Euler–Lagrange optim
conditions for the vectory.
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