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Abstract

We develop an asymptotic formula for calculating the implied volatility of European index options based on the volatility
skews of the options on the underlying stocks and on a given correlation matrix for the basket. The derivation uses the steepest
descent approximation for evaluating the multivariate probability distribution function for stock prices, which is based on
large-deviation estimates of diffusion processes densities by Varadhan (Comm. Pure Appl. Math. 20 (1967)). A detailed version
of these results can be found in (RISK 15 (10) (2002y)cite thisarticle: M. Avellaneda et al., C. R. Acad. Sci. Paris, Ser. |
336 (2003).
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Résumé

Nous montrons une formule asymptotique donnant la volatilité implicite d'une option sur indice a partir des volatilités des
actifs sous-jacents. La démonstration repose sur les estimations de densités de diffusion en temps petit du type grandes déviati
de Varadhan (Comm. Pure Appl. Math. 20 (1967)). On pourra trouver une version détaillée de ces résultats dans I'article (RISK

15 (10) (2002))Pour citer cet article: M. Avellaneda et al., C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

We consider a basket af stocks described by their price processgs), i = 1,...,n, and an index on these
stocksB(r) = Y 7_; w; Si(¢), with thew;’s constant.
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For simplicity we assume that each stock follows a one-factor risk-neutral proSes$ e o;(S;, 1) dZ; +
wu; dr, whereo; (S;, 1) is the so-calledocal volatility function w; is the drift associated with the cost of carry,
andZ; = Z; () are standard Brownian motions which satiff§dZ; dZ;) = p;; dt, p;; constant Typically, local
volatility functions for a particular underlying asset are derived from option market quotes by well-known methods
[5-7,10].

To obtain the fair value of an index option in relation to its components, we compute an effective local volatility
function for the indexgp 10c(B, 1). This function is consistent with information on individual stock options and
stock correlations, and has the property that the equation

%B = 0B j0c(B, 1) AW + pup dr ()
describes the evolution of the index the a “risk-neutral” world. (Heie is the effective cost-of-carry rate
for the index.) Accordingly, the price of an European call option with maturignd strike B is given by
E(e""(B(t) — B)+), whereB(¢) follows (1) andr is the interest rate.

From general principles [4,6,8,9], the square of the local volatility function in (1) is found to be the conditional
expectation of thetochastic variancerg (51 = % Zl'-szl pijoiojw;w;S;S; given the value of the indeR at
timez. More precisely, we have:

12
GI?,IOC(B’ 1) :E{Ué | B(t) = B} =K 5 Z Pijoiojwiw;S;(t)S;(t)
ij=1

Xn:wisi(l‘)ZB}. (2)

i=1

In this paper, we propose an approximation to the func&éﬁbc(B, t). This approximation gives rise to a
formula that links the option prices in individual stocks, the correlations between different stocks, and the values
of options on indices.

Let us note for further use that an important way of representing option prices in practice is by means of the
so-called Black-Scholemplied volatility. one replacess joc in (1) by aconstantaé so as to leave the value of
the option maturing at with strike B unchanged. Note, however, that this constant depends on strike and maturity
as parameters. One proceeds in a similar way to definei’tlse

Our strategy is to establish an asymptotic relation between the local and implied volatilities of the index and
the underlying assets in the limitr < 1, wheres denotes a typical level of the volatilities involved. A typical
order of magnitude for the dimensionless paraméferfor major equity indices is 1, which is small enough
to justify the use of asymptotic methods. In practice, we found that the volatility reconstruction formulas described
hereafter are in excellent agreement with contemporaneous market quotes [1].

2. Main results

it is convenient to introduce the forward spot priges= S; (0) e*i’, F = B(0) e*#!, the forward log-moneyness
x' =In(S;/F;), X =In(B/F) and the fractions of holdings; (x) = (F; € iw;)/(3_;_4 Fr €% wy). Slightly abusing
the notations, we simply write; (x') = o; (F; €, 0) andop joc(¥) = 0 10c(F €%, 0) (and similarly foro/, o'}).

Theorem 2.1 (Link between local volatilities)in the limit52r « 1 the local volatility of the index is given, to first
order, by

O 10c®) = D pijoi(x))o; () pi (X pj (X", @3)
ij=1

1 The results presented here apply to more general correlation/volatility structures, including for instance the case of multivariate stochastic
volatility/stochastic correlation models.
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wherex* = (x7, ..., x;) is the solution of the nonlinear system
xj* dl/l " " *
/U.(u):AZpijpj(x*)aj(x;‘), Vi=1, ..., n: Zw,»F,»e"t = B. (4)
1 . .
j=1 i=1

Theorem 2.2 (Link between Black—Scholes implied volatilities).

(i) Inthe limit52r « 1 the implied volatility functions of the index and the underlying stocks are related by

X -1
o= (Y e (8) ) °
UB(x)_<)EO UB,Ioc(u)) ’ GZ(X)_ dy Gil(y) ly=x! ’ ?

(i=1,...,n) together with(3), (4).
(i) Inthe at-thefforwardmoney regior{|x| < 1, |x;| < 1} this relation reduces, to first order, to

204(%) —o3(0) = J > pijpi ) p; () (20 () — 0] (0)) (20 (x1) — 5 (0)). (6)
i,j=1
(i) The most likely configuration corresponding to a given index displacement is characterized, to first order,
by
- n 1

xF X o (0)
g pijpj (O~ |. (7)
o/ () 04(0) (; a0

3. Sketch of the proof
3.1. Proof of Theorem 2.1

We formally rewrite (2) as

,2  _ElojsBW) — B)) @)
Bloc ™ "E(5(B(1) - B))
o) thataéIOC appears as an averagedg. Whena?s is small, we shall prove that a concentration phenomenon
appears, reducing (8) to an evaluation at some point. For this purpose, we introduce the transition probability, or
Green functiong (0, 0; X, 7) of the diffusion process = (x1, ..., x") with matrixa’/ = o;0;p;j and we analyze it
thanks to a classical formula by Varadhan [11] that we now recall. Introducing the inverse (ggirix (a'H~1
and the associated Riemmanian metsi¢ ¢ Y} ;_; g;; dx’ dx/, we have

7(0, 0: X, 1) ~ @42 0X/@1) _ g=(@)2d*0x0/2&)?) (9)
where
1 n
d?(0,x) = X(O)Z(i)m:( x / > gij(x(x), )& dr. (10)
’ o ii=1

Herex is the time-derivative ok. The asymptotics in (9) are understood in the sense that the ratio of the logarithms
of the two terms tends to 1 as'r — 0.
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Hencen (0, 0; x, 1) is strongly peaked near the pointsvhered?(0, x) is minimal. The method of steepest
descent thus impliesg 10c(¥, ) >~ op (X*, 1), wherex* is the (generically unique) point realizing the distance (in
the sense of (10)) of the origin to the manifdlg = {x: >_/_; w; F; € = B}.

Introducing the change of variablg = fé‘[ du/o; (1), determiningx* is easily shown to be equivalent

to minimizing fol Z;szl(p—l)ijy'fy'f dr under the constrain} "_; w; F;(0)e"' 0" = B. Writing the first-order
Euler—Lagrange condition results in

n

1 . A iy 0xE (vY) i o
Yo (o) = uiFr @) e =i (x ()i (e ().
j=1

where for convenience the Lagrange multiplier has been writtery Bs Looking for a solutiony(z) linear int
(so thaty/ = y/) and multiplying by(p) 1 easily yields (4).

3.2. Proof of Theorem 2.2

Part 1 follows readily from the harmonic-mean relation between implied and local volatilities in the limit
&2t « 1 which can be found in [2,3]. Part 2 follows from a first-order expansion of that relationinead
(resp.x; = 0). Similarly, Part 3 follows by Taylor expansion using Egs. (4) and the Euler—Lagrange optimality
conditions for the vectoy.
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