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Abstract The metric entropy of a C2-diffeomorphism with respect to an invariant smooth measure
µ is equal to the average of the sum of the positive Lyapunov exponents ofµ. This is the
celebrated Pesin’s entropy formula,hµ(f ) = ∫

M

∑
λi>0λi . The C2 regularity (or C1+α)

of diffeomorphism is essential to the proof of this equality. We show that at least in the two
dimensional case this equality is satisfied for a C1-generic diffeomorphism and in particular
we obtain a set of volume preserving diffeomorphisms strictly larger than those which are
C1+α where Pesin’s formula holds.To cite this article: A. Tahzibi, C. R. Acad. Sci. Paris,
Ser. I 335 (2002) 1057–1062.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

La formule d’entropie de Pesin C1-générique

Résumé L’entropie métrique d’un difféomorphisme C2, par rapport à une mesure invariante est égale
à la moyenne de la somme des exposants de Lyapunov positifs. Ceci est la célèbre formule
d’entropie de Pesin. La régularité du difféomorphisme est essentielle pour la preuve de
cette égalité. Nous montrons que en dimension deux, cette égalité est satisfaite pour un
difféomorphisme C1-générique et montrons qu’en particulier nous obtenons un ensemble
de difféomorphismes conservatifs contenant strictement ceux qui sont C1+α , où la formule
de Pesin est satisfaite.Pour citer cet article : A. Tahzibi, C. R. Acad. Sci. Paris, Ser. I 335
(2002) 1057–1062.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Version française abrégée

Les exposants de Lyapunov d’une application différentiable deM (une variété compacte) dansM sont
définis par le théorème d’Oseledets. Soitµ une mesure de probabilité invariante pourf ; pour presque tout
pointx il existe des nombresλ1(x) > λ2(x) > · · · > λk(x)(x) (les exposants) et une unique décomposition
TxM = E1(x)⊕ · · · ⊕ Ek(x)(x) tels que

lim
n→∞

1

n
log

∥∥Df n
x (v)

∥∥ = λi(x)

pour tout 0�= v ∈ Ei(x), 1 � i � l (dim(M) = l). Les exposants caractéristiques définis comme ci-
dessus sont en relation avec l’entropie def . Par exemple pour une mesure invarianteν et f ∈ C1, soit
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χ(x) := ∑
λi>0λi ; alors par un résultat de Ruelle :

hν(f ) �
∫
M

χ dm.

Le résultat est en général une inégalité stricte. Mais sim est absolument continue par rapport à la mesure
de Lebesgue surM, etf ∈ Diff 1+α

m (M),α > 0, alors

hm(f ) =
∫
M

χ dm.

En fait, on peut obtenir cette formule pour une plus grande classe de mesures (voir [3]). Mais la régularité
def est une condition nécessaire pour la preuve d’une telle égalité.

Nous allons montrer que si dim(M) = 2, il existe un sous-ensemble générique dans Diff1
m(M) où la

formule d’entropie de Pesin est satisfaite.

THÉORÈME 0.1. –Il existe un sous-ensemble générique G ∈ Diff 1
m(M), tel que toute f ∈ G satisfait la

formule d’entropie de Pesin et G contient strictement
⋃

α>0 Diff 1+α
m .

L’étape clef de la démonstration sera de prouver que les points de continuité des deux fonctions suivantes
hm(·),L(·) forment une partie résiduelle dans la C1 topologie.

Comme nous considérons des difféomorphismes conservatifs en dimension deux, il existe tout au plus
un exposant de Lyapunov positif. Définissons :

– L(f ) = ∫
M

λ1 dm pourf ∈ Diff 1
m(M) et

– hm(f ) = l’entropie métrique def pourf ∈ Diff 1
m(M).

Maintenant nous procédons en utilisant la formule d’entropie pour les difféomorphismes dans⋃
Diff 1+α

m (M). Soit f un point de continuité pourL(·) et hm(·). Par la densité de Diff1+α
m (M) dans

Diff 1
m(M) prouvée dans [4], il y a une suitefn ∈ Diff 1+α

m (M) telle quefn converge versf dans la C1

topologie. Par la formule de Pesin,hm(fn) = L(fn) et par la continuité enf , hm(f ) = L(f ).

The Lyapunov exponents of a diffeomorphismf of a compact manifoldM are defined by the Oseledets
theorem which states that, for any invariant probability measureµ, for almost all pointsx ∈ M there
exist numbersλ1(x) > λ2(x) > · · · > λk(x)(x) (Lyapunov exponents) and a unique splittingTxM =
E1(x)⊕ · · · ⊕Ek(x)(x) such that

lim
n→∞

1

n
log

∥∥Df n(x)v
∥∥ = λi(x)

for all 0 �= v ∈ Ei(x), 1 � i � m. The characteristic exponents defined as above are related to the entropy
of f . For example for any invariant measureν andf ∈ C1, letχ(x) := ∑

λi>0λi , then by a result of Ruelle:

hν(f ) �
∫
M

χ dν.

An estimation from below in terms of positive Lyapunov exponents is not true for general invariant
measures, but if the measurem is absolutely continuous with respect to the Lebesgue measure ofM, Pesin’s
formula states that form-preserving diffeomorphisms with Hölder continuous derivative,f ∈ Diff 1+α

m (M)

hm(f ) =
∫
M

χ dm.
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In fact this entropy formula holds for a larger class of measures [3]. However, the regularity off is
always used to get results of lower bounds for entropy.

We are going to show that if dim(M) = 2 then there exists a residual subset in Diff1
m(M) such that the

diffeomorphisms in this subset satisfy the Pesin’s entropy formula.

THEOREM 0.1. – There exists a C1-residual subset G ⊂ Diff 1
m(M) such that any f ∈ G satisfy the

Pesin’s entropy formula and G strictly contains
⋃

α>0 Diff 1+α
m .

The key idea is to prove that the set of the continuity points of the following two functions,L(·) and
hm(·) is residual in C1 topology. As we are considering volume preserving diffeomorhisms in dimension
two, there exists at most one positive Lyapunov exponent. Define:

• L(f ) = ∫
M

∑
λi>0λi(x)dm for f ∈ Diff 1

m(M) and

• hm(f ) = the metric entropy off for anyf ∈ Diff 1
m(M).

Now we proceed by using the entropy formula for diffeomorphisms in
⋃

Diff 1+α
m (M). Let f be a

continuity point forL(·) and hm(·). By density of Diff1+α
m (M) in Diff 1

m(M) proved in [4], there is a
sequencefn ∈ Diff 1+α

m (M) such thatfn converges tof in C1 topology. By Pesin’s formula,hm(fn) =
L(fn) and by continuity atf , hm(f ) = L(f ).

1. Continuity points of L(f ) and hm(f )

The continuous dependence of Lyapunov exponents on diffeomorphism is an important problem. In fact
let λ1(x, f ) � λ2(x, f ) � · · · � λd(x,f ) denotes all Lyapunov exponents off and�i(f ) = ∫

M

∑i
j=1λj

(average of sum of thei-greatest exponents) then it is well known thatf→�i(f ) is an upper semi-
continuous function.

LEMMA 1.1. – The application f→�i(f ) is upper semi-continuous for f ∈ Diff 1
m(M).

Proof. – By an standard argument we see that

�i(f ) = inf
n�1

1

n

∫
M

log
∥∥∧i

(
Df n(x)

)∥∥dm(x).

In fact, to see why the limit is substituted by infimum, observe that the sequence

an =
∫
M

log
∥∥∧i

(
Df n(x)

)∥∥dm(x)

is subadditive, i.e.,(an+m � an + am) and consequently liman/n = inf(an/n). Now, asan(f ) varies
continuously withf in C1 topology and the infimum of continuous functions is upper semi-continuous,
the proof of the lemma is complete.✷

Let us show thatL(f ) is an upper semi-continuous function in Diff1
m(M) independent of the dimension

of M.

LEMMA 1.2. – Let L(x,f ) = ∑
λi�0λi(x, f ) then f→L(f ) = ∫

M
L(x,f )dm(x) is upper semi-

continuous.

Proof. – Observe that the proof of this lemma for two dimensional case is the direct consequence of
Lemma 1.1. In fact for anyx ∈ M, limn→∞ 1

n
log‖ ∧p Df n(x)‖ exists and is equal toλ1 + λ2(x) +

· · · + λp(x). This functions varies upper semi-continuously with respect tof. From this we claim that
for anyx the functionf→∑

λi�0λi(f, x) is upper semi-continuous. Because letf ∈ Diff 1
m(M) and for

x ∈ M, λ1(x) � · · · � λp(x) � 0 � λp+1(x) � · · · � λd(x). TakeUε a neighborhood off such that for all

1059



A. Tahzibi / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1057–1062

1� k � d and anyg ∈ Uε

k∑
i=1

λi(x, g) �
k∑

i=1

λi(x, g)+ ε. (1)

This is possible by means of Lemma 1.1. Now take any suchg and letλ1(x) � · · · � λ′
p(x)� 0 � λp′+1 �

· · · � λd(x) for some 1< p′ < d. Using (1) we see that
∑p′

i=1λi(x, g) �
∑p

i=1λi(x, f ) + ε (consider the
three casesp′ <p,p = p′,p < p′) and the claim is proved.

Now we prove the lemma. By definitionL(x,g) � C for some uniformC in a neighborhood off . Define

An =
{
x ∈ M; d(f,g) � 1

n
⇒ L(x,g)−L(x,f ) � ε

2

}
.

As m(∪An) = 1 then for some largen we havem(An) � 1− ε/(4C). So,∫
M

L(x,g)−L(x,f )dm=
∫
An

L(x,g)−L(x,f )dm+
∫
Ac

n

L(x, g) −L(x,f )dm

� ε

2
+ 2C

ε

4C
= ε

and the proof of the lemma is complete.✷
The upper semi-continuity is the key for the proof of our main theorem, because by a classical theorem in
Analysis we know that the continuity points of a semi-continuous function on a Baire space is always a
residual subset of the space (see, e.g., [2]).

The upper semi-continuity ofhm(f ) for f varying in Diff1m(M) is not known. In fact using Ruelles
inequality and Pesin’s equality we can show upper semi-continuity ofhm(f ) in the C2 topology. (In
this paper all C2 statements can be replaced by C1+α .) Let g ∈ Diff 2

m(M) be near enough tof , by semi
continuity ofL(·) and Pesin’s equality in C2 topology:

hm(g) � L(g) � L(f )+ ε = hm(f )+ ε.

So, we pose the following question:

QUESTION 1.3. – Is it true thathm(f ) is an upper semi-continuous function with C1 volume preserving
diffeomorphisms as its domain?

However, we are able to show that at least in two dimensional case the continuity points ofhm(f ) is
generic in C1 topology.

PROPOSITION 1.1. –The continuity points of the map hm: Diff 1
m(M)→R is a residual set.

Proof. – We use the result of Bochi [1] which gives a C1 generic subsetG′ = A ∪ Z such that anyg ∈ A

is Anosov and forg ∈ Z both Lyapunov exponents vanish almost everywhere. We show thatG′ contains a
generic subsetG and each diffeomorphism inG is a continuity point ofhm. Firstly we state the following
lemma. ✷

LEMMA 1.4. –Any f ∈ Z is a continuity point of hm.

Proof. – Let g be near enough tof by Ruelle’s inequality and upper semi-continuity ofL(·) we get

hm(g) � L(g) � L(f )+ ε = ε. �

Now we prove thathm : A→R is upper semi-continuous. AsA ⊂ Diff 1
m(M) is open we conclude that

the continuity points ofhm|A is generic insideA.
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PROPOSITION 1.5. –hm restricted to C1 Anosov diffeomorphisms is upper semi-continuous.

Proof. – To prove the upper semi-continuity ofhm|A we recall the definition ofhm(f ). By a theorem of
Sinai we know that that ifP is a generating partition then

hm(f ) = hm(f,P) = lim
n→∞

1

n
Hm

(
P ∨ f−1(P)∨ · · · ∨ f−n+1(P)

)
. (2)

If f is Anosov then there isε > 0 such that anyg in a C1 neighborhood off is expansive withε as
expansivity constant. By the definition of generating partition any partition with diameter less thanε is
generating and so we can choose a unique generating partition for a neighborhood off . Asm is a smooth
measure we see that the function

f → 1

n
Hm

(
P ∨ f−1(P)∨ · · · ∨ f−n+1(P)

) = 1

n

∑
P

m(P) log
(
m(P)

)

is continuous where the sum is over all elements ofP ∨ f−1(P)∨ · · · ∨ f−n+1(P). The limit in (2) can be
replaced by infimum and we know that the infimum of continuous function is upper semi-continuous.✷

So, up to now we have proved that there exists a generic subsetA′ ⊂ A such that the diffeomorphisms in
G = A′ ∪Z are continuity point ofhm. Now we claim thatG is C1 generic in Diff1m(M). To proof the above
claim we show a general fact about generic subsets.

LEMMA 1.6. –Let A ∪ Z be a generic subset of a topological space T where A is an open subset. If
A′ ⊂ A is generic inside A then A′ ∪Z is also generic in T .

Proof. – As a countable intersection of generic subsets is also generic, we may suppose thatA′ is open
and dense inA. By hypothesis,A ∪Z = ⋂

n Cn whereCn are open and dense. So, we have

A′ ∪ Z = A′ ∪
(⋂

Cn ∩ Ac
)

=
⋂
n

(A′ ∪ Cn)∩ (
A′ ∪ Ac

)
. (3)

First observe that eachA′ ∪Cn is an open and dense subset and their intersection is generic. To complete the
proof it is enough to show thatA′ ∪ (Ac)◦ ⊆ A′ ∪Ac is open and dense. Openness is obvious and denseness
is left to reader as an easy exercise of general topology.✷

So, as the intersection of generic subsets is again a generic set we conclude that there is generic subset of
Diff 1

m(M) where the diffeomorphisms in this generic subset are the continuity point of bothL(·) andhm(·)
and so for this generic subset the Pesin’s entropy formula is satisfied.

To finish the proof of Theorem 0.1 we have to show that
⋃

α>0 Diff 1+α
m (M) is not a generic subset and

so the generic subset of Theorem 0.1 gives us some more diffeomorphisms satisfying Pesin’s formula than⋃
α>0 Diff 1+α

m (M).

LEMMA 1.7. – Diff1+
n (M) := ⋃

α>0 Diff 1+α
m (M) is not generic with C1 topology.

Proof. – We show that the complement of Diff1+
m (M) is a generic subset and this implies that Diff1+

m (M)

can not be generic.
As in what follows we are working locally, one may suppose thatM = R

2. Let us define

‖f ‖α = Sup
x �=y∈M

d(Df (x),Df (y))

d(x, y)α
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and denote

Hn,k = {
f ∈ Diff 1

m(M), ‖f ‖1/n > k
}
.

By the above definition we get Diff1
m(M) \ Diff 1+

m (M) = ⋂
n,m∈N

Hn,m. To prove the lemma we claim that
for anyn, eachHn,k is an open dense subset.

1.1. Openness

Let f ∈ Hn,k, by definition there existx, y andη > 0 such thatd(Df (x),Df (y))/d(x, y)α > k + η.
Take anyg, ε-near tof in C1 topology by the triangular inequality we get:

‖g‖1/n >
d(Dg(x),Dg(y))

d(x, y)1/n
>

d(Df (x),Df (y))

d(x, y)1/n
− 2ε

(d(x, y))1/n
.

Takingε small enough the above inequality shows that‖g‖1/n > k and the openness is proved.

1.2. Density

Let f ∈ Diff 1
m(M) we are going to findg ∈ Diff 1

m(M) \ Diff 1+
m (M) such thatg is near enough tof . For

this purpose we constructh ∈ Diff 1
m(M) \ Diff 1+

m (M) near enough to identity and then putg = h ◦ f.

Considering local charts, it is enough to construct a C1 volume preserving diffeomorphism̃I from R
2 to

R
2 such that:

(1) Ĩ is C1 near to identity insideB(0, ε) for smallε > 0.
(2) Ĩ is identity outside the ballB(0,2ε).
(3) Ĩ ∈ Diff 1

m(R
2) \ Diff 1+

m (R2).
Let us parameterizeR2 with polar (r, θ) coordinates andξ : R

2→R be a C1 bump function which is
equal to one inside the ball{r < ε} and vanishes outside the ball of radius 2ε. Consider the following C1

but not C1+α (for anyα) real diffeomorphism:

η(r) =



r + r

log1/r
if r > 0,

r if r � 0

and defineĨ (r, θ) = (r, θ + ξ(r)η(r)θ0) for smallθ0. The jacobian matrix of̃I is

DĨ =
(

1 0
θ0(ξ(r)η(r))

′ 1

)

and it is obvious that̃I is volume preserving and takingθ0 andε small enough it is near enough to identity
in C1 topology. ✷
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