C.R. Acad. Sci. Paris, Ser. | 335 (2002) 615620

Systémes dynamiques/Dynamical Systems

Examples of wandering domainsin p-adic polynomial
dynamics

Robert L. Benedetto
Department of Mathematics, Amherst College, P.O. Box 5000, Amherst, MA 01002, USA

Received 5 July 2002; accepted 20 August 2002
Note presented by Jean-Christophe Yoccoz.

Abstract For any primep > 0, we contructp-adic polynomial functions i€, [z] whose Fatou sets
have wandering domaingo citethisarticle: R.L. Benedetto, C. R. Acad. Sci. Paris, Ser. |
335 (2002) 615-620.
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Exemples desdomaines errants dansla dynamique polynéme
p-adique

Résumé Soit p > 0 un nombre premier. Nous construisons des polynémasliques dan€,(z]
dont les ensembles de Fatou ont des domaines errBats. citer cet article: R.L.
Benedetto, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 615-620.
0 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Version francaise abrégée

Soit p > 0 un nombre premier fixé, so@p une cléture algébrique du corf@, des nombres rationels
p-adiques, et soiC, le complété d@p pour la valeur absolug-adique, notée - |. Pour une fraction
rationelleg (z) € C,(2), la dynamique de opérant suiPl((Cp) = C, U {oo} est analogue a la dynamique
des fractions rationelles complexes sur la sphére de Riemann; voir [1,2,4,6,7,9-11], par exemple. En
particulier, on peut définir les ensemblesadiques de Julia, les ensembles de Fatou, et les composantes
des ensembles de Fatou, qui se comportent de fagon semblable & leurs contre-parties complexes. Bien que
quelques résultats partiels suggérent que I'ensemble de Fatba @(z) ne puisse pas avoir de domaine
errant, nous démontrons dans cet article gu’il y a des polyndomes(@gn$ avec des domaines errants.

Plus précisément, nous démontrons qu'il existe C,, tel que la fonctionp, définie par I'équation (1) a
un domaine errant.

Pourx € C, etr > 0, on note le disque ouvelt, (x) = {y € C,, : |y —x| < r} etle disque fermé®, (x) =
{y €Cp: |y — x| < r}. Nous considérons € C, tel quela| = |p|~?~Y > 1. Dans ce cas, augmente
des distances dar3; (1) par un facteur déu| ; voir équation (6). Nous observons avec I'équation (5) que
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¢ contracte localement des distances dBpg0), ol r = [p|* 7" < 1, mais¢” (D, (0)) = D1(0). De
plus, on peut étudier la variation de la famille en employant I'équation (4).
Avec ces outils, nous pouvons construire une valearC, et un pointx € D1(0) telle que l'orbite

{¢C{ (x)} ;>0 suit le modele dans I'égquation (7). Dans cette équation, un O grelae position indique que

é‘l(x) € D1(0), etun lindique qu¢£‘1(x) € D1(1);etpouri > 0,0naM; = 2i etm; =2p+2(p—1)i.
Comme la contraction dg;" dansD1(0) est supérieure a I'expansion ¢é4’*1 dansD1(1), on voit quex
est contenu dans un disque errantge

1. Introduction

Fix a prime numbep > 0, and letQ, denote the field op-adic rationals, formed by completirig
with respect to the unique absolute value satisfylimg=1/p. Let @p be an algebraic closure &f,, and
let C, denote the completion @p. The absolute valug- |, which extends canonically t@,, is non-
Archimedean, meaning that it satisfies the ultrametric triangle inequalityy| < max{|x|, |y|}. BothQ,
andC, are complete with respect to |, though@p is not. Note thaZ C Q, C C,; everyn € Z satisfies
n] <1, with |p|] < 1. See [5,8,12] for more general backgroundmadic fields.

Although Q,, is locally compect@p andC, are not. Still,C, is algebraically closed and complete,
analogous taC; the projective IindP’l((C,,) = Cp U {oo} is a non-Archimedean version of the Riemann
sphere. The dynamics of rational functiah&) € C,(z) acting on]Pl((C,,) have exhibited many parallels
with the existing theory of complex dynamics; see [1,2,4,6,7,9—-11], for example. The failure of local
compactness, and hence of the Arzela—Ascoli theorem, meang-tdit Fatou and Julia sets should be
defined in terms of equicontinuity, rather than normality.

TopoIogicaIIy,Pl(Cp) and its subsets are totally disconnected. Nevertheless, the author [1,2] and Rivera-
Letelier [9,11] have developed several related definitions of componeptadic Fatou sets which behave
as useful analogs of connected components of complex Fatou sets.

The author has proven [1] thatgfe @p(z) (acting on the fuI[E”l(Cp)) has nonempty Julia set with no
recurrent critical points of order divisible kyin 7, then the Fatou set @f has no wandering domains. (In
fact, the proof in [1] applies equally well to any of the definitions of components evgnsfempty.) The
main result of this paper implies that the first hypothesis (that the coefficientsﬁg)inannot be removed.

THEOREM 1.1. — There exists a € C, such that the Julia set 7 of

$a(2) = (1—a)z" Tt +az? 1)
is nonempty, the Fatou set F of ¢, has a wandering domain, and all critical pointsof ¢, liein F.

Compared to Sullivan’s complex No Wandering Domains Theorem [13], Theorem 1.1 gives a
sharp contrast between non-Archimedean and complex dynamics. Moreover, our result also provides
a counterexample disproving Rivera-Letelier's Conjecture de Non-Errance and his related statement on
Structure Conjecturale de 'Ensemble de Fatou in [9, Section 4.3]. However, both of those conjectures may
still be true if the hypothesis that all coefficients lie@), is added; see the conjecture in [1, Section 1].

A generalization of the method of this paper can actually be used to prove the density of parameters for
which ¢, has a wandering domain in the gete C,, : |a| > 1}. The argument works for any algebraically
closed complete non-Archimedean field with the property thak 1. However, in the interest of clarity,
we restrict our attention here to announcing the existengeadic wandering domains, and we leave the
generalizations to a forthcoming paper [3].
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2. Disks

We will denote the closed disk of radius> 0 about a pointz € C, by D, (a), and the open disk
by D, (a). We recall some basic properties of non-Archimedean disks. Every disk is both open and closed
as a topological set. Any point in a di€k is a center, but the radius &f is a well-defined real number,
being the same as the diameteitofif two disks inC,, intersect, then one contains the otherf 1€ C,[z]
is a non-constant polynomial, andiif C C, is a disk, thenf(U) is also a disk. Iz, b € Cp, r, s > 0, and
f € Cplzl with f(a) = b, then f mapsD; (a) bijectively ontoD; (b) if and only if for everyx € D, (a),

() — fl@)| = ; x—al.

We also recall Hsia’s criterion [7] for equicontinuity, which is a non-Archimedean analogue of the
Montel-Carathéodory theorem. Hsia stated his result for arbitrary meromorphic functions on more general
non-Archimedean fields, but for simplicity, we rephrase it for our special case.

THEOREM 2.1 (Hsia). —Let F be a family of rational functions on a disk U c C,, and suppose that
there are two distinct points ai, az € ]Pl((Cp) such that for all f € F, x e U, and i = 1, 2, we have
f(x) #a;. Then F isan equicontinuous family.

3. Thefamily

We consider the family¢g,} defined in equation (1), withz| = |p|~?~Y > 1. For any such, ¢, has
a superattracting (hence Fatou) fixed point at 0, and a repelling (hence Julia) fixed pointzat 1.
Furthermore, it is not difficult to see that the filled Julia Kefthat is, the set of points not attractedo)
is completely contained i®41(0) U D1(1). The only critical points ofy, besidesx lie in l_)\m(O), which
is a bounded open set that maps into itself. Hence, all critical points are Fatou.

Fix a € C, with |a| = [p|~P~D.If yo € D1(1) and|y1 — yo| < 1, then itis immediate from the definition
of ¢, and the ultrametric triangle inequality that

|6a(y1) — da(y0)| = lal - |y1— yol. )
If |p| < |yol <1 and|y1 — yol < |p|3 thenitis only slightly more difficult to show that

|ba(y1) — da(y0)| = lal - 1y0l” - Iy1 — yol. ®3)
On the other hand, if we fixo € D1(0) andy: € D1(1), and if we choose two parametersh € C,,, then
|66(y0) — ¢a(yO)| = |yol” - |b —al and |¢y(y1) — da(y1)| = Iy1— 1|+ |b—al. (4)

4. Local mapping propertiesof ¢/

Let S = |p|?. If x € D1(0) or x € D1(1), then using induction and Egs. (2) and (3), we can easily prove
the following statements concerning the next few iterates. of

m

LEMMA 4.1.—Leta € Cp, with |a] = |p|~?~D. Letm > 1and x € C, with |x| < |p|*=7". Then for

allo<i <m,
65| = 1pI* 7 1x”, andforallre (0.5), ¢} (D)) C D, e (#h)).

wheree; = p™" + p?7" ... 4 pi~™ < 2. Inparticular, if |x| = |p|*=P", then |¢/" (x)| = 1,
¢} (Dr(x)) C D, pm-2(¢) (x)) forall r € (0, S], (5)

and ¢’ (x) € D1(0) forall 0<i <m —1,
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Thus, the iterates of are pushed away from 0, but the functigfi is locally contracting.
On the other hand, all distances withity (1) are stretched by a factor of exactly|, giving us the
following simpler statement for that disk.

LEMMA 4.2.—Leta € C, with |a| =|p|~?~Y. Let M > 1 and x € C, with |x — 1| < |a|~™. Then for
alo<i < M,

|pi(x) =1 =lal' - |x = 1], andforallre (0,lal™™], ¢, (Dr(x)) =D, (8} x).
Inparticular, if [x — 1| = |a| ™, then [¢M (x) — 1| = 1,
¢y (Dr(x)) = D, o (¢ (x)) forall r € (0, ]a|™], (6)
and ¢’ (x) e D1(D) forall 0<i <M — 1.

5. Perturbations

Setthe notatio®,, (a, z) = ¢ (z). For fixedx € C,, ®, (-, x) is a polynomial function of the parameter
The following lemmas show how that function behaves locally in certain circumstances.

LEMMA 5.1.— Let a € C, with |a| = [p|~»~D. Let m > 2, let n > 0, and let x € C,, satisfying

|64 () =IpI*~7". Let A > |p|P~* beareal number, let ¢ € (0, A~1S], and suppose that
P, (Eg(a),x) C Dy, (¢Z(X)) and A< |p|p+l—m.
Then @,,4., (-, x) maps D, (a) bijectively onto D jq (¢ (x)).

Note that the two displayed conditions in Lemma 5.1 say, first, Ahigtlarge enough to bound the size
of a certain image disk, and second, thais large enough to make|~"*7*1 even larger tham.

LEMMA 5.2.— Let a € C,, with |a] = [p|~»~ V. Let M >0, let n > 1, and let x € C,, satisfying
g1 (x) —1| < |a|=™ Letse(O la|*~M]. Supposethat ®,, (-, x) maps D, (a) buectlvelyontoDg/w(qs"(x))
Then @, (-, x) maps D¢ (a) bijectively onto D, -1 (¢2 T (x)).

We sketch the proofs as follows. Pibke D, (a) \ {a}, and for every > 0, lets; = |¢”+’ (x) — ¢ (x)].
By the ultrametric triangle inequality, fér> 1 we haves; < max B;, C;}, with equality if B; # C;, where

Bi = |¢p(op 7t ) — u(¢p T )], and G =|ga (@) — ¢a (@27 W))]
Define

si=lb—al-max{A-|pl~¢,|p/”"""}, and 1 =|b—al-|a "t
whereg; is as in the statement of Lemma 4.1.
For Lemma 5.1, we show by induction (using Egs. (3) and (4) and Lemma 4.1Bth@t < s; for all
1<i <m. Then we observe th&l,, < B,, =s,, = |b — a|/|al, proving thats,, = |b — al|/|a/|, as desired.
Similarly, for Lemma 5.2, we show th# < C; =1;, forall 1<i < M. Thus,Sy =ty = la|M~1-|b—al.

6. Proof of Theorem 1.1

Letag= p~ P~ e C,. For each > 0, defineM; = 2i andm; = 2p + 2(p — 1)i. Setr; = |p|*~ 7"
ande; = |ag|Mi S.

By Lemma 4.1, any € C,, with |y| = ro satisfies|¢aq (y)| = 1. Becausebggo(O) =0, it follows that
Pa 0(D,O(O)) > D1(0). In par'ucular there is some e D,O(O) with ¢z (x) = 1. By the same lemma, we

must havex| = ro. We will find a € D1(ag) such that the OrbI{(ba (%)} ;>0 can be described by
o...,0,1,...,1,0,...,0,1,...,1,0,...,0,... @)
—— Y —— —— —

mo M1 mj M> mp
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where a 0 in thej-th position in the sequence indicates thnét_l(x) € D1(0), and a 1 indicates that
4 () € D1(D).
Fori > 0, define

l
=) (me1+M)=2+piGi+1), and Ni=n;+mi=pli+1i+2).
k=1
That is,n; is the number of terms in (7) up to but not including the block%f0’s, andN; is the number
of terms up to but not including the block &f; 1 1's.

For everyi > 0, we will finda; € D, ,(a;—1) So that for every: € Dy, (a;), the orbit{¢: (x)} follows (7)

up to thej = N; iterate, With¢,2.]i (x) =1 and such that
@y, (-, x) : Dg; (a;) — Dg;jja; (1) is bijective. (8)
Note that every; will lie in D, (ao), and thereforéa;| = |ag| = |p|~*~.

We proceed by induction on Fori = 0, we already havé%o(x) =1, and by Lemma 4.1, the orbit
{¢£o(x)} follows (7) up to theNg = mg iterate. By Lemma 5.1 (withh = ng = 0, m = mo, a = ao,
A=|p|?D ande = &0), condition (8) holds. Also, by Lemma 4.1, the orm{(x)} is correct up to
J = No for everya € Dg,(ag). Hence, theé =0 case is already done.

Fori > 1, assume that we are given_; with the desired properties. Let= |ag|1~™i < &;_1; then for
everya € L_)p(a,-_l), the orbit{@{(x)} agrees with (7) up tg = N;_1. By Lemma 5.2 (witha = a;_1,
M = M;, n = N;_1, ande = p), there existg; € C, such thajcy —a;_1| = p and

®,.(c1,x)=0 and &, (-,x): Dy(c1) — D,,(0) is bijective, 9)

whereo = r; - |ag|*™i € (0, p). By Lemma 4.2, the orbif¢, (x)} is correct up toj = n; for every
a € Dy(c1).

Choosers € Dy (c1) SO that|®,, (c2, x)| =r;. By Lemma 4.1)®y, (c2, x)| = 1. Furthermore it is clear
that @y, (c1, x) = 0. Because the polynomial image of a disk is a disk, it follows th,a,t(l_)a (c1),x) D
D1(0). We may therefore choose € D, (c1) S0 thatd y, (a;, x) = 1.

By Eq. (9), the radius o, (D, (a;)) must beg; - |ag|®i~1 = S. Therefore, by Lemma 5.1 (with= n;,
m=m;,a=a;, A=l|a;|M~1, ande = ¢;), condition (8) holds o, (¢;). By Lemma 4.1, the orbiip; (x)}
is correct up toj = N; for everya e 58,, (a;). Our construction ofi; is complete.

The sequencéu;};>o is a Cauchy sequence, because for any 0< j, we havela; — aj| < &;, and

e; — 0. Therefore, the sequence has a limi C,, with |a — ag| < eo. By constructiona € Dy, (a;) for
everyi > 0; hence, the orbitg; (x)} follows (7) exactly. In light of Lemmas 4.1 and 4.2, we must have
It (x)| = |p|t=P", and |l (x) — 1| = |a|~Mi+1, for anyi > 0. We only need to verify thap, has a
wandering domain containing

Let U = Dg(x); we will show thatU is contained in a wandering domain of the Fatou.Bedf ¢,,.
Every iteratelU, = ¢/ (U) is a disk; we claim that for any > 0, the radius ofU,, is at mostS = Ipl2,
and the radius o’y is at mostia|~™i+1S. The claim is easily proven by induction, as follows. Fet 0,
Uy, = Up= U, and by Eq. (5)Un, has radius at mogp|”0—2S = |a|~M1S. Fori > 1, we assume the
radius ofUy,_, is at mostla|~™: . By Eq. (6), the radius ot/,, is at mostS; and by Eq. (5), the radius of
Uy, is at most p|"i =28 = |a|~Mi+15.

In particular, naU,, contains the point 1; and because 1 is fixed, it follows thapoontains 1. Clearly,
no U, containsoco either. By Hsia’s theorem, then, the family);} is equicontinuous o/, and therefore
UcCF.

By any of the definitions of components in [1,2,9,11], the compofenf F containingl must be a
disk (see, for example, [2, Theorem 5.4.d]). Again, no iterafé oén contain 1, and therefore the symbolic
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dynamics of any point ir¥ are also described by Eq. (7). Because those dynamics are not preperiodic, it
follows thatV must be wandering.
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