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Abstract A new approach on tail index estimation is proposed based on studying the in-sample
evolution of appropriately chosen diverging statistics. The resulting estimators are simple
to construct, and they can be generalized to address other rate estimation problems as well.
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Une nouvelle méthode pour l’estimation de l’index d’une queue

Résumé Une nouvelle méthode est proposée pour l’estimation de l’index d’une queue de distribu-
tion. Elle est basée sur l’étude de statistiques divergentes. Les estimateurs résultants sont
simples à construire et peuvent être utilisés pour résoudre d’autres problèmes d’estimation.
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1. Introduction

LetX1, . . . ,Xn be an observed stretch of a linear time series satisfyingXt = ∑
j∈Z

ψjZt−j , for all t ∈ Z,

where{Zt } is i.i.d. from some distributionF , and the filter coefficients{ψj } are absolutely summable; the
case whereψj = 0 for j �= 0 is the special case of{Xt } being i.i.d. We assume thatF belongs toD(α), the
domain of attraction of anα-stable law; however, the heavy tail indexα is unknown and must be estimated

from the data. In this context, there exist sequencesan andbn such thata−1
n (

∑n
t=1Zt − bn) L�⇒ Sα , where

Sα denotes a genericα-stable law with unspecified scale, location and skewness, andα ∈ (0,2]; recall that
an = n1/αL(n) for some slowly-varying functionL(·).

Tail index estimators typically are based upon a numberq of extreme order statistics; see Csörgő et al.
[1] for a general class of estimators that includes many such estimators, for example, the well-known Hill
estimatorHq , as special cases. A challenging problem lies in choosing the number of order statisticsq to
be used in practice; see e.g. Embrechts et al. [3] and the references therein.

In this report, we construct a new type of tail index estimator not necessarily based on order statistics
which is analyzed in the case whereL(n) is constant. The new approach is very simple and intuitive, and
can be easily generalized to rate estimation settings other than the heavy tail problem. We also propose
some ways to improve upon the basic form of the new estimators, and give some finite-sample simulation
results.
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2. Motivation for the new estimation approach

Define the second sample momentS2
n = 1

n

∑n
t=1X

2
t ; as it turns out,S2

n diverges with ratea2
n/n. Since

an = n1/αL(n), the rate of divergence ofS2
n may give crucial information aboutα. For concreteness,

consider the standard case wherean = n1/α, i.e., L(n) is constant. DefineYk := logS2
k , and Uk :=

Yk − γ logk for k = 1, . . . , n, whereγ = −1+ 2/α.

LEMMA 2.1. – Let an = n1/α for some α ∈ (0,2]. Then, Un
L�⇒ some probability law (that depends

on α), as n→ ∞.

Proof. – Straightforward calculation givesUn = log(n−2/α∑n
t=1X

2
t ). First assumeα = 2. The fact that

F is inD(2) with an = n1/2 implies thatEZ2
t <∞ by a theorem of Giné and Zinn [4]); thus,EX2

t <∞ as
well, and the lemma follows from a law of large numbers. Now assumeα < 2. An extension of Lemma 2
of McElroy and Politis [5] givesa−2

n

∑n
t=1X

2
t = oP (1)+ �2

2a
−2
n

∑n
t=1Z

2
t , with �2

2 = ∑
j∈Z

ψ2
j . Since

a−2
n

∑n
t=1Z

2
t

L�⇒ Sα/2 the lemma is proven. ✷
From Lemma 2.1 it follows thatUn = OP (1). Thus, from the relationYk = γ logk +Uk it is suggested

thatγ could plausibly be estimated as the slope of a regression ofYk on logk, with a resulting estimator
for α; note that an intercept should also be included in this regression to account for the nonzero large-
sample expectation ofUn. We formalize the above by defining:

α̂ = 2

γ̂ + 1
, and γ̂ =

∑n
k=1(Yk − Y )(logk − logn)
∑n
k=1(logk − logn)2

, (1)

whereY = 1
n

∑n
k=1Yk , andlogn= 1

n

∑n
k=1 logk. Our main result follows.

THEOREM 2.1. –Let an = n1/α for some α ∈ (0,2]. Then, α̂
P−→ α, as n→ ∞.

Proof. – LetU = 1
n

∑n
k=1Uk , and note that sinceYk = γ logk +Uk , we have

γ̂ = γ +
∑n
k=1(Uk −U)(logk − logn)
∑n
k=1(logk − logn)2

.

Note thatc1 logn� logn� c2 logn, andc3(logn)2 � n−1 ∑n
k=1(logk)2 � c4(logn)2, for some constants

ci > 0; thus, from Lemma 2.1, it follows that̂γ = γ + OP (1/ logn), and the theorem is proven.✷
Remark 2.1. – The rate of convergence and asymptotic distribution ofα̂ will be investigated in a

follow-up paper. Note that Eq. (1) corresponds to an L2 regression estimator of slope. However, due
to the approximately exponential tails of the large-sample distribution ofYn, it is expected that an L1
regression would be consistent as well, and perhaps give better performance than L2. Also note that tail
index estimators based on least-squares arguments have previously been considered in the literature (mainly
in connection with order statistics); see e.g. the class of Zipf estimators analyzed in Csörgő and Viharos [2].

Remark 2.2. – The validity of the regression ofYk on logk is based on Lemma 2.1, i.e., on the fact that
the distribution ofUk tends to a limit. Thus, the(Yk, logk) points will not be very informative ifk is small
because the distribution ofUk has not yet stabilized. Consequently, it may be advisable in practice to drop
some points, much in the same manner as some points are dropped in a Markov Chain simulation. Thus,
one would regressYk on logk for k =m, . . . , n, for somem chosen either as some constant or even as a
function ofn but such thatn−m→ ∞; doing so does not affect the asymptotic consistency ofα̂.

Remark 2.3. – The general casean = n1/αL(n) is quite more difficult to handle; however, the special
case whereL(n)= (logn)β , for some unknownβ ∈ R, can be dealt with in the same fashion as above. To
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Table 1. – Entries represent empirical mean squared errors of different tail index estimators as computed from 100
Monte Carlo replications (withn= 1000).

α̂T ᾱ∗
(N=10) ᾱ∗

(N=30) ᾱ∗
(N=50) Hqopt

Cauchy 0.133 0.081 0.068 0.066 0.009

1.5-stable 0.122 0.081 0.068 0.068 0.012

1.9-stable 0.037 0.030 0.030 0.029 0.031

Gaussian 0.012 0.003 0.002 0.001 0.034

Pareto(2,1) 0.224 0.217 0.206 0.199 0.126

Burr(2,1,0.5) 0.183 0.073 0.056 0.053 0.032

do this, one would simply regressYk on logk and log logk simultaneously, with resulting estimators forα
andβ .

3. Improving upon the basic estimator

In general,α̂ is not guaranteed to fall in the interval(0,2]; thus, we may define the truncated estimator
α̂
T

by α̂T = 0 if α̂ � 0, α̂T = α̂ if α̂ ∈ (0,2], andα̂T = 2 if α̂ � 2. It is apparent that̂αT is also consistent
and more accurate than̂α.

Focusing on the case where the dataX1, . . . ,Xn are i.i.d., we may consider using permutations of the
data. There will be at mostn! such permutations; by some arbitrary criterion, chooseN of them, order
them in some fashion, and letX∗k

1 , . . . ,X
∗k
n denote thekth permutation. Letα̂∗k and γ̂ ∗k denote the

estimatorŝα andγ̂ as computed from thekth permutation. Finally, we definēα∗ = median{α̂∗1, . . . , α̂∗N },
α̂∗ = 2/(γ̂ ∗ + 1), andγ̂ ∗ = median{γ̂ ∗1, . . . , γ̂ ∗N }.

COROLLARY 3.1. – Assume an = n1/α for α ∈ (0,2], and that ψj = 0 for j �= 0, i.e., that the sequence

{Xt } is i.i.d. Then, ᾱ∗ P−→ α and α̂∗ P−→ α, as n→ ∞.

The recommendation is to takeN as big as computationally feasible. Table 1 presents the results of a
small simulation where i.i.d. samples of sizen = 1000 were generated andm = 1 (from Remark 2.2) for
concreteness. The choices forF were the symmetricα-stable distributions forα = 1,1.5,1.9 and 2, as well
as the Burr(a, k, τ ) distribution given byF(x)= 1 − ka/(k + xτ )a , for x > 0; note that the Burr(a, k,1)
is a Pareto(a, k) distribution. The simulation results are quite informative. Firstly, it was confirmed that
the distribution ofα̂ inherits a certain degree of heavy tails fromF making a strong case in favor of the
truncated estimator̂α

T
. Secondly, there is a significant effect of taking even a small numberN of (randomly

selected) permutations—in fact,N = 10 yields most of the benefits; in addition, the median inᾱ∗ clips all
outlying values so a truncation is not necessary. In many casesᾱ∗ seems roughly comparable toHqopt, i.e.,
the Hill estimator with an empirically optimized choice ofq ; see e.g. Embrechts et al. [3, Ch. 6.4]. It seems
that ᾱ∗ may have an improved performance in cases whereα is close to 2 but underperform in the other
cases. Interestingly,̄α∗ does not require a fine-tuning similar to the choice ofq in Hq .

4. The general rate estimation approach

The estimator̂α was based on the fact thatS2
n diverges at a rate depending onα. Nevertheless, this is a

general approach that is not limited to the second sample moment; for example, we could look at the 2rth
sample moment for somer ∈ N. We could also consider sample extrema as our diverging statistics, e.g.,
the maximumMn = max{X1, . . . ,Xn}, or the rangeKn :=Mn − Ln, whereLn = min{X1, . . . ,Xn}. One
could even look simultaneously at a number of such diverging statistics, obtain an estimatorα̂ from each of
them, and appropriately combine those estimators (say, by taking their median) to get an improved one.
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As a matter of fact, the proposed ideas go beyond the heavy tail problem and indicate a remarkably
general method of estimating a parameter associated with the rate by which an arbitrary statistic diverges.
We outline below the general rate estimation approach; here the dataX1, . . . ,Xn represent a stretch from
anarbitrary time series{Xt } that is not necessarily linear, nor stationary.
(a) LetTn = Tn(X1, . . . ,Xn) be some positive statistic diverging to∞ whose rate of divergence depends

on some unknown parameterλ.
(b) LetYk := logTk, andUk := log(k−g(λ)Tk), whereg(·) is a known invertible function, continuous atλ,

and such thatE|Un| = O(1) asn→ ∞.
(c) Estimateg(λ) by ĝ = (∑n

k=1(Yk − Y )(logk − logn)
)
/
∑n
k=1(logk − logn)2, andλ by λ̂= g−1(ĝ).

THEOREM 4.1. –If statements (a)–(c)are true, then λ̂
P−→ λ, as n→ ∞.
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