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Abstract A new approach on tail index estimation is proposed based on studying the in-sample
evolution of appropriately chosen diverging statistics. The resulting estimators are simple
to construct, and they can be generalized to address other rate estimation problems as well.
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Une nouvelle méthode pour I’ estimation de l'index d’une queue

Résumé Une nouvelle méthode est proposée pour I'estimation de I'index d’'une queue de distribu-
tion. Elle est basée sur I'étude de statistiques divergentes. Les estimateurs résultants sont
simples a construire et peuvent étre utilisés pour résoudre d’autres problémes d’estimation.
Pour citer cet article: D.N. Politis, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 279-282.
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1. Introduction

Let X1, ..., X, be an observed stretch of a linear time series satist¥ing ZjeZ ¥;Z,—;, forallt e Z,
where(Z,} is i.i.d. from some distributiorF, and the filter coefficientg);} are absolutely summable; the
case whergy; = 0 for j # 0 is the special case ¢X,} being i.i.d. We assume thét belongs taD(«), the
domain of attraction of aa-stable law; however, the heavy tail indexs unknown and must be estimated

from the data. In this context, there exist sequemgeandb, such that (3", Z, — by) N S«, Where
S, denotes a generig-stable law with unspecified scale, location and skewnessy an¢D, 2]; recall that
a, = nY?L(n) for some slowly-varying functiod.(-).

Tail index estimators typically are based upon a numbef extreme order statistics; see Csbef al.

[1] for a general class of estimators that includes many such estimators, for example, the well-known Hill
estimatorH,, as special cases. A challenging problem lies in choosing the number of order statistics
be used in practice; see e.g. Embrechts et al. [3] and the references therein.

In this report, we construct a new type of tail index estimator not necessarily based on order statistics
which is analyzed in the case whetén) is constant. The new approach is very simple and intuitive, and
can be easily generalized to rate estimation settings other than the heavy tail problem. We also propose
some ways to improve upon the basic form of the new estimators, and give some finite-sample simulation
results.
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2. Motivation for the new estimation approach

Define the second sample momefit= 2 -7, X?2; as it turns outS? diverges with rate;?/n. Since
a, = n**L(n), the rate of divergence a$2 may give crucial information about. For concreteness,
consider the standard case whese= n'/%, i.e., L(n) is constant. Defing := logS?, and Uy :=
Yy —ylogkfork=1,...,n,wherey = -1+ 2/a.

LEMMA 2.1.— Let a, = n¥/® for some « € (0, 2]. Then, U, :£> some probability law (that depends
ona), asn — o0o.

Proof. — Straightforward calculation givels, = log(n=%/% S_7_, X?). First assume: = 2. The fact that
Fisiin D(2) with a,, = n'/? implies thatE Z? < oo by a theorem of Giné and Zinn [4]); thuB X? < oo as
well, and the lemma follows from a law of large numbers. Now assuree2. An extension of Lemma 2
of McElroy and Politis [5] givesi, 2> /_y X2 = 0p(1) + Wia, 2> 1_y Z7, with w5 =", ¢?. Since

a72y_ 7255 s, /5 the lemmais proven. O

From Lemma 2.1 it follows thal/,, = Op(1). Thus, from the relatio; = y logk + Uy it is suggested
thaty could plausibly be estimated as the slope of a regressidfa oh logk, with a resulting estimator
for «; note that an intercept should also be included in this regression to account for the nonzero large-
sample expectation df,. We formalize the above by defining:

2 and 5= > ke1(Yx — Y)(logk — logn)

P+1 S r_1(logk —logn)?

o=

)

whereY = 1377 ¥;, andlogn = 1 $°¢_, logk. Our main result follows.

THEOREM 2.1. —Let a, = n/* for somea € (0, 2]. Then, & —> &, asn — oo.

Proof. —LetU = ;1 > i—1 Uk, and note that sinck, = y logk + Uy, we have

P=v+ > i—1(Ux — U)(logk — logn)
ZZ:1(|09k — |Ogn)2 ’

Note thatei logn < Togn < c2logn, andeg(logn)? < n=1 37 _, (logk)? < ca(logn)?, for some constants
¢; > 0; thus, from Lemma 2.1, it follows thgt =y + Op(1/logn), and the theorem is proveno

Remark 2.1.— The rate of convergence and asymptotic distributio ofill be investigated in a
follow-up paper. Note that Eq. (1) corresponds to gnregression estimator of slope. However, due
to the approximately exponential tails of the large-sample distributioK, ofit is expected that an 1L
regression would be consistent as well, and perhaps give better performance tidsolLnote that tail
index estimators based on least-squares arguments have previously been considered in the literature (mainly
in connection with order statistics); see e.g. the class of Zipf estimators analyzed i® @sdrgiharos [2].

Remark 2.2. — The validity of the regression &f on logk is based on Lemma 2.1, i.e., on the fact that
the distribution ofUy, tends to a limit. Thus, théYy, logk) points will not be very informative ik is small
because the distribution éf; has not yet stabilized. Consequently, it may be advisable in practice to drop
some points, much in the same manner as some points are dropped in a Markov Chain simulation. Thus,
one would regress; on logk for k =m,...,n, for somem chosen either as some constant or even as a
function ofn but such that — m — oco; doing so does not affect the asymptotic consistency. of

Remark 2.3.— The general casg = n/?L(n) is quite more difficult to handle; however, the special
case wherd.(n) = (logn)?, for some unknowg € R, can be dealt with in the same fashion as above. To
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Table 1. — Entries represent empirical mean squared errors of different tail index estimators as computed from 100
Monte Carlo replications (with = 1000).

ar ¥(y=10) (=30, ¥(n=50, Hgopt
Cauchy 0.133 0.081 0.068 0.066 0.009
1.5-stable 0.122 0.081 0.068 0.068 0.012
1.9-stable 0.037 0.030 0.030 0.029 0.031
Gaussian 0.012 0.003 0.002 0.001 0.034
Paret@2, 1) 0.224 0.217 0.206 0.199 0.126
Burr(2,1,0.5) 0.183 0.073 0.056 0.053 0.032

do this, one would simply regre$% on logk and loglogk simultaneously, with resulting estimators ter
andg.

3. Improving upon the basic estimator

In general@ is not guaranteed to fall in the intervé, 2]; thus, we may define the truncated estimator
a, byar=0ifa <0,ar =aif @ € (0,2], andar =2 if @ > 2. It is apparent thak is also consistent
and more accurate than

Focusing on the case where the d&tg ..., X,, are i.i.d., we may consider using permutations of the
data. There will be at most! such permutations; by some arbitrary criterion, chodsef them, order
them in some fashion, and lefi*, ..., X** denote thekth permutation. Le&** and p** denote the
estimatorsy andy as computed from thith permutation. Finally, we defing* = mediarfa*®, ..., a*V},

a* =2/(p* + 1), andy* = mediarjp*L, ..., p*N}.

COROLLARY 3.1.— Assume a,, = n'/* for « € (0, 2], and that y; =0for j #0, i.e, that the sequence
{X;}isiid Then a* > « and&* —> , asn — co.

The recommendation is to také as big as computationally feasible. Table 1 presents the results of a
small simulation where i.i.d. samples of size= 1000 were generated and= 1 (from Remark 2.2) for
concreteness. The choices fowere the symmetria-stable distributions for = 1, 1.5, 1.9 and 2, as well
as the Burr(a, k, t) distribution given byF (x) =1 — k?/(k + x7)¢, for x > 0; note that the Bur(a, k, 1)
is a Paretaa, k) distribution. The simulation results are quite informative. Firstly, it was confirmed that
the distribution ofe inherits a certain degree of heavy tails fradtnmaking a strong case in favor of the
truncated estimatar, . Secondly, there is a significant effect of taking even a small nuib&r(randomly
selected) permutations—in facdt, = 10 yields most of the benefits; in addition, the mediaf‘irclips all
outlying values so a truncation is not necessary. In many e@gsssems roughly comparable &), i.e.,
the Hill estimator with an empirically optimized choicegfsee e.g. Embrechts et al. [3, Ch. 6.4]. It seems
thata* may have an improved performance in cases wheieclose to 2 but underperform in the other
cases. Interestinglg* does not require a fine-tuning similar to the choiceg af H,,.

4. The general rate estimation approach

The estimatofr was based on the fact th&f diverges at a rate depending @nNevertheless, this is a
general approach that is not limited to the second sample moment; for example, we could look-#t the 2
sample moment for somee N. We could also consider sample extrema as our diverging statistics, e.g.,
the maximumM,, = max X1y, ..., X,,}, or the rangeX,, := M,, — L,,, whereL,, = min{Xy, ..., X,,}. One
could even look simultaneously at a number of such diverging statistics, obtain an eséirfratoreach of
them, and appropriately combine those estimators (say, by taking their median) to get an improved one.

281



D.N. Politis/ C. R. Acad. Sci. Paris, Ser. | 335 (2002) 279-282

As a matter of fact, the proposed ideas go beyond the heavy tail problem and indicate a remarkably
general method of estimating a parameter associated with the rate by which an arbitrary statistic diverges.
We outline below the general rate estimation approach; here theXdata., X,, represent a stretch from
anarbitrary time seried X, } that is not necessarily linear, nor stationary.

(a) LetT, =T,(X1,...,X,) be some positive statistic diverging ¢o whose rate of divergence depends
on some unknown parameter

(b) LetYy :=log Ty, andUy := log(k—¢MTy), whereg(-) is a known invertible function, continuous jat
and such thafE|U,| = O(1) asn — oo.

(c) Estimateg(h) by g = (3¢_y(Yx — Y)(logk —Togn))/>";_;(logk —Iogn)?, andi by & = g7(3).

THEOREM 4.1. —If statements (a)—(c)are true, then i LN A, @Sn — 00.
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