C.R. Acad. Sci. Paris, Ser. | 334 (2002) 881-884

Analyse fonctionnelle/Functional Analysis

I nterpolation orbitsin couplesof L, spaces

Vladimir I. Ovchinnikov
Voronezh State University, Universitetskaia pl., 1, Voronezh, 394693, Russia

Received 17 December 2001; accepted 28 February 2002
Note presented by Gilles Pisier.

Abstract We consider linear operatofrB mapping a couple of weighted , spaces{L ,(Up),
Lp,(Up} into {Lgo(Vo), Lgy (V1)) for any 1< po, p1, 90, q1 < oo, and describe the
interpolation orbit of anya € L ,,(Ug) + Lp,(U1) that is we describe a space of all
{Ta}, whereT runs over all linear bounded mappings frdh,,(Ug), Ly, (U1)} into
{Lg4o(Vo), Lg,(V1)}. We show that interpolation orbit is obtained by the Lions—Peetre
method of means with functional parameter as well as bykthmethod with a weighted
Orlicz space as a parametdio cite this article: V.I. Ovchinnikov, C. R. Acad. Sci.
Paris, Ser. | 334 (2002) 881-884. 0 2002 Académie des sciences/Editions scientifiques
et médicales Elsevier SAS

Orbites d’interpolation pour les couples d’espaces L,

Résumé Nous considérons les opératedrspartant d’'un couple d’espacds, a poids{L ,,(Up),
L, (U} avaleurs dangL 4, (Vo), Ly, (V1)}, 0U 1< po, p1, 90, 91 < 00, €t donnons une
description de I'orbite d'interpolation de tout élément L ,,(Ug) + L p, (Uy) ; autrement
dit nous décrivons I'espace de toutes les imd@eg, ouT parcourt I'espace des opérateurs
linéaires bornés d¢L »,(Up), L p, (U1)} dans{L4,(Vp), Ly, (V1)}. Nous montrons que
I'orbite d'interpolation est obtenue par la méthode des moyennes de Lions—Peetre avec
un parameétre fonctionnel, et aussi parKaméthode avec un espace d'Orlicz a poids
comme parametre fonctionnélour citer cet article: V.I. Ovchinnikov, C. R. Acad. Sci.
Paris, Ser. | 334 (2002) 881-884. 0 2002 Académie des sciences/Editions scientifiques et
médicales Elsevier SAS

This paper is devoted to description of interpolation orbits with respect to linear operators mapping an ar-
bitrary couple ofL , spaces with weight§L ,,(Uo), L, (U1)} into an arbitrary coupléL,,(Vo), Ly, (V1)},
where 1< po, p1, 90, g1 < 00. By L,(U) we denote the space of measurable functiéren a measure
space such thatf U € L, with the norm|| fllL,w) =l fUllL,-

Let{Xo, X1} and{Yp, Y1} be two Banach couples,c Xo+ X1. The space Otta, {Xo, X1} — {Yo, Y1})
is a Banach space of € Yo + Y1 such thaty = Ta, whereT is a linear operator mapping the couple
{Xo, X1} into the couplg Yy, Y1}. This space is called an interpolation orbit of the elemaent

We are going to describe the spaces @rl)L ,,(Uo), Ly, (U1)} = {L4,(Vo), Ly, (V1)}) for anya, any
1< po, p1, 90, g1 < 0o and any positive weight8y, U1, Vo, V1.

Fundamental results on description of these spaces in separate cases are well known since 1965. The key
role was played by the J. Peetkefunctional.
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Let {Xo, X1} be a Banach couple,e Xo + X1, s > 0,7 > 0. Denote by

K (s.1,x; {Xo, X1}) inf. 1S||Xo||xo+IIIX1I|X1,

X=x0+x
where infimum is taken over all representationscofs a sum ofcg € Xp and x1 € X1. The function
K (s, t) is concave and is uniquely defined by the functio(i, ¢, x; {Xo, X1}) which is also denoted by
K(t, x; {Xo, X1}).

If 1 < po<qo< o0, 1< p1<q1< oo, the orbits Orla, {L ,(Uo), Ly, (U1)} — {Lgo(V0), Lgy(V1)})
were described as the generalized Marcinkiewicz spaces, i.e.,

] K(s,t,y; {Lgo(Vo), Lg; (VD})
Orb(a, { L po(U0), Lpy (U1} = {Lgo(Vo), Ly (VD) }) = {y sup oo LoD oo}

foranya € L,,(Uo) + L, (U1). The decisive steps were done by Sparr in [10,11] and Dmitriev in [3]. In
particular Sparr showed that if

K (5,1, 35 {Lpo(V0), Lpy (VD) }) S CK (s, 1, a3 { L po(Uo), L (UD}),

then there exists a linear operafor {L ,,(Uo), L, (U1)} = {L po(V0), L, (V1)} such thaty = Ta.

Dmitriev in [3] had also found a description of orbits in the case of arbitraxy Ao, p1 < oo and
go =q1 =1 as well as in the case of arbitrarylpi, go < oo andpg=¢q1=1.

The result we are going to present here goes up to the paper [6] where some optimal interpolation
theorems were found. Developing this approach the following hypothesis was formulated in [7]. Roughly
speaking it states that the space @t{L ,,(Uo), L, (U1} = {Lg4y(Vo), Lg;(V1)}) is situated between
L4, (Vo) and Ly, (V1) exactly in the same place as the Calderon—Lozanovskii spélcg(Wo), L., (W1))
betweenL,,(Wo) andL,,(W1), whereg(s, 1) = K (s, 1, a, {L po(Uo), Lp, (U1} andrg ™t = (gg* — pg b+,
rl_l = (ql_l — p1_1)+. This hypothesis was partially confirmed in [8]. Now we show that hypothesis from [7]
is true for anya € L,,(Uo) + L, (U1). We also present a slightly modified description of interpolation
orbits which resembles Dmitriev’s description from [3].

1. The method of meansfor any quasi-concave functional parameter

Let ¢(s,t) be interpolation function, that is leb(r) = ¢(1,¢) be quasi-concave and(s,t) be
homogeneous of the degree one. Assume ¢hatdg which means thap(1,¢) — 0 andg(¢,1) — 0
ast — 0. Denote by{s,} the sequence invented by K. Oskolkov and introduced to interpolation by
S. Janson. The sequence is constructed by inductiooin.1) /e (t,), th+10 () /thp (th+1)) = g > 1.
(For simplicity in the sequel we suppose thiat is two-sided.)

The main property of this sequence is the following

K (st {p@) } {lpos 1ps (7)) < 065,) @

forany 1< po, p1 < oc.
DEFINITION 1.—Let{Xp, X1} be any Banach couplegs(t) be a quasi-concave function such that
¢ € g and 1< po, p1 < oo. Denote byp(Xo, X1) p,, p, the space of € Xg + X1 such that
x=) plta)w, (convergenceiXo+ X1), 2)

nez

wherew, € XoN X1 and{|lwyllx,} € Ipy, {tallwnllx,} €p;-
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The norm ing(Xo, X1) po, p; 1S Naturally defined. In the case ols, 1) = s1794% where 0< 6 < 1, these
spaces were introduced by Lions and Peetre in [5] and were called the spaces of means.

Note thate(Xo, X1)s0,00 COINcides with the generalized Marcinkiewicz spadg(Xo, X1) as well as
with the spacé&Xo, X1),,00 (s€€, for instance, [9]).

Let {Xo, X1} be a couple of Banach lattices. Recall th&& o, X1) is the space of all elements from
Xo + X1 such thafx| = ¢(|xol, |x1]), wherexg € Xo, x1 € X1.

LEMMA 1.-letl< Do, p1 < 00, then (/J(Lpo(UO)y Lpl(Ul)) = (p(Lpo(UO)’ Lpl(Ul))po,pl-
(Note that ifUp =1 andUy = 1, thenp(L 4, L ,) is an Orlicz space.)

Recall that interpolation function is called non-degenerate if the ranges of the functipfasl) and
¢(1,1) wheret > 0 coincide with(0, c0).

LEMMA 2. —If ¢ is non-degenerate, then for any Banach couple the space ¢(Xo, X1) pg,p; CONSIStS
of x € Xo + X1 for which {K (i, x, {X0, X1}} € 9(Upy, Lp, u;))), Where {u,,) is the Oskolkov—Janson
sequence for the function K (¢, x, {Xo, X1})-

We omit the proof. Note however that the proof is based onkihdivisibility (see [2]) and Lemma 1.
With the help of K-divisibility for the couple{lpo,lpl(u,;l)} the expansion (2) ok € ¢(Xo, X1) po, p1
in the couple{Xo, X1} generates the analogous expansion of the sequékice,,, x, {Xo, X1}} €
O pos Loy U ) po.pr = @ Upgs Lpy (1)) in the couple(l,, 1, (1)}, and vice versa.

Remark. — Note that the spaceg Xo, X1),,, coincide with the spac€Xo, X1),,, introduced by Janson
(see[4]). Lemma 2 gives us a new description of these spaces as well.

2. Themain theorem

THEOREM. —Let {L ,,(Uo), Lp,(U1)} and {L,,(Vo), Ly, (V1)} be two Banach couples, where 1 < po,
plv QOy ‘Il g OO, and ac Lpo(UO) + Lp]_(Ul) wCh that (p(s7t) = K(S,t,a, {LPO(UO)’ Lp]_(Ul)}) € CDO,
then

Orb(a, {Lpo(U0). Lpy(U1) } = {Lgo(V0), Lg; (V1) }) = ¢ (Lgo(V0), Lgy (V1))

ro,r1’
whererg = (g5t — po b+ and rt = (g7 — pr)+- (Asusual x denotes the positive part of x.)

The rest caseg(s, 1) ¢ ®o can be easily reducedids, t) € &g asitwas done in [9] where the analogous
situation takes place fqFp < go andp1 < g1.

The proof is a combination of the following propositions.

PropPoOSITION 1. —For any 1 < po, p1, 90, g1 < oo and any weights Ug, U1, Vo, V1, and for any
ae Ly, (Uo)+ Ly (Ur)

Orb(a, {Lp,(Uo), L p,(U1) } = {Lg(V0), Lg; (VD) }) C @ (Lgo(Vo), qu(Vl)),wl-
Proof. —Let b = Ta, whereT : {L,,(Uo), L, (U1)} = {L4(Vo), Lg;(V1)}. Recall thato(r) = ¢(1, ).
Denotea, = {p(t,)}, ¥ (u) = K (u, b, {L4o(Vo), Ly, (V1)}) andby = {y (u.n)}, whereu,, is the Oskolkov—
Janson sequence fgi(u). The Sparr theorem implies that there exists a linear opefatgy,,, lpl(tn—l)} —

{Lyo» Lgs (upy D)} such thatSa, = by,

We consider the embeddin{gqo,lql(u,;l)} - {loo,loo(u,;l)}. It is known that the embedding, C
I are (1, g;)-summing operators (by the Karl-Bennett theoresse [1]). Hence if go < po, then
the image of the standard basis sequenceé,jnwith respect toS : [,; — I Is [,,-sequence, that is
{IS(en)lli} € Lo, Whererg™ = o — po*. Analogously(i,lIS(en)ll, -1} € Ly, wherer;* = g7+ —

pl‘l. Hence in any case we hay@S(e,)li,.} € I, and {tallSCen)ll; -1y} € Iy Wherero‘1 = (qo_l —

883



V.I. Ovchinnikov / C. R. Acad. Sci. Paris, Ser. | 334 (2002) 881-884

po )+ andrit = (¢t — prH+. Therefore by definitiorby € ¢ (oo, loo(;;))re.r,- By Lemma 2 this
means{K (v, by, {loo, loo ;YD) € @y, 1, (v, 1)), Where{v,,} is the Oskolkov—Janson sequence for
K (v, by, oo, loo (U H}) = K (0, by, (g, Lgy (uy D)) = ¥ (v). Hencev,, = u,,, and by (1)

K (m. b, {Lgo(Vo), Lgy (VD) }) = K (um. by, {lgos Lgy (1) }) = K (i, by, {loos Lo (1) }).

SO{K (um, b, {Lyy(V0), Lg; (VIID} € 0y, l,l(u,;l)). By Lemma 2 proposition is proved.
The following propositions are devoted to the inverse inclusion

¢(Lgo(Vo), Lq1(V1))ro,r1 C Orb(a, {Lpo(U0), Lp, (U) } = {Lgo(V0), Lgy (V1) }).

For anyb € (L4, (Vo), Ly (V1))r,, We must find an operatdf € {L ,,(Uo), L, (U1)} = {L4o(V0),
Ly, (V1)} such thab = T'a. Again with the help of the Sparr theorem we substitutey a, andb by by, as
well as initial couples byl ., 1y, (4, 1)} and{ly,, I,, (u;, 1)}, respectively.

PROPOSITION 2. —Leét (¢ (um)} € 9y, L, (u,; 1)), then there exist sequences {80} € I, and (B} € I,
suchthat K (s, 2, {¥ (um)}, {11(1/BY), l1(1/ Brum)}) < Co(s, 1).

PROPOSITION 3. —Let by = {¢(un)} € <p(lr0,lrl(u,;1)), then by = S(a,) for some linear operator
S {lpgs Ly (17D} = {lggs Ly (uis )}

Proof. — Without loss of generality we assume thaf > go, p1 > q1. By Proposition 2 we can find
B° € l,, andg* € I,,. Consider the embedding

{10(1/80) 121/ Bryem) } © {Lpo (1/B0) 1oy (1/Brttm) } © {lgos lgn (™) } 3

and the elemeni,. By Proposition 2 we hav& (s, 1, by, {1o(1/B8%), 15, (1/BLum)}) < Co(s, ). Since
(s, 1) < K(s,t,ap, {lpo,l,,l(tn‘l)}), by the Sparr theorem there exists an operé‘ton{lpo,lpl(t,jl)} —
{1po(1/B2), 1,5, (1/BLu,)} mappinga, into by

The composition of and the right-hand side embedding in (3) is the desired mapping. Thus proposition
and theorem are proved.
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