
C. R. Acad. Sci. Paris, Ser. I 334 (2002) 371–374

Équations aux dérivées partielles/Partial Differential Equations

On some infinite sums of integer valued Dirac’s
masses
Didier Smets
Laboratoire d’analyse numerique, Université Pierre et Marie Curie, boite Courrier 187, 75252 Paris cedex 05,
France

Received and accepted 17 December 2001

Note presented by Haïm Brezis.

Abstract We give a simple proof of a result obtained by Bourgain, Brezis and Mironescu [2]
concerning special distributions arising as singular Jacobian determinants. The strong
relation of the problem with boundary rectifiability theorems is discussed, and an interesting
question remains open. To cite this article: D. Smets, C. R. Acad. Sci. Paris, Ser. I
334 (2002) 371–374.  2002 Académie des sciences/Éditions scientifiques et médicales
Elsevier SAS

Sur certaines sommes infinies de masses de Dirac entières

Résumé On donne une démonstration simple d’un résultat obtenu par Bourgain, Brezis et Mironescu
[2] concernant certains déterminants jacobiens singuliers. La preuve utilise la relation forte
du problème avec les théoremes de rectifiabilité du bord en théorie géometrique de la
mesure. Un problème intéressant reste ouvert. Pour citer cet article : D. Smets, C. R. Acad.
Sci. Paris, Ser. I 334 (2002) 371–374.  2002 Académie des sciences/Éditions scientifiques
et médicales Elsevier SAS

Let � be the boundary of a domain in R
3. To each function u ∈ H 1/2(�,R), one can associate

a distribution T (u) ∈ D′(�,R) which, if u is smooth, is given by T (u) = detDu (see [2] for the
construction). If u is smooth and takes its values in S1, then clearly T (u) = 0. Instead, if one only has
u ∈ H1/2(�,S1)∩ H1

loc(� \ ⋃k
i=1{aj }, S1), then

T (u)= 2π
k∑
j=1

dj δaj , (1)

where dj = deg(u, aj ) ∈ Z and δaj is the unit Dirac’s mass at point aj . Roughly said, the distribution
T describes the location and the topological degree of the singularities of u. These singularities play a
crucial role in the 3-dimensional Ginzburg–Landau model with the function u as boundary data. Using an
approximation theorem due to T. Rivière [7], it is shown in [2] that if u ∈ H1/2(�,S1), then there are two
sequences of points (Pi) and (Qi) in � such that∑

i

dist(Pi,Qi) <+∞ and
〈
T (u), f

〉 = 2π
∑
i

(
f (Pi)− f (Qi)

)
. (2)
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If moreover T is a measure, then

T (u)= 2π
∑
finite

dj δaj , (3)

with dj ∈ Z, and aj ∈�.
A related result was also obtained by Jerrard and Soner [5,6] for maps in W1,1(�,S1)∩ L∞(�,S1).
The proof of the last assertion, when T is a measure, takes advantage of some additional properties that

T inherits from its construction. The question was raised by Haïm Brezis whether if such a result could be
obtained without these further informations, and in more general spaces. The precise question is stated in
the following section.

1. Statement of the problem

Assume that X is a complete metric space, we will denote by BC(X) the Banach space of bounded
continuous functions on X with the supremum norm, and by BLip(X) the Banach space of bounded
Lipschitz continuous functions on X with norm ‖f ‖C0,1 := |f |∞ + Lip(f ), where Lip(f ) is the best
Lipschitz constant for f . The norms in the duals of BC(X) and BLip(X) will be denoted respectively
by ‖ · ‖0 and ‖ · ‖1. When X is a Banach space, C1

b(X) is the closed subspace of BLip(X) consisting of
continuously differentiable functions. Also, when Y and Z are two Banach spaces, the norm on Y × Z is
chosen to be the maximum of the norms of the two canonical projections.

Let (Pi), (Qi) be two sequences in X such that
∑

i∈N
dist(Pi,Qi) <+∞. The following functional is

well defined on BLip(X):

T (f ) :=
∑
i∈N

(
f (Pi)− f (Qi)

)
, (4)

and is continuous, with |T (f )| � ∑
i∈N

dist(Pi,Qi)Lip(f ).

PROBLEM 1.1. – Assume that T is a measure, in the sense that there exists C > 0 such that∣∣T (f )∣∣ � C|f |∞ ∀f ∈ BLip(X).

Does there exists a finite number of points xi ∈X and integers ai such that

T (f )=
∑
i

aif (xi).

Remark 1. – (a) Notice that the topology induced by the norm ‖ · ‖1 is equivalent to the one induced by
the minimal connection length for the pair (Pi), (Qi). By definition, this minimal connection length is the
infimum of

∑
i∈N

dist(Pi,Qσ(i)) when σ is a permutation of N (see the work of Brezis, Coron and Lieb [3]
for the proof (Lemma 4.2) and more).

(b) The positive answer in the case of X = R
n can be seen as consequence of a closure theorem in

Federer’s book ([4], Theorem 4.2.16, part 1). The proof in Section 2 below follows rather the same lines.
See also [1] for a more general setting.

(c) The completeness of the space X is essential for a positive answer, as easy examples show.

We should mention that there is no easy transfer in general metric spaces between measures in the set
theoretic sense and measures in the functional sense. However, this transfer is available in locally compact
spaces due to Riesz’s representation theorem. It is also available in general metric spaces if T satisfies a
Daniell’s condition (see Section 4), which will be added to our assumptions. We reduce the cases of metric
spaces to that of the real line by using a pull-back process.

2. The real line case

Let Tn denote the partial sum Tn := ∑n
i=0(δPi − δQi ) and µn := T − Tn.
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Clearly, the condition
∑

i∈N
dist(Pi,Qi) < +∞ implies that ‖µn‖1 → 0 as n → +∞. Going if

necessary to a subsequence, we can assume that∑
n∈N

‖µn‖1 <+∞. (5)

Let a, b ∈ R, we will prove that T ([a, b])∈ Z.
On the closed subspace V := {(ϕ,ϕ′), ϕ ∈ C1

b(R)} ⊂ BC(R)× BC(R), we define An(ϕ,ϕ′) := µn(ϕ).
Clearly, ‖An‖ = ‖µn‖1. Using the Hahn–Banach theorem, An can be extended to a linear map on
BC(R) × BC(R) without increasing its norm, we still denote it by An. An easy calculation shows that
the measures νn(ϕ) :=An(0, ϕ) and (νn◦ d)(ϕ) :=An(0, ϕ′) satisfy∥∥µn − (νn ◦ d)∥∥0 + ‖νn‖0 = ‖µn‖1. (6)

Assume that χr,h is a smooth function which is equal to 1 on [a − r, b+ r], to 0 outside [a − r − h,b+
r + h] and which satisfies |χr,h|∞ � 1, Lip(χr,h)� 2/h.

The function g(r) := |νn|([a − r, b+ r]) being increasing in r , it is almost everywhere differentiable. In
those points r where it is, we compute:∣∣µn(χr,h)∣∣ �

∣∣µn(χr,h)− (νn ◦ d)(χr,h)
∣∣ + ∣∣νn(χ ′

r,h)
∣∣ �

∥∥µn − (νn ◦ d)∥∥0 + 2

h
· (g(r + h)− g(r)

)
.

Taking the limit h→ 0 first and then integrating for r ∈ [0,1], we obtain:∫ 1

0

∣∣µn([a − r, b+ r])∣∣dr �
∥∥µn − (νn ◦ d)∥∥0 + ‖νn‖0,

and using Eqs. (5), (6), ∫ 1

0

∑
n∈N

∣∣µn([a − r, b+ r])∣∣dr <+∞. (7)

Hence, for almost every r ∈ [0,1], µn([a− r, b+ r])→ 0, so that T ([a− r, b+ r])= limn→+∞ Tn([a− r,

b+ r]) ∈ Z and T ([a, b])= limr→0 T ([a − r, b+ r]) ∈ Z.

PROPOSITION 2.1. – The answer to Problem 1.1 is yes when X = R.

Proof. – The result immediately follows from the previous analysis. ✷
3. The locally compact case

When X is a locally compact metric space, we can associate to the functional T a Borel regular measure
(also denoted T ) by mean of the Riesz’s representation theorem.

LEMMA 3.1. – Assume X is locally compact and T is a measure as in Problem 1.1, then for each closed
ball B[x, r] ⊆X, T (B[x, r]) ∈ Z.

Proof. – Let

σx : BC(R)→ BC(X) and f �→ σxf (·) := f
(
dist(x, ·)). (8)

The pull-back measures,

T̃ (f ) := T (σxf ) and T̃n(f ) := Tn(σxf )

satisfy the assumptions of Proposition 2.1. Indeed,∣∣T̃ (f )− T̃n(f )
∣∣ = ∣∣T (σxf )− Tn(σxf )

∣∣ � ‖T − Tn‖1 Lip(σxf )� ‖T − Tn‖1 Lip(f ). (9)

Using Proposition 2.1, T̃ is a finite sum of integer valued Dirac’s masses. Hence, T (B[x, r]) ∈ Z, whatever
r is. As x was arbitrary, the proof is complete. ✷

PROPOSITION 3.2. – The answer to Problem 1.1 is yes if X is locally compact.
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Proof. – Let Tcont be the non atomic part of T . That is, T − ∑
i T (xi)δxi where the xi are the points in

X with a nonzero T measure (of course there are a finite number of them). Again, Tcont(B[x, r]) ∈ Z for
each x ∈ X, r � 0. Assume that the theorem is false, so that Tcont �= 0. Then, for each n ∈ N, there exists
a ball B[yn,1/n] such that 0 �= Tcont(B[yn,1/n]) ∈ Z. Indeed, X has a nonzero Tcont measure and can
be covered by a countable family of such balls (X is even separable). Now, the sequence (yn) must have
an accumulation point y∗ ∈ X, otherwise T would have an infinite total variation. Then, Tcont(y

∗) �= 0, a
contradiction. This proves the theorem. ✷
4. The general case

As explained in the introduction, there is no easy correspondence in non locally compact metric spaces
between measures in the sense of Problem 1.1 and measures in a set theoretic sense. However, it is not
clear that the right definition of a functional measure in the case of a non locally compact space is that
of Problem 1.1. Instead, the following definition of a functional measure (often called a Daniell integral)
seems more appropriate because of Theorem 4.2.

DEFINITION 4.1. – A finite Daniell integral on a complete metric space X is a linear functional
T : BC(X)→ R such that ∣∣T (f )∣∣ � C|f |∞ ∀f ∈ BC(X) (10)

and

fn ↑ f everywhere ⇒ T (fn)→ T (f ), (11)

whenever fn,f ∈ BC(X).

Remark 2. – When X is locally compact and the fn have all their supports in a same compact set, then
condition (11) is implied by condition (10).

The following theorem can be found in Federer’s book ([4], Theorem 2.5.5).

THEOREM 4.2. – Assume that T is a finite Daniell integral, then there exists a finite Borel regular
(signed) measure µT such that

T (f )=
∫
X

f dµT whenever f ∈ BC(X).

In this framework of Daniell integral, we have:

THEOREM 4.3. – If X is a complete metric space and T is a finite Daniell integral, the answer to
Problem 1.1 is yes.

Proof. – First notice that the support of T is contained in the closure of the set (
⋃
i Pi)∪ (

⋃
i Qi), which,

with the induced topology, is a complete separable metric space. Without loss of generality, we can thus
assume that X is separable. The proof then goes on along the same lines as in Proposition 3.2. ✷
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