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Abstract We prove that almost every (in the Baire category sense) weight w on a circle T satisfies
the following property: any function from L2(w,T) can be decomposed as a series∑

n∈Z+
c(n) eint

which converges in the norm.
We discuss this result in the context of the classical Szegö–Kolmogorov “prediction”

theorem. To cite this article: A. Olveskii, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 279–
282.  2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Sur le problème de prédiction

Résumé Au sens des catégories de Baire, presque tout poids w vérifie la propriété suivante : toute
fonction appartenant à L2(w,T) est décomposable en série∑

n∈Z+
c(n) eint

convergente en norme. Nous discutons la relation de ce résultat avec le théorème de
« prédiction » classique de Szegö–Kolmogorov. Pour citer cet article : A. Olveskii, C. R.
Acad. Sci. Paris, Ser. I 334 (2002) 279–282.  2002 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS

1. Introduction

1.1. In a recent paper [2] joint with G. Kozma, we proved that every measurable function f : T → C can
be decomposed into a trigonometric series of analytic type, which converges in measure.

Here we are interested in the “weighted” analog of this result. By weight we mean any measurable
function w, 0 � w(t) � 1. The set of all such functions endowed with an L1 distance constitutes a complete
metric space W .

Our main result is the following

THEOREM. –
(i) There exists a weight w > 0 a.e., such that any function f ∈ L2(w,T) can be decomposed in a series:

f =
∑
n>0

c(n) eint (1)

convergent in the norm.
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For any p > 2 the coefficients {c(n)} can be chosen in lp with an arbitrary small norm.
(ii) The set of such weights is residual in the space W .

1.2. The classical Szegö–Kolmogorov condition:∫
T

logw(t)dt = −∞ (2)

is responsible for completeness of the system {eint}, n > 0, in L2(w,T), see, for example, [1]. In
probabilistic language this means that if the spectral density w(t) of a stationary stochastic process {X(n)},
n ∈ Z, satisfies condition (2) (and only in this case) one can precisely predict the future from the past. So
X(0) might be written with an arbitrary small error ε as a finite linear combination of X(−n), n > 0, with
some coefficients {c(n)} depending on ε.

Since “the past”, X(−n) is usually known with some “noise”, it is quite reasonable to require coefficients
to be small, or at least to satisfy the condition

sup
n

∣∣c(n)∣∣<C – a constant not depending on ε. (3)

We notice that condition (2) does not provide such an approximation. Moreover, it is easy to see that
such a “stable forecast” cannot exist unless the spectral density w behaves extremely irregularly, having the
essential infimum equal to zero at any arc. However such irregular behavior is “typical” in the Baire sense.
Our theorem above shows that for a generic w (that is, for a residual set of w’s) one can get not only an
approximation with condition (3), but even a decomposition:

X(0)=
∑
n>0

c(n)X(−n).

2. Lemmas

We use the following standard notation: mE – the Lebesgue measure of a set E on the circle T, 1E – the
indicator function of E, ‖c‖p – the lp norm of the sequence c = {c(n)}, the symbol ˆ stands for the Fourier
transform.
2.1. We start with a simple

LEMMA. – A generic w in the space W satisfies the following conditions:
(i) w(t) > 0 a.e.

(ii) Given a sequence of sets V (r) ⊂ T, mV (r) → 0, and a sequence of positive numbers a(r), the
inequality below holds for infinitely many r’s:∫

V (r)

w dt < a(r). (4)

We omit the proof.
2.2. By analytic polynomial we mean a trigonometric polynomial with a positive spectrum:

Q(t) =
∑
n>0

c(n) eint.

We denote by Sl(Q) the partial sums.
The main ingredient is the following

LEMMA. – For any h > 0 and p > 2 one can construct an analytic polynomial Q and a set E ⊂ T with
conditions:

(i) ‖Q̂‖p < h;
(ii) m(T\E) < h;

(iii) |Q(t)− 1| < h on E;
(iv) Any partial sum S = Sl(Q) can be decomposed as S = A+B so that:

‖A‖L∞(E) < 2, ‖B‖L2(T) < h.
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This is Lemma 4.1 from [2] strengthened by Remark 2 on p. 383 ibid. The condition (iv) here is written
in a different form, which can be seen from the proof.

3. Proof of the theorem

Given f : T → C and r ∈ Z+ we denote by f[r] the contracted function:

f[r](t) := f (rt), t ∈ T.

For E ⊂ T the set E[r] is defined by:

(1E)[r] = 1E[r] .

Now, for h(r) = 1/r , p(r) = 2 + 1/r we find according to Lemma 2.2 an analytic polynomial Qr and a
set E(r). Put:

U(r) = {
E(r)

}
[r], V (r) = T \U(r).

Considering the decomposition 2.2(iv):

Sl(Qr) = A(l, r)+B(l, r),

denote

A(r) := max
l

∥∥A(l, r)
∥∥

L∞(T)

and set

a(r) = 1

r

(
A2(r)+ ∥∥Q̂r

∥∥2
1

)−1
. (5)

Let W0 be the set of all positive weights w satisfying condition (4) for infinitely many r’s. According
to Lemma 2.1 it is residual in W . Fix w in W0, f ∈ L2(w,T), p > 2 and d > 0. We will construct an
expansion (1) satisfying the condition ‖c‖p < d .

We define the expansion by “blocks” :

Pn =
∑
k∈Jn

c(k) eikt ,

where Jn are some segments in Z+. It is enough to get conditions:

(i) minJn > maxJn−1,

(ii) ‖Rn‖ < 1/n‖f ‖, Rn := f − ∑
j�n Pj ,

(iii) max
l

∥∥Sl(Pn)
∥∥ = O(1/n),

(iv) ‖P̂n‖p < d/2n.

(6)

Here and below, by ‖ · ‖ with no subindex, we mean the norm in L2(w,T).
Put P0 = 0, fix n in Z+ and suppose that Pj , j < n, are already defined. Now approximate the remainder

Rn−1 by a trigonometric polynomial g:

‖Rn−1 − g‖ < ‖f ‖/n
and take r such that (4) holds. Set:

Pn = g · {Qr }[r].
We have to check that if r is chosen sufficiently large then all conditions (6) are fulfilled. For the first and
last ones this is obvious. For the second one we write:

‖Rn‖ = ‖Rn−1 − Pn‖ <
‖f ‖
n

+ ‖g − Pn‖ <
‖f ‖
n

+ ∥∥ĝ∥∥
1

{∫
T

∣∣1 − {Qr }[r](t)
∣∣2
w(t)dt

}1/2

.
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We divide the integral into two parts – over U(r) and over V (r). Notice that due to 2.2(iii) the integrant
in the first one is less than 1/r2. The second integral is estimated by (4) and (5). All this gives: ‖Rn‖ <

‖f ‖/n + o(1) when r → ∞, so we get (6)(ii) for a large r . Now we mention that if r > 2 degg than any
partial sum Sl(Pn), l = sr +m, −r/2 <m � r/2, can be represented as

Sl(Pn) = g · {Ss(Qr)
}

[r] +D(l,n), ‖D‖ �
∥∥ĝ∥∥

1 · ∥∥Q̂r

∥∥∞
(compare with (10) in [2]), so using 2.2 (i) and (iv) we get:∥∥Sl(Pn)

∥∥ �
∥∥g{

A(s, r)
}

[r]
∥∥ + ∥∥g{

B(s, r)
}

[r]
∥∥ + 1/r

∥∥ĝ∥∥
1.

Since w � 1 we have:

‖gB[r]‖ � ‖gB[r]‖L2(T) �
∥∥ĝ∥∥

1‖B‖L2(T) <
∥∥ĝ∥∥

1/r.

The estimate for A proceeds as follows:∥∥g · {A(s, r)
}

[r]
∥∥2 =

∫
T

∣∣g(t)∣∣2∣∣A(s, r)(rt)
∣∣2
w(t)dt =

∫
U(r)

+
∫
V (r)

< 4‖g‖2 + ‖g‖2
L∞(T)A

2(r)a(r)� 4‖g‖2 + o(1) <
C‖f ‖2

n2 + o(1) (r → ∞),

so, again for large r , we get (6)(iii). This completes the proof.

4. Remarks

4.1. First we clarify the remark made in 1.2. Let {qj } be analytic polynomials s.t.

‖1 − qn‖L2
(w,T)

= o(1), (7)

where w is a weight, w(t) > c > 0 on an arc I .
Then ‖q̂n‖∞ → ∞.
Indeed, if not, we get a pseudomeasure f which is the limit (in the sense of distributions) of some

subsequence 1 − qn(j), so f̂ (0) = 1, f̂ (n) = 0 for n < 0. The conditions (7) together with boundness of w
away from zero on I implies that supp f belongs to T\I . Convolving with a smooth “hat”, supported by a
small neighbourhood of zero, we reach a contradiction to a classical uniqueness theorem.
4.2. Our theorem is true for some other spaces of weights. In particular, one may consider the metric space
of indicator functions {1E} of measurable sets in T endowed by the L1 distance, or, equivalently, the space
of {E}, with the distance d(E,E′) = m(E�E′). Then the proof above works, and it gives the following
result:

For a “generic” E every f in L2(E) can be decomposed as a series (1) which converges in the norm.
Such an E can be compact with the complement of an arbitrary small measure. But lengths of the

complementary intervals may not decrease too fast.
4.3. We do not know whether weights w for which the representation (1) does exist can be characterized
effectively.
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