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Abstract

We construct ac1-1 polyconvex functionW such that there exists a fixed<22 matrix Y with the property that all convex
representatives di have at least two distinct subgradients (and are hence not differentiable) at thé¥pdietty ), showing
in particular that a polyconvex function can be smoother than any of its convex representatisi¢sthis article: J. Bevan,
C. R. Acad. Sci. Paris, Ser. | 336 (2003).
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Résumé

On construit une fonctiof' -1 polyconvexeW tel qu'il existe une matrice 2 2 Y satisfaisant la propriété suivante : tous les
representants convexes Beont au moins deux sousgradients distincts (et ne sont donc pas differentiable) alY poé@tt’).
Ceci montre, en particulier, qu’'une fonction polyconvexe peut étre plus differentiable que tous ses representant8ocmnvex.

citer cet article: J. Bevan, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction and notation

We denote the real 2 2 matrices byR2*2 and define the functioR : R2*2 — R?*2 x R by R(Z) = (Z, detZ).
We recall that a convex representativef a polyconvex functiorW must satisfyW (A) = ¢(R(A)) for all A in
R2*2 and that there is a largest such (see [5] and [4]),given by
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ow(A,8) = inf{ZAiW(Ai), D hi=1 220 ) LR(A)=(A,8)¢.
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If a polyconvex functioriV has a strictly convex representative tH&ns said to be strictly polyconvex. Suppose
£ c R" is a bounded domain and thaiis a fixed mapping in the Sobolev spad&-2(£2, R™). Consider, when
n=m =2 and$ is the unit ball inR?, the following problem: find a nonnegative strictly polyconvex function
f:R2*2 - R which satisfies

{Du(x), xe 2} c {&, f(&)=0}. 1)

For example, whem : 2 — R? is defined in polar coordinates by(r, 6) = %(r, 20) it is shown in [4] that a

solution f to the problem exists. It follows that is a singular minimizer off (v) = [, f(Dv(x))dx among

v e W2(2, R?) satisfyinguv|se = u(-). If in addition f can be smooth and strongly quasiconvex in the sense
of [6] then Evans’ partial regularity theorem would be optimal in dimensioasn = 2. This is certainly the case
whenn andm are large enough, as was first shown byakein [7] and later bysverak and Yan in [10], who gave
an example of a singular minimizer of a smooth strongly convex functional in dimensiens, n = 3.

In seeking a strictly polyconvex function satisfying (1) one is naturally led to study the properties of its possible
convex representatives, in particular their regularity. It is trivially true thas at least as differentiable as its
smoothest convex representative, but is it true that there is a convex representative which is as syheitiWes
show that the answer is in general no. We do not know if the fundicsonstructed in this paper is smoother than
cL1 or whether there is an example with a possibly different sméioth

The example in this Note is reminiscent of the loss of regularity which occurs when an isotropic, frame
indifferent functionW : D — R, is expressed a# (F) = H (v1 + v2, v1v2), whereD is an S@2)-invariant subset
of {£ € R%*2, dett > 0} andwvy, v, are the principal values df. The remarks in [2, Theorem 6.9] show tatis
in general less differentiable thaw.

We denote the subdifferential of a convex functipnR” — R at a pointx by df (x) and recall that this is the
set

{veR", f(U)2 fF(X)+v- (U —X)forallU in R"} (2)

where “” represents the usual Euclidean inner product. For later use we define the inner product of two matrices
E andF in R>2py E:F =tr ETF. We definelF|3 = F : F. As usual we writeB(A, r) for the open ball with
radiusr and centret in the topology induced bjy |». We reserve:- | for the Euclidean norm oR2*2 x R, and write
I(A,8)2= |A|§ + 82. By [9, Theorem 23.4] a real valued convex functipmefined on all oR” has a nonempty,
compact and convex subdifferentig (x) at eachx, whose elements are then referred to as subgradierftabf.

Further, by [9, Theorem 25.1F; is differentiable at the point € R” if and only if 3f (x) consists of a singleton,
written Df (x). Finally, for any functionf : R%*?2 — R we use the notatioiP to represent the largest polyconvex
function majorised by (identically —oo if no such function exists). For further details on polyconvexity see [1,5]
and [8].

2. Thecounterexample

Fix Y € R?%2 such that de¥ < 0 and define the function: R2*2 — R by
w(Z) =max{0, det(Z — Y)}.
It is easy to see thas is polyconvex (for example, let

$(A,8) =38+ dety —cofY : A, 3)
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note thaty (A, §) d=efma><{0, ¢ (A, )} is convex, being the maximum of two convex functions, and thef) =

V¥ (R(Z))). Fix X € R?*2 such that détX — Y) > 0. For any positive real numberlet the set of 2« 2 matrices
K (r) be defined by

K@#)=B(,r)UB(X,r). 4)

By continuity of (Z) £'detZ — Y) there exists > 0 such thatw(Z) = 0 if Z € B(0, 1) andw(Z) = f(Z)

if Z e B(X, 1), so that by takinge = %min{r,dist(Y, {0, X})} we ensure thato is smooth onK (2¢) and
dist(Y, K (2¢)) > . Letn be a smooth cut-off function whose support lieii2s) and which satisfies & n < 1,
with n(Z) = 1 if Z € K (¢). Define the functiory : R2*2 — R by

Z-Y?
4@ =(1-n2) L0

Observe that sinceZ — Y|2/2 > w(Z) for all Z we haveg(Z) > w(Z) for all Z, and thatg is smooth with
|D?g(-)| < ¢ for some fixed positive constant By the comments in the opening paragraph of [3, Section 4], [3,
Proposition 3.7] also applies to polyconvex envelopes; we can then conclude by [3, Remark 1, p. 347] that

+n(Z)w(Z).

w(z) %' gP(2)

is Clt’cl. Using this and the following lemma we claimW is in fact globally Lipschitz. By an abuse of notation
we let|&] = [§]2.

Lemma 2.1. £ is a point of strict convexity of if |£] is sufficiently large.

Proof. Fix & such that disE, K (2¢)) > ¢ and letm = sug|w(A) — %|A —Y|?|, A € K(2¢)}. By definition ofg it
follows that

1 2

g(Z)>§IZ—Y| —mn(Z) (5)
for all Z. We wish to shows(Z) — g(&) > Dg(§) : (Z — &) for all Z #£ &, provided|&| is large enough; by (5) it is
sufficient to prove

HNZ—YP—mn(Z) -3 -YP>&:Z4+E:Y -V :Z— |
which is satisfied if and only if

31E = 2P —mn(z) > 0. (6)
Now for large enoughé]|, inf{%|§ — Z|?,Z € K(2¢)} > 2m, so that (6) holds foralt #¢. O

We claim thatW (¢) = g(&) for &€ such that Lemma 2.1 holds. By [3, Section 4, Eq. (4.1)],
6

6 6
WE) =inf]> " aig). 4 >0 ni=1Y MRE)=RE){.

i=1 i=1 i=1

so we can apply Lemma 2.1 with = &; to each summand iEl-Gzl Aig(&) to deduceW (§) > g(&). The reverse
inequality is true by definition of the polyconvex envelope so WdaE) = g(¢) for all large enouglt. It now
follows easily that the derivative d¥ is globally Lipschitz.

For future use we note that sineeis polyconvex and boundsbelow,g > W > w on R?%2; and sinceg = »
on K (¢) we haveW = w on K (¢). The following lemmas are used in Theorem 2.4, where we showithzas the
property stated in the title of this Note.

Lemma 2.2. Lete > 0 and leté be any fixe® x 2 matrix. Thenr (¢) lies in the interior of the convex hull of the
set{(U,detU), U € B(¢,¢)}.
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Proof. Suppose not. Then there exide R?*2, ¢ € R notboth zero, suchth&€, ¢)- R(§ +1A) > (C, ¢)- R(§) for

all A € B(0, ¢) and|t| < 1, which holds if and only if- (A : C + cA : cofé) + ct2detA > 0. Dividing through by
2 # 0 and lettingr — 0+ itfollows thatA : C +cA : cofé > 0. Lettingr — 0— we haveA : C+cA : cofg =0 for
all A € B(0, ), implying thatc detA > 0 for suchA. Choose in particulas such that det £ 0 and letA € B(0, ¢)

satisfy detd = — detA (for example, exchange the rows 4fand call the resul#). ThencdetA > 0, cdetA >0
together implyc = 0, from which it follows thatC : A =0 for all A € B(0, ¢). HenceC = 0, a contradiction. O

Lemma 2.3. Leth = h(A, §) be convext € R2%2 and suppose that(A, detA) = 0 for |A — &| sufficiently smalll.
Thenh(A, 8) =0for (A, §) — R(&)| sufficiently small.

Proof. Suppose is such thak(R(A)) =0if |A — &|2 < . By Lemma 2.2, for sufficiently smallC, §)| we can
write (¢ + C, det¢ + 8) and (¢ — C, deté — §) as convex combinations of points {R(A), |A — &| < 7}, SO by
applying convexity of: it follows thath (& + C, deté + §) < 0 andh(é — C, deteé — §) < 0. But 0=h(&, dets) <

%(h(s + C,dett + 8) + h(§ — C,dets — §)), so that both terms on the right hand side are zero, concluding the
proof. O

Theorem 2.4. No convex representative of W is differentiabl&kay).

Proof. Let ¢ be any convex representativedf. We will show thatp must be differentiable at (in fact, smooth in
a neighbourhood ofR (0) and R(X) by applying Lemma 2.3 twice, from which it will follow thalip (R (Y)) is not
a singleton. Hence by the remarks in the introducticzannot be differentiable a(Y).

SinceW = w on K(¢) we knowg(R(A)) =0 for A € B(0,&) and¢(R(A)) = ¢(R(A)) for A € B(X, ¢),
where the affine functionp was defined in Eq. (3). Apply Lemma 2.3 o= ¢, £ = 0 to conclude that
¢(A,8) =0 in a neighbourhood oR(0). By convexity this impliesp > 0 everywhere. Hence, since we have
W(Y) =0 it follows that R(0) € dp(R(Y)). Next apply Lemma 2.3 t&(A,§) = ¢p(A,8) — ¢p(A,8), E =X to
deducep(A, ) > W(Y) —cofY : (A —Y) + § — detY everywhere (again by convexity). In particular this gives
(—cofY, 1) € dp(R(Y)). O

Remark 2.1. Sinceg is differentiable in a neighbourhood &(0) and R(X), the tangent hyperpland® and

Tx, say, to the graph op at (R(0), W(0)) and (R(X), W(X)) respectively are uniquely defined iyp(R(0))

and Dg(R(X)) respectively. Thus an alternative way of concluding the proof would be simply to check
(R(Y),W(Y)) e ToN Tx.
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