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ABSTRACT. — Denote byg(t) = Zn}le—’\"’, t > 0, the spectral function related to the
Dirichlet Laplacian for the typical cefl of a standard Poisson-Voronoi tessellatioRfh d > 2.
We show that the expectatidfp(r), ¢t > 0, is a functional of the convex hull of a standatd
dimensional Brownian bridge. This enables us to study the asymptotic behavBu(f when
t — 0%, +oo. In particular, we prove that the law of the first eigenvalyeof C satisfies the
asymptotic relation IP{11 <1} ~ —Zdwdj(‘ﬁ,,z)/z -t74/2 whent — 0%, wherewy and j—2),2
are respectively the Lebesgue measure of the unit baliYirand the first zero of the Bessel
fUﬂCtiOﬂJ(d,z)/z.

0 2003 Editions scientifiques et médicales Elsevier SAS

MSC:primary 35P15, 60D05, 60J65; secondary 52A22, 60G55

Keywords:Brownian bridge; Convex hull; Eigenvalues; Empirical distributions;
Johnson—Mehl tessellations; Laplace operator; Palm distribution; Spectral function; Stochastic
geometry; Voronoi tessellations

RESUME. — On considere(t) = Z@le**"f, t > 0, la fonction spectrale du Laplacien avec
condition de Dirichlet au bord de la cellule typiq@ed’'une mosaique de Poisson—\Voronoi
standard d&“, d > 2. Nous montrons que I'espérange(r), > 0, est une fonctionnelle de
I'enveloppe convexe d’'un pont brownigrdimensionnel standard. Cela nous permet d’étudier le
comportement asymptotique Be(r), quandt — 0T, +oco. En particulier, nous prouvons que la
loi de la premiére valeur propia deC satisfait la relation IP{A1 < 1} ~ —2%wg jé) 5 -1/
quandr — 0, ollw, et jg—2),2 Sont respectivement la mesure de Lebesgue de la boule-unité
deRR? et le premier zéro de la fonction de Bessgl o) /2.
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0. Introduction and statement of the main results

Consider® = {x,; n > 1} a homogeneous Poisson point procesRin d > 2, with
thed-dimensional Lebesgue measutigfor intensity measure. The set of cells

Cx)={yeR% lly—xl<ly—xll, X ed}, xed,

(which are almost surely bounded polyhedra) is the well knd®aisson—\Voronoi
tessellationof RY. Introduced by Meijering [17] and Gilbert [8] as a model of
crystal aggregates, it provides now models for many natural phenomena as thermal
conductivity [16], telecommunications [2], astrophysics [28] and ecology [22]. An
extensive list of the areas in which the tessellation has been used can be found in Stoyan
et al. [25] and Okabe et al. [21].

In order to describe the statistical properties of the tessellation, the notitypifal
cellC inthe Palm sense is commonly used [19]. Consider the Spaxfeonvex compact
sets ofR? endowed with the usual Hausdorff metric. Let us fix an arbitrary Borel set
B C R? such that O< V,(B) < 4+00. The typical cellC is defined by means of the
identity [19]:

1
En(C)=———E h(C(x) —x),
Va(B) G
whereh : K — R runs throughout the space of bounded measurable functions.
Consider now the cell

CO)={yeR% Iyl <ly—=xl, xe®}

obtained when the origin is added to the point procésst is well known [19] that

C(0) andC are equal in law. On the other hand, the typical cell can also be characterized
by means of the empirical distributions. Indeed, ¥atz be the set of all cell€ (x),

x € @, included in the ballB(R) centered at the origin and of radius> 0. Let us
defineNg = #V,  and fixh: L — R an arbitrary bounded measurable function. Then
(see [11]):

Er(C) = lim Ni > h(Ckx)—x), as.

R—>+400
R c(x)eVair

Explicit formulas for the distributions of the main geometric characteristics of the
typical cell of the Poisson—Voronoi tessellation have been recently obtained [3,4].
Nevertheless their expressions are intricate and in general, we do not have any precise
idea about the asymptotic behaviour of these distributions.

In this paper, we are interested in the properties offthmdamental frequencies the
typical cellC. More precisely let us consideroi; < A, <--- <A, < --- the (random)
eigenvalues of the Laplacian under Dirichlet boundary conditionS and denote by

o)=Y ™', 1>0,

n=>1
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the associategpectral functionLet us remark that the spectral function of deterministic
sets has been largely studied in connection with their geometrical structure [7,14,29,30].
Besides, let

W) eR?Y, tel0,1], W) =W() =0,
be ad-dimensional Brownian bridge on the intendl, 1] independent of the point
processb. Let us denote by

W={W(); 0<r<1} CR? (1)

the associated path and ﬁ(/ its closed convex hull.
For a setD ¢ R?, we define

B(D;x)=J B(y.ly—=xl).  BD;x)=J By lly—xll).
yeD yeD

whereB(y, r) (resp.B(y, R) = {x e R?; ||x — y|| < R}) is the closed (resp. open) ball
centered ay and of radiusRk > 0. V,;(D, x) will denote thed-dimensional Lebesgue
measure of the s&&(D; x), i.e.,

Va(D, x) = V4 (B(D; x)).

The notationP (resp.P) is used for the probability associated to the point process
(resp. to the Brownian bridg#). Likewise the expectations andE refer respectively
to ® andWw.

We show that the expectatidfp(t), ¢ > 0, is a functional of the Lebesgue measure
of the setsB(W; x), x € R.

THEOREM 1. - Ford > 2,

1 — —
E(p(t):W/Eexp(—(zt)d/zvd(w’x))dx
1 - __
- W/EeXp(—Vd(@W,x))dx, t>0. )

Formula (2) is the key point for the proof of our main result providing the logarithmic
asymptotic behaviour of the distribution function (and of the Laplace transform) of
the square of the fundamental frequency (e.g., the first eigenvaleé the Dirichlet
laplacian) of the Poisson—\Voronoi typical cell.

THEOREM 2. — Denote byu, the first eigenvalue of the largest random ball centered
at the origin and included i€ (0). We have

lim =4/ @2 InEe ™ = lim =¥/ InEp(r) = Iirp 1@+ |nE g
t—>—+00

—00 —00

:_23d/(d+2)wd2/(d+2)< : )( (ddz)/2> e
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and
lim /2InPy <t} = lim 12InP{py <t} = =204 ji;_5) 2 (4)
t—0t t—0t

wherew,; = 0,4/d and j,_,),» are respectively the Lebesgue measure of the unit-ball of
R¢ and the first positive zero of the Bessel functifgn ,, /2-

This non-trivial result is strongly connected with the Donsker-Varadhan theorem
about the volume of the Wiener sausage [6] providing the logarithmic equivalent, when
t — —+oo0, of the survival probabilityP{~/2r W [U,cqo B(x, £)]°} of a Brownian path
until time¢ > 0 in a random medium of Poissonian obstacles which are the balls centered
atx € ® and of fixed radiug > 0. More precisely, we will show as an intermediary result
of our proof that this last logarithmic equivalent is precisely the same as the logarithmic
equivalent of the probabilitP{«/ZW C 2- C(0)} that the Brownian bridge stays until
time ¢ > 0 in the homothetic 2C(0) of the Poisson—Voronoi typical cell.

Besides, Theorem 2 shows that the asymptotic behaviour of the first eigenvalue of the

typical cell C(0) is the same as the first eigenvalue of the largest ball includ€tOn.
This result is substantially close to the work of A.S. Sznitman who proved that the large
deviations of the first eigenvalue of the complementary of a Poisson cloud of obstacles
(e.g., balls) in a fixed box are controlled by the largest ball free of obstacles (see [27],
p. 182).

We can also exploit Theorem 1 by investigating the asymptotic estimati@&wy G
whent — 0". Let us recall that H. Weyl proved in 1911 [30] that for a bounded
domainU c R? with a piecewise-smooth boundary, the spectral funcgignsatisfies
the asymptotic relation

) ~ Va(U)
Yot Tor (mnyarz
For a bounded polygonal convex domain¥i, it was shown (see [14,23,29]) that
whent — 0T,

Vo(U) W) 1

_ _ Bl -1 _ —c/t
ou(t) = o 4m+24(na (U) — No(U) + 2) +O(e™"), (5)

where
(i) V1(U) is the perimeter ot/;
(iiy No(U) is the number of vertices df ;
(iiy o 2(U) = 2V 1/¢; is the harmonic mean of the inside-facing angles
a1, ..., Ny at the vertices ol

(iv) ¢ > 0is a positive constant independent:of 0.
For a bounded convex non-degenerate polyhedfan R, 4 > 3, Fedosov [7] proved
that we have when— 0*,

Va) — Vaa(U)
@02~ Al )72

1 "0 1
+ 8(4rt)d-2)/2 ; 3 (; B 5) Va-a(Fi) + O(t(d—3)/2)’ 6)

oy (t) =

1
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where
(i) V,_1(U) is the(d — 1)-dimensional measure of the boundarylof
(i) F;, i=1,..., N;_»(U), are the(d — 2)-dimensional faces df/;
(ii") w; is the magnitude of the dihedral angle at the fagel <i < Ny_»(U).
Returning now to the spectral function of the typical e&lwe prove that for alk > 1
we have the asymptotic relation (when> 01)

1 = i/2 k/2
E(p(t):W{ Ocd,it/ +O(r / )}, (7)

i=

where the coefficients, ; are expressed in terms of the covariances
= d—1 s
c(ul’"'7uj):E(ML£]_"'Mu_/)7 ul,...,quS ’1<.]<lv

and M, = supc,<1(u - W(s)), u € 71, is the projection of thed-dimensional
Brownian pathW on the half-lineR, « (see Remark 3).

The calculation of the coefficients;, i > 0 (resp.cs;, i =0, 1), shows that they
have the same geometrical meaning (up to the expectation) as in deterministic formulas
(5) and (6).

This paper is structured as follows. The first section is devoted to some useful
preliminaries on the convex hull of the Brownian bridge. We then prove in the second
section Theorem 1 and we provide some easy consequences of it. The following two
sections are focused respectively on the proof of Theorem 2 about the asymptotic
behaviour ofE¢(z), t — +o00, and on the asymptotic estimation Bfy(z), t — O*.

We finally enunciate some concluding remarks.
The principal results of this paper were announced in [12].

1. Preliminaries on the convex hull of the d-dimensional Brownian bridge

We begin with the following elementary facts:

PROPOSITION 1. —Consider a bounded closed &= R? and denote by its closed
convex hull. Furthermore leb C C be a countable, dense subsetbfWe have

B(C;x)=B(C;x), (8)
Vi(D,x)=Vy(C,x)=V,(B(D;x)), xeR. (9)

Proof of (8). —Letu € S~ be a unit vector such that
(x+Riu) ﬂB(a;x) # .

It can be easily seen that there exist a paiat(x + R, u) and a support hyperplaré,
of C perpendicular ta such that:
() &x+Riu)NB(C;x)=xz, wherexz ={ix+ (1— 1)z, 0< A < 1} is the closed
segment with bounding poinis z;
@) ly—zll=lly—xl, Vye H,NaC.
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Moreover it is known ([24], Corollary 18.3.1) that the intersectignn dC must contain
at least one poing € C. Therefore

x+Riu)N B(@; x) CB(C;x) Vue S
which implies (8). O

Proof of (9). —Fix y € B(D; x). An elementary geometrical argument shows (the set
D being bounded) that

{Zax+ @ —=21)y; 0<r <1} C B(D;x).
Integrating then in spherical coordinates (witlas center) we obtain the equality
Va(D, x) = Va(B(D; x)).
Combining this with the obvious inclusions
B(D;x) C B(C;x) C B(C;x) C B(D;x), xeR?,

we obtain the result. O

Our next task is to give a useful estimate of the difference

Va(C, x) — ogllx||! = Va(B(C; x) \ B(|Ix]))

for setsC c R¢ containing the origin. It follows from (8) that we may suppose that the
setC is convex. Let us introduce a few notations. kix R? \ {0} and define:
() H={yeR (y—x)-x=0}the polar hyperplane of the poimt
(i) HT ={y e R?; (y—x)-x <0} the half-space associated withand containing
the origin;
(i) St=S"tNHT —x), ST=S9"1\St;
(iv) Ho, the hyperplane perpendicular to the vecioe S?~! and containing the
origin;
(v) H, the support hyperplane 6f perpendicular ta and included in the half-space
Hy,={y€R% y-u >0}
(vi) AC,x)={ueS™; H,N(x+ R u)# @} (notice thatH, N (x + R u) # @ for
all u e ST);
(vii) m(x,u) = d(x, H,) the distance betweem and H,, p(x,u) = |x - u| =
d(x, Hp,) the distance betweem and Hy,, h(u) = d(0, H,) the distance
betweenH, and Hy ,.

Remark 1. — For allx e R \ {0}, we have
m(x,u)=h) + p(x,u) if ueSt,

m(x,u) = |h(u) — p(x,u)| ifueS-, (20)
AC, x)={ueS™; h(u) — p(x,u) > 0}.
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PROPOSITION 2. — For x € Rd, we have

20 d . .
Va(Co0) = ol =557 (1) [ ha pe T vy
S+

j=1
24
T /[(h(u) — pCx, u)) v 0] dvy(u),
&
and in particular,

2d
V,(C, O)Zg / h@)? dvy(u).
Sd—l

Proof. —Foru € St andx € R? \ {0}, three possibilities occur:
Casel. u ¢ ST U.A(C, x) and consequently

(x +R,u) N B(C; x) = (x + Ryu) N B(|lx]) = {x}.
Case 2. u € ST which implies that
(x +R,u) N B(C; x) =%%, (x +Ryu) N B(|Ix]) =x7,
with

lx —zll = 2m(x, u), lx — 2"l = 20(x, u).
Case 3. u € A(C, x) which implies that

(x +Ru)NB(C;x) =%Z,  (x +Ryu) N B(|x]) = {x},
with
llx =zl = 2m(x, u).
Then integration in spherical coordinates (witlas center) gives that
Va(C, x) = wgllx||?

2m(x,u) 2m(x,u)
=/l / rdldr] dvg(u) + / l / rdldr] dvg(u)
St = 2p(x,u) A(C,x) 0

d
st A(C,x)

From (10) we get that

d

mx, u)? — p(x,u)? = Z <CJZ> hu) p(x,u)®7, ueSt,

j=1

and

1063

(11)

(12)

= (g) [ /(m(x,u)d — p(x,u)?) dvy(u) + / m(x,u)ddvd(u)]. (13)
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m(x,u) forue A(C,x),
(h(”)_p(x’”))vo_{o foru e S\ A(C, x).

Substituting these expressions in (13) we find the final result (11).
To prove (12), it suffices to notice that for alle S, we have

R,uNB(C;0) =0z
with
Izl = 2h(u),
so integrating in spherical coordinates we obtain the resuit.

Suppose now thaf' is a random convex set containing the origin and invariant (in
law) by rotations with the origin as center. Thus the random variables u € S92,
are equal in law and we obtain:

PROPOSITION 3. — Suppose thaf satisfies the above conditions and it ()7}
<00, u € SL Fixing ug € S* 1, we have then

E(Va(C,x) — ogllx[%)
d o ) 2d d
=" I Ix 1 E (h(uo)’) +E/E([(h(uo)—p(x,u)) Vv 0]") dvg(u),
j=1 S-
where

2d 1
Id,j = ;Ud—l <;i) /l‘d_j (l _ t2)(d73)/2dt
0

_2 (d) rOVEEALI DDy

S d \J I(d—j/2) ’

Proof. —Taking the expectation in (11) the result follows from the direct evaluation of
the integrals

[ ot dva =151 105, 0
S+
Remark 2. — Under the conditions stated in Proposition 3 we obtain that

E(Va(eC.x) = wqllx|“) ~ laaelx |~ Eh(uo).
In particular, in dimensiord = 2, it follows from the Cauchy formula giving the
perimeter of a convex set that

4x]
E(Va(eC, x) = mlix])®) ~ e——EV1(C),

whereV,(C) denotes the perimeter of the convex et

Choose now forC the closed convex hulW c R?, of the sample path of the
d-dimensional Brownian bridge on the intervid, 1]. Recall thatW is invariant by
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rotations with the origin as center. Hence the random varidoles u € S, defined
above coincide in law with the maximud, of the 1-dimensional Brownian bridge.
The law of My is explicitely known, namely [26]

2

P{Mo>u)=e2", (14)

Hence all the moments aff; are finite, and we have

k !
EMy* = (%) k!, EMy* = %2—@, k e N.

In particular,

d—1£
22

E(Va(eW. x) = wyllx|') ~ lsselx]

Now, denote by

M = supllyll = sup ||[W(s)||
er’Q 0<s<1

the maximum of the radial part of the Brownian bridge
W(s) = (Wi(s), ..., Wa(s)), O0<s<1l

The componentdV;(s), 0<s <1, i=1,...,d, are independent one-dimensional
Brownian bridges. Hence

0<s<1 Jd Jd

P(M > s) <dﬁ{ sup | Wa(s)| > i} < Zdﬁ{Mo > i}
2d e 24 §>0, (15)

and
EM* < 400, Vk>0. (16)
As a consequence we deduce the following result:
ProPOSITION 4. — For all k € N* there exists a constaft< ¢; < +oo such that

kd
E[Va(eW, x) — wallxl?] < e S x4,
=k

e>0, x e R4,

Proof. —From Proposition 2 we have

—~ d d_l . .
V(e W, x) — ollxll] < (%) [Z () a7 [ pexoa™s dvatu + ostenny’|.
Jj=1 S+

which by (16) implies the result. O
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2. Proof of Theorem 1 and consequences

Proof of Theoren.. — Consider the spectral function

p(r)y=> e

n>1

of the typical cellC.
Let us recall first (see [9,26]) that the spectral functign(z), ¢ > 0, of any bounded
domainU c R? can be expressed in term of the Brownian bridge under the form:

ou(t) = /P{x +V2tW C U} dx. (17)

(4n t)d/2
Applying the formula above to the domain

CO) ={yeR% |yl<lly—xl.xed}Zc,

and taking the expectation we obtain (by Fubini theorem)

Eot) = o )d/ZE/P{)H—«/—WCC(O)}dx

Observe that
—x+V2AWCCO) < dNn{—x+B(2W;x)}=0.
Therefore applying the property of the Poisson point prodesge obtain
P{—x+v2rW Cc C(0)} = exp{—V,(v2t W, x)},

and consequently

Eo(r) = /Eexp{—Vd(«/Z—tVAV,x)}dx.

1
@r)i2

The obvious identity

V, \/Zw\,x = (20)%v, (W,L), >0, xeRY,
a( ) =207V, NG

and an elementary change of variable provide the resuit.

In particular, Theorem 1 provides an infinite expansiofe@f{z) for d = 2, which is
valid for everyr > 0.

THEOREM 3. —For d = 2 there existsy > 0 such that
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1 (=D
S0 g

/E(Vg(@w,x) — 7 |lx|f?)" e II® g, (18)

forall 0 <t < 1, the series being absolutely convergent.

Proof. —Regarding (2) it suffices to prove that there exigts 0 such that

/Eexp(Vz(\/Z_toW,x) — 27 ||x||?) dx < +o0.
Using the obvious inclusion
B(V2tW;x) C B(2v/2tM + |x])),
we obtain the inequality
Va(W2t W, x) < 7 (Jlx]| + 2v/2eM)* < 37”||x||2+24mM2. (19)
Hence,
/Eexp(Vz(«/Z_tVAV,x) — 2 |x]l?) dx

< /Eexp(Vz(@W,x) — %||x||2) dx < Eexp(24tm M?)

“+o00 “+o00
— /e‘|3{24nM2>;}ds+1< 1+4/e‘e*5/<24m>ds,
0 0

by using (15). Thus it suffices to take< 1/(247). O

In the two-dimensional casd = 2, formula (2) provides straightforwardly an
identification, in term of Brownian bridge, of the expectation of the distribution function
of the eigenvalues

N([)IZ].{)”lgt}, t > 0.

n>1
Indeed on one hand we have
+00
EgD(t) =t / eﬁtSEZ 1{)”1<S}ds, t > 0.
0 n>1

On the other hand an elementary computation yields

+oo
1 72”/2(\/’0 X) t / s (/ — )
- : = — P{2V,o(W < .
5 /e dx > J € { 2( ,x) s} dx | ds

So by injectivity of the Laplace transform and Theorem 1 we obtain
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THEOREM 4. — In dimensiond = 2, the expectation of the distribution function
N(s), s > 0, is of the form

EN() = %/5{2V2(\7V\,x) <tldx.

3. Proof of Theorem 2

The main object in this paragraph is to obtain the logarithmic equivalent of the Laplace
transform of the distribution of the square of the fundamental frequency (that means the
first eigenvalue., of the Dirichlet—Laplacian) of the Poisson—Voronoi typical cell. Using
a Tauberian argument, this result leads us to the asymptotic evaluatiory whéh of
the logarithm of the distribution functioB{i, < ¢}.

Proof of (3). — Let us first notice that
e Le™ o), t>0.

Consequently, it suffices to prove that

d+ 2 ]Zd o /2 d/(d+2)
rIiT t~d/d+) |nEe M — _23d/(d+2)wd2/(d+2)< ) ( d-2)/ ) (20)
— 400 2 d

and

d + 2 J2d /2 d/(d+2)
I|m suptfd/(d+2) In E(p(l) < _23d/(d+2)wd2/(d+2) ( ) ( d-2)/ ) . (21)
t——+00 2 d

In order to obtain the asymptotic result (20), let us remark that the random Rgliag
the largest disc centered at the origin and included (@) has the distribution

P(R, >r}=e 2" ;>0 (22)

Thus using the fact that the first eigenvalue of a disc of radius 0O is equal to
J&_)2/7?, we deduce that

Ee f"l—/exp{ J(d 2)/2 2 wyr }dZda) r¢tdr

r

2
Ja— _
:td/(d+2)/exp{—td/(d+2)<7(d 22)/2 —Zdwdrd>}d2dwdrd Yar.
0

We then get from Laplace method that

. _ _ . ]
lim ¢~4/@+2|nEe ’“1:—m|n{ =2/ | od ey r }
t—>+00 r>0 r2
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-2 d/(d+2)
— 34/ 2/(+2) (d + 2) (J(d—z)/2>
2 d

’

which proves the result (20).
The proof of (21) is far more delicate. Using Theorem 1, we first have

(an)d/z / Be @y

1 = d/2v _ 42y 5
N Ee—(Zt) Va(W,x) 4+ / Ee—(Zt) Va(W,x) dx].
(2)d/2 [ /

Ep(t) =

{lxll<ry {IlxlI>e1}
The obvious following inequality

Vd(W,x) > wgllx[?, xeRY,

then implies that
Ee @0 g < e~ @ Paglx|! g

{llxll>z1} {llxll>}

— (zt)fd/z eizd/delﬁd/Z

t>0.
Therefore

lim ¢~4/@+2|n Ee@"VaW.0 gy = g
t——+00 ’
{lxll>1}

Consequently in order to obtain (21), it suffices to prove that

lim supz~/@+2 / Ee@"VatW.n)

t——+00
{lxl <t}

2
< 2%/(d+D) ) 2/(d+2) (d + 2) (J(d—2>/2

The key estimation which enables us to derive the above asymptotic behaviour is
contained in the following lemma.

d/(d+2)
) (23)

LEMMA 1.— For everyr >0, andx € R?,

Ee @)W, < Eef(ZI)d/ZVd(VAV,O)’ (24)
or equivalently
EP{x +v2rW c C(0)} <EP{V2rW c C(0)}. (25)

This last result will be proved at the end of the section. Let us notice that Lemma 1
implies the inequality

/ Ee @2V, g, < wdtdEe—(zz)d/Zvd(ﬁ/,O)

{Ilxl<t}

= wt"EP{V2tW Cc C(0)}, ¢>0.
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Therefore in order to prove (23), it suffices to have
lim sups~4/@+2 InEP{v/2sW c C(0)}

t——+00

i2 d/(d+2)
< 23/ +2) ) 2/(@+2) <d + 2> <J(d—2>/2> (26)
~ 2 d .

This last result is a consequence of the Donsker—Varadhan theorem about the volume of
the Wiener sausage [6].

More precisely, let us denote lythe distance from the origin to its nearest neighbor.
The distribution ofL is given by the equality

t
P(L>1)= P{Rm > 5} N} (27)

Consequently,
+00
EP{V21W C C(0)} = / EP{vV21W C C(O)|L = s} dwys® te " ds.  (28)
0

Moreover, it is obvious from the definition of the Voronoi céll(0) that for every

cell, 2,
Cc0) c [UB(%-X, (%—%)Lﬂ (29)

xed
This leads us to compare for the Brownian bridge the probability to stay in the @@l|
with the probability to avoid Poissonian obstacles. For every fixedd andc € [1, 2),
we obtain

+00
/ EP{vV2W C C(O)|L = s} dgs’~ &' ds
2¢

< 70EI3{«/ZWC {U B(%'x’ (%_%)8)]

d
L= s} dwgs?—te " ds

< Eﬁ{@W c [(CE)J@B<X’ <% - %)8)]}
:Eexp{—chd( U . B(y, (¢t — 0.5)8)) }
yev2t W

It is well known that the estimation of the Wiener sausage provided by Donsker and
Varadhan [6] is still relevant for the path of a Brownian bridge. Consequently, we obtain
that

t——+00

+00
lim supz~4/+2/1n / EP{V2IW C C(0)|L = s} daogs’ e~ ds
2¢
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d+oN /72 d/(d+2)
g_201/(51+2)(ded)Z/(dJrz)( ‘; )(J(ddZ)/z) ' (30)

Taking the limit in (30) wher: — 2—, we get

t——+00

+00
lim supz~4/¢+2/n / EP{V2IW C C(0)|L = s} daogs® e~ ds
2¢

2|+
< D3I+, 2/(+2) (d + 2) (J(d—2>/2) 31)
~ 2 d .

Besides, let us notice that we have the following inequality for every’ € R, :
EP{v2tW C C(O)|L =5} <EP{~2tW C C(O)|L =5'}. (32)

Indeed, considering a uniformly distributed poki on the spher&?—1, the equality in
law

(®IL =5)'2 (&N B(0,s)°) U{s - Xol,
is clearly satisfied. We then deduce from (32) that

2¢
/Eﬁ{@w C CO)|L =5} dwyste " ds CEP{V2tW C C(0)|L = 2}
0

+00
< / EP(V2IW C CO)|L = s} deogs~ &+ ds.
2¢

Using (31), we then obtain that

t——+00

2e
lim sup:=/¢*2 In / EP{v2/W C C(0)|L =5} dwgs’ e " ds
0

.2 d/(d+2)
< Q3D ) 2/+2) (d + 2) (J(d2>/2> . (33)
2 d

Combining the equality (28) with (30) and (33), we get the estimation (26), which
completes the proof of the convergence (3).
Let us now focus on the proof of Lemma 1.

Proof of Lemmad.. —Let us fixx € R¢. Using the identity
=R o
Ee@"VaW.x) _ (2t)d/2/|3(Vd(\/N\, x) <u) e@Pugy 150,
0

we obtain that it suffices to show the following inequality.

P{Vy(W,x) <u} <P{V,(W,0)<u}, u>0. (34)
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Let us notice that (34) is not a direct consequence of the inclusion of a set into an other
one.

The following lemma provides a useful deterministic result of set theory.
LEMMA 2. — For every fixedV > 1 andu > 0, the set

N
Au={z=(zl,...,z;v)€ RON <UBZ,,IIZIII> u} d=>2,
i=1

is convex and symmetric.
Proof. —First, A, is clearly symmetric. In order to prove that, is convex, let us fix
z2=(z1,...,2v), ¥y =01, ..., y8) € A,, 0< vy < 1, and define

_=(U1,..-,UN)=(1_V)Z+Vy-

We will also use the notatiofy = yg = vg = 0.
From the equality (12), we obtain

N
2
w(UBmem>=Ei/[Sw(wuﬂdWW)
i=1 §d-1

i=0,...,
.....

..........

=yw<UB@mmm>+u—ww<UBuumm><u

i=1 i=1
which proves Lemma 2. O

Returning now to the proof of the inequality (34), let us f > 2 and select
0< 1 < - <ty <1 The law of the random vector

W = (W(ll), cee W(tN)) € (Rd)N

is a centered Gaussian measure. Let us observe that

N
IS{Vd( (W), i ))gu}Zﬁ{WEAuﬁ-f} (35)
i1

with X = (x, ..., x) € RHN.
Since the sefA,,, u > 0, is convex and symmetric, we may apply Anderson’s lemma
[1] which gives

PWeA, +x}<PWeA,} (36)
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Let us now take a countable sgb,;>1 dense irn0, 1]. By the continuity of the Brownian
bridge sample paths, the sbt= (W(#;));>1 is a dense subset &¥. Then by (9), we
have

Vi(D,x)=Vy(W, x) = Vd< U B(y, Ily —x||)>, x € RY.

yeD

Thus the increasing sequentz,‘@(uf":l B, lyi —xID), N > 1, converges t&/,(W, x)
for all x € R?, which implies

|3{Vd(\/N\,x)<u}= lim ﬁ{vd<CJB(W(ti)’

N
— 400 im1

W(t;) —x||)> < u} u>0.
Combining this with (36), we obtain the inequality (34) and the proof of Lemma 1 is
completed. O

Proof of (4). —Let us first notice that the distribution of the first eigenvajue=
J&_22/ RZ of the ball B(0, R,,) may be explicited by using the equality (22).
We then deduce from the inequality < u; that

s g d)2 ; dj2 _od,  .d
|Itnlégft InP{Algt}>tang+t INnP{u <t} > 2°wa jg- -

It now remains to prove that

limsupr?/2 NPy < 1} < =2 wajly_y o (37)

t—0t

Let us note

:2 d/(d+2
¢ = PR+, 2/(@+2) <(d + 2)) (J(d2>/2> [
2 d

and fix O< ¢ < 1.
The asymptotic result (3) implies that we have fdiarge enough

Ee ™ L exp{—(1— &)ct¥ @2},
and using Tchebychev inequality, we get
Pir <t} <exp{—(1—e)cu® @ 4 ut}, ¢>0. (38)

Taking

((d/(d +2)(1- e)c) (e
u = .

t
in the inequality (38), we obtain farsmall enough

P{r1 <1} < eXp{—(l — 8)(d+2)/22da)dj(d,2)/2dt7d/2}’

which clearly provides the required result (37) and completes the proof of (#).
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4. Theasymptotic behaviour of Eg(t), t — Ot

In order to study the asymptotics &ip(r) whent — 0", we derive from (2) the
following suitable relation.

THEOREM 5. — For k > 1, the following asymptotic, when— 0", holds

Ep(r) = )i

x { 5 O TR (VEW.x) — oyl e s+ O(tk/z)}'

i=0 !

Proof. —Let us start with the formula
1 _ __
Eg(r) = W/Eexp{—(vdwz_zw, %))} dx

= 7(4;)61/2 /Eexp{—(vd(«/z_thv,x) gl Y e g, (39)

Fix k > 1. Since
Vd(\/Z\/N\, x) —wg|x]|¢ >0, xeR

we have

=~
=

—~ (=1’

il

exp{— (Va(vV2r W, x) — wgllx[|) } — (Va(V2r W, x) — wqglx]|")’

i

< %(Vd(«/szv,x) — wgllx . (40)

I
o

By Proposition 4 we have
/E{ [Vi(V2t W, x) — wglx 7] } eI dx < 400, Vi€N,

and
_ _ 1
/E{ [Vi(V2A W, x) — wglx )] Y e ax < 2, 0<t< > (41

where O< ¢, < +o0 is a constant. The result follows then from (39), (40) and (41).

Let us recall that the values of the expectations of the principal geometrical
characteristics of the typical c&llare known [19]. In particular,

EV.(C) =1,
and denoting by,;_1(C) the (d — 1)-dimensional area of the boundaty¢, we have

Jrd'T'(2—1/d)T(d/2+ 1)~V (d/2)

EVi-1(C) = I'((d+1)/2I'd—-1/2)
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The following theorem provides now the explicit calculation of the three first coefficients
of the preceding development for any dimension.

THEOREM 6. — In dimensiond > 2, we have when— 0T,

Eo() = E(Va(©)  EV4a(C) Cd,2 + 1
Pl = (4rt)i2 ~ MAwr)@d-D/2 " (4g)d/2d/2-1 (d=32 )’
where
'@—2/d) re-2/d
d
Cq2= (4 kdUdW — Id)z(fdw)
with

i / ‘7‘” sin29[9(2n—9)+ 1 ]
= ~_104—
¢ TR 2 | 6(r—6) ' tand
0<p<y’ O0=¢'—¢
p+¢' <o
x [sin? ¢ sinf ¢’ — (Cos9 — cosp cosg’)?] (@-9r2
x (cosg cosg' )~ Lsing sing’ dd dedy’.

In particular, ford = 2,

21

on [ F1-

. ( / COSt 1t — 1). (42)
3 ] t

Remark3. — By a very similar method, we can prove that Theorem 5 implies the
general asymptotic development provided by (7).
Proof. —Theorem 5 provides us the following expansion:
1
(4 1)d/2

+ %/E{(Vd(\/zw,x) - a)d||x||d)2} e dx 4 O(1v/1)|.  (43)

Ep(t) = {1— /E(Vd(@w,x) —a)d”de) e—wd”x\ld dx

Applying Proposition 3 taC = +/2r W we obtain
E(Vy(V2r W, x) — wg)lx]|9)

d
= Iy lxl477 (20 PEMo + %/E[(«/Z_IMM —p(x,u)) Vv O]ddvd(u).
ks

j=1

Supposel > 3. Since

/E[(\/ZMM —p(x, u)) \Y, O]ddvd(u) < 20)4%6,EM?,
s

_ — 1

EMy= ﬂ and EM02 ==,

2.2 2
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then there existy > 0 and a constank, > 0 such that the expression above is of the
form

Jrt

E(Vi(vV2t W, x) — wgllx]|¥) = Tnxn"*ld,ﬁ x4 22+ 1T Ag(x, 1),  (44)

with
0< Ay(x, 1) < Kg(1+ ||Ix]1973), xeR? 0<t <1 (45)
Ford = 2 let us note

V2t My

[lx]

K(t,|Ix]) = , t>0, xeRY\ {0}

We have

/E[(«/Z_IML, —p(x,u)) v O}Zdvz(u)
a

— 2E{4tM02 arcsin(X (¢, [|x]) A 1) + |2 [arcsir(K(t, X)) A 1)
—K(t, ||x||)\/(l— K(t Ix)?) /\0}
— Al IV2Mo[1— /(1 K (1. 1x1)?) A 0]}

< 2E{4tM§ arcsinK (1, [ x]) A 1)

+ ||x||2[arcsir(1<(z, Ix) A1) — Kz, ||x||)\/(1— K (£ 11xI)%) A o} }

Considering the two casek (¢, ||x||) > (1/2)|x|| and K (z, ||x||) < (1/2)| x|, some
elementary and somewhat lengthy calculations (using in particular the existence of a
constant > 0 verifying

. 1
arcsinx) <x + ax3, Vx € [O, E]

and the inequality/1 — x2 > (1 — x?), 0< x < 1) provide the following estimation

/E[(«/Z—IML,—,o(x,u))\/O}Zdvz(u)gcﬁ (46)
o

Il

whereC > 0 is a constant.
The inequality (46) shows that the formulas (44) and (45) are valid alike foP.
Now we may write (11) on the form

Vi(W2r W, x) — ogllx[|? = zd@/Mup(x, W)L dvg(u) + Ry(x, 1)
S+
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with
0< Ry(x.1) < —adz ( ) V2 MY x4 1, .

Hence there existg > 0 and a constaan > 0 such that

E{(Vi(V2t W, x) — og|lx[|9)%} = A%kq | x| %722t + 151 Ga(x,1), xR, t>0,
(47)
with

kg = NEE 2/ EM, M) (p(x,u)p(x, u)) Y dvg(u) dvg(u)), (48)
(S+H)2
and
0< Gy(x, ) <K,j(L+Ix?73), xeR? 0<t <1
The covariance& (M, M,,) were calculated in ([9], IV). Precisely, & € (0, 7] is the
angle spanned by the two vectars:’ € S¢~1, then
sSind [6(2r — H) 1

EM,M,)=H@®)= )
( ) ©) 2 | 6(r—6) Jrtan@

(49)

Inserting (49) in the integral (48) some calculation yields:

kg =404-104 2
p+¢
X / / H (0) sind [sir? g sirf ¢’ — (cosd — cosp cosy’)?] @472 4

0oy’ 0=¢'—p
pto' <

x (cosp cosy ) Lsingsing’ depdy’, d >3, (50)

1— cosu
ky = < S / u>. (51)

In order to obtain Theorem 6 it suffices now to insert formulas (44) and (47) in (43), and

to proceed to some elementary calculations thanks to (50) and (&1).

Remark4. — The asymptotic result of Theorem 6 and Eq. (5) suggest that we may

have

4
Cop = 2—7:1(7( Ea~1(C) — ENo(C) +2).

Using the well-known equalitf No(C) = 6 (see, e.g., [19]) and (51), this is equivalent

to the equality

2
471
Ea~Y(C) =~ / O 1. (52)
T ; t
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We did not find this result in the literature so for the sake of completeness we give its
proof in Appendix A.

5. Concluding remarks

(1) A part of the above arguments works in a more general setting of Johnson—Mehl
tessellation [5,13,18]. In that model the crystals start growing radially (in all direction at
fixed speed > 0) at timer; from the nucleix; in such a way that

® = {(x;,4;) e R? x [0, +00)}

is a spatially-homogeneous Poisson point process. At the end of growth the whole space
is covered and the construction of the Johnson—Mehl tessellation is completed. The
Poisson—Voronoi tessellation corresponds to the particular case when all nuclei are born
at the same time. The Johnson—Mehl crystals are star-shaped but not necessarily convex,
the common boundary between two crystals, which is a part of a hyperboloid, may even
be disconnected.

It can be shown that for a procedssatisfying the canonical conditions of Mgller [18]
the expectation of the spectral function of the typical Johnson—Mehl cell can also be
expressed in terms of Brownian bridge from which a two-terms expansion near the origin
can be obtained (see [11]).

(2) It would be interesting to obtain the geometric significance of the coefficigats
appearing in the asymptotic of Theorem 6. In view of (6) it is likely @atis connected

with
Ny—2(C)
1 (,(),(C) T
E{ Z :—3( - _m)vd—Z(Fi(C))},

i=1

where

) F),i=1,...,N,;,_2(C), are the(d — 2)-dimensional faces af;

(i) w;(C) is the magnitude of the dihedral angle at the f&ae), 1 <i < Ny_2(C).

(3) To obtain the values of coefficientg;, i > 3, in (7) it is necessary to calculate
explicitely the covarianceEM,, - My, ui,...,u; €St j >3, associated to the
d-dimensional Brownian bridge. At our knowledge this problem is open. Note also that
for a bounded convex polyhedron Bf the explicit expressions of the coefficients at
orderk > 4 appearing in the asymptotic (near the origin) of the spectral function are
unknown (see [7]).

(4) Ford = 2, Theorem 2 can be proved without the Donsker—Varadhan theorem.
Indeed, we can use the estimation provided in [10] for the distribution of the perimeter
of the convex hull of the Brownian bridg@.

(5) It is interesting to note the significance of Lemma 1. The inequality (46) can be
rewritten under the form

EPYT > u} <EPYT >u}, u>0,

where T_denotes the first exit time of the Brownian bridge from the «&D), the
notation PX expressing the fact that the Brownian path is starting at the poaR?.
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If we replace the Brownian bridge by the standard Brownian motidi‘iin the proof
of Theorem 1 we obtain the corresponding inequality

EPX{t > u} <EPY%t >u}, u>0,

for the first Brownian exit time of C(0).

(6) It is well known that “the larger regions have smaller eigenvalues” and therefore
the equalities (3) and (4) express that in some sense the large Voronoi cells are nearly
circular. An analogous phenomenon (known under the name of D.G. Kendall conjecture)
occurs for the polygons determined by a standard Poisson line process in the plane
(see [10,15]).
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Appendix A. Proof of (52)

Let us recall that by associating to each vertexf the planar Poisson—\Voronoi
tessellation the triangl& (s) whose vertices are the nuclei of the three cells containing
(and whose center of circumdisc coincides precisely withwe obtain the dual
tessellation, called the Delaunay tessellation (see [19]). The typical Delaunai cell
is defined (in Palm sense) by the following formula [19]:

1
Eh(D) = mEse;Bh(T(s) —), (A.1)

for all measurable functioh: C — R, and where:

() B c R?is an arbitrary fixed Borel set such thatOV,(B) < +00;

(i) Sis the set of vertices of the Poisson—Voronoi tessellation.

Note that the mean number of vertices per unit area is equal to 2 (see [19]).

The distribution of the typical celD, which is a triangle notedz,z3, is known
explicitely by means of the distributions of the radipgD) of the circumdisc ofD
and of the three angle& (D) = 71 pz2, Bo(D) = Zopzz, PB3(D) = 71pzo, Wherep is the
center of the circumdisc dP (see [19], p. 104, for an expression of these distributions
valid in any dimension and [20], p. 249, for a rewriting in dimension 2). In particular,
these angles are identical in law and independent(6f). This implies that the angles
a1(D), ax(D), az(D) spanned irnp by any two edges of the Voronoi tessellation, are
independent op (D) and of common distribution (see, for example, [20]):

a1(D)(P)(dt) = % sint (sint — 1 cost) Lo 1 (¢) dt. (A.2)

Thus from (A.2) we get the following result:
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LEMMA A.1l. - We have

2
£ 1 _ 2/1—COSt
al(D)_Bno

Let us consider now the sgt of angles of the Poisson—Voronoi tessellation and for each
a € A, lets(a) be the associated vertex. Then noticing that the mean number of angles
per unit area is equal to six we can define a typical aaghe the following lines:

E Z lon(e), 0<r<m, (A.3)

acA
s(w)eB

El[O,t](O_l) = W(B)

whereB is a fixed Borel set oR? such that O< V,(B) < oo.

The typical anglér can be connected, on one hand to the angles of the Voronoi typical
cell C, and on the other hand to the angte$D), (D), a3(D) of the Delaunay typical
cell D. More precisely, we have:

LEMMA A.2. -
(i) The anglesx etay (D) are identical in law.
(i) For any measurable functioyi: [0, 7] — R, , we have

No(C)

1
Ef@=¢E > flac).
i=1

whereac ;, 1<i < No(C), denote the inside-facing angles of the typical Cell

Proof. —(i) Consider 0< ¢ < 7 andB € B(R?), V,(B) = 1. Then by definition (A.1)
of D, we have

3

“EY 1 ot](a,w))—éE > (Zlot] a,<s>>

i=1 seSNB

where a1 (s), ax(s), az(s) are the three angles associated with the vestér the
tessellation. Moreover, by definition of the typical angle (see (A.3)),

—E > (Lo (ea(s)) + Lo (e2(s)) + Lo (ea(s))) = Edjo (@)

seSNB

We conclude then by using the identity in law of the three anglg®), a»(D) and
a3(D).

(i) The proof is similar to that of Proposition 3.2.2. of Mgller [19] which connects,
for 1 < k < d, the k-dimensional typical face of the Voronoi tessellation to the
dimensional faces of the typical cell.C
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From Lemmas A.1 and A.2, we deduce that

2

P l)_ (l )_ﬂ 1— cost
Ea (C)_6E<& = 6E D) _no/it dt,

which completes the proof of (52).0
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