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ABSTRACT. — Let(S, A, P) be a probability space and 1€} be the empirical measure based
oni.i.d. samplgXy,..., X,) from P. Let F be a class of measurable real valued functions on
(S, A).For f e F, defineFy(t) := P{f <t}andF, ¢(t) := P,{f < t}. Giveny € (0, 1], define
en,y(8) := 1/(n177/257). We show that if theLo(P,)-entropy of the class grows ass~¢ for
somex € (0, 2), then, forall f € Fand alls € (0, A,), A, = Onl/?),

F; (%) <[ Fn GV Zeny®)

and
Fui(s) Sc@ [PV Zeny0)].

wherey = 2% andc(o) | 1 aso | 0 (the above inequalities hold for any fixeds (0, 1] with a
high probability). Also, define

8u(ys f) :=SUPS: Fr(8) <eny(8)) and 8,(y; f):=SUs: Fy r(8) < eny(5)).
Then for ally > 2%

$u(ys )
Sn(y; )

uniformly in F and with probability 1 (fory = % the above ratio is bounded away from 0 and
from co). The results are motivated by recent developments in machine learning, where they are
used to bound the generalization error of learning algorithms. We also prove some more general
results of similar nature, show the sharpness of the conditions and discuss the applications in
learning theory.
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RESUME. — Soient(S, A, P) un espace probabilisé &, la mesure empirique supportée par
I'échantillon (X1, ..., X,,) den variables aléatoires i.i.d. tirées selé Soit 7 une classe de
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fonctions a valeurs réelles, mesurables 6lr4). Pour f € F, notonsFr(t) := P{f < t}
et F, ¢(t) := P,{f < t}. Etant donnéy ¢ (0, 1], définissons, , () := 1/(n'~7/287). Nous
montrons que si ld»(P,)-entropie de la classg croit ene~* aveca € (0, 2), alors, pour toute
fonction f € F ettout réebs € (0, A,), A, =0nl/?),

Fr (c((ir)) <e@)[Fur®v any o)

et
8 1
Fat (2y) S €@ |0V ey ®)
ouy = 2% etc(o) | 1 quands | O (les inégalités ci-dessus sont valides avec forte probabilité
pour touto € (0, 1]). De plus, si'on pose
8u(y; [):=SUPS: Fr(8) <eny(8)) €t 8,(y; f):=SUPS: Fy £(8) <&,y (8)},

4 20
alors pour tout réey > =%

8.y £)
811(V; f)

— 1 quanth —» oo

uniformément surF et avec probabilité 1 (poyr = 2%, le rapport ci-dessus reste strictement

positif et borné). Ces résultats sont motivés par des développements récents en apprentissage
automatigue ou ils sont utilisés pour borner I'erreur en généralisation des algorithmes d’appren-
tissage. De plus, nous prouvons d'autres résultats généraux du méme genre, nous montrons que
les conditions imposées sont précises et nous discutons de possibles applications en théorie de
'apprentissage.

0 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Consider a measurable spacg .A) and letF be a class of real valued measurable
functions on(S, A). Let {X,} be a sequence of i.i.d. random variables, defined on a
probability space&2, X, P) and taking values iiiS, .A4) with common distributionP. In
what follows, P, denote the empirical measure based on the satle . ., X,,):

Py(A):=n"'> Is(Xi), ACS.
i=1
Given a real valued measurable functigron (S, A), let

Fy(8) :== P{f <4}, F 5 (8) := P{f <3}

In this paper, we prove upper and lower bounds/nin terms of ,  uniformly in
f € F under suitable conditions on the metric entropy of the cfass
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It is well known that, even ifF is a P-Donsker class, the class of séts= {{ f < t}:
f €F, t € R} does not have to bE-Glivenko—Cantelli, i.e., the supremum

supsup| Fy, s (1) — Fy(1)|
feF teR

does not necessarily converge to Koltchinskii and Panchenko [9] studied the
convergence of, ; to F, in Lévy distance (uniformly overF) and proved that this
convergence is equivalent t6 being a P-Glivenko—Cantelli class with the rate of
convergence depending on the complexity of the class. The Lévy distance measures the
closeness of two distribution functions not at the same point, but at two different points
(close to each other): if the Lévy distance betwdgn and F, is smaller thare, then

for all ¢

Fr(t)<F,;t+e)+e and F, ;(t) < Fp(t+¢)+e.

However, the closeness of the distributions in Lévy distance tells almost nothing about
boundingF(8) in terms of F,, , for those f € 7 and$ > O for which F,, ;(8) is small,
so, one should try to contrthe ratioof F; and F, ; rather than theidifference There
exists an important circle of problems in learning theory (related to the development
of so-calledlarge margin classification algorithmsee the discussion below) where
this question is crucial since the large margin algorithms tend to output functidois
which F, ((8) remains small for large enough valueséfin such cases, it is rather
natural to measure the closenessipf; to F; in a different way (that can be viewed
as a “multiplicative” version of Lévy distance). Namely, it is important to know that for
¢ > 1 that is sufficiently close to 1 with a high probability

F(8) <cF p(cd) and F, ;(8) < cFy(cd)

for all f € F and for all$ in a broad enough interval (unfortunately, it is impossible to
have this type of bounds for all). To prove these bounds will be our goal and we give
below more precise description of the main results.

Note that Koltchinskii and Panchenko [9] dealt with a problem of bounding)
by an expression involvingF, () (bounding the generalization error in the context of
learning theory) which can be viewed as a special case of the above problem; the constant
¢ involved in their bounds was large. It might be also of some interest to obtain bounds
of the above type that take into account both the translations and the dilations of the
real line (i.e., combine the closeness in standard “additive” and in “multiplicative” Lévy
distances), but there seems to be no obvious application of such more general bounds at
the moment.

For eachy € (0, 1], define

oy O gy
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In particular, we show that if thé,(P,)-entropy of the clasg grows as~* with some

o € (0, 2), then fory > 22+—“a

nl/2 ) 1
IP{EIf e F A< 117: Fy <—> >c(o) [F,,,f((S) \Y, ;8n,y(5)] } < A(o) exp{—01}

c(o)
1.1)
and
nt/? b) 1
IP’{EIf €FBL 1 Py (@) > c(0) [Ff(a) v ;sn,y(a)} } < A(a)exp{—e(z}, |
1.2

whereA(o) < +00, o € (0,1] andc(o) | 1 aso | 0 (the bounds hold for all > 0 and
o € (0, 1]; 6 is anumerical constant).
Let now

. (y; )= Sup{é: Fr(d) < 8,,)),(3)} (1.3)
and

Su(y; f) :=sup(8: Fo ;(8) < &n,(8)). (1.4)

These quantities provide the sizedofor which F, (8) or F(8) in bounds (1.1), (1.2)
start exceeding the term, , (8) related to the behavior of the entropy of the cléss
Thus, for all§ > S,i(y; ). Fr(8/c) is bounded from above byF, (5) and, for all
8= 6,(y; f), Fur(8/c)is bounded from above byF,(5) (with high probability and
with somec > 1). We also show that, fop > 2% such bounds hold for all > 1 (for
all large enough).
We also study the asymptotic behavior of the rafips/; £)/8,(y; f) uniformly in
f € F. We show that, for aly > 22+—°‘a (wherex is again the exponent of the entropy), the
ratios converge to 1 uniformly iF with probability 1 Fory = 22—0‘a the ratios are known
to be bounded away both from 0 and from infinity uniformlyArwith probability 1 (see
Koltchinskii and Panchenko [9]). We give examples showing thayf@rzz—“a, the ratios
can tend to O or to infinity and also showing the optimality of the bounds (1.1), (1.2).
The proofs of the main results are based on Talagrand’s concentration inequalities for
empirical processes (see Talagrand [17,18] and also Massart [14], where the inequalities
are given in the form we are using them here) along with entropy type bounds (see
Dudley [5], van der Vaart and Wellner [20]). The method is close to the one used in
Koltchinskii and Panchenko [8,9]. It is based on iterative localization of complexity
of function classes with application of the concentration inequalities and the entropy
bounds at each iteration. The method can be of independent interest in the problems
related to bounding the ratios of empirical distributions to true distributions [6] as well
as in nonparametric statistics (see Massart [15] for some close ideas).
Sincetheclas$ o F :={I_x.o f: f € F, t € R} can have large complexity (e.g., it
is not necessarily Donsker) and it is hard to relate its entropy directly to the entropy of the
classF, we had to approximate this class by the clasBesF .= {¢o f: f € F, ¢ € ®}
with a properly choosen family of Lipschitz functiods approximating the indicators
of the intervals(—oo, ¢]. Such a smoothing allows us then to estimate the entropy of
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® o F in terms of the entropy aof, but the “price” of this approximation is the need to
compareF; and F, ; at different points.

The problems of this nature are motivated by some recent developments in machine
learning. More precisely, we deal with so-call@dary classificatiorproblem, described
below (see also Devroye, Gyorfi and Lugosi [4]). Suppose that the spaceeplaced
by S x {—1,1}. Functions f in the previous definitions will be now replaced by
(x,y) = yf(x). In a couple(x,y) € S x {—1,1}, x is interpreted as an “instance”
and y as a “label” assigned to this instance (we consider binary classification only
for simplicity, all the results apply also to multiclass problems the same way as it is
done in Koltchinskii and Panchenko [9]). LeX, Y) be a random couple isi x {—1, 1}
with unknown distributionP. It is supposed that the instandeis observable, but the
label Y is not, and it is to be predicted based on the observatioX.dfVe will call
a function f: S — R a classifier A classifier f predicts the labek-1 if f(X) >0
and the label-1 if f(X) <0 (if f(X) =0, f does not return any label). With this
conventions, the probability that either misclassifies, or does not return the label,
is P{(x,y): yf(x) <0}. In machine learning literature, this quantity is referred to as
generalization error The goal of learning is to find a classifier (in a given cl&s}
with a small generalization error. Sindgis unknown, it is replaced by the empirical
distribution P, based om i.i.d. training examplegX4, Y1), ..., (X,, Y,) (independent
copies of(X, Y)). An important problem is to develop sharp probabilistic bounds on the
generalization error of classifiefse F based on the training data. The quantit§(X)
is often callecclassification margirof f. Correspondingly,

Fp(t) == P{(x,y): yf(x) <t}

is called themargin distributionof f and

Fn,f(t) = Pn{(x’ )’) )’f(x) < t}

is called theempirical margin distribution(clearly, the generalization error is equal
to F¢(0) andthe training erroris F, ((0)). There has been a lot of attention to so
calledlarge margin classification methodgoting methods, support vector machines) in
which learning algorithms output classifiers with the empirical margin distribution that
is shifted to the right so that oftel, /() = O for positive (large enough) valuesmofThe
algorithms search for classifiers of this type in rather large function cle&gkat often
consist of “combinations” of functions from a simpler base clgsghe “combinations”
are convex combinations in the case of such methods as boosting, or they might be
implemented by large neural networks, etc.) The success of this type of methods has
not been understood to the end yet, but it is clear that it has something to do with
their ability to produce classifiers with large margin. We refer to Vapnik [21], Anthony
and Bartlett [1], Cortes and Vapnik [3], Bartlett [2], Schapire et al. [16], Koltchinskii
and Panchenko [9] and references therein for the discussion of various aspects of this
problem.

One of the important results in this area is due to Schapire et al. [16] (see also
Bartlett [2] who proved similar results in the context of neural network learning
and Koltchinskii and Panchenko [9], Koltchinskii, Panchenko and Lozano [11] who
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refined and generalized these results using the methods of Gaussian and empirical
processes). Schapire et al. [16] considered the ¢lassconv(H), whereH is a Vapnik—
Chervonenkis class with VC-dimensidn() and showed that for a givem € (0, 1)

with probability at least 1 « for all f € conv(H)

C [V (H)lot?(n/V(H)) 1\\ 72
A ()

Let §(f) denote the solution of the equatiorF, ((8) = +/V(H)/n. Plugging in the
above bound = §( 1), one gets (up to logarithmic factors) the generalization error of
a classifierf from the convex hull of the order @L/5( f))/V (H)/n). Boosting and
other large margin classification methods tend to produce classifiers with large value of
8(f), so the above bound provides a partial explanation of their success.

The quantitiess, (y; f) ands,(y; f) were introduced by Koltchinskii and Panchenko
[9]. They were calledhe y-marginandthe empiricaly-margin respectively, and they
can be used to bound the generalization error of large margin classifiers. Indeed, define

Fr(0) < ir;f [Fn,f(3) +

ea(ys f) =6y (8u(ys 1)) and &,(y; f)i=eu, (8.(v: ). (1.5)

We clearly have

en(ys ) € [Fr(8a(y: ) —0), Fr(8:(vs )]
én(y; e [Fn,f(gn(y; = 0)’ Fn,f(gn(y; f))]

Then, by the bounds (1.1), (1.2) of;, one gets that with high probability the
generalization erroF,(0) is bounded byé, (y; f) for all f € F, wherey > 2% (if
y > 2%, then the result is true with any> 1 for all large enough).

The closeness of the ratios pfmargins to 1 (which is equivalent to the closeness of
the ratios, (v, f)/e,(y, f) to 1 and which allows one to ugg(y; f) as an estimate
of ¢,(y; f)) was first observed in the experiments of Koltchinskii, Panchenko and
Lozano [10-12] in the case of classifiefproduced by a well known learning algorithm
AdaBoost. On the other hand, it was proved by Koltchinskii and Panchenko [9] (and it
follows from Theorem 1 below) that for ajl > zi—“a we have

(1.6)

Sy f) n?/2
IP’{V eF A1 <A}>1—Blo lo nexp{——}
! 507 f) 9100 2

(with some constantd, B > 0).
It is easy to see that the quantity

1
n1=v/28, (v f)7

involved in the upper bound on the generalization eberomes smalleaisy decreases
from 1 to Q The Schapire—Freund—Bartlett—Lee type of bounds correspond to the worst

Enlys f) = (1.7
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choice of y (y = 1). In the case wher¥ is the symmetric convex hull of a VC-
class’H with VC-dimensionV (H) the value ofa is equal to 2V(H) —1)/V(H) <

2 that allows us to haver < 1, improving the previously known bound. In fact,
Koltchinskii, Panchenko and Lozano [10-12] computed the empisicadargins of
classifiers obtained in consecutive rounds of boosting and observed that the bounds on
their generalization error in terms gfmargins hold even for much smaller valuesof
which leads to a conjecture that such classifiers belong, in fact, to aElassonvH)

of a smaller entropy than the entropy of the whole convex hull. Koltchinskii, Panchenko
and Lozano [11,12] consider the problem of adapting margin type quantities to the
complexity of the classifier. Recently, Kégl, Linder and Lugosi [7] suggested some other
interesting margin type bounds on generalization error in which the shattering dimension
of the class is used instead of its(P,)-entropy.

Our main focus in this paper is bounding not only the generalization error, but also the
true margin distribution functiod;. This might be essential in the development of large
margin classification methods since in many cases the goal may be to find a classifier
f € F that not only has a small generalization error, but also has a large true margin (i.e.,
such thatF's(8) remains small for large enough values of the maégin0). Recent work
of Tsybakov [19] shows that if(x) := E(Y |x = x) (this regression function defines the
optimal Bayes classifier), then the convergence rates of empirical risk minimizers to the
Bayes risk crucially depend on the behavior of the distribution functign|oEstimation
of this margin type distribution function might be an important step in the development
of adaptive classification algorithms (for which optimal convergence rates to the Bayes
risk are attained), and bounding the true margin distribution by the empirical one might
be very useful in the analysis of such methods.

In the current paper, we attempt to address these problems and we get the bounds
outlined at the beginning of the Introduction, but under more general assumptions on
the entropy of the clasg. Our results also clarify the meaning pfmargins and give
a mathematical explanation of some of their intriguing properties observed earlier in the
experiments (such as the closeness to 1 of the ratio of the empiricergin to the true
y-margin).

2. Main results

In this section we introduce some more general margin type quantities whose behavior
is related to the growth of the entropy of the cl&Bs
Given a metric spac€r’, d), let H,(T'; ¢) be thes-entropy ofT with respect tal, i.e.,

Hy(T;¢e) :=logN,(T};¢),
whereN,(T'; ¢) is the minimal number of balls of radiuscoveringT . For a probability

measureQ on (S; A), dg > will denote the metric of the spade(S; d Q): dp 2(f; g) =
(OIf —glHY
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Let @ be the class of strictly concave nondecreasing functipran [0, +-o00) with
¥ (0) = 0 and such that

v — 0 asx — oo, v
x x

— +o00 asx — 0.

W, will denote the class of functiong € W such that

Yxy) <y )y¥(y), x,y=0.

Suppose the following bound on Dudley’s entropy integral holds with s@me=
D,(X4,...,X,) >0suchthal€D, < co and withyr € ¥:

/H;;fz(f, w)du < D,v(x), x>0a.s. (2.1)
0

The functionys characterizes the complexity of the claSsand it will be involved in
the definition ofyr-bounds and/-margins below.
Assuming thaty € ¥ and givene > 0, denote bys” (¢) the solution of the equation

NG (2.2)

&

1
=5

with respect tos. Similarly, for a fixeds > 0, ¢/ () denotes the solution of (2.2)
with respect tce (sinceys is strictly concave, the solutions are unique in both cases).
Concavity ofy implies that the functionp(x) := @ is nonincreasing (also, since
Y e W, ¢((0,+00)) = (0, +00)), and we have

o H(en)
—

Given a functionf, we definethe y,-boundas

8V (e) =

el (f):=inf{e >0: F; (87 () <&}
andthe empiricaly-boundas
8V (f):=inf{e >0: F, ;(87(e)) <e}.
The “dual” quantities will be callethe yy-margins
8V (f):=sup(8 =0: Fr(8) <&/ (8)}

and
8V(f):=sup{8 >0: F, ;(8) <&’ ()}
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An easy consequence of these definitions is that
ex (N =g/ (8/(N) and &N =e (/). (2.3)

Clearly, we also have

ey (f) € [Fr(8)(f)—0), Fr(8Y(f))] and

] ) (2.4)
EV () e [Fur(BY(f)—0), F (57 ()]

In some of the statements and in the proofs below, we will need the truncated versions
of these quantities. Namely, given a functignand: > 0, we definethe truncatedy -
boundandthe truncated empiricals-boundas

eV (f:1) ::inf{s> L. Fr(87 (o)) gs} and
n

&V (fi ) ::inf{s > L: G ) <8}'
n

Thetruncatedy-marginsare defined as follows:
SV (fit):= sup{a <8y (%) D Fr(8) < s;{f(a)} and

A t
SV (fit):= sup{a <8y (—) D F(8) < s;{f(a)}.
n
The properties similar to (2.3), (2.4) hold in the truncated case as well.
The result below was proved in Koltchinskii, Panchenko and Lozano [12].

THEOREM 1. — Suppose that the conditiof2.1) holds. Then there exist absolute
constants4, B > 0 such that forA := A(1+ ED,)? and for all > 2logn

P{VfeF: A%V (fin) <el(fir) <AE(fin)

> 1—Blogzlogzéexp{—%}. (2.5)

The next theorem and its corollary describes the asymptotic behavior of the ratios of
Y-bounds and/-margins.

THEOREM 2. — Suppose the conditiof2.1) holds with some/ € ¥ such that

Y0 >2v20 log S, x <1,
X

and with

SUpED,, < +o0.
n

Suppose also that

SUpP{f >u}—0 asu— oco. (2.6)
fer
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Then
2V oV
IP’{O <timinf inf 2 < jim supsups L) +oo} _1 2.7)
S en (f) n feFén(f)
Moreover,
20
]P{sup gg(f) —1‘—)0&811—)00}:1 (2.8)
rerlen(f)
for any¢ € ¥ such that
¢(x)
— 400 asx — 0. 2.9
¥ (x) (9)
COROLLARY 1. — Suppose that the conditions of Theor2imold withy € Wy. Then
SV SV
IP{O < liminf inf 8:;(’() <lim supsup‘sj;(f) - +oo} _1 (2.10)
" TEE 8 (f) n feF du (f)
If now¢ € ¥y, ¢(1) =1and
¢(x)
— +o00 asx — 0, 2.11
¥ (x) @11)
then
5¢
]P{sup ;(f) - 1‘ — 0asn — oo} =1 (2.12)
reF16n (f)

The following theorem provides upper bounds Bnin terms of F, » and onF,, ; in
terms of F uniformly over the class satisfying the entropy condition (2.1).

THEOREM 3. — Suppose that conditiof2.1) holds with some € ¥ such that
[ e
Y(x) = x,/log—, x<1
X

SUpED,, < +o0.
n

and with

Then there exist > 0 and for anyo € (0,1] A(c) < +oo andc:=c(o) > 1, c(o) | 1
aso | 0such that for allo € (0, 1] and all > 2 logn

IP’{EIf e FI <Y (%) Fy (i)) > c(0) [F,,,f(a) v ;s;f(a)} } < A(o) exp{—01)

c(o
(2.13)
and

IP’{EIf e F A< Sl‘f (L) F, s (i) > c(o) [Ff(é) \Y, E8,‘?(8)} } < A(o) exp{—0t}.
n c(o) o (2.14)
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Remark— It follows from the proofs below that(o) in Theorem 3 is of the order
1+ O(c*) for somex > 0 and thatA (o) grows as a power of aso — 0. It would
be interesting to determine the best (the largest) possible value of the expoioerat
given exponent ofi (o).

The next statement follows almost immediately.

THEOREM 4. — Suppose that conditiof2.1) holds with some € ¥ such that

V(x) > \/c_zx,/log;e, x<1

(wherea > 2/6, 6 being the constant i(2.13), (2.14)) Suppose also that

SUpED,, < 400

and condition(2.6) holds. Then, for for some> 1, with probability 1

C

. b
AN>1Vn > NVfeFVs=8/(f): Ff( )ch,,,f(a) (2.15)

and

8
AN >1Vn > NVYfeFVs =8V (f): F,; (—) < cFs(5). (2.16)
"\ A
Moreover, letp € W be such that conditio(2.9) holds. Then with probabilityt
A 8
Ve>13AN >1Vn > NVf e FV8>8°(f): Fy (—) < cFy 1 (8). (2.17)
"\ A
and

)
Ve>1aAN 2 1Va = NVf e FVs=80(f): Fuy (—) < cFr(8). (2.18)
C
The proofs of the results are based on the following theorem that refines previ-
ous bounds of this type obtained by Koltchinskii and Panchenko [9], Koltchinskii,
Panchenko and Lozano [12].

THEOREM 5. — Suppose that conditio(®.1) holds with some) € W. Then, for all
§>0and foralle > 0, o € (0, 1] such thatso > &/ (8) v 2"’% the following bounds
hold

P{3f € F F, ;(8) <eand F;(A,(c)8) = B, (0)e}

log, (e0) 7t noe
< =L 7 -
< D<Iog2 1+ 10g,01 \Y, 1> exp{ > }

and



954 V. KOLTCHINSKII/ Ann. 1. H. Poincaré — PR 39 (2003) 943-978

P{3f € F F;(8) <eandF, ;(A,(6)8) > B;(0)e}

log, (e0) 7t noe
<D|log,——— V1 —_—— 0
(ogzlJrlogzcr—lv )eXp{ 2 }

whereA, (o) := (1 — Ac’) v %, Bi(0):=1+4 Bo*, v,A >0, A <1/2, A+4v <1,
A=A(1+ED,)? B=B(1+ED,)? andA, B, D are numerical constants.

3. Proofs of the main results

Proof of Theoren2. — First we show, following Koltchinskii and Panchenko [9], that
conditions (2.6) and (2.1) imply that with probability 1

I|m limsupsupP,{f >M}=0. 3.1

M—o00 p—co feF

Indeed, letg be the function fronR into [0, 1] that is equal to 0 for < M — 1, equal to
1 foru > M and is linear in between. Then

SupP,{f = M} < supP,g(f)

feF feF
S SupPg(f) + 1P, — Pllg < supP{f =M —1} + || P, — Pllg,
feF feF
where

={go fi feFIU{OL

Since the first term tends to 0 & — oo, it is enough to show thgtpP, — P|g — O as
n — oo a.s. By concentration inequalities, this reduces to showindgdhgf — P|lg — O
asn — oo, which in turn would follow (by a standard symmetrization argument) from

-0

’

n
nil E 81'8X,-
i=1

where{¢;} are i.i.d. Rademacher random variables independerigf. The entropy
bound for the Rademacher process yields

g

dpz

const 1 2
S / )

n
nil E Si(SX
i=1

Sinceg is Lipschitz with constant 1, we have
dp,2(80 f1,80 f2) <dp,2(f1. f2), f1. f2€ F.
This easily gives (see (3.20) in the proof of Theorem 5)

H}? (Giu) < Hp? (Fru)+ 1.

dP2 dP2
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Therefore, under the condition (2.1) and the condition, &, < +oo

n
l’l_l Z 8,'8)(1.
i=1

which completes the proof of (3.1).
We will prove only (2.8). The proof of (2.7) is very similar (but somewhat easier).
Let o € (0, 1] be an arbitrary (small) number. Denafe:= ZZ—V logn (with y > 0).

Since% — 400 asx — 0, for anyo € (0, 1] there existsc := k(o) such that for

all x <k ¥ (x) <o (x). Suppose that! (e0)./e0 < k. Sinceg is nondecreasing, this
implies foro € (0, 1) that

DY (£0)VE) _ $() (e0)y/er) _ 1) (o) /eo) _ 1

—&0 = E€.

sl(eo)yn ~ S(eo)yn 0 8l(o)n O

Using the fact that the concavity gf implies that the functiord > ¢ (5./¢)/8+/n is
nonincreasing, we easily conclude from the definitions¥af §¢ that

const

E < (ED, v (V2) ++2) - 0,

G n

57 (0) < 87 (e). (3.2)

On the other hand, 8 (¢o)/co > k, we have

' n

ngl/f(&‘{’(w)\/g)<¢(K/\/§«/§)<1//(K) g0
8V (eo)yn  Kk/JEon T« n’

which implies

gg(w))zi

K on '
Sincet, — oo asn — oo, for all large enoughl we have

(W))Z 1
ty > —.
K o
Therefore, for alle > #,/n, we haves? (co)./eo < k, which, as we proved, implies
(3.2).
Next note that the condition (x) > 2+/2x./Tog(e/x) for x < 1 easily implies that

e 1 /y) = €e/B for y > 8 (recall thaty(x) = ¥ (x)/x). Therefore, for large:, we
have (ify < 2)

-1 —1,0/8
Sf(t_”) > 8 (t"_") _ W) o e Ji= 8 ez o
n n N V1o 1,0
(3.3)

Hence, using (2.6) and (3.1),

inf (a,f (t—)) 1
feF n
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inf F, (ag(t—”)) 1
feF n
which implies that a.s. for large enoughand for all f € F
el(f)=el(fit,) and &(f)=2&0(f;tn).

Therefore, in the rest of the proof we can replace ¢hikounds by the truncated-
bounds.
By the definition ofz,, for all large enouglx we have

2
t, > (WK)) Evzlognvi

K o o o2’

and a.s.

Note that the conditiono > ¢¥ (§) is equivalent to the conditioh > 8! (¢o0'). Therefore,

for e > 1,/n ands = 8¢ (¢) we haveso > &/ (§) v 2'3& which means that the bounds
of Theorem 5 hold foe > 1,/n ands = 8¢ (¢).
Recall thatA, (o) < 1< B; (o). Applying the first bound, we get

P{3f € F F, ;(82(e)) <e andFy(A,(0)8%(¢)) > B (0)e}

log, (o)t neo
<B'°QZW6XP{—7}'

Next we set; := B, (o) /. LetJ ={j > 0: ¢; >t,/n} and
E,:={3jeJ3AfeF:F,;(8(cj)) <ejandF;(A,(0)8?(g;)) = Bi(o)e; }.
Note that for allj €
gj > Bx(cr)"""%’,
wherej, :=inf 7. Hence, we have

log, (¢;0)71 ne;o
P(E,) <B log, ————expy ———
(En) ,; %17 log, o1 xp{ 2 }

IOgZ (n/tn) + |ngo’_l Ino i
< B |092( — ) exp{——BA(a)-’}
1+log,o—1 jz?% 2

log,(n/t,) +|ngal) exp{ tno}
1+log,o-1 2 )

Suppose that for somgand for somef € F, £?(f;1,) € (¢j11, ¢;1. On the event:,

the inequality F,, ;(8¢(¢;)) < &; implies thatF;(A,(0)8?(¢;)) < Bi(o)e;. Since, for
f(x) =22,

< B'(0) Iogz< (3.4)

-_1 - -—1 Av -2 .
Av(d)ﬁ,‘f’(sj) _ A, (0)pH(JEm) - ¢ (y/Av(0)~2%n) =8,‘f’(Av(a)_28j),

VE T Ao
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we also have;(8?(A,(0)~2¢;)) < By (o)e;, which implies
Fr (87 (A(0) ?Bu(0)&) (3 1)) < Bu(0)?8] (f; 1),
Therefore, on the everf:, we get for allf € F,
e0(f112) < (Au(@)2By(0) V Bu(0)?)E0(f5 1)
It follows from (3.4) that

P{3f € F: el (f:ta) = (Au(0)?Bi(0) V B,(0)?)E0(f3 tn)}

log,(n/1,) + Iogzol> exp{_tno }
1+log,o-1 2 )

Quite similarly, using the second bound of Theorem 5, one can prove that

P{3f € F: &0(fi1) = (Au(0) 2Bi(0) V Bi(0)?)el (f3 1)}

log,(n/1,) + Iogzol) exp{_tno }
1+log,o-1 2 )

By the definition oft, we have for alb > 0

, lo t,) +log, o1 t,
) B(a)log2< gz(f:_k))g 0?120 >exp{— 20}<+oo.
n 2

< B'(0) |092<

< B'(0) Iogz(

By Borel-Cantelli lemma, we conclude that with probability 1, eventually (for all
largen), we have for allf € F

82(fi1,) < (Ay(@) 2Bu(0) V By(0)?) e (f; 1)

and

e2(f11a) < (Ay(0) ?Bi(0) V Bi(0)?)ES (f: ta).
Since the above bounds hold for all> 0 andA,(¢) — 1, B,(c) — 1, the result
follows. O

Proof of Corollaryl. — The conditiomy (xy) < ¥ (x)¥ (y) easily implies thap (xy) <
e(x)p(y) andpt(xy) < ¢ 1(x)p~1(y). Hence, for alk > 0
¢~ (Jen) \/Etp_l(«/ cLcen)
N Jee

5y (e) = <Wep e8! (ce),

which implies for alls

)
14 14
ce) (8) < &) <\/E<p1(cl/2)>'

Sincec — ¢Y?p~1(c=%/?) is an increasing continuous function and

M2 (cM2) 5 00 asc — oo, 9% > 0 asc— 0,
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for all A > 0 there existg := C(A) > 0 such that
cl/2(p—1(c—l/2) — A,
Moreover,C(A) — oo asA — oo. Therefore, we have the following bound for &l
C(A)e’ () <&’ (%)

Now, the assumptioB? (/) < L5V (f) implies that

EV () =€l (87 () = el (A1) (1)) = C(A)e! (87 (f)) = C(A)e! ().

Therefore,
2V
Iimsupsupg’fp(f) < C(A)
n f€.7: En (f)
implies
SV
liminf inf % (/) > l

nfeFSY(f) A
Quite similarly,
&l 1

liminf inf 7 > —
nofeF g (f) C(A)

implies

SV
lim supsup(s” (/) <A

o reF 81 (f)
Since C(A) - oo as A — oo, the first statement of the corollary follows from
Theorem 2.
The proof of the second statement is very similar if one takes into account that the
condition¢ (1) = 1 implies

(V2 1 ascl 1,

whereg(x) = ¢ (x)/x, which allows us to show that

)
C(A)e? () <&? (—)
A
withC(A) | 1asA | 1. O
Proof of Theoren8. —First note that it is enough to prove the bounds for sufficiently

largen (since it is assumed that> 2logn, for small enough: the right-hand sides of
the inequalities can be made larger than 1 by a proper choig¢€oofwhich makes them
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trivial). Also, we are assuming in what follows in the proof that, for given 2 logn
ando, ¢ ands$ are such that

eo > &) (8) >
Now, note that for all large the condition

S|~

t _ 2logn
&0 =2 — 2

N

n
implies that

log,(so)~t =
—= "~ <log,lo < eolb,
21+ logyo 1 9,109, (e0)

Therefore, it follows from Theorem 5 that with some=c(c) | 1 aso | 0 we have
(under the assumptiaro > ¢ (8))

8
IF’{EIf eF.F,r0)<e ande( ) >cs} < De o3,

C

Note also that (8) > L iff § <87 (%) andeo > ¢ () iff § >8) (¢o). Denote

t .
5,-::5,;#(;)(“0)/, i=012,...,

and let

t
J = {j: 8V (e0) < 8; ga;f(—)}.
n

Denote also

5.

E .= {Elf eF3jel: F, ;6 <eande<—-’) >cs}.
’ ’ ’ C

Then

o)
3 [
8V(t/n) ¢ 1) neo

Sl(eo) W1 9 7HJneo)’
we get, using thap(x) > /log(e/x), x < 1, that for all largen

v v
P(E) < Dlog(8,, (t/n)/8) (¢0)) exp{

log(1+ o)
Since

efl+necr

1
——— < ,
¢~ 1(neo)
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which implies

o1
0 o (t/n) Iog(nso) +neo — 1+ Iog W)

8Y (e a) NG

Then, for large enough andneo >t > 2logn, we have

2neo neo 4D neo
PIEEYX D————eXp ——— p < —exXps —— ;.
log(1+ o) 3 o 4
On the eventE*, for any j € J and for anys € (§;, §,_1], the conditionF, ;(8) < e

implies F,, £(8;) < e, which in turn impliesF;(§;/c) < ce and hencds(5/c(1+40)) <
ce. Replacinge by ¢(1+ o) and 4D by D, this yields

{Elf eFIse [a‘ﬂ(sa), v (n)]: F,r(8)<e andeG) >cs}

< 2neo.

Next we set
1t
gj=0A4+0) —=
on
and introduce the event

8
F:= {Elf €eF3Ij>03s¢ [(Sf(sja),a;f(%ﬂ: For(8) <egj ande(E) >cs,-}.

We get
D& D& t(1+o0)/
P(F)< =Y emiv/f=—" exp{—i}
LD : Z i
4/42 —1;0/4 —1/4(1 e—m/4) ,

where we used a simple inequalit¥+ o)/ — 1> jo. Note that, foro < 1/2,
to to
1— ta/4 (_) e—to/4 > <_> e—t/8
4 4

l _ e—[0'/4 2 1_ e—l/8 2 1‘
2’
sincer > 2logn andn can be assumed large enough. This yields (with s@mé¢he
bound

and foro > 1/2

D
P(F)< —e'/®.
o
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On the eventF<, for any j, for anye € (¢;_4, ¢;], for all f € F and for any

se {5;,#(80—),5;” (%)] C [5,;/’(8,-0),5,;/’ (%)]

the conditionF,, (8) < e implies F, ;(8) < ¢;, which implies thatF;(5/c) < ce; and
henceF;(5/c) < c(1+o0)e. If we replacec by ¢(1+ o), the above remarks allow us to
show that

]P’{Elf cFde>-"3e {(S;f(aa),agf (5)]: Fo () <e ande(§> >cs}
on n C
gBexp{_i}
o? 8
If § <87 (¢t/n) and

el (8)
e:=F, )V ,
o

we haves? (§) > t/n and hence > t/(on). At the same time, we haver > ¢V (3),
which impliess > 5;{’ (¢0). Therefore, we obtain

P{afefaaq‘ﬂ(i): F <§> >C[F -(5)v‘9'?(5)”<2exp{_£}.
S\ n Ne)” nf o T o2 8

The proof of the second inequality is similarc

Proof of Theoremd. —We sett, := 1;% logn with y € (0, (a6)/2 — 1). Theorem 3
implies that the event

{Elf ceFIBe [S;f(f),a;f (%)] Ff(%) > ?Fn,f@)}
occurs with probability at most
A(e)e ™ = A(o)n 177,
By Borel-Cantelli Lemma, this implies that with probability 1

AIN>1Vn>NVfeFVse [S;f(f),a;f (t—)] Ff<i> < @Fn,f(a). (3.5)
n c(o) o

The conditiony (x) > ax./Tog(e/x) for x < 1 implies thatp=(,/y) > "=/ for
y = a, which in turn implies that

t, g in/a
sV <_> S W Y2 — 1=12,1/2-14p)/@0) _y o

"\ n = ﬁ n
Since

SupP{f >u}—-0 asu— o
feF
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and a.s.

lim limsupsupP,{f >u} =0

U= psoo feF

(see the proof of Theorem 2), we get

. I
inf F, f <8}{’<—>) —1 as.
feF o n

This implies that with probability 1

t
3N>1Vn>Nerfva>3;{f(—"): Ff(
n

1) c(o)
C(U)) <1< Zr 6. @)

(provided thaic(o) /o > 1). Together with (3.5) this proves (2.15).

The proof of (2.16) is exactly the same.

The proof of (2.17) and (2.18) is also similar, if one takes into account the following
observations made in the proof of Theorem 2 (specifically, see the derivation of (3.2) and
(3.3)). First, by (3.3), for large enough

59 (t_") > 5V <t”o> > 5V <t£>
n n n

Therefores < 8 (t,/n) impliess < 8¢(1,/n), which is equivalent t@ := ¢?(8) > 1,/n.
Because of this (see the proof of (3.2)), we hayéso)./eo < i, which implies that
8V (eo) <8¢ (e) =86, or, equivalentlyg? (8) > L&V (3). This allows us to rewrite the first
bound of Theorem 3 the following way

tn 8
P{afefaagagf(—): F,-(
n c(o)

) 2 c@)[F ) v ££0)] } < A0 exil-01,)

A (3.7)
By the definition of5? (), this implies that the event

{EIfe]—"EI(Se [S;f(f),agf(tiﬂ: F,-( 5 ) >c(a)Fn,f(5)}
n " \c(o) ’

occurs with probability at most(o)n 177, and, by Borel-Cantelli Lemma (as in the
proof of (3.5)), with probability 1

A ty )
AN>1Vn>NVfeFVse {Sf(f),é,‘f(—ﬂ: Ff(ﬁ) <c(0)F, £ (5).
n c\o
Since we can assume tha) > 1 for all o € (0, 1], we can get rid of the restriction
8 < 8V (t,/n) by exactly the same argument as before (see (3.6)). Giverd, we can
chooses small enough so that(o) < ¢ and conclude that with probability 1

. 8
AN > 1Vn > NVfeFVs=8°(f): F,-< ) <cF, ;(5),

C
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and since the last events are monotone with respect tiois completes the proof of
(2.17). Similarly, the second bound of Theorem 3 leads to (2.18).

Proof of Theorenb. — The method of the proof was developed in Koltchinskii and
Panchenko [8,9]. Throughout the proof “const” denotes a constant; its values can be
different in different places. Define

ro:=1, rk+1=(e+C~/rksa)/\l (38)

whereC = ¢(1+ED,) with a sufficiently large constaat> 1 (which will be determined
later in the process of the proof). A simple induction shows that eitheiIC\/so > 1
andr, =1, ore + C/e0 <1, and in the last case;} is a nonincreasing sequence that
converges to the solutionof the equation

r=¢e+ Cvreo. (3.9)

A simple computation shows thatis bounded from above by(1 + b./o ) with some
constant > 0. Letd; :=r; — 7. Then

dip1=ria —F = C/ea (i = VF) < Cea /iy —F = C/ea \/dy.
By induction, this implies that
d; < CL 2 2 (80)2*1+~~+2*k — 2127 (80)172*1c = (Ceo )2(1—24').

AS soon as

s log, (s0)~1
“1+@-n)log,o-L

(3.10)
we haved, < 2C%so*. If A < 1/2, we also have in this case (with some constgnt
re <e(l+bot).

Next we define

ro:=1, fk+]_:C\/fk80'/\l.
Clearlyr, < r for all k > 0. We also have (in the case whér/so < 1)

7 = C1+2-1+---+2-<k-1> (80)2-1+»~+2-k _ C2(1—2-k)(w)1—2—k _ (C«/E)Z(l_sz),
Lety; = (s0/f)Y2 = C? " “L(eo)?"". Then

Vi1 + Vecz+ -+ 10=CYCVeT + (Cy/57 )2+ + (Cv/eT)? ]
<cMever)t (1-(cvea)t ) (3.11)
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As far as
it 110Gt (3.12)
log,o 1+ (4v)~1
we have
(Cveo ) <27 Y4/Cov
and hence

Vet + Vico+ -+ 10 <27 VACV20v (1 — 27426 T < 207 Y200, (3.13)

provided thatr < 2=Y*C~Y@) Note also that it < C~%, then, foro € (0, 1], C/s0 <
(e0)Y4, which implies

(N )Z‘k < 2 1BLv/2 < =178

and
2-1/8 1
1-25852
(for a sufficiently largeC). If o > 27Y/?C~Y@) ande > C~*, then the inequalities of the

theorem are trivially satisfied by choosing the consatdrge enough (so tha;, (o)e >
1). With an exception of this trivial case, we have (assuming that'2 < C%/?)

Vici+ Vo +---+ro<Ct

Vici+ Vi + -+ 10 <NCo” A27 (3.14)
Note that ifA + 4v < 1, then both (3.10) and (3.12) are satisfied for séme
Let$ > 0. Define
1
So=0, &:=01—yo— " —¥-1), O12= 5(5k +6k41), k=1

Next we setF, := F, and define recursively

C
kar]_ = {f e Fi: Ff(csk)]_/z) <e+ E«/}"k&”ﬁ AN 1}

Fork > 0, consider a continuous functign from R into [0, 1] such thaty, (z) = 1 for

u < 8 1/2, pr(u) =0foru > 8, andyy is linear forsdy 1,2 < u < 8. Also, fork > 1, let

@, be a continuous function frofR into [0, 1] such thatp, (u) = 1 foru < &, @x(u) =0

for u > 8r_11/2, and ¢, is linear for é; < u < 8x_11/2. It follows from (3.14) that
8t € (8(1 —ac¥ A 271),6) for all k such that (3.12) holds (with some> 0). Let us
introduce the following function classes:

Gr:=A{pro f: feF}IU{0}, k=0,

and
Go:=1{@ro f: feFIU{0}, k=1



V. KOLTCHINSKII/ Ann. I. H. Poincaré — PR 39 (2003) 943-978 965

Then, fork > 1,
2 C
SUPPg” < SUP Fr(8) < SUP Fp(Sr—11/2) <€+ 5 /ri—160 A1t
g€Gx feFi feFi 2

and

C
SUPPg? < SUP Fr(8x-11/2) < &+ —/Ti160 AL< 1.
<G feF 2

(Fork = 0, the first inequality also holds sineg= 1.) Consider the events
E®:={|P, - Plg,_, < KiE|P, — Pl|ig,_, + K2\/Tk_160 + Kzeo }
N{IIP. — Plig, < KiE||P, — Plig, + K2/rxé0 + Kzea }, k=1,
By concentration inequalities of Talagrand [17,18] (see also Massart [14]), for some
values of the numerical constar®s, K», K3 > 0,
P((E®)%) <2e™m/?,

We setEq = Q,
N
Ey:=()E®, N>1
k=1

Clearly,
P(ES) < 2N e/, (3.15)

We will prove by induction with respect t§¥ the following statement:
For any N such that

1 lo -1
N +1<log,= Ox(¢0)

vlog,o 1+ (4v)~1’ (3.16)

we have on the everity:
(I) VfEan)f((S)gS — fEfN

and

(i) sup F, (&) <rx, O<k<N.
feFi '

The statement holds fa¥ = 0. We assume that it holds for som&> 0, such that
N + 1 still satisfies condition (3.16). Then, on the evéRt,

SUP F, p(8k) <1, O<K<Ek<N,
feFk A

and
VfeFF, ;8 <e = feFy.
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Suppose thaF, (8) < e for somef e F. The induction assumptions imply thate Fy
on the evenE . Hence, on the everfiy, 1,

Fr(On,1/2) < Fu s (6n) + 1Py — Pligy
<e+ KiE||P, — Pllgy + Ko /Tneo + Kzeo. (3.17)
Given a clasy, let

R.(G) :=

’

n
-1
n 281'8)(1.
i=1 g

where{g;} is a sequence of i.i.d. Rademacher random variables. The symmetrization
inequality yields

E|l P, — Pligy < 2EIg,EeRy(Gy) + 2EI £ Eo R, (G). (3.18)

Using the entropy inequalities for subgaussian processes (see van der Vaart and
Wellner [20], Corollary 2.2.8), we get
2)1/2

(2suRegy Prg

E, R, (Gy) < Ci’/r;t / HY2 (Gy: w) du. (3.19)

By the induction assumptions, on the same evgnt

sup P,g* < sup F, r(6n) <rp.
geGn feFn

We use the bound on the Lipschitz constantg,of, andg;

L:2(8k71_8k)7l: lykfll_ [rk l /rk l

to get

1/2

n 2
dp, 2(pno fipnog) = <n12|<pN(f<X,->) — N (g(X,~>)|2> < —,/:—(Nrdp,,,xf, 9).
j=1

8

By the definition of the clas§y,

d/eou
2 .
dP Z(QN,M) \/Iog(Nd,,ntz (f, m) +l)

Since forN > 1,

\/Iog(N—i—l)é\/IogN-i—Iog(l-i—%) \/IogN+ < logN +1,
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we get

d/eou
2 Y2 :
dp Z(QN’ ) X dp 2<F’ zm > + 1 (320)

Note that forso > £V () the inequalityy (54/e0/2) /(8+/n) < eo holds. Recall also that
o > 2% |t follows that, on the evenEy,

. (2supeg,, PrgAY? e 1 (@2rn)12 » e
ﬁ 0/ dp 2(QN, u)du < \/ﬁ / [Hdpn (.7-"; 2 e ) +l} du
< L2/ e HY2 (Frvydo + | 2% < L2 w(‘gﬁ)
RRVZENC Han, f NNV
2ryeo < %ea +V/2ryeo < 2(D, + 1) /ryeo. (3.21)
Now (3.19) and (3.21) imply that on the same event
E.R,(Gy) < constl+ D,)/ryeo. (3.22)

SinceEgﬁ,,(gNH) < 1, we conclude from (3.15), (3.18) and (3.22) that
E|P, — Plig, <constl+ED,) /ryeo + 2P(ES)
<constl+ED,) /ryeo + 4N e /2,
By condition (3.16) and the fact that > 2logn/n, we have

AN €77/ < 4log,(4log,(s0) 1) €7°7/2 L constea

(We assume here thair < « for somex € (0,1); note that ifeoc > «, then also
eo* > k and the bounds of the theorem become trivial with sufficiently |age that
B, (0)e > 1). Therefore (note thaty > ¢o),

E|P, — Plg, <constl+ED,)./ryeo.
By (3.17), on the evenky,
Ff((SN,l/Z) Le+constl+ED,)./ryeo. (323)

Choosing the constant and thus also the constaGt= ¢(1 + ED,) in the recurrent
relationship (3.8) properly, we ensure that on the evént;

C
Fr(On1/2) <&+ SVINeo.

This implies thatf € Fy,1 and proves the induction step for (i).
To prove (i), note that on the eveRty,
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sup F, r(én4+1) < SUp Fr(dna/2) +1IP— Plig, .,
f€FN+1 feFnn

C
<e+ S/rNeo + KiE|| P, — Plig,,, + K2i/rn+160 + K3go. (3.24)

Using the symmetrization inequality, we get

E||P, — Pllg,,, < 2EIp,E.R,(Gy+1) + 2BIp Ec R, (Gy11). (3.25)
Similarly to (3.19)

@supcg, ., P.g?)1/2

= const —
BeRy(Gy1) < Hy!? (Gnyai ) du. (3.26)
0

The induction assumption implies that on the evERt, ;

sup P,g? < sup F, ;(8n.1/2) < 7.
g€GN+1 feFn

Since the Lipschitz constant @f is bounded by2/8)+/ri_1/(c¢o), we have

j=1

2 rn
<<\ —dp,2(f, 8)-
6V eo

Similarly to (3.21), we have on the evehl, 1,

. 1/2
_ _ _ _ _ 2
dp, 2(@ny10 fiPNr108) = <n lz:|</)1v+1 o f(X;)—@n+108(X))| )

2y1/2
. @sup.cg, ,, Pag®Y 2r)Y/2

— 1 S /eou
1/2 . 172 v
NG 0/ Hd”"»z(gN-i_l’ Wi s 0/ [Hdl’n,2< © 2N ) 1] du

n
NI

< 1 24/}’]\/ /‘,3 Hl/z (f )d i 2}"]\/
RVZENC A S

< %;gan(gf) +\V/2ryeo

2D, Jiw
< ?’Wsa 4 V2ryeo < 2D, + 1) /rvEa. (3.27)
EO

Combining all the bounds, we prove that on the same event

C
sup F, r(6ny1) <e+ E./rNsa +constl+ED,)/rveo. (3.28)

feFn+1
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Properly choosing the constant- 0 (and, thusC in the recurrent relationship (3.8)),
we get on the evenfiy;

sup Fn,f((SN—i-l) < (8 + CUI’NSO') V1=ryy1,
fe€FN+1

which completes the proof of (ii) and of the induction step. Recall that, in particular, it
means the following: on the eventy, the assumptiorF, ((8) < e implies thatf e Fy,
and henced’s (8y) < ry.

To complete the proof of the first bound of the theorem, it's enough to recaliMhat
can be choosen to satisfy the inequalities

log,(s0)~t 1  log,(e0)7t
_1<N<log, > _
%717 (1— 1) log,o 1 N<log, log, o1 + (4v)~1

9

which implies thaty_ 1 < e(1+ ac?*) for some constant. We also have (sincevd< 1)

1 log,(eo)~*
2y log, o1+ (4v)~1

2<lo 1 log,(e0)~t
S10% log,o0-1+1’

log

which is bounded by
log,(e0)~t
D(log,——————vVv1
( 9% log,0—1+1 )
with some constanb.
The proof of the second inequality is similar with minor modifications)

4. Applicationsto learning problems and examples

In this section, we deal with a binary classification problem, iSeis replaced by
S x {—1,1} and f is replaced by x {—1,1} > (x, y) — yf(x) (see the introduction).
Theorems 1 and 2 of Section 2 immediately imply the following result about the behavior
of the generalization error.

COROLLARY 2. —Ur_lder the conditions of Theoreimthere exist numerical constants
A, B > 0 such that forA := A(1+ED,)? and for allt > 2logn

P(3f €7 P{ry): 3 () <O} > A8l (fin)} < Bloglog, " exp{ -5 . (4.1
Moreover, if (2.6) holds, then with probabilityl

, P{(x, y): yf(x) <0}
limsupsup - <
n>00' feF & (f)

~o00. 4.2)

Under the conditions of Theorei)

: P{(x,y): yf(x) <0}
lim supsup ~
oo feF &)

<1 (4.3)
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If sup;c= P{(x, y): yf(x) <0} >0, then theim supin the last equation is equal tb
Thus, for any classifief € F, with probability 1
P{yf(x) <0} < (1+0(D)22(f).

Leta € (0,2) andy(x) = x17%/2, Lety := az—jfz As in the introduction, we define
y-margins of a functiory as follows:

8,(y; f):=sup{8 > 0: 8" F/(8) <n 17/2},

8,(y; f) :=sup{8 > 0: 87 F, ;(8) <n~1t7/2},

Note that Koltchinskii and Panchenko [9] used slightly different (truncated) quantities:
the suprema there was over the set (0,1). We will use for these quantities the
notationss! (y; f) ands (y; f). It's easy to see that

.y =8/ (fin"?). i H=5](f1n"").

Theorem 1 immediately implies (recall (2.3) and the definitionepf, from the
introduction) that if for somer € (0, 2) andD,, > 0,ED, < c©

Hy, ,(Fiu) < Dfuf"‘, u>0a.s, (4.4)

then for anyy > az—jfz there exist constants, B > 0 such that forA := A(1+ ED,)?

A
IP’{EIf €F: P{(x,y): yf(x) <0} > m}
nv/?
< Blog,log,n exp{—T} (4.5)

(Koltchinskii and Panchenko [9]). Theorem 2 shows that as SO@ﬂﬁ%%

limsupsupn/28,(y; )Y P{(x,y): yf(x) <0} <1 as. (4.6)

n—oo fe]-—

In fact, Theorems 1 and 2 imply the following corollary about the asymptotic behavior
of y-margins (and the same is true for their truncated versions).

COROLLARY 3. —If the condition (4.4) holds with somex € (0, 2), then for all

y > 2=
: 8, (v f)
limsupsup—————= < +00 4.7
SR ) *.7)
and
lim supsupw < +o00. (4.8)

n feF (Sn(y’ f)
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2u

Moreover, for ally > 2%

8.5 f)
8 (vs )

]P’{sup
feF

—l‘—)OaSn—>oo}:l. (4.9)

Consider now the case af(x) = x./log(e/x) for x <1 andy (x) = x for x > 1.
Then, by a simple computation,

elfns
6:{’(8): NG ., e>nt
If we define
VG . t gl—ne
g, (fst):=infqe > - P,q f < <ey, (4.10)
n Ve

then under the condition
2 1
HdPn,z(f; u) < Dn |Og; vl wu>0as,

with someD, = D, (X4, ..., X)), ED, < +oo (which holds, for instance, if is a VC-
subgraph class), we get from Theorem 1 that with some numerical congtafits- 0
forallt > 2logn

IP’{EIf € F: P{(x,y): yf(x) <0} > A8)°(f;1)} < Blogzlogz; exp{—é},

whereA := A(1+ ED,)2. Now Theorem 2 adds to this that as soon as

¢ (x)
x+y/log(x—1)

we haves? (f)/e?(f) — 1 uniformly in f € F a.s.

We construct below examples that show the sharpness of our main results. They are
close to some examples in Koltchinskii and Panchenko [9] (earlier, similar examples in
the context of CLT in Banach spaces were looked at by Ledoux and Talagrand [13]). Let
S be the space of all sequences converging to 0 and Ibe the set of all coordinate
functions:F :={fi: k2 1}, fix)=x;, x={x;} € S. Let

e
Xn = { k,n} ,
A )z

where{g; ,: k > 1, n > 1} are i.i.d. Rademacher random variables and

—0o0 asx—0

1
)\. = 5 k 2 17
$T o i(JTogk + D))
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¢ being a nonincreasing positive function witli) — +o0o ass — 0. We assume that
with some constank > 0

X

/«p(u)du < Kxp(x), x>0,
0

and that for any € (0, 1) and, for all large enough, ¢~1(x) < ep~(ex) (for instance,
p(x) =x"%?for a € (0, 2), or p(x) = +/10g (e/x) Vv 1 are functions of this type).

Finally, assume that the sequence of lali&lg is a Rademacher sequence indepen-
dent of{ X, }. Clearly, in this case the generalization error of any classffierF is equal
to 1/2.

PrRoOPOSITION 1. —The condition(2.1) holds for the sequend&,,} with D, = D, D
being a numerical constant anf(x) := x¢(x), ¥ € ¥. The condition(2.6) also holds
for the classF. For any¢ € ¥ such that

¢(x) =0(yY(x)) asx— 0,

we have
. e2(f)
lim sup— =400 (4.12)
" reF 8 (f)
and
29
lim supg’;(f) —2 (4.12)
" ofeFen(f)
In addition,
; <
jim sup LX) IO <O (4.13)

" feF s
Moreover, there existd > 1 such that

¥
iiminf supr Y > 4 (4.14)
" feFén (f)
and
AV
fiminf sup=r Y > 4 (4.15)

nrerel (f)
It follows that

iminf sup 1) 2/ ) <0
" feF & (f)

In particular, it means that if’ is a classifier that minimizes the bouid(f) on
the classF (a natural choice from the point of view of “large margin” approach) and

> A. (4.16)
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2W) _, 0asx — 0, then
¥(x)

P{(x,y): yf(x) <0}
E2(f)

— 00 a.s,

i.e., in this case the margin type bouﬁtﬁf) can become way too optimistic. To avoid
this, the definition of the margin type bounds is to be related to the complexity of the
class (the conditio@% — 00 asx — 0 guarantees this).

Proof of Propositionl. —First note that since the condition (2.6) holds, theand
¢-bounds can and will be replaced by their truncated versions syithlogn (see the
argument at the beginning of the proof of Theorem 2). Next, for

k> exp{p®(e)} —1=:N(e)
we have| fillo < &. This immediately implieg fi|l.,p,) < €, which means
Nuy, 2(F; €) <exp{gp®(e)},
and the condition (2.1) follows. Next, it's easy to see thatéfer A%, Fp(8) =1/2.

It means that for allk < N(8¢(1/2)) we have F;, (§%(1/2)) = 1/2, which implies
e?(fi; t,) = 1/2. Fork < N(8¢(1/2)), this yields

P{e? (fi: tn) < AEL(fi, 1)} :]}D{gf(fk’ f) > %}

which fork < N(a,‘f(%)) (or, equivalently,kk‘l > 8,‘5’(%)) is equal to

1 1 ~ 1
| 5¢ — E =
P{F"’f" (5" <2A)> ” ZA} _P{/le{sk’j:_l} ” (2 _5>n}’

where$ = 0.5(1 — A™Y). Using well known computations for binomial probabilities
(based on Stirling’s formula), the last probability can be bounded from above by

1 — cn Y2 exp{—4ns?}
(see Kaoltchinskii and Panchenko [9]). This implies that
P{e? (fi: 1) < A82(fuota)} < 1—cn 2exp{—n(1— A7%)%}

forall k < N(82(55)).
Let@(x) := 22 If ¢ (x) = oy (x)) asx — 0, we have

P(x) < o(x)
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for all o > 0 and small enough > 0. If ¢ =, then the above bound holds with= 1.
Then a simple argument shows that for all large enaugh

SE) < (F)

By the assumptions op, we get

1
o _— =
o (2A> BV JI2A) S\ 240

Therefore

(2(3)) oo ) o) =

By independence of the componentsXof, we get

_@‘1(«/'1/(214))<¢_1((1/G)vn/(2A))< 1( 1 ﬁ)

P{Vk < Kn: 8f(fk; tn) < Aéf(fk, tn)}

Kn
= [T P{e? (fis 1) < AES (fi, 1)} < (1— enYexp{—n(1— A7Y)* )™
k=1

-1/2 -1)2 n -2
gexp{—cn /exp{—n(l—A )+m}}:o(n ) asn — oo,

provided that
1 1\?
4A202 ~ (1_ Z) '

If o <1/2,itis satisfied for all < A < % and foro =1 it's true if A is close enough
to 1. In the case whepi(x) = o(y/ (x)) o can be taken arbitrarily small. Borel-Cantelli
lemma shows in this case that for aAaywith probability 1

e (fity)
up-5
feFén(f;ty)

is eventually (for all large:) larger thanA. In the case whep =  the same conclusion
holds for somed > 1.

The proof of the remaining statements is quite similar. One just has to take into
account that Fok < N(8%(1/2)),

P{E2(fic 1) < As? (fis 1)} = P{é:f(fk, ) < g} _ P{Ff (54’(%)) < %}

n A n l
= P{Zl{é‘k,j=l} < (5)”} = P{Z Ly j=+1) 2 (5 - 5)”}’
j=1 j=1
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where§ = 0.5(A — 1) and A € (1, 2) and continue as in the previous part of the proof
(one should also take into account that

8¢(f)
(f)

sinces? (f) =1/2andé?(f)<1). O

The following result is a special case of Proposition 1 (and its proof is quite similar to
the proof of this proposition; alternatively, the result of this type can be deduced directly
from Proposition 1 using (1.5) and (1.7)). It shows that the condl)t40ﬂ = is sharp

for the uniform convergence of the ratiosyofnargins to 1 while the condltlop > 2+
is sharp for the boundedness of the ratios. Namely, let

X, = {exn(2logk + 1))_1/a

wherea € (0,2) and{e;,: kK > 1, n > 1} are i.i.d. Rademacher random variables. As
before, S is the space of all sequences converging to 0&ne: {fi: k > 1}, fi(x) =

xx, x = {x;} € S. The sequencdY,} of labels is also the same as before, so the
generalization error of any classifi¢re F is equal to ¥2.

}k>1’

PROPOSITION 2. —The condition(4.4) holds for the sequencgX,} with D, = D,
D being a numerical constant. For all < 2+a

8,73 )

lim su = 400 4.17
7 ek 50(rs ) (*+.17)
and
jim sup 22 ) _ iy, (4.18)
" feF Sy, f)
It implies that
lim supn®/28,(y; £)Y P{(x,y): yf(x) <0} = +oc. (4.19)

" feF
Letz, denote the solution of the equation

2—0[/4Z05/2 + Z205/(01-1—2) =1

Thenz, <1and fory = 2+

o

liminf sup by D
n fe.7-'8 (V f)

(4.20)

and

liminf supn®=7/25,(y; )Y P{(x,y): yf(x) <O} > (4.21)

n fE
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We also have

. H 8’1 ; —1— — o o
liminf sup— /) > (1— 2 o4y~ @/, (4.22)
" feF 811()/’ f)

Finally, we present a proposition that shows the sharpness of the bound of Theorem 3.

PrRoPOSITION 3. —Under the conditions of Propositiod, there existc(o) > 1,
B1>0and By(c) > 0, o € (0,1] sucht thatc(o) | 1, B2(0) | 0 aso | 0, and for
large enough

8 1
]P’{Elf eFILSY (5): Ff( ) > c(0) [F £V —s;{’(a)] }
n c(o) ’ o

>1— exp{—p, &2} (4.23)

and

t 8 1
IP{EIf eFILS (—): Fuy <—) > c(o) {Ff((S) v —g;f(a)] }
n c(o) o
>1— exp{—p P2} (4.24)

Proof. —We use the notations of Proposition 1. If
k < N(@) :=exp{¢?@®)} — 1,

thenF; (§) =1/2 andF,(8/c) = 1/2 for all ¢ > 1. Therefore we have

P{F (8)>}F-<§>}—P{F : 8)>i}
n, fi = c Ji c - n,fk( = 2%

n 1 3
= P{Z I{ak?j:—l} > (E — ‘L’)I’l} < 1- ,Bll’l 1/2exp{—4n12},

j=1
wheretr = %(1 — ™Y andp; > 0is a constant. Hence fd < N(8),
1 8 -1/2 21\ K
POF 8= =Fp =) k=1...,K ;< (1—pin~ " exp{—4nt°})
C C
< exp{—pin Y2exp{—n(1—c 1)’ +logK}}.

If L7 (8) < &, or equivalentlys > ¥ (o/(2c)), then

(o

1 1 )
PSF, OV =el () >=Fy|-) k=1,....K
EROME ORI A }
<exp{—pinY2exp{—n(1—c 1)’ +logK}}.
By the definition ofs?,

87 (0/(20)) =V Re) oo™ (Vo /o).
The condition onp~! implies (sincey/o/(2c) < 1) that

V(@20)jap ™ (Vo /@) <o o/ (2c)v/n).
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Hence

02 (8 (0/(20))) = * (v @0V Jow (Vo @omn)) = o9~ o/ (20)v/n))*
=0?/(4c?)n.

Then itis easy to see that, for large enoughnd for someé € (8 (o/(2¢)), 87 (t/n)),

Therefore, we can choose I&gof the ordero?/(8¢)n to get

P{F,z,fk(fs) v E8,;”(8) > }ka <§) k=1,. K}
o C C
<exp{—pin Y2exp{—n(1—c V)’ + 02/ (83)n}}.

If nowc=c(o) | 1, 0 | 0is such that

2 2
o (1_ }) ,
8¢2 c
then with some choice g#,(0), B.(c) | 0 aso | 0, we have
t 8 1
P{Vf e FVs<s) <—>: F,-< ) > c(0) [F,,,f(a) v —e}f(a)} }
n c(o) o

< exp{—pL e}, (4.25)

which implies the first inequality of the proposition.
To prove the second inequality, note that

1 by by c " nc
PLF,8)>=F, ;(2)\=PlF, , (2)<Sb=pdST 0, _ <
{ 7(®) c ’fk(c)} { ’fk(c) 2} {gl teej==1) 2}

5 1 -1/2 2
= ]P){/z:; I{é‘k,_/=+1} > (E — ‘L')I’l} <1- /8171 / eXp{—4nt },
wheretr = (¢ — 1)/2. The rest of the proof is quite similar.c
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