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ABSTRACT. — Stroock and Yor have posed the following problemAdie a Brownian motion
andn € N*; which of the martingaled4,,(r) := fé B} dB, are pure? In the case wheteis
odd, they have proved that, (.) is pure. Whether or noMy, is pure has remained an open
guestion. We show thalf,, is pure and consequently the filtration generated by a symmetric
Bessel process of dimension between 1 and 2 is Brownian.
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RESUME. — Stroock et Yor ont posé le probleme : sBiin mouvement brownien ate N*;
déterminer parmi les martingalds, (¢) := fé B! d By, celles qui sont pures. Dans le casiogist
impair, ils ont prouvé qués, (.) est pure. La question polfy, est restée ouverte. On montre
gueMy, est pure et par conséquent la filtration engendrée par un processus de Bessel symétriq
de dimension comprise entre 1 et 2 est brownienne.
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0. Introduction

Among the laws of continuous martingales, the subset of pure laws, first considerec
by Dubins and Schwarz [8] (i.e. the laws & = By, t > 0, such that the continuous
increasing processM),) is measurable with respect to the Brownian motRyns quite
remarkable. The problem of determining whether a continuous martinggbeis pure
has been the object of several works (see [13,19,20]). These works have shown a simp
relation between this problem and the study of stochastic differential equations.

In [20], the authors asked whether martingalés(¢) = fé B! d B, are pure, where
is a Brownian motion ana@ € N*. The case where is odd, has been resolved in the
affirmative.

Recall how the authors have proved the purity of the martingdlgs :: if C is the
inverse of (M,,,1) and y is the Dambis—Dubins—Schwarz (DDS) Brownian motion

2n+2
of My,.1, then the pair(%, y) satisfies a Bessel stochastic equation of dimension

_ 2n+1
d=1+ 2n+2°
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This proof makes it clear that there is a relation between the above problem pose
in [20] and the stochastic Bessel equation of dimengidretween 1 and 2, which will
be studied in Section 1 of this paper.

In Section 2 we give a definitive affirmative answer to the question of [20]. The proof
is completed in Section 3, where we establish that the marting&gsre pure. Other
properties of the solutions of the stochastic Bessel equation can be found in Section ¢
Finally, four technical points are gathered in Appendix A.

Besides the study contained in this paper, let us mention that pure martingale:
enjoy some remarkable properties, among which Barlow’s property [3JF lis a
filtration generated by a pure martingale then for ev&nhonest timeL, we have:

f{ = F; Vo (A), for a certain sefd of ]—“Zr. Nonetheless, although both the filtration

of a pure martingale and the Brownian filtration enjoy Barlow’s property, Emery and
Schachermayer have constructed a pure martingale whose filtration is not Brownian, i.e
it is not the natural filtration of a Brownian motion.

1. The stochastic Bessdl equation with dimension between 1 and 2

Stroock and Yor have proved the purity of the martingas= [, B>'+'d B, using
the stochastic Bessel equation (with dimension between 1 and 2):

dt
dXt:dB[+aX_ (E)
t

with
t
ds

<00, Vt>0.
/ | Xs |

The dimension ig/ = 2a + 1.
Zvonkin [23] has established the pathwise uniqueness for the equation:

dX,=dB, + b(X,)dt (E)

whereb:R — R, is a bounded measurable function.

In the case of Eq. (E} is not bounded and Eq. (E) does not admit uniqueness in law:
indeed, the/-dimensional Bessel proce¥s and its opposite-Y* are weak solutions of
Eq. (E) (see [7]).

Furthermore, we can easily construct a solution of Eq. (E) which is not strong: let
n be a symmetric Bernoulli random variable which takes the valuesand+1 and is
independent oB. The procesg = Y1 ,—1, + Y'1,=_q, is a solution of Eq. (E), where
Y’ is the negative solution of Eq. (E).

In the first part of [7], the authors have established th@Xff, B) is the unique solution
of Eq. (E) with b(x) = 21> for & > 0, then:

(1) in the case where > % the family (X¢)..o converges in law tg whene — O,

(the dimension ig =1+ 2a > 2),
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2) if a e]—%, %[ then, (X¢),.o converges in law to a symmetric Bessel process of
dimensiond =1+ 2a €10, 2[.

A symmetric Bessel process of dimensign= 1 4+ 2a €10, 2[ is the solutiony of
Eq. (E) such thaly |*~2* sgny is a martingale, see Theorem 1.1 below.

For more details on the bilateral Bessel process, we referlto Watanabe [21] and [22].

In this paper, we suppose that: < % and we denoter = 1=~ > 1.

THEOREM 1.1. -Whenevety, B) is a solution of Eq(E), the pair((«|x;|)Y* sgny:,
B) is a solution of the equation

1 X
dXt:WdBt-i_th ) (E)
(we suppose thaf mlg% < 00,Vt > 0) where (VX) is a continuous process of
finite variation anddV,X is carried by the sefr, X, =0}, i.e. VX = [{1(x,—0 d X;.
Conversely, ifX is a solution of Eq(E'), then% sgnX is a solution of Eq(E).
So, there exists a bijection between the sets of solutions of Egand (E').
We begin by the following lemma:

LEMMA 1.2. —For a solution y of Eq. (E) we haveL,(x) = 0, whereL(y) is the
local time ofy atO.

Proof. —By the occupation times formula (see Corollary 1.6, Chapter VI of [18]) we
have:
+00

t
1 1
/ ds <+o0 = / —L; (x)dx < +00.
0

[ X5 |x]

ThusL%(x)=0. O

Proof of Theoreni.1 —Remark that if(x, B) is a solution of Eq. (E), theq, B) is
also a solution of Eq. (E), where for every: 0,

t
Y, =|x| and §t=/Sansst-
0

Indeed, using Tanaka’s formula we have

~ dt
dY,=dB, +07 +dL:(x),

t

but by Lemma 1.2L,(x) = 0.
Fore > 0, we write Itd’s formula for

1 1 / 1o w—1 | 1
aY;+e)e =a(Yg+ &)« —I-/(Ys—i-&‘) « dBs + s/ = ds
/ 20 Y (Y, +e)
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Since 1— « < 0 the term(Y, + e)zuc?a) is decreasing im, then forr > 0,

/ ds / ds 1
/_2(01_—1) Z/S(xa_lE y 2170 <400
o Y5 0 1

E <E

y 2(1-a)
/ Yo+ &) e ds
0

becausgfol ;’;—i;i dp < +00. So, the family of martingaleg (¥, +s)12_“ d B, converges

1-a
in L2(P) to [, Ys © d B, whene tends to 0.
Consequently, the family

. a—1 | ds
Vi = € 201

20 0 Ys(Ys+8) o

of increasing processes, converges to an increasing continuous pfdoess
It remains to prove thafV, is carried by the set of zeros &f. Let§ > 0 andr > 0,
we have:

t t
Iimiionf/]l{Ym;}de >/ﬂ{yx>5}st.
&
0 0

But

t

/MY@B}de Se
0

Finally,
t
/:ﬂ_{ys>5} dv, = 0, V6>0, VvVt >0.
0

This proves that! V, is carried by the sdt, ¥, =0} anda Y'Y/ is a solution of Eq(E)).

From Theorem 1 of [15], the proce$s := # sgny; is a semimartingale, we can
then apply Tanaka’s formula:

1
| Xt

t t
X,:X0+/san‘Yd|X|X+L,(X):X0+/ dB;+ VX,
0 0

whereV X is a process of finite variation artV X is carried by{z, X, =0}. O

PropPosITION 1.3. —Let(x, B) and(x’, B) be two solutions of EqE) with xo = xJ,
the following properties hotd

(i) x,, =00r g, =t whereg, =sups <t, x; = x,}-

(il) The sef{x, = x, # 0} = A1 U A, where

— t € Ay if and only if there exists a neighborhoddof r such thaty = x’ onV,
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— t € Ayifand only ift is a first zero ofy — x” and there exists > 0 such thaty = x’
onfz,t+ ef.
(i) The measurdL,(X — X') is carried by{r, X, = X; = 0} whenever X, B) and
(X', B) are two solutions of E(E") with X = X,

Proof. —

(i) Suppose thatx,, # O then, x, x, > 0 and so, there exists > 0 such that

Vs € (g, g +€l, xsx.>0.
Since

D?:= (x, — —Za/ > du
XuXy,
we haveD; = 0 for s € [g;, g; + €[ henceg, =¢.

(i) Let t e {x = x' # 0} and g, := inf{s > ¢, x, = 0}, one hasg, > ¢ for every
s €[t,a,[ and soy,, #0, by (i) g = s i.€. x; = x;.

If now ¢t € {y = x’' #0} — A1 andt is not a first zero ofy — x/, then there exists a
sequencés,),>o C R* such thats, — ¢ ands, ¢ {x = x'}. But this imposesg(,, =0
for everyn and soy; = 0 which gives a contradiction.

(iif) The assertion results immediately from Theorem 1.1, the part (ii) and [1].

2. Thestrategy of the proof

We treat in this section, the following question posed by Stroock and Yor in [20]:

Question2.1. — LetB be a Brownian motion and € N*, we consider the martingale
M, = [y B dB, = yu,, Wherey is the DDS Brownian motion a#/. Is the martingale
M pure?i.e. i (M, s =20 =0 (ys,s = 0)?

We can easily prove that the martingdﬁ = fé sgnB, dM; which has the same
increasing process a4, is pure.

For, if C is the inverse of(M andX = B¢, then X g ad-dimensional Bessel

2n +l
process withd = 1+ 525
More precisely, we have
t t
dy;s | X > n 2n+1
X,= | == and = ds,
T X n+1 ”’+2n+10 X, 21

wherey, = [3(sgnX;) dy; (that is the DDS Brownian motion ot ).
On the other hand (foM):

Xt BEH o [on+1
i+l 241 20 +1) X
e 2 2 +1 is a solution of Eq. (E) withu = 5", seen the fact thaX is a martingale,

’Z(n —7 Is a symmetric Bessel process with respect to the Brownian mgtion



292 S. BEGHDADI-SAKRANI/ Ann. I. H. Poincaré — PR 39 (2003) 287—299

There is the following reduction of the problem:

LEMMA 2.2.—M is pure if and only if the symmetric Bessel process is a strong
solution of Eq(E).

Proof. —The fact that the condition is sufficient is obvious.

Remark thatF{!) = FlBl = 77 = FIXI andy, C and|X| have the same filtration. If
M is pure, thenC is F”-adapted and spX| also. Sincéy, y); = fé sgnX, ds one has
(sgnX,;) is " -adapted which finishes the proof

The main result of our paper is:

THEOREM 2.3. —For every integer, there is pathwise uniqueness for the stochastic
differential equation

2
X

t
ax, =B it /%ds <400, Vi>0.
0 S

Proof. —Uniqueness in law is guaranteed by [11] beca;.b@é 0, Vx € R. To obtain
pathwise uniqueness it is enough to prove that wheng¥eB) and (X', B) are two
solutions withX, = X, =0 we haveL,(X — X’) = 0 (see Remark 2.4 below).

For to > 0, denote byH := {t < 1o, X, = — X}, g the end ofH, Z, := |X*+2 —
X'+2), ., and Zf :=P(g >t | F,). We also denote byF’) the smallest right
continuous filtration(,) containing(F;) and such thag is a (H,)-stopping time.

We first remark thatX*+2 — x'**2),_ is uniformly integrable martingale, indeed
by Ité’s formula:

dX{"2 = (4n +2XP"dB, + (20 + D (4n + Dy d1.

Then

[2aV/0)
= / (4n +2) (x> = X' #*) 4B,
0

(X4n+2 _ X/4n+2)

AL

This martingale is uniformly integrable becauéléi% is a Squared Bessel process and

s0 [y E[X#+2)ds < +00,Vt > 0.
By Lemma 5.7 of [12] and formula (1) of [2] (see also Point #1 in Appendix A of this
paper) we have:

Ay =E[Z | Fii] = — 25—
t [ o0 | g—i—t] 1— Ztg+g
and
X+ X'|
Ay =E[IX + Xl | F] = =7
8

A and A’ are two((]-'gg+,)t>o, P)-uniformly integrable martingales, so they admit the
P a.s. limitsAo and Ay whent decreases to 0.
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Owing to the positivity of the martingal& and using Theorem VI. 17 of [6] we obtain
{T >0} ={Ap> 0}, with T :=inf{r > 0, Z,, = 0}.
Then, on{T > 0}

. |X + X/l(s-i- AL . ! 6
lim +“1 =lim —£1 = — < TOoQ.
£40 oie {e<T} £40 Ag {e<T} AO +

But

|X + X/I,Mo]l 1 1
Yz = n v, 2 (Z:#0)
Zt |X - X/ltAtol ZizzoX4n ZIX/Z |t/\to
Hence,X, # X;, on{T > 0}.
Now denoteg, := {s < Ato, X; = —X(}, o :=limsup, |, 1x_x'
04, |X + X'|:nsy, @and remark that oflY, # 0} = {T' > 0} we have:

>0} andy, :=

|S/\IO

g=supr>0,Y, =0} ¢ {r<to, X, = X,}.
In fact, this property entails by Lemma 3.1 that
dL;(Y) LdLn (X — X')
and by Corollaries 3.3 and 3.5 (the proofs are given in Section 3) we get
V>0, L, (X—-X)=0. O

Remark2.4. —

() If (X, B) and(X’, B) are two solutions of the SDE of Theorem 2.3 wkh = X,
the part (iii) of Proposition 1.3 gived (X — X’) =0 whereT :=inf{r > 0, X, =
X, =0}.

On the other handXy,., Br4. — By) and (X7, ., Br,. — Br) are solutions and we
haveX; = X, =0, Theorem 2.3 entails (X — X') = 0.

(i) Let X and X’ be two solutions of the SDE of Theorem 2.3, by It6’s formula we

get that the pairs;(z)f:"Tz;, [sgnX dB) and(%, /'sgnX’dB) are two solutions of
the squared Bessel stochastic equation. Tdgnand | X’| have the same law but are
not necessary indistinguishable because the Brownian conductor§ §geX d B and

J sgnX’ d B) are different.

(iii) The semimartingald” introduced in the proof of Theorem 2.3 is constructed from
the local martingal& + X’ as follows: fors > 0, we take the excursion &f + X’ which
begin atg,,

(1) if X, =X, =0 andg, is not a last zero o — X’ then X = X" along this
excursion, remarking that we cannot ha¥e= 0 at a point in the excursion, we pose
Y, = O,

(2) if g is alast zero ok — X" or X, # X, thenY, = [X + X'|,.

COROLLARY 2.5.—

(i) There exists a unique solutign of the stochastic Bessel equation of dimension
§ €11, 2[ such that| x |>~? sgny is a martingale, i.ey is the symmetric Bessel process.
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(i) The martingalesVt, = [; B> d B, are pure.

Proof. —
(i) Immediate by applying simultaneously Theorems 1.1 and 2.3.
(i) Immediate from point (i) and Lemma 2.2.0

3. Thenullity of thelocal time
3.1. Theorthogonality

We will prove that:
dL(Y) LdLin(X — X',

whereY; = o, | X + X'|; rs.
The following lemma is a refinement of a result of [2] (Corollary 3.9.5).

LEmMmMA 3.1. -Let(X,) and(X;) be two continuous uniformly integrable martingales
null at0, H = {¢, X, =0} andg’ = sup{z, X, = 0}.

If ¢’ ¢ H on the sef{|X | > 0} N {g’ > 0}, thendL,(X) anddL,(X’) are mutually
singulara.s.

Proof. —By the balayage formula (see Theorem 4.2, Chapter VI of [18])

t t
X! |1 () = / 151(s) SQnX d X’ + / 15/(s) dLy(X')
0 0
and
400
E[ / nHa)dL,(X’)] —E[|IX.[Lu(g). ¢ > 0] =0.
0

HencedL,;(X) anddL,(X’) are mutually singular. O
3.2. The absolute continuity

LetY andY’ be two continuous semimartingales, we will state two conditions which
are sufficient to yield/L,(Y") < dL,(Y).

PROPOSITION 3.2. —Suppose that’ > Y > 0 and that(Y) — (Y’) is an increasing
process, thedL,(Y) — L,(Y’)) is an increasing process.

Proof. —By the occupation times formula one has:
E—>

where
t

o1
A7 Zlﬁnog/ﬂ{ms}d(y)s — Liyjeyd(Y')s,
0
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but 1y,<,y < Lyy,<e), then everyA® is a positive increasing process and(#9(Y) —
L,(Y")) is also increasing. O

CoOROLLARY 3.3.—Let(X, B) and (X', B) be two solutions of EqQE), we have

Proof. —One has:

dL(IX = X)) < dL,(IX] = 1X']).
dXX/—<L2<1 zé)m
(X - '>f‘< |Xt|a—1> * |X;|°f—1> - <(|xt||X;|>a—l )

2 2

(=) + () —2o0m (s )
S\Wxet) i)~ 29 e

—d(IX|-X']),, O

PROPOSITION 3.4. —Suppose thaY > Y’ and{Y =0} ={Y' =0} a.s., thenL(Y) —
L(Y’) is a positive increasing process.

2

Proof. —For e > 0, we define a double sequence of stopping times by:

af =ay’ =0, 15 =inf{zs, Y, :s} 1" =inf{t, Y/ = ¢},
e =inf{r >t,_,,Y, =0}, =inf{t >1';_,, ¥/ =0},
c=inf{t>a,, Y, =¢}, T, =|nf{t>a,/f,Yt=8},
and
d.(t) =max{n, o’ <t}, d.(ty=max{n,a." <t}.

For simplicity, we will write onlyan, 7, d (1) instead ofozn, 77, d.(t). One hasY
becauseY > Y’, so owing to the continuity of’, 7o < 73. Since{Y = 0} = {Y’ }
we havea; < o) and by induction om, o, < «,,¥n > 0. Then using Theorem 1.10,
Chapter VI of [18],d(t) > d'(t) andL,(Y) > L,(Y’).

Remark that for > 0 ands > O:

(Lias (V) = Ligs(Y") = (Ls(Y) = Ly(Y") = Li(Y.4y) = L (Y) 2 0

and Y., and Y/ satisfy the same properties &f and Y’. This proves the proposi-
tion. O

COROLLARY 3.5.—Let (X, B) and (X', B) be two solutions of EqE’) such thatX
and X’ are martingalesg, := limsup, o Ly x—x'|,,.>0}, & = SURs <, X; + X| = 0}
andY :=o,|X + X'|. We have

dL,(IX] = 1X"l) <dL,(Y).

Proof. —Denotea}® =0, o =inf{r > 1/, _,, Y, =0}, Y :=||X| — |X'|l, by [15], ¥
is a semimartingale, sineeis boundedy is continuous.

Using Proposition 1.3(ii), we can write!“(r) — maxX{n, o <t} <1 (becauser’ #
a, = X, #0).

Arguing as in Proposition 3.4, we establish the resuit
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4. Other properties

Let us now come again to the beginning of Section 2 with the same notations and le
R be the submartingale?, =y, + SUR < {—7s} remark thatR generates the filtration
FXI. Furthermore:

LEMMA 4.1.—{t, X, =0} C {¢#, R, =0}.

Proof. —By applying Ité’s formula to the semimartingal& |, we get:

2n(2n +1
2n+1
|X | * (2]’1 +1) + /|X |2n+l

So, -y = f(t) — |X2rn|f:l where f(t) =n [y T |2n+1, the functionf is positive, strictly
increasing and (t) > —y;, for eachr > 0. This proves that the zeros Kfare increasing

points of the process sup{—7;} = %L,(R). O

It is well known that if B is a Brownian motion, then the Brownian motion
[ 'sgnB d B generates the filtratiof '8!,
Herey generates the filtratio'*! but:

THEOREM 4.2. —There is naF-Brownian motiory’ which satisfies, = fé sgny, dy;.

Through the proof of Theorem 4.2, the reader will find an answer (in a particular
case) to a question posed in [3, p. 290]F is a Brownian filtration and ifL is a honest
time, how can one construct the evéhult[F;" | F,] = 1} on which, the twar-fields
coincide? (For the definition of Mult, see [3].)

Proof. —Denote
H={t7RI=O}7 H/={taXI=O}7

g=suplt<TYL R =0}, g ={r<T!X, =0},

whereT! = inf{r > 0, R, > 1}. We note the three following properties:
() Fy CFpandF, C Ff,

(ii) f; = Fy V{Xs1> 0},

(i) (MUlt[F; | Fl=1) =g <g).

Indeed,

(i) by Lemma4.1g’ < g and using Proposition 12 of [3] we get the result.

(i) X is a pure martingale an®(X;1 = 0) = 0 (becauseR;1 = 1 # 0), using

property(x) of [1] we immediately get the result.

(iii) Since F is a pure filtration andg is a honest time Corollary 4 of [3] gives

Fi =F, Vv A, forasubsetd of F;.

First we will show that Mulﬂf; | 7,1 =1 on the set{g’ < g}. Let R be the
filtration generated by, sinceR is a reflecting Brownian motiorV,%;r =R, [4] and
SOF, = F, vV {Xr1> 0} (Point #2). But{g' < g} N {X71> 0} = {X, > 0} € F,.

Therefore, ifC is a set ofFf, thenC N {g’ < g} is F,-measurable, hend®ult[F," |
Fl=1cClg <gh
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For the other sense of the equality (iii), we remark thdf ifs a random variablé-';-
measurable, thet/ 1(,—,) = U'ly—,) whereU' is F,-measurable (becauself is a
F-progressive process, théQll,—o = Vylie—,y).

HenceF,,  =F/ _ ,usingthe sameargumentone has , =F, _

(¢'=g) 8lig'=g} 1g'=¢) (¢'=¢
entails that MUltF,” | ] = Mult[F,; | F,/] in the sef{g’ = g}.

But Mult[F, | Fy'] =2 a.s. becausgX;: > 0} is independent ofF,: alreadyT" is
Fi¥l-measurable anB(X;1>0| F,) = 3, finally {MUlt[F; | 7,1 =2} C {¢' < g}.

To be able to apply Theorem 3.5 of [2] and to conclude, one needs to show
P(g' =g) < 1. Indeed, ifP(g' = g) = 1, the saturation ofl’ implies: H ¢ H' N[0, T1],
thenH = H' N[0, T1] which gives a contradiction (see Point #3).

PrROPOSITION 4.3. —Let X and X’ be two solutions of EQE), Z := X — X/, and
7! = X4n+2 _ X/4n+21 then

() dL,(Z) LdL,(Z).

(i) SuppdL;(Z) C SuppdL:(Z").

Proof. —

(i) Remark that(X**+2 v X'#*+2) = (|1X| v |X')**2 then, L,(X**2 v X'#*+2) =0
(see Point #4 in the appendix of this paper). In particular (see [16]):

" This

t
/]]'{XSZX;:O} dLs (X4n+2 _ X/4n+2) — O
0

But owing to Proposition 1.3(iii/L,(X — X') is carried by{t, X, = X, = 0} which
completes the proof. i

(i) Let H :={t,Z, =0} and H' := {t, Z; = 0}, on the open seH' N H we have
X = —X'. But the interior of the sefs, X, = — X} is empty, SoH' N H¢ = ¢ and
H CH. ..

SinceH C H' we getH = H’, (i) results immediately from [17]. O

Appendix A

Point #1. Let H be a closed optional sef,the end ofH andG be the set of the left
extremities ofH, a semi-martingal& = M + V is said to be iR (H) if M is uniformly
integrable martingale/V; is carried byH andX is null onH.

Under the hypothesis < +o0, a.s. the three following properties were proved in [2]:

(D) If (X;) isaprocess dR(H), we haveE[X ., g < T | Fr] = X for every stopping
timeT.

(2) It G avoids stopping times and ¥ is a random integrable variable, then the right
continuous version of the proceX¥s=E[X, g <t | F]isinR(H).

(3) ELfy™™ Z,dV,] = E[XZ,, g > 0], whereV is the finite variation part otX,)
and(Z,) is an optional process.

These formulae remain trueff{g = +o00} < 1 (by a suitable change of probability)
and the hypothesis th&t avoids stopping times become&s:avoids stopping times on
{X o # 0} (with the same proofs of [2]).
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Point #2. Ve > 0, Foie C Reqe vV C WhereC is the completion ob (¢, n > 1),
(®,).>1 is the sequence of signs of the excursionsBofwith the same labeling of
Barlow [5]).

SinceC is independent ok, = F\J'! = FII, we haveF] c R} v C (see [14]).
SoF, CRy Vo (P, (X)a, <g)V{Xri-0), @, is the beginning of thath excursion,
hence,F,f C F, V {Xri.o}, finally Ff = F, v {X71 > 0}.

Point #3. We will prove thatH # H'. Assume on the contrary thai = H'.
Then by the Corollary 3.2.1 of [2], the proce¥s= (sgnX)R is a martingale, so
M := [ B®"dB = Y, = - This entails{z, B, = 0} = {t, M, = 0} which is not true,
as it would imply by applying It6's formula t&8*"**: n(2n +1) [g' B> *ds = B2+ —

(2n + )M, = 0 wheret is the inverse of the local time oB at zero. Indeed,
o B2 tds = [;7a* 1LY — L;*)da is a symmetric stable process (which is not
identically null).

Point #4. LetY be a continuous semi-martingale, the?(Yz) =0 for everyr > 0,
indeed:

t
1
/ 72 d(Y?) =4Y), < +oo.
O N

But by the occupation times formula (see Corollary 1.6, Chapter VI of [18]):

+oo

1
X

ThusL®(Y?) =0.
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